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Key Points:

e We examined how intra-specific light plasticity in leaf traits affects modeled tropical

tree demography and long-term forest dynamics.

e Observation-constrained light plasticity enabled an accurate prediction of tree growth

rates, forest structure, and biomass regrowth.

e Light plasticity improved modeled forest composition and trait diversity, which cannot

be achieved by adding new plant functional types.
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Abstract

Predicting tropical tree demography is a key challenge in understanding the future
dynamics of tropical forests. While demographic processes are known to be regulated by leaf
trait diversity, only the effect of inter-specific trait variation has been evaluated, and it remains
unclear as to what degree the intra-specific trait plasticity across light gradients (hereafter light
plasticity) regulates tree demography, and how this will further shape long-term community
and ecosystem dynamics. By combining in situ trait measurements and forest census data with
a terrestrial biosphere model, we evaluated the impact of observation-constrained light
plasticity on demography, forest structure, and biomass dynamics in a Panamanian tropical
moist forest. Modeled leaf physiological traits vary across and within plant functional types
(PFT), which represent the inter-specific trait variation and the intra-specific light plasticity,
respectively. The simulation using three non-plastic PFTs underestimated 20-year-average
understory growth rates by 41%, leading to a biased forest size structure and leaf area profile,
and a 44% underestimate in long-term biomass. The simulation using three plastic PFTs
generated accurate understory growth rates, resulting in a realistic forest structure and a
smaller biomass underestimate of 15%. Expanding simulated trait diversity using 18 non-plastic
PFTs similarly improved the prediction of demography and biomass. However, only the
plasticity-enabled model predicted realistic long-term PFT composition and within-canopy trait
profiles. Our results highlight the distinct role of light plasticity in regulating forest dynamics
that cannot be replaced by inter-specific trait diversity. Accurately representing light plasticity is

thus crucial for trait-based prediction of tropical forest dynamics.

Plain Language Summary

Ecosystem functions such as biomass dynamics and forest structure are strongly
regulated by plant diversity. In addition to species diversity, plant characteristics also vary
within the same species, particularly in response to environmental gradients. However, it
remains largely unclear how this intra-specific diversity across environmental gradients
regulates forest dynamics. Here we used vegetation modeling to investigate how the intra-

specific diversity across different light environments regulates tropical tree demography, forest
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composition, and carbon cycle. We found that incorporating intra-specific diversity in the
model substantially influenced tree growth rates, forest structure, and long-term carbon
accumulation. Constraining intra-specific diversity with observations improved model
predictions of these processes. In addition, incorporating the intra-specific diversity improved
the prediction of forest composition, and such an effect cannot be replaced by solely
incorporating higher species diversity. These results highlight the importance of characterizing
the intra-specific diversity across environmental gradients for predicting long-term tropical

forest dynamics.

1 Introduction

The future fate of tropical forests, particularly the persistence of old-growth forest
carbon sink and the regrowth potential of secondary forests, critically influences the global
carbon cycle, biodiversity, and the realization of several Sustainable Development Goals
(Anderson-Teixeira et al., 2016; Pan et al., 2011; United Nations General Assembly, 2015).
Predicting the community and ecosystem dynamics of these forests fundamentally depends on
a realistic representation of demographic processes such as growth and mortality. However,
accurately predicting tropical tree demography remains an open challenge for process-based
terrestrial biosphere models (TBM), and a common modeling bias is the underestimate of the
abundance of understory trees (Koven et al., 2020; Longo et al., 2019a), which can lead to

further biases in the prediction of long-term canopy regeneration and forest succession.

Understory trees in closed-canopy tropical forests are limited by low light availability
(Chazdon & Fetcher, 1984; Clark et al., 1996), thus their demographic rates are strongly
regulated by the diversity in light use-associated traits (Denslow, 1987; Detto et al., 2021;
Finegan, 1984; Moorcroft et al., 2001). The inter-specific variation in these traits, particularly
the trait variation between light-demanding and shade-tolerant species, has been shown to
influence demographic rates and ecosystem functioning (Reich, 2014; Wright et al., 2010). In
addition to the inter-specific variation, leaf traits within the same species also vary substantially

across light gradients in tropical forests (Xu et al. 2017). This intra-specific trait variation largely
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results from phenotypic plasticity in response to within-canopy light gradients (hereafter light
plasticity), although ontogeny and other environmental factors also contribute to the variation
(Cavaleri et al., 2010; Coste et al., 2009; Dang-Le et al., 2013; Detto & Xu, 2020; Wen et al.,
2008). To date, it has not been evaluated as to what degree light plasticity regulates understory

tree demography in tropical forests.

Both light plasticity and inter-specific variation enhance functional diversity and thus are
expected to influence forest dynamics, but light plasticity can affect ecosystem processes
through two unique mechanisms. First, it can increase net carbon gain in the understory by
reducing respiration cost and increasing specific leaf area (Niinemets et al., 2015; Poorter et al.,
2019), which can directly increase tree fitness during their early life stages and thus enhance
their growth, survival, and abundance. In contrast, inter-specific trait variation can not lead to
tree-level trait adjustments within their lifetime. Second, the inter-specific trait variation
characterizes the tradeoff between growth in high light environment and survival in low light
environment, whereas plasticity-enabled trait variation weakens such tradeoff by increasing
understory survival (Sterck et al., 2013). Based on these mechanisms, light plasticity is expected
to shape demographic processes and community composition differently than the inter-specific

trait variation.

In TBMs, the inter-specific trait variation is often modeled as plant functional types
(PFT), which are groups of species with similar trait values, and light plasticity has been
commonly represented as intra-PFT trait variation across light gradients. While many studies
have aimed to improve the model representation of inter-PFT variation (Butler et al., 2022;
Pappas et al., 2016; Pavlick et al., 2013; Rius et al., 2023; Sakschewski et al., 2016), fewer
studies have attempted to refine the representation of plasticity and evaluate its impact on
predicting forest dynamics (Needham et al., 2025). In fact, TBMs often incorrectly assume that
the extent of light plasticity is identical across different PFTs and traits (see Table 1 for a
summary of light plasticity implementation in TBMs), despite field observations demonstrating
that different species and traits exhibit a wide range of light plasticity (Chmura et al., 2017;
Osunkoya et al., 1994; Valladares et al., 2000). For example, both leaf dark respiration rate and

maximum carboxylation rate of photosynthesis (Vcmax) decrease with lower light levels, but leaf



120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

manuscript submitted to Journal of Geophysical Research-Biogeosciences

dark respiration has a higher degree of plasticity than that of Vcmax, resulting in a lower
respiration to Vemax ratio (Lamour et al., 2023) and thus a higher shade tolerance in the
understory. The absence of difference in modeled respiration and Vcmax plasticity likely explains
the underestimate of understory abundance in plasticity-enabled TBMs (Koven et al., 2020;
Longo et al., 2019a), and this is partly supported by previous research showing that a higher
degree of leaf dark respiration plasticity in FATES model increases understory leaf area
(Needham et al., 2025). However, it remains unknown whether a comprehensive and realistic
representation of light plasticity, i.e., incorporating its variation across species and multiple
traits, can fully correct for the model biases in understory growth and survival and further

improve the prediction of long-term forest dynamics.

To examine the role of light plasticity in explaining and predicting tropical forest
dynamics, we combined in situ trait measurements in Panama and forest inventories at Barro
Colorado Island (BCI) with the Ecosystem Demography Model version 2.2 (ED2) (Longo et al.,
2019b). The ED2 model is a trait-based, demography-enabled TBM, and it represents light
plasticity in leaf physiological traits as intra-PFT parameter variation driven by light gradient.
The modeled light plasticity is constrained by local observations, and the degree of light

plasticity varies across PFTs and traits (Table 1; Fig. 1).

Overall, we expected that light plasticity would improve the prediction of forest
structure and long-term forest succession by better capturing understory demography, and its
effect would be different from that of inter-specific trait diversity. Specifically, we hypothesized
that: (1) a non-plastic model containing only inter-PFT trait variation would underestimate
growth rates and overestimate mortality rates in the understory, consequently underestimating
tree abundance and leaf area; (2) incorporating observation-constrained light plasticity would
yield more accurate demographic rates and thus a more realistic forest size structure and leaf
area vertical profile; (3) during long-term secondary succession, light plasticity would promote
forest biomass accumulation; (4) expanding inter-specific diversity in the non-plastic model by
adding more PFTs would have a smaller positive effect on understory growth and long-term

biomass than light plasticity.
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Table 1. Current representation of light plasticity in TBMs and its impact on modeled ecological processes.

Traits that have

Do traits differ in

Do PFTs differ in

Ecological impact of

Model . .. . . . . . . . .. Ref
ode light plasticity light plasticity light plasticity light plasticity ererence
V .
Joint UK Land ] cmex No. No. Small, positive effect ~ Mercado
Environment Simulator max N All traits have the All PFTs have the  on canopy et al.
(JULES) Leaf dark respiration; same plasticit same plasticit hotosynthesis 2007
Leaf nitrogen content; P v P Y P 4
Community chfx; No. No. Small, positive effect Bonan et
Land Model version 4 ma L All traits have the All PFTs have the  on gross primary
(CLM4) Leaf dark respiration; same plasticit same plasticit roductivity (GPP) al. 2011
Leaf nitrogen content P v P v P ¥
chax;
Lund-Potsdam-Jena . No. No. Smith et
General Ecosystem max, o All traits have the All PFTs have the  Not examined
. Leaf dark respiration; .. .. al. 2014
Simulator (LPJ-GUESS) ) same plasticity. same plasticity.
Leaf nitrogen content;
Vemax; Yes. No
Tralt—based Forest Jmax; o The I!ght pIa§t|C|ty of All PETs have the _ Fauset et
Simulator version 2 Leaf dark respiration; leaf lifespan is . Not examined
same plasticity. al. 2019

(TFSv.2)

Specific leaf area;
Leaf lifespan

different from that of

other traits.
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Table 1. (continued)

N Yes.
cmax, . .
. ’ Leaf dark respiration  Yes.
Functionally Assembled  Jmax; ) P . .
. N is the most plastic, Early-successional
Terrestrial Ecosystem Leaf dark respiration; . .
. ) and all other traits PFT is the most
Simulator (FATES) Leaf nitrogen content; )
oo have the same plastic.
Specific leaf area ..
plasticity.
V .
Organizing Carbon and emax No. No.
Hydrology In D i ma All traits h h All PFTs have th
Engosfegn\:sQO;lgaTgEE) Leaf dark respiration; san::ealtlsas;\c/i?ct ) same Sias?c;lc?tt )
¥ Leaf nitrogen content P v P ¥
Vemaxs Yes.
Ecosystem demography Jmax; yes. Early-
: Each trait plasticity i
Model version 2.2 Leaf dark respiration; ach trai p asticity Is successional PFT
e parameterized .
(ED2) Specific leaf area; is the most
. separately. .
Leaf lifespan plastic.

Positive effect on leaf
area and vegetation
carbon

Not examined

Large effect on tree
demography, forest
structure,
composition, trait
diversity, and
biomass

Needham
et al.
2025

Zhang et
al. 2020

This
study
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Intra- & inter-PFT trait variation

Top of canopy Model 1: ED2-baseline Model 3: ED2-static
cohort
o] Low inter-PFT variation Low inter-PFT variation High inter-PFT variation
S —_—
Top of canopy o o ) Qé & 0OCC0000C0C000C000
No & &L No
inln‘a-FtFT & q;g\'b intra-PFT
variation A variation
o Understory ° ] . sesssescesssanssns
Understory - > - > L - >
cohort Plant trait value Plant trait value Plant trait value

Within-canopy trait variation

Leaf dark respiration Vemax Specific leaf area Leaf lifespan
at25°C at 25°C
ED2-baseline « e e e . .
ED2-static w—meos e . cece = = cess e o o
W03 Top of canopy { —{ T I — T I+ |
W03 Understory { {T1+— I — 1T+ 1T 13—
0.0 05 1.0 15 0 25 50 75100125 0 10 20 30 40 A on 20 40 En
3 b P 0 10 20 30 40 50
pmol m* s pmol m™s m* kg months

Figure 1. Representation of plant functional diversity in ED2 model for four traits of interest:
leaf dark respiration rate at 25°C, maximum carboxylation rate of photosynthesis (Vcmax) at
25°C, specific leaf area, and leaf lifespan. The upper panel is a conceptual diagram of the
different components of plant functional diversity in each model. Open and closed circles
represent the trait variation between top-of-canopy cohorts and understory cohorts. ED2-
baseline only contains trait variation across three PFTs, without intra-PFT variation. ED2-plastic
contains both trait variation across three PFTs and intra-PFT light plasticity. ED2-static only
contains trait variation across 18 PFTs, without intra-PFT variation. The lower panel shows the
model parameterization of within-canopy trait variation. ED2-baseline, ED2-plastic, ED2-static
are represented by purple, orange, and green colors, and each point or line represents a
different PFT. Light plasticity in ED2-plastic was parameterized based on top-of-canopy and
understory trait values from the W03 dataset (described in section 2.3 and 2.4). Although not
shown here, simulated maximum rate of photosynthetic electron transport (Jmax) in ED2 is
proportional to Vecmax by a constant factor, therefore, it is also a plastic trait and it has the same
light plasticity as Vemax.

2 Materials and Methods

2.1 Study site

The study site is a long-term, 50-ha forest plot at Barro Colorado Island (BCl) in Panama.

The BCl site is an old-growth moist tropical forest with a mean annual precipitation of 2660 mm
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and a four-month dry season. The plot was established in 1981. The species identity, spatial
coordinates within the plot, and diameter at breast height (DBH) of all stems with DBH > 1 cm
were first inventoried in 1982 and then recorded every five years since 1985 (Condit et al.,

2017).
2.2 Model description

The ED2 model is a cohort-based TBM that simulates vegetation dynamics and land
surface processes (Longo et al., 2019b). In this model, the smallest spatial unit is a patch, which
is a collection of areas with similar disturbance histories, and its size is usually comparable to a
forest gap (~20m). Within each patch, there are multiple cohorts, which are individuals of
similar size and same PFT. Each cohort is always shaded by all other taller cohorts within the
same patch, therefore, cohorts experience height-structured competition for light, which

further drives vegetation dynamics.

Cohort-level growth and mortality rates are simulated based on ecophysiological
principles and are tracked explicitly throughout the simulation. DBH growth rate is determined
by cohort-level net carbon balance, which is further governed by photosynthesis, respiration,
and carbon allocation among different plant compartments. The cohort-level mortality rate is
modeled as the sum of growth-independent and growth-dependent components and is

described by the following equation based on Camac et al. (2018).
M=M,+ Mg+ axefarowth (1)

M is the total cohort-level mortality rate. M, is baseline mortality rate, and itis a
prescribed parameter that differs across PFTs. M4 is disturbance-related mortality, and it has
the same value for all PFTs. The last term in this equation describes the growth-dependent
mortality rate. &« and f are both PFT-dependent parameters, and f8 is always negative, meaning

that this growth-dependent mortality rate declines exponentially with larger DBH growth rates.

To isolate the effect of light plasticity and inter-specific trait variation, we generated

three ED2 versions that have different representations of intra-PFT light plasticity and inter-PFT
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trait variation (Fig. 1). ED2-baseline characterizes three PFTs (described in section 2.5) that do
not have light plasticity, meaning that traits do not vary with light levels. ED2-plastic has three
plastic PFTs, and their traits respond to light gradients (described in section 2.3 and 2.4). ED2-
static characterizes 18 PFTs that do not have light plasticity, but its inter-PFT trait variation
covers a similar range of variation as the intra-PFT light plasticity in ED2-plastic (described in

section 2.5).

2.3 Model representation of light-driven plasticity

Five leaf traits vary across cohorts and are modeled as plastic: leaf dark respiration rate,
Vemax, maximum rate of photosynthetic electron transport (Jmax), specific leaf area (SLA), and
leaf lifespan. These traits are selected because they are available in a local trait dataset
(described in section 2.4) and they are important in determining leaf-level carbon balance and
leaf turnover rates. The values of these plastic traits vary both across and within PFTs, and the
intra-PFT variation across cohorts depends on the cohort-level overtopping leaf area index
(oLAl). For each cohort of interest, oLAl is the total leaf area index (LAI) for all cohorts that grow
in the same patch and are taller than the cohort of interest. Leaf area is modeled by a power-
law function of DBH, and this function is estimated from the leaf area profile measured by
LiDAR (light detection and ranging) at the BCl 50-ha plot (Detto et al., 2015). We used oLAl
rather than absolute light levels to characterize the light environment for the following reasons.
First, there was no direct measurement of the light environment at the BCl plot. Second, olLAl
characterizes neighborhood shading, which is a major source of within-canopy light

environment variation.

We assumed that plasticity-induced trait changes only occur with leaf turnover, i.e., the
trait value of a new leaf is calculated based on the current oLAl (equation 2) and will then
remain constant at the leaf level. The cohort-level trait value is an average across new and old
leaves (equation 3), and there is no within-crown trait variation. As described previously, oLAl is
calculated from DBH, which is updated monthly, thus cohort-level oLAl and trait values are both

updated monthly.
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The cohort-level trait value is calculated based on the following equations:

_ ki+oLAlL
Xijnew = Xjo x €77, (2)

Xijir1 = (1 - turnoveri’j,t) *Xj¢ + turnover;j; * X;jnew (3)

The equation 2 is based on Lloyd et al. (2010). X; j new is the trait value of a new leaf in
cohort j within PFT i. X; ¢ is the trait value for a top-of-canopy cohort (oLAI=0) of PFT i. k; is the
light plasticity coefficient for PFT i. X; o and k; are prescribed parameters for each trait and
each PFT. oLAl;j is the light environment of cohort j within PFT i. The parameterization of k; is

described in section 2.4, and the parameterization of X ¢ is described in section 2.5.

In equation 3, X;j ;.1 is the cohort-level trait value at month t+1. X; ; , is the value at
month t. turnover;j, is the leaf turnover rate of cohort j within PFT i at month t, and it is the
inverse of leaf lifespan (measured in the unit of month). Larger values of turnover,;;, suggest
that leaf turnover occurs at a faster rate and that traits more closely track changes in the light

environment.
2.4 Parameterization of PFT-level light plasticity

To parameterize the PFT-level light plasticity coefficient k;, we first calculated the
observed species-level light plasticity based on a trait dataset collected during 1999-2002 at the
San Lorenzo site and the Parque Natural Metropolitano site in Panama (hereafter W03 dataset;
more detail is available in Xu et al., 2017). These sites are equipped with cranes that are 42 m
and 52 m, respectively. For 64 measured species, leaf samples were collected from both their
understory saplings and sun-exposed branches of top-of-canopy trees, and we assumed that
the measured vertical trait variation is completely explained by light plasticity. Neither height
nor light level was measured at the site of the sampling, so samples were labeled categorically
as “understory” (oLAl > 0) or “top-of-canopy” (oLAl = 0). Measured traits include SLA, leaf
lifespan, light-saturated leaf photosynthesis rate at ambient temperature, and leaf dark
respiration rate at ambient temperature. We calculated Vcmax at 25°C from the photosynthesis

rate using the FVvCB photosynthesis model (Xu et al., 2017).
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Based on equation 2, we generated the following equation to estimate species-level
light plasticity:

1 X und
kp = mloge (p—), (4)

Xp,toc

where k,, is the light plasticity coefficient of species p, X}, unq is the average understory
leaf trait value of species p, X, o is the average top-of-canopy leaf trait value of species p. We
estimated oLAlung as 5 m? m? based on the measured leaf area profile at BCI (Detto et al.,
2015). The across-species medians of kp were -0.233, -0.227, 0.184, and 0.139 for leaf dark

respiration rate, Vcmax, SLA, and leaf lifespan, respectively (Fig. 2A).

To parameterize PFT-level k; from species-level k,,, we analyzed the relationship
between species-average, top-of-canopy traits and their k,, values (Fig. 2B-2E). We found that
Vemax plasticity was positively and linearly related to top-of-canopy Vcmax across species, so Kvemax
was parameterized as a linear function of top-of-canopy Vcmax (equation 5). Similarly, leaf dark
respiration plasticity was parameterized as a linear function of top-of-canopy leaf dark

respiration rate (equation 6).
Kyemaxi = —(0.00242 %V 000 + 0.06212) (5)
Kyespi = —(0.18974 * Respiration; o + 0.11744) (6)

Where K cmaxi is the Vemax plasticity of PFT i, Vi gy io is the Vemax at 25°C for a top-of-
canopy cohort within PFT /. K., ; is leaf dark respiration plasticity of PFT i, Respiration, is
the leaf dark respiration at 25°C for a top-of-canopy cohort within PFT i. SLA plasticity and leaf
lifespan plasticity were not significantly related to their top-of-canopy trait values, so we
calculated the average ksia (0.199) and ki, (0.240) across all species and assigned them to all
PFTs. Jmax in ED2 is modeled as proportional to Vcmax by a constant factor, therefore, we

assumed that kymax equals kvemax for all PFTs (Table S1).
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A: Across-species distribution of light plasticity coefficient
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Figure 2. Species-level light plasticity of leaf dark respiration rate, Vcmax, specific leaf area, and
leaf lifespan observed in the W03 dataset. (A) shows the distribution of species-level light
plasticity coefficient (k, in equation 4). Dashed horizontal lines indicate kp values at which traits
increase or decrease by fivefold across an oLAl gradient of 0-5 m?m™. (B)-(E) show the
relationship between observed top-of-canopy leaf traits and their light plasticity coefficients. A
solid line indicates a significant linear relationship (p < 0.05), whereas a dashed line indicates an
insignificant relationship. Green lines and numbers indicate the regression results fitted without
outlier (leaf dark respiration > 2 umol m2 s or specific leaf area > 20 m? kg).

2.5 PFT definition and parameterization
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Tropical tree species are commonly classified into PFTs based on plant physiological
traits, particularly wood density, because these traits are associated with a species’ position on
a growth-mortality tradeoff axis (Wright et al., 2010). However, 35% of all inventoried species
at the BCI plot do not have wood density information, and only 8% of all species have local
measurements for all leaf traits of interest (leaf dark respiration rate, Vcmax, SLA, and leaf
lifespan), thus a trait-based PFT definition is limited by data availability. To overcome this data
limitation, we developed a metric named demographic niche score to define PFTs based on
demography rather than physiological traits, following previous practices to classify tropical

species using demographic rates (Condit & Riiger, 2022; Riiger et al., 2020).

First, we grouped all inventoried individuals into 20-meter patches based on their spatial
locations and calculated olLAl for each individual within each patch. oLAl values were calculated
from a DBH-based leaf area allometric function as described in section 2.3. Second, for each
species, we calculated the relative DBH growth rate of individuals under high light (the smallest
25% oLAl) and the mortality rate of individuals under low light (the largest 25% oLAl). Third, we
performed principal component analysis (PCA) for the species-level high light growth rates and
low light mortality rates (both were log transformed before the PCA analysis). We used the first
principal component as the demographic niche score, which explained 71% of the total

variation in demographic rates (Fig. S1).

Standard major axis regression revealed a strong positive relationship between species-
level demographic niche score and wood density (Fig. S2A), implying that our demographic

niche score can reasonably represent species’ position on the growth-mortality tradeoff axis.

In ED2-baseline and ED2-plastic, there are three PFTs: early-successional (species with
lowest 33% demographic niche score), late-successional (species with top 33% demographic
niche score), and mid-successional (intermediate score). From 1990-2010, the BCl plot on
average has 6.65, 9.40, and 15.1 cm? m™% (measured by basal area) of early-, mid- and late-
successional PFT. To parameterize top-of-canopy leaf trait values (X; o in equation 2) for these
three PFTs, we performed standardized major axis regression between species-level

demographic niche score and top-of-canopy Vemax at 25°C, SLA, and leaf lifespan in W03 dataset
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351  (Fig. S2), then we parameterized X; ¢ based on the median demographic niche score of each
352  PFT. Based on the regression models, early-successional PFT has the highest top-of-canopy

353 Vcmax, largest SLA, and shortest leaf lifespan. For Respiration;,, we parameterized it to be
354 proportional to V pmax i 0 by a factor of 0.015. When olLAl > 0, the simulated respiration to Vemax
355  ratio will deviate from 0.015 because leaf dark respiration is more plastic than Vcmax (Table S1),

356  resulting in a lower ratio with increasing oLAI (Fig. S3E).

357 The three PFTs described above are parameterized by top-of-canopy leaf trait values.
358  For ED2-static, we defined an additional 15 PFTs which are parameterized by understory leaf
359  trait values. Specifically, for each of the three original PFTs, we calculated leaf dark respiration
360  at 25°C, Vemaxat 25°C, SLA, and leaf lifespan values at oLAl of 1, 2, 3, 4, 5 m? m* based on

361  equation 2, then we generated five new PFTs by assigning these leaf trait values as new X;
362  and keeping all other traits (e.g., wood density, mortality parameters) the same as the original
363 PFT. In total, ED2-static includes six early-successional PFTs, six mid-successional PFTs, and six
364  late-successional PFTs. The variation in X; o across these 18 PFTs is identical to the plasticity-

365  driven variation in X; j neyw across an olLAl gradient of 0-5 m*> m™.
366 2.6 Simulation protocol

367 To test our first two hypotheses, we initialized the model with the BCI forest census in
368 1990, ran the model from 1989 to 2010 (hereafter short-term simulation), and compared

369  demographic rates and forest structure simulated by ED2-baseline, ED2-plastic, and ED2-static.
370 Since we were interested in the dynamics of tree species, we excluded herbaceous species and
371  only used the census information of woody species in the initialization. To test the third and
372 fourth hypotheses, we simulated 300-year forest secondary succession from a near bare-

373 ground condition (hereafter long-term simulation), and compared the forest composition and
374  functioning simulated by the three models. A near bare-ground condition means that there are
375  only a few tree seedlings of each PFT at the start of the simulation. The forest was simulated for
376 300 years because total basal area and aboveground biomass reached steady state during this
377  time frame. We used an in situ climate dataset collected at BCl from 1985-2012 as

378  meteorological forcing (available through the Smithsonian Tropical Research Institutes’ Physical
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Monitoring Program), and all simulations used repeated cycles of this multi-year climate
dataset. The long-term simulations used a disturbance rate of 0.014 year, which is the default

value in ED2 (Moorcroft et al., 2001).
2.7 Model benchmarking and analysis

To evaluate the prediction of demographic rates and forest structure, we calculated the
simulated growth rate, mortality rate, plant density, and leaf area averaged during 1990-2010
in short-term simulations, then compared it to observations. Specifically, we calculated
observed annual DBH growth rates and mortality rates for every two BCl censuses and then
calculated average demographic rates during 1990-2010. We didn’t use census data earlier than
1990, since DBH values smaller than 5.5 cm were rounded down to the nearest 5 mm in earlier
censuses. In terms of forest structure, we calculated the size distribution of plant density
averaged during 1990-2010. We also used a leaf area vertical profile estimated by airborne

LiDAR (Detto et al., 2015) as a model benchmark.

To measure the simulated tree shade tolerance, we calculated the PFT-level growth
compensation point (GCP), defined as the oLAl at which DBH growth rate declines to 0.01 cm
year ! (Fig. 3A). A higher GCP value suggests a higher shade tolerance. The community-level

GCP is calculated using all cohorts across all PFTs with DBH 2 1 cm.

To evaluate the prediction of long-term forest functioning, we calculated the plant
density, basal area, LAI, and gross primary productivity (GPP) averaged across the last 20 years
of long-term simulations. We also compared the simulated aboveground biomass (AGB)
trajectories with two sets of field-based AGB estimates: one is AGB estimates across a 300-year
chronosequence in Panama (Batterman et al., 2013), and the other is a BCI plot-level estimate
calculated based on the 2010 census and a local height allometry (Cano et al., 2019). Besides,
we compared simulated GPP to flux tower-based GPP measurements at BCI (Detto & Pacala,

2022).

To evaluate the prediction of trait diversity, we calculated a metric named community-

level vertical trait gradient for both observations and simulations. Using ten vertical leaf trait
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406  profiles measured in Panama, Lamour et al. (2023) fitted power law equations between

407  observed trait values (pooled across multiple species) and oLAl. The fitted scaling exponent
408  (reported in Table S3 and S4 of Lamour et al. 2023) represents the observed community-level
409  vertical trait gradient, which is the result of both intra-specific light plasticity and vertical

410  stratification of species composition. We similarly calculated the modeled community-level
411  vertical trait gradient by fitting a power law equation between cohort-level trait values and

412 modeled oLAl.

A: Definition of growth compensation point B: Light-DBH growth relationship
0.61
E - Growth compensation point
8 S 0.75 ED2-baseline: 2.64m°m™
> >
5 0.4 5 -
z DBH growth rate declines | £ 0.50 Fozsiate o 10mm
; to 0.01 cm year™ é
3 0.2 s
o Y. ]
5 5 0.251
T T
o m
a [a]
0.01 0.00+
0 1 2 3 4 5 0 2 4 6 8
Overtopping LAl (m? m™) Overtopping LAl (m? m™)

413 Figure 3. The definition of growth compensation point and the simulated relationship between
414  DBH growth rate and overtopping LAI. (A) shows a conceptual diagram of how growth

415  compensation point (GCP) is defined. GCP is a measure of simulated shade tolerance, and it is
416  calculated as the overtopping LAl at which modeled DBH growth rate declines to 0.01 cm year
417  (represented by the dotted line), and a larger GCP indicates a higher shade tolerance. (B)

418  Simulated relationships between DBH growth rate and overtopping LAl for all DBH > 1 cm

419  cohorts during short-term simulations. ED2-baseline, ED2-plastic, and ED2-static are

420  represented by purple, orange, and green lines, respectively. Inserted texts report simulated
421  GCP for each model.

422
423 3 Results
424 3.1 Tree demographic rates in short-term simulations

425 We compared 20-year-average growth rates predicted by ED2-baseline and ED2-plastic

426  in short-term simulations with the census data. In ED2-baseline, the DBH growth rate of



427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

manuscript submitted to Journal of Geophysical Research-Biogeosciences

understory cohorts (DBH: 1-10cm) was 0.0429 cm year, and incorporating observation-
constrained light plasticity in ED2-plastic increased simulated understory growth rate to 0.0865
cm year?, closer to the observed 0.0723 cm year™ (Fig. 4A). At the PFT level, ED2-baseline
predicted understory growth to be 0.0107, 0.00447, and 0.0456 cm year for early-, mid-, and
late-successional PFTs, lower than the observed growth rates of 0.203, 0.0637, and 0.0679 cm
year (Fig. 4B). Light plasticity improved model-data agreement by increasing the PFT-level
understory growth to 0.145, 0.0878, and 0.0847 cm year™. This increase was substantially larger
in early- and mid-successional PFT than in late-successional PFT (1255% and 1864% compared

to 85.7%).

We also tested the growth effect of increasing inter-specific diversity. The average
understory growth rate simulated by ED2-static was 0.0949 cm year, which more than
doubled the estimate of ED2-baseline and better aligned with the observation (Fig. 4A). At the
PFT level, simulated growth rates were 0.104, 0.0415, and 0.111 cm year for early-, mid-, and
late-successional PFT, and these PFT-level estimates were higher than ED2-baseline and

comparable to ED2-plastic (Fig. 4B).

Although both light plasticity and inter-specific diversity improved model-data
agreement of understory growth rates, only ED2-plastic correctly predicted that the understory
growth rate of early-successional PFT was highest among all PFTs (Fig. 4B), whereas ED2-

baseline and ED2-static wrongly predicted late-successional PFT to have the fastest growth.

The understory mortality rate simulated by ED2-baseline was 126% higher than the
census observation (0.0531 year! compared to 0.0235 year™). ED2-plastic and ED2-static

reduced the model overestimate to 0.0380 and 0.0388 year, respectively (Fig. 5).
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A: Size-dependent DBH growth rate B: PFT-level understory growth rate
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Figure 4. Light plasticity effect on 20-year-average tree growth during short-term simulations.
(A) shows modeled and observed DBH growth rates for different size classes. ED2-baseline,
ED2-plastic, and ED2-static are represented by purple, orange, and green bars, respectively. (B)
shows modeled and observed understory DBH growth rates for different PFTs. Understory is
defined as trees or cohorts with DBH between 1-10 cm. Error bars indicate 95% confidence

intervals calculated by bootstrapping.

A: Size-dependent mortality rate B: PFT-level understory mortality rate
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Figure 5. Light plasticity effect on 20-year-average mortality rate during short-term simulations.
(A) shows modeled and observed mortality rates for different size classes. ED2-baseline, ED2-
plastic, and ED2-static are represented by purple, orange, and green bars, respectively. (B)
shows modeled and observed understory mortality rates for different PFTs. Understory is
defined as trees or cohorts with DBH between 1-10 cm.




482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

manuscript submitted to Journal of Geophysical Research-Biogeosciences

3.2 Forest structure in short-term simulations

We analyzed the 20-year-average size distribution of plant density and leaf area profile
in the short-term simulations. Simulated understory plant density in ED2-baseline was 0.0931
plant m, and light plasticity increased community-level understory plant density to 0.260 plant
m-2, bringing it closer to the observed 0.391 plant m2 (Fig. 6A). At the PFT level, the understory
plant density of early-, mid-, and late-successional PFT were 0.00106, 0.0110, and 0.0847 plant
m-2 in ED2-baseline, which were an order of magnitude lower than the observed 0.0272, 0.161,
and 0.203 plant m™. Light plasticity increased plant densities to 0.00301, 0.0972, and 0.159
plant m, reducing the underestimates (Fig. 6B). The increase in mid-successional PFT
abundance contributed the most to the improved model-data agreement of community-level

understory plant density.

ED2-static increased community-level understory plant density to a more realistic 0.217
m-2, accompanied by 86.9-252% PFT-level increases relative to ED2-baseline. Community- and
PFT-level understory plant density predictions were comparable between ED2-static and ED2-

plastic (Fig. 6).

Underestimates of plant density in ED2-baseline further led to underestimated leaf area
in the understory (Fig. 6C). Meanwhile, the leaf area vertical profile simulated by ED2-plastic
and ED2-static aligned with an airborne LiDAR-based estimate (Detto et al., 2015). The total LAI
predicted by ED2-plastic and ED2-static (5.86 and 5.24 m? m2) was higher than ED2-baseline
prediction of 3.11 m? m, and ED2-plastic estimate best aligned with a total LAl estimate of 5.9

+ 0.4 m? m2based on hemispherical photos (Detto et al., 2018).
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Figure 6. Light plasticity effect on 20-year-average forest structure during short-term
simulations. (A) shows modeled and observed plant density for different size classes. ED2-
baseline, ED2-plastic, and ED2-static are represented by purple, orange, and green bars,
respectively. The inset figure is an enlarged version of the modeled and observed plant density
for cohorts with DBH > 30 cm. Error bars indicate 95% confidence intervals calculated by
bootstrapping. (B) shows modeled and observed understory plant density for different PFTs.
The inset figure is an enlarged version of the modeled and observed plant density for early-
successional PFT. Error bars indicate 95% confidence intervals calculated by bootstrapping. (C)
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shows the vertical profile of overtopping LAI. Inserted texts report the observed and modeled
total LAI. Airborne-LiDAR based estimate is 5.4 m? m™ (Detto et al., 2015), and hemispherical
photo-based estimate is 5.9 m? m2 (Detto et al., 2018). Gray shaded area indicates 95%
confidence interval of the LiDAR-based estimate.

3.3 Forest dynamics in long-term simulations

We examined AGB, GPP, PFT composition, and trait composition during simulations of
300-year forest secondary succession. At the 12t" and 80t years of succession, the forest
simulated by ED2-baseline stored 32.4 and 123 Mg ha! of AGB, lower than chronosequence-
based estimates of 88.0 and 160 Mg ha (Batterman et al., 2013), and ED2-plastic generated
higher and more realistic estimates of 50.7 and 175 Mg ha™* (Fig. 7A; Table 2). At the 300" year,
ED2-plastic predicted AGB to be 224 Mg ha™! (Table 2), which was 50.3% higher than ED2-
baseline estimate, though still lower than the census-based estimate of 263-266 Mg ha™* (Cano
et al., 2019). ED2-static predicted total AGB to be 57.5, 154, and 233 Mg ha'after 12, 80, and
300 years of succession, which were similar to or higher than the predictions with light

plasticity.

During the last 20 years of succession, ED2-plastic produced the highest GPP estimate of
3.39 kg C m2 year!, whereas ED2-static predicted the lowest GPP of 2.23 kg C m2 year™. The
prediction of ED2-baseline (2.83 kg C m year?) best aligned with the observed value of 2.8 kg

C m2year? (Detto & Pacala, 2022).

All models exhibited a similar temporal trend of community composition, where early-
successional PFT initially dominated the forest and was eventually outcompeted by late-
successional PFT (Fig. 8). During the last 20 years of succession, all models underestimated the
basal area of early-successional PFT relative to the abundance observed in BCI forest censuses
(Fig. 7B), but the ED2-plastic estimate of 3.07 cm? m2 best aligned with the observed 6.65 cm?
m2, whereas ED2-baseline and ED2-static underestimated the basal area by an order of

magnitude (0.417 and 0.618 cm? m™).
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A: Aboveground biomass (AGB) B: PFT composition during 280"-300" year
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Figure 7. Light plasticity effect on 300-year forest secondary succession in long-term
simulations. (A) shows the trajectory of aboveground biomass (AGB) modeled by ED2-baseline
(purple line), ED2-plastic (orange line), and ED2-static (green line). Gray points represent
observations from a chronosequence in Panama (Batterman et al., 2013). The black point
represents the plot-level AGB estimate based on censuses and local allometric equations (Cano
et al., 2019). (B) shows the simulated and modeled PFT abundance averaged during the last 20
years of succession. (C) shows modeled and observed community-level vertical trait gradients
of leaf dark respiration rate at 25°C, Vcmax at 25°C, specific leaf area, and leaf lifespan. The
definition and calculation of community-level vertical trait gradient are described in section 2.7.
ED2-baseline, ED2-plastic, and ED2-static are represented by purple, orange, and green bars,
respectively. Error bars for these simulated results are 95% confidence intervals calculated by
bootstrapping. Gray bars and gray error bars represent the observed community-level vertical
trait gradients and their confidence intervals reported in Table S3 and S4 in Lamour et al.
(2023). The observed leaf lifespan gradient is marked as “NA” because Lamour et al. (2023) did
not collect leaf lifespan data.

The simulated community-level trait diversity also differed across models. In ED2-plastic,
the community-level vertical trait gradient (defined in section 2.7) of leaf dark respiration,
Vcmax, and SLA were -0.195, -0.141, and 0.149, which were comparable to the -0.14, -0.08, and
0.12 reported in Lamour et al. (2023) based on in situ trait measurements (Fig. 7C). In contrast,

both ED2-baseline and ED2-static showed vertical trait gradients that were close to zero, i.e.,
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582  leaf dark respiration, Vcmax, and SLA were largely constant within the canopy. Aside from trait
583  profiles, community-average leaf traits (weighted by cohort-level leaf area) during the last 20
584  years of succession were also different between models. Average leaf dark respiration and

585  Vcmax were 104% and 64.1% higher in ED2-plastic than in ED2-static, while SLA, leaf lifespan,
586  and wood density were 40.3%, 50.6%, 3.72% higher in ED2-static than in ED2-plastic (Table 2).
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619  Figure 8. Light plasticity effect on community composition in long-term simulations. (A)-(C)
620  show PFT composition in ED2-baseline, ED2-plastic, and ED2-static. Early-, mid, and late-
621  successional PFTs are shown in yellow, gray, and blue areas, respectively.
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Table 2. Modeled forest structure, composition, trait diversity, and functioning in long-term
simulations. Trait values are calculated as community-level averages weighted by cohort-level
leaf area during the last 20 years of simulation. All other variables are calculated as ecosystem-
level averages during the last 20 years of simulation, except for AGB. AGB is an annual average.
For example, AGB at the 12t year is calculated as the ecosystem-level, annual average during
the 12t year of the simulation.

ED2-baseline  ED2-plastic = ED2-static Observation

Forest structure and composition

Total plant density

(individuals m?) 0.206 0.424 0.367 0.433 (forest census)
Understory plant
density (individuals 0.181 0.378 0.325 0.391 (forest census)
m-2)
Total bfsa'_zarea 16.9 28.7 28.7 30.7 (forest census)
(cm?m™)
5.42
Total LAI (Detto et al., 2018);
(m? m?) 3.16 6.25 5.81 c 9

(Detto et al., 2015)

Basal area of early-

successional PFT 0.417 3.07 0.618 6.65 (forest census)
(cm? m?)

Community-level
trait diversity

Leaf dark respiration
rate at 25°C 0.760 0.417 0.204 NA
(umol m2s1)

VmwatiSE 50.7 32,5 19.8 NA
(umol m2s?)
Specmc2 Ieaj area 11.2 21.6 30.3 NA
(m? kg™)
Leaf lifespan 12.0 26.9 40.5 NA
(month)
Wood density 0.622 0.619 0.642 NA

(g cm™)
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Forest functioning

88.0
th
AGB(I\E;lt 1hza_1\)/ear 324 50.7 57.5 (Batterman et al.,
g 2013)
160
th
AGB“S't Sr?a_l‘)’ear 123 175 154 (Batterman et al.,
g 2013)
AGB at 300" year 263-266
(Mg ha't) 149 224 233 (Cano et al., 2019)
Gross primary o

productivity 2.85 3.39 2.23

(kg C m2 year) (Detto & Pacala, 2022)

629

630 4 Discussion

631 4.1 Light plasticity and inter-specific diversity similarly correct for model biases in understory

632  growth and forest structure

633 Consistent with our first hypothesis, growth rates of understory trees were

634  underestimated by 40.7% when they were not plastic and were parameterized by top-of-

635  canopy leaf traits (Fig. 4A). Incorporating observation-based light plasticity corrected for this
636  growth underestimate and further enabled accurate prediction of tree size distribution and leaf
637  area profile (Fig. 4 and 6), which supports our second hypothesis. These findings provide the
638  first quantitative evidence that light plasticity is critical for explaining demographic processes
639  and forest structure, and that observation-constrained light plasticity largely corrects for the

640  model underestimate of understory growth and abundance in tropical forests.

641 The modeled effects of light plasticity arise from increased plant shade tolerance. The
642  simulated community-level GCP doubled with light plasticity (Fig. 3B), with the largest increase
643 in early-successional PFT (Fig. S4). Field experiments have similarly shown that plants in low
644  light treatment substantially reduce their light compensation point (LCP; a lower LCP suggests a

645  higher shade tolerance) compared to conspecifics in high light treatment. For example, Kitajima
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(1994) showed that tropical tree seedlings grown in the shaded treatment can reduce their leaf-
level LCP by more than 50% compared to conspecifics grown in the full sun. Sterck et al. (2013)
showed that the plant-level LCP of tropical tree seedlings grown at the low light level decreased
to one-third of conspecifics grown at the high light level. The magnitude of increase in shade
tolerance is comparable between field observations and our modeling results, suggesting that

the simulated physiological consequences of light plasticity are realistic.

Meanwhile, ED2-static with higher inter-specific diversity predicted similar understory
growth and forest structure as ED2-plastic during short-term simulations (Fig. 4 and 6).
Although ED2-static did not incorporate light plasticity, it generated within-canopy trait profiles
and GCPs that were similar to ED2-plastic (Fig. S3 and S4) by including additional PFTs.
Therefore, incorporating within-canopy variation in leaf traits, either by including intra-specific
light plasticity or expanding inter-specific diversity, is necessary to predict realistic understory

growth and tropical forest structure.

This finding is relevant to recent efforts to improve the representation of fine-scale
functional diversity in TBMs. For example, hyperspectral imaging has been used to initialize PFT
composition at a high spatial resolution (Bogan et al., 2019). Although this approach captures
spatial heterogeneity in plant functional traits, it does not explicitly account for the within-
canopy trait variation. Our results emphasize that a TBM only including the trait variation
observed at the top canopy (such as ED2-baseline) is insufficient for predicting tropical forest
structure, instead, such prediction requires incorporating the within-canopy trait diversity.
Future research should extend beyond our plot-level findings to quantify the ecological
consequences of within-canopy trait diversity at a larger spatial scale and across different

tropical regions.

4.2 Light plasticity effect on long-term functional composition and within-canopy trait profiles

cannot be compensated by inter-specific diversity

The demographic effects of light plasticity and inter-specific diversity further modulate

long-term forest succession and regrowth. We found that ED2-plastic and ED2-static similarly
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enhanced modeled biomass accumulation relative to ED2-baseline during 300 years of

succession (Table 2; Fig. 7A), supporting our third hypothesis but not the fourth hypothesis.

Despite the positive effects of light plasticity and inter-specific diversity, AGB predictions
at the 300%™ year across all models were still lower than the plot-level estimate based on local
allometry (Cano et al., 2019). This is attributed to an underestimate of large tree growth and an
overestimate in their mortality rates (Fig. 4A and 5A), which may be related to the inaccurate
representation of size dependence in reproductive allocation and aboveground versus

belowground allocation (Xu et al., 2024).

Although ED2-plastic and ED2-static generated similar predictions of AGB, the effect of
light plasticity on improving the prediction of functional composition cannot be compensated
by inter-specific diversity. Early-successional PFT was largely outcompeted by mid- and late-
successional PFTs in ED2-static, whereas it coexisted with other PFTs at a substantially higher
abundance in ED2-plastic (Table 2). This difference arises because inter-specific diversity and
light plasticity shape community assembly differently. In ED2-static, light limitation imposes a
strong selection pressure on understory trees, particularly for early-successional PFTs. In
contrast, intra-PFT plasticity enhances individual fitness, especially the fitness of early-

successional PFT which is the most plastic (Table S1), eventually promoting coexistence.

The unique effect of light plasticity on composition is also evident at the trait level.
During long-term simulations, ED2-plastic generated a realistic community-level vertical trait
gradient (defined in section 2.7), whereas leaf traits simulated by ED2-static did not vary
significantly across the vertical gradient (Fig. 7C). This is because in ED2-static, only trees with
shade-tolerant traits can survive the understory stage and then reach the top canopy, thus ED2-
static simulated values of leaf dark respiration rate and Vcmax were always low, and values of
SLA and leaf lifespan were always high, regardless of the canopy position (Fig. S5). In contrast,
trees in ED2-plastic dynamically adjust their traits based on light levels throughout their
lifetime. As a result, ED2-static had 51.1% and 39.1% lower community-level leaf dark

respiration and Vcmax than ED2-plastic, further leading to a 34.2% lower GPP (Table 2). The
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community-average leaf dark respiration and Vcmax Were the highest in ED2-baseline because all

cohorts in this model had top-of-canopy trait values.

Interestingly, GPP simulated by ED2-baseline best aligned with the flux tower-based
estimate during 2012-2017 (Detto & Pacala, 2022). This model-data agreement in GPP does not
arise from an accurate representation of ecophysiological processes, rather, it arises from the
compensatory effect of an underestimated LAl and a high Vcmax. Meanwhile, ED2-plastic
predicted realistic trait profiles and LAI, but overestimated GPP by 21.1%. This may be
explained by a lack of hydraulic limitation (Xu et al., 2016) in the version of ED2 used for our
study and possible biases in stomatal parameters and photosynthetic temperature

dependence.

Results of PFT composition and community-level trait diversity suggest that light
plasticity regulates tropical forest functional composition differently from inter-specific trait
variation, and this finding sheds new light on how we should represent functional diversity in
trait-based modeling. Higher simulated functional diversity have been shown to improve the
prediction of ecosystem carbon fluxes and biomass resilience, and this higher diversity is often
achieved by increasing the number of PFTs (Butler et al., 2022; Pappas et al., 2016; Pavlick et
al., 2013; Rius et al., 2023; Sakschewski et al., 2016). Extending beyond these findings, we show
that increasing the inter-PFT diversity is not sufficient for predicting long-term forest dynamics,
and the intra-PFT trait variation across microenvironmental gradients is required for realistic

prediction of forest functional composition.

Based on the demonstrated role of light plasticity in demography, forest structure, and
composition, we further hypothesize that light plasticity will regulate ecosystem responses to
light environment variability, particularly gap formations and post-disturbance forest
regeneration. First, light plasticity maintains the abundance of light-demanding species prior to
gap formation and thus facilitates future gap colonization and regrowth of these species.
Second, light plasticity will increase the photosynthesis and growth of previously suppressed
understory trees after gap formation by trait adjustment to elevated light levels. These

hypotheses, although yet to be tested, are particularly relevant for mechanistic understanding



728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

manuscript submitted to Journal of Geophysical Research-Biogeosciences

of tropical secondary forests, which now occupy more than half of all tropical forests (Food and
Agriculture Organization of the United Nations, 2010) and are predicted to have large regrowth
potential (Anderson-Teixeira et al., 2016; Pan et al., 2011; Pugh et al., 2019; Shevliakova et al.,
2009). Future research should investigate the role of light plasticity in predicting the multi-

dimensional recovery of tropical secondary forests (Poorter et al., 2021).

4.3 Toward mechanistic modeling of trait plasticity

By incorporating the variation in light plasticity across different species and traits, our
study provides a more realistic representation of light plasticity than previous TBMs (Table 1).
However, our representation of light plasticity has several assumptions about the degree,
timescale, and ecological consequences of trait plasticity. These assumptions, which have not
been thoroughly evaluated, highlight the key challenges and opportunities for further

developing a more mechanistic characteriziation of trait plasticity in TBMs.

We assumed that intra-specific light plasticity is the only driver of observed within-
canopy trait gradient, which may lead to an overestimate of the degree of light plasticity. While
light is a primary cue of the vertical variation, ontogeny can also contribute significantly to leaf
trait plasticity, particularly for non-pioneer species (Wen et al., 2008). In addition, thermal
stress, water stress, and herbivory can all contribute to the vertical trait profile (Cavaleri et al.,
2010; Coste et al., 2009; Dang-Le et al., 2013). Field-based trait measurements across a wider
range of ontogenetic stages and microenvironmental gradients will be instrumental in

disentangling the contribution of trait plasticity from these other sources of variation.

Another key assumption is that light plasticity only occurs at the time of leaf turnover
and that traits remain constant within a leaf’s lifetime, and such assumption may have
underestimated the rate of plasticity adjustment. Results from warming experiments have
shown that the timescale of temperature acclimation in leaf dark respiration varies from two
weeks to two months (Reich et al., 2021; Ren et al., 2024), and a similar analysis is yet to be
conducted to determine the timescale of plasticity-induced trait adjustments driven by other

environmental factors.
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Our results emphasized the benefits of light plasticity, but phenotypic plasticity is not
necessarily adaptive. For example, the expression of plasticity can be energetically costly, and
plasticity may lower fitness under certain scenarios (DeWitt et al., 1998). We did not model
these processes because field-based quantitative assessments are rare, and the few studies did
not find consistent evidence for the costs and tradeoffs associated with plasticity (Avramov et
al., 2007; Mclintyre & Strauss, 2014; Liu et al., 2016). On the other hand, TBM can serve as a
useful tool to quantify the cost of plasticity. For example, the metabolic cost of trait plasticity
can be incorporated as a model parameter, and optimizing the parameter against observed

forest demography and carbon fluxes may serve as a first-order estimate of the cost.

While we focused on the light-driven plasticity of leaf physiological traits in this study,
trait plasticity is a widespread phenomenon observed in other traits and across other
environmental gradients (Poorter et al., 2019; Siefert et al., 2015). For example, plant structural
traits such as leaf angle vary substantially within the canopy, which can influence carbon and
energy fluxes (Yang et al., 2023). In addition to leaf traits, plant allometry and root traits are
also known to be plastic (Poorter et al., 2019; Yaffar et al., 2024). A mechanistic understanding
and representation of trait plasticity is thus a research frontier in vegetation modeling, and it
will ultimately benefit from field-based trait sampling accompanied by comprehensive
measurements of the microenvironment. Recent years have already seen increasing field
campaigns that measure plant morphological and physiological traits across different
microenvironments (Lamour et al., 2023; Poorter et al., 2018). These datasets attempt to
characterize the variation of both functional traits and environmental factors at a scale that is
ecologically relevant to individual plant performance, and they will provide useful information
for both quantitative characterization of trait plasticity and its incorporation in trait-based

models.

5 Conclusions
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Plant functional diversity in traits associated with light use, including both inter-specific
and intra-specific variation, critically shapes tropical forest dynamics by modulating tree
demography. By combining trait measurements, long-term census data, and trait-based
ecosystem modeling, we showed that observation-constrained light plasticity enhances
understory growth and abundance. This demographic effect further increases long-term
tropical forest biomass accumulation and strongly modulates forest structure and composition.
Importantly, the community and ecosystem effects of light plasticity cannot be fully
compensated by increasing inter-specific functional diversity, particularly in terms of
community composition and within-canopy trait gradients. These findings suggest that light
plasticity is crucial for trait-based prediction of tropical forest regrowth and resilience,
especially in secondary forests which experience high variability and heterogeneity in the light
environment. Future research should quantify phenotypic plasticity across a broader range of

traits and environmental gradients and evaluate their community and ecosystem-level impact.
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described in Lamour et al. (2023). All scripts for ED2 model simulations are available at

https://github.com/yixin98/ED2/tree/new_plasticity
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