

1

2 **Constraining light-driven plasticity in leaf traits with observations improves the**
3 **prediction of tropical forest demography, structure, and biomass dynamics**

4 **Yixin Ma^{1,*}, Paul R. Moorcroft², S. Joseph Wright³, Alistair Rogers^{4,8}, Julien Lamour^{5,8}, Kenneth**
5 **J. Davidson⁸, Shawn P. Serbin^{6,8}, Matteo Dett^{3,7}, Xiangtao Xu^{1,*}**

6 ¹ Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850

7 ² Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
8 02138

9 ³ Smithsonian Tropical Research Institute, Apartado 0843–03092 Balboa, Republic of Panama

10 ⁴ Climate & Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
11 94720

12 ⁵ Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse,
13 CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France

14 ⁶ Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, 20771

15 ⁷ Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08542

16 ⁸ Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY
17 11973

18 * To whom correspondence may be addressed.

19 Corresponding author: Yixin Ma (ym524@cornell.edu); Xiangtao Xu (xx286@cornell.edu)

20

21 Word count: 7064

22 Number of figures: 8

23 Number of tables: 2

24 Supplementary information: Figures S1-S5, Table S1

25

26

27 **Key Points:**

- 28 • We examined how intra-specific light plasticity in leaf traits affects modeled tropical
29 tree demography and long-term forest dynamics.
- 30 • Observation-constrained light plasticity enabled an accurate prediction of tree growth
31 rates, forest structure, and biomass regrowth.
- 32 • Light plasticity improved modeled forest composition and trait diversity, which cannot
33 be achieved by adding new plant functional types.

34

35 **Abstract**

36 Predicting tropical tree demography is a key challenge in understanding the future
37 dynamics of tropical forests. While demographic processes are known to be regulated by leaf
38 trait diversity, only the effect of inter-specific trait variation has been evaluated, and it remains
39 unclear as to what degree the intra-specific trait plasticity across light gradients (hereafter light
40 plasticity) regulates tree demography, and how this will further shape long-term community
41 and ecosystem dynamics. By combining *in situ* trait measurements and forest census data with
42 a terrestrial biosphere model, we evaluated the impact of observation-constrained light
43 plasticity on demography, forest structure, and biomass dynamics in a Panamanian tropical
44 moist forest. Modeled leaf physiological traits vary across and within plant functional types
45 (PFT), which represent the inter-specific trait variation and the intra-specific light plasticity,
46 respectively. The simulation using three non-plastic PFTs underestimated 20-year-average
47 understory growth rates by 41%, leading to a biased forest size structure and leaf area profile,
48 and a 44% underestimate in long-term biomass. The simulation using three plastic PFTs
49 generated accurate understory growth rates, resulting in a realistic forest structure and a
50 smaller biomass underestimate of 15%. Expanding simulated trait diversity using 18 non-plastic
51 PFTs similarly improved the prediction of demography and biomass. However, only the
52 plasticity-enabled model predicted realistic long-term PFT composition and within-canopy trait
53 profiles. Our results highlight the distinct role of light plasticity in regulating forest dynamics
54 that cannot be replaced by inter-specific trait diversity. Accurately representing light plasticity is
55 thus crucial for trait-based prediction of tropical forest dynamics.

56 **Plain Language Summary**

57 Ecosystem functions such as biomass dynamics and forest structure are strongly
58 regulated by plant diversity. In addition to species diversity, plant characteristics also vary
59 within the same species, particularly in response to environmental gradients. However, it
60 remains largely unclear how this intra-specific diversity across environmental gradients
61 regulates forest dynamics. Here we used vegetation modeling to investigate how the intra-
62 specific diversity across different light environments regulates tropical tree demography, forest

63 composition, and carbon cycle. We found that incorporating intra-specific diversity in the
64 model substantially influenced tree growth rates, forest structure, and long-term carbon
65 accumulation. Constraining intra-specific diversity with observations improved model
66 predictions of these processes. In addition, incorporating the intra-specific diversity improved
67 the prediction of forest composition, and such an effect cannot be replaced by solely
68 incorporating higher species diversity. These results highlight the importance of characterizing
69 the intra-specific diversity across environmental gradients for predicting long-term tropical
70 forest dynamics.

71

72 **1 Introduction**

73 The future fate of tropical forests, particularly the persistence of old-growth forest
74 carbon sink and the regrowth potential of secondary forests, critically influences the global
75 carbon cycle, biodiversity, and the realization of several Sustainable Development Goals
76 (Anderson-Teixeira et al., 2016; Pan et al., 2011; United Nations General Assembly, 2015).
77 Predicting the community and ecosystem dynamics of these forests fundamentally depends on
78 a realistic representation of demographic processes such as growth and mortality. However,
79 accurately predicting tropical tree demography remains an open challenge for process-based
80 terrestrial biosphere models (TBM), and a common modeling bias is the underestimate of the
81 abundance of understory trees (Koven et al., 2020; Longo et al., 2019a), which can lead to
82 further biases in the prediction of long-term canopy regeneration and forest succession.

83 Understory trees in closed-canopy tropical forests are limited by low light availability
84 (Chazdon & Fetcher, 1984; Clark et al., 1996), thus their demographic rates are strongly
85 regulated by the diversity in light use-associated traits (Denslow, 1987; Detto et al., 2021;
86 Finegan, 1984; Moorcroft et al., 2001). The inter-specific variation in these traits, particularly
87 the trait variation between light-demanding and shade-tolerant species, has been shown to
88 influence demographic rates and ecosystem functioning (Reich, 2014; Wright et al., 2010). In
89 addition to the inter-specific variation, leaf traits within the same species also vary substantially
90 across light gradients in tropical forests (Xu et al. 2017). This intra-specific trait variation largely

91 results from phenotypic plasticity in response to within-canopy light gradients (hereafter light
92 plasticity), although ontogeny and other environmental factors also contribute to the variation
93 (Cavaleri et al., 2010; Coste et al., 2009; Dang-Le et al., 2013; Detto & Xu, 2020; Wen et al.,
94 2008). To date, it has not been evaluated as to what degree light plasticity regulates understory
95 tree demography in tropical forests.

96 Both light plasticity and inter-specific variation enhance functional diversity and thus are
97 expected to influence forest dynamics, but light plasticity can affect ecosystem processes
98 through two unique mechanisms. First, it can increase net carbon gain in the understory by
99 reducing respiration cost and increasing specific leaf area (Niinemets et al., 2015; Poorter et al.,
100 2019), which can directly increase tree fitness during their early life stages and thus enhance
101 their growth, survival, and abundance. In contrast, inter-specific trait variation can not lead to
102 tree-level trait adjustments within their lifetime. Second, the inter-specific trait variation
103 characterizes the tradeoff between growth in high light environment and survival in low light
104 environment, whereas plasticity-enabled trait variation weakens such tradeoff by increasing
105 understory survival (Sterck et al., 2013). Based on these mechanisms, light plasticity is expected
106 to shape demographic processes and community composition differently than the inter-specific
107 trait variation.

108 In TBMs, the inter-specific trait variation is often modeled as plant functional types
109 (PFT), which are groups of species with similar trait values, and light plasticity has been
110 commonly represented as intra-PFT trait variation across light gradients. While many studies
111 have aimed to improve the model representation of inter-PFT variation (Butler et al., 2022;
112 Pappas et al., 2016; Pavlick et al., 2013; Rius et al., 2023; Sakschewski et al., 2016), fewer
113 studies have attempted to refine the representation of plasticity and evaluate its impact on
114 predicting forest dynamics (Needham et al., 2025). In fact, TBMs often incorrectly assume that
115 the extent of light plasticity is identical across different PFTs and traits (see **Table 1** for a
116 summary of light plasticity implementation in TBMs), despite field observations demonstrating
117 that different species and traits exhibit a wide range of light plasticity (Chmura et al., 2017;
118 Osunkoya et al., 1994; Valladares et al., 2000). For example, both leaf dark respiration rate and
119 maximum carboxylation rate of photosynthesis (V_{cmax}) decrease with lower light levels, but leaf

120 dark respiration has a higher degree of plasticity than that of V_{cmax} , resulting in a lower
121 respiration to V_{cmax} ratio (Lamour et al., 2023) and thus a higher shade tolerance in the
122 understory. The absence of difference in modeled respiration and V_{cmax} plasticity likely explains
123 the underestimate of understory abundance in plasticity-enabled TBMs (Koven et al., 2020;
124 Longo et al., 2019a), and this is partly supported by previous research showing that a higher
125 degree of leaf dark respiration plasticity in FATES model increases understory leaf area
126 (Needham et al., 2025). However, it remains unknown whether a comprehensive and realistic
127 representation of light plasticity, i.e., incorporating its variation across species and multiple
128 traits, can fully correct for the model biases in understory growth and survival and further
129 improve the prediction of long-term forest dynamics.

130 To examine the role of light plasticity in explaining and predicting tropical forest
131 dynamics, we combined *in situ* trait measurements in Panama and forest inventories at Barro
132 Colorado Island (BCI) with the Ecosystem Demography Model version 2.2 (ED2) (Longo et al.,
133 2019b). The ED2 model is a trait-based, demography-enabled TBM, and it represents light
134 plasticity in leaf physiological traits as intra-PFT parameter variation driven by light gradient.
135 The modeled light plasticity is constrained by local observations, and the degree of light
136 plasticity varies across PFTs and traits (**Table 1**; **Fig. 1**).

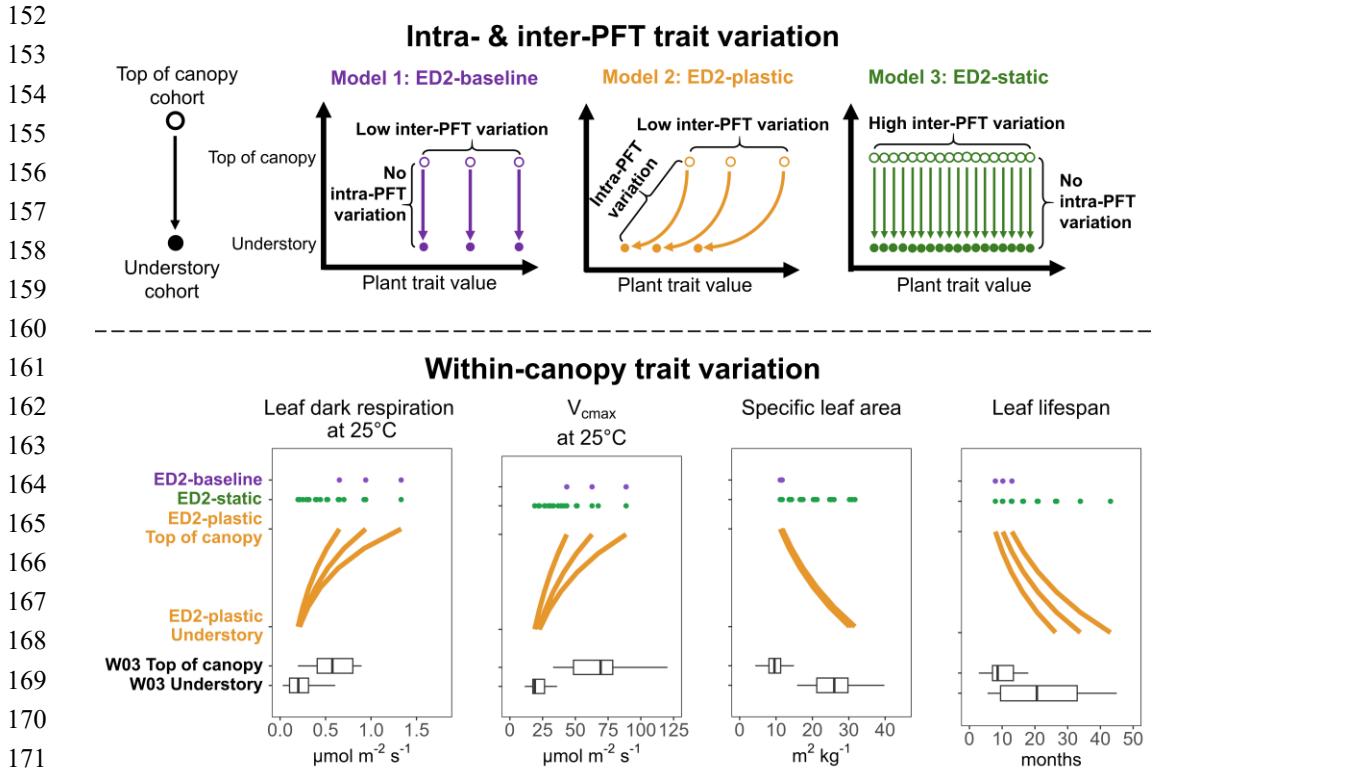
137 Overall, we expected that light plasticity would improve the prediction of forest
138 structure and long-term forest succession by better capturing understory demography, and its
139 effect would be different from that of inter-specific trait diversity. Specifically, we hypothesized
140 that: (1) a non-plastic model containing only inter-PFT trait variation would underestimate
141 growth rates and overestimate mortality rates in the understory, consequently underestimating
142 tree abundance and leaf area; (2) incorporating observation-constrained light plasticity would
143 yield more accurate demographic rates and thus a more realistic forest size structure and leaf
144 area vertical profile; (3) during long-term secondary succession, light plasticity would promote
145 forest biomass accumulation; (4) expanding inter-specific diversity in the non-plastic model by
146 adding more PFTs would have a smaller positive effect on understory growth and long-term
147 biomass than light plasticity.

Table 1. Current representation of light plasticity in TBMs and its impact on modeled ecological processes.

Model	Traits that have light plasticity	Do traits differ in light plasticity	Do PFTs differ in light plasticity	Ecological impact of light plasticity	Reference
Joint UK Land Environment Simulator (JULES)	V_{cmax} ; J_{max} ; Leaf dark respiration; Leaf nitrogen content;	No. All traits have the same plasticity.	No. All PFTs have the same plasticity	Small, positive effect on canopy photosynthesis	Mercado et al. 2007
Community Land Model version 4 (CLM4)	V_{cmax} ; J_{max} ; Leaf dark respiration; Leaf nitrogen content	No. All traits have the same plasticity.	No. All PFTs have the same plasticity.	Small, positive effect on gross primary productivity (GPP)	Bonan et al. 2011
Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS)	V_{cmax} ; J_{max} ; Leaf dark respiration; Leaf nitrogen content;	No. All traits have the same plasticity.	No. All PFTs have the same plasticity.	Not examined	Smith et al. 2014
Trait-based Forest Simulator version 2 (TFSv.2)	V_{cmax} ; J_{max} ; Leaf dark respiration; Specific leaf area; Leaf lifespan	Yes. The light plasticity of leaf lifespan is different from that of other traits.	No. All PFTs have the same plasticity.	Not examined	Fauset et al. 2019

150 **Table 1.** (continued)

Functionally Assembled Terrestrial Ecosystem Simulator (FATES)	V_{cmax} ; J_{max} ; Leaf dark respiration; Leaf nitrogen content; Specific leaf area	Yes. Leaf dark respiration is the most plastic, and all other traits have the same plasticity.	Yes. Early-successional PFT is the most plastic.	Positive effect on leaf area and vegetation carbon	Needham et al. 2025
Organizing Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE)	V_{cmax} ; J_{max} ; Leaf dark respiration; Leaf nitrogen content	No. All traits have the same plasticity.	No. All PFTs have the same plasticity	Not examined	Zhang et al. 2020
Ecosystem demography Model version 2.2 (ED2)	V_{cmax} ; J_{max} ; Leaf dark respiration; Specific leaf area; Leaf lifespan	Yes. Each trait plasticity is parameterized separately.	Yes. Early-successional PFT is the most plastic.	Large effect on tree demography, forest structure, composition, trait diversity, and biomass	This study



172 **Figure 1.** Representation of plant functional diversity in ED2 model for four traits of interest:
173 leaf dark respiration rate at 25°C, maximum carboxylation rate of photosynthesis (V_{cmax}) at
174 25°C, specific leaf area, and leaf lifespan. The upper panel is a conceptual diagram of the
175 different components of plant functional diversity in each model. Open and closed circles
176 represent the trait variation between top-of-canopy cohorts and understory cohorts. ED2-
177 baseline only contains trait variation across three PFTs, without intra-PFT variation. ED2-plastic
178 contains both trait variation across three PFTs and intra-PFT light plasticity. ED2-static only
179 contains trait variation across 18 PFTs, without intra-PFT variation. The lower panel shows the
180 model parameterization of within-canopy trait variation. ED2-baseline, ED2-plastic, ED2-static
181 are represented by purple, orange, and green colors, and each point or line represents a
182 different PFT. Light plasticity in ED2-plastic was parameterized based on top-of-canopy and
183 understory trait values from the W03 dataset (described in section 2.3 and 2.4). Although not
184 shown here, simulated maximum rate of photosynthetic electron transport (J_{max}) in ED2 is
185 proportional to V_{cmax} by a constant factor, therefore, it is also a plastic trait and it has the same
186 light plasticity as V_{cmax} .

187 2 Materials and Methods

188 2.1 Study site

189 The study site is a long-term, 50-ha forest plot at Barro Colorado Island (BCI) in Panama.

190 The BCI site is an old-growth moist tropical forest with a mean annual precipitation of 2660 mm

193 and a four-month dry season. The plot was established in 1981. The species identity, spatial
194 coordinates within the plot, and diameter at breast height (DBH) of all stems with DBH \geq 1 cm
195 were first inventoried in 1982 and then recorded every five years since 1985 (Condit et al.,
196 2017).

197 2.2 Model description

198 The ED2 model is a cohort-based TBM that simulates vegetation dynamics and land
199 surface processes (Longo et al., 2019b). In this model, the smallest spatial unit is a patch, which
200 is a collection of areas with similar disturbance histories, and its size is usually comparable to a
201 forest gap (\sim 20m). Within each patch, there are multiple cohorts, which are individuals of
202 similar size and same PFT. Each cohort is always shaded by all other taller cohorts within the
203 same patch, therefore, cohorts experience height-structured competition for light, which
204 further drives vegetation dynamics.

205 Cohort-level growth and mortality rates are simulated based on ecophysiological
206 principles and are tracked explicitly throughout the simulation. DBH growth rate is determined
207 by cohort-level net carbon balance, which is further governed by photosynthesis, respiration,
208 and carbon allocation among different plant compartments. The cohort-level mortality rate is
209 modeled as the sum of growth-independent and growth-dependent components and is
210 described by the following equation based on Camac et al. (2018).

211
$$\mathbf{M} = \mathbf{M}_b + \mathbf{M}_d + \alpha * e^{\beta * growth}, \quad (1)$$

212 \mathbf{M} is the total cohort-level mortality rate. \mathbf{M}_b is baseline mortality rate, and it is a
213 prescribed parameter that differs across PFTs. \mathbf{M}_d is disturbance-related mortality, and it has
214 the same value for all PFTs. The last term in this equation describes the growth-dependent
215 mortality rate. α and β are both PFT-dependent parameters, and β is always negative, meaning
216 that this growth-dependent mortality rate declines exponentially with larger DBH growth rates.

217 To isolate the effect of light plasticity and inter-specific trait variation, we generated
218 three ED2 versions that have different representations of intra-PFT light plasticity and inter-PFT

219 trait variation (**Fig. 1**). **ED2-baseline** characterizes three PFTs (described in section 2.5) that do
220 not have light plasticity, meaning that traits do not vary with light levels. **ED2-plastic** has three
221 plastic PFTs, and their traits respond to light gradients (described in section 2.3 and 2.4). **ED2-**
222 **static** characterizes 18 PFTs that do not have light plasticity, but its inter-PFT trait variation
223 covers a similar range of variation as the intra-PFT light plasticity in ED2-plastic (described in
224 section 2.5).

225 2.3 Model representation of light-driven plasticity

226 Five leaf traits vary across cohorts and are modeled as plastic: leaf dark respiration rate,
227 V_{cmax} , maximum rate of photosynthetic electron transport (J_{max}), specific leaf area (SLA), and
228 leaf lifespan. These traits are selected because they are available in a local trait dataset
229 (described in section 2.4) and they are important in determining leaf-level carbon balance and
230 leaf turnover rates. The values of these plastic traits vary both across and within PFTs, and the
231 intra-PFT variation across cohorts depends on the cohort-level overtopping leaf area index
232 (oLAI). For each cohort of interest, oLAI is the total leaf area index (LAI) for all cohorts that grow
233 in the same patch and are taller than the cohort of interest. Leaf area is modeled by a power-
234 law function of DBH, and this function is estimated from the leaf area profile measured by
235 LiDAR (light detection and ranging) at the BCI 50-ha plot (Detto et al., 2015). We used oLAI
236 rather than absolute light levels to characterize the light environment for the following reasons.
237 First, there was no direct measurement of the light environment at the BCI plot. Second, oLAI
238 characterizes neighborhood shading, which is a major source of within-canopy light
239 environment variation.

240 We assumed that plasticity-induced trait changes only occur with leaf turnover, i.e., the
241 trait value of a new leaf is calculated based on the current oLAI (equation 2) and will then
242 remain constant at the leaf level. The cohort-level trait value is an average across new and old
243 leaves (equation 3), and there is no within-crown trait variation. As described previously, oLAI is
244 calculated from DBH, which is updated monthly, thus cohort-level oLAI and trait values are both
245 updated monthly.

246 The cohort-level trait value is calculated based on the following equations:

247
$$X_{i,j,new} = X_{i,0} * e^{k_i * oLAI_{i,j}}, \quad (2)$$

248
$$X_{i,j,t+1} = (1 - turnover_{i,j,t}) * X_{i,j,t} + turnover_{i,j,t} * X_{i,j,new} \quad (3)$$

249 The equation 2 is based on Lloyd *et al.* (2010). $X_{i,j,new}$ is the trait value of a new leaf in
 250 cohort j within PFT i . $X_{i,0}$ is the trait value for a top-of-canopy cohort ($oLAI=0$) of PFT i . k_i is the
 251 light plasticity coefficient for PFT i . $X_{i,0}$ and k_i are prescribed parameters for each trait and
 252 each PFT. $oLAI_{i,j}$ is the light environment of cohort j within PFT i . The parameterization of k_i is
 253 described in section 2.4, and the parameterization of $X_{i,0}$ is described in section 2.5.

254 In equation 3, $X_{i,j,t+1}$ is the cohort-level trait value at month $t+1$. $X_{i,j,t}$ is the value at
 255 month t . $turnover_{i,j,t}$ is the leaf turnover rate of cohort j within PFT i at month t , and it is the
 256 inverse of leaf lifespan (measured in the unit of month). Larger values of $turnover_{i,j,t}$ suggest
 257 that leaf turnover occurs at a faster rate and that traits more closely track changes in the light
 258 environment.

259 2.4 Parameterization of PFT-level light plasticity

260 To parameterize the PFT-level light plasticity coefficient k_i , we first calculated the
 261 observed species-level light plasticity based on a trait dataset collected during 1999-2002 at the
 262 San Lorenzo site and the Parque Natural Metropolitano site in Panama (hereafter W03 dataset;
 263 more detail is available in Xu *et al.*, 2017). These sites are equipped with cranes that are 42 m
 264 and 52 m, respectively. For 64 measured species, leaf samples were collected from both their
 265 understory saplings and sun-exposed branches of top-of-canopy trees, and we assumed that
 266 the measured vertical trait variation is completely explained by light plasticity. Neither height
 267 nor light level was measured at the site of the sampling, so samples were labeled categorically
 268 as “understory” ($oLAI > 0$) or “top-of-canopy” ($oLAI = 0$). Measured traits include SLA, leaf
 269 lifespan, light-saturated leaf photosynthesis rate at ambient temperature, and leaf dark
 270 respiration rate at ambient temperature. We calculated V_{cmax} at 25°C from the photosynthesis
 271 rate using the FvCB photosynthesis model (Xu *et al.*, 2017).

272 Based on equation 2, we generated the following equation to estimate species-level
 273 light plasticity:

274
$$k_p = \frac{1}{oLAI_{und}} \log_e \left(\frac{X_{p,und}}{X_{p,toc}} \right), \quad (4)$$

275 where k_p is the light plasticity coefficient of species p , $X_{p,und}$ is the average understory
 276 leaf trait value of species p , $X_{p,toc}$ is the average top-of-canopy leaf trait value of species p . We
 277 estimated $oLAI_{und}$ as $5 \text{ m}^2 \text{ m}^{-2}$ based on the measured leaf area profile at BCI (Detto et al.,
 278 2015). The across-species medians of k_p were -0.233, -0.227, 0.184, and 0.139 for leaf dark
 279 respiration rate, V_{cmax} , SLA, and leaf lifespan, respectively (**Fig. 2A**).

280 To parameterize PFT-level k_i from species-level k_p , we analyzed the relationship
 281 between species-average, top-of-canopy traits and their k_p values (**Fig. 2B-2E**). We found that
 282 V_{cmax} plasticity was positively and linearly related to top-of-canopy V_{cmax} across species, so k_{vcmax}
 283 was parameterized as a linear function of top-of-canopy V_{cmax} (equation 5). Similarly, leaf dark
 284 respiration plasticity was parameterized as a linear function of top-of-canopy leaf dark
 285 respiration rate (equation 6).

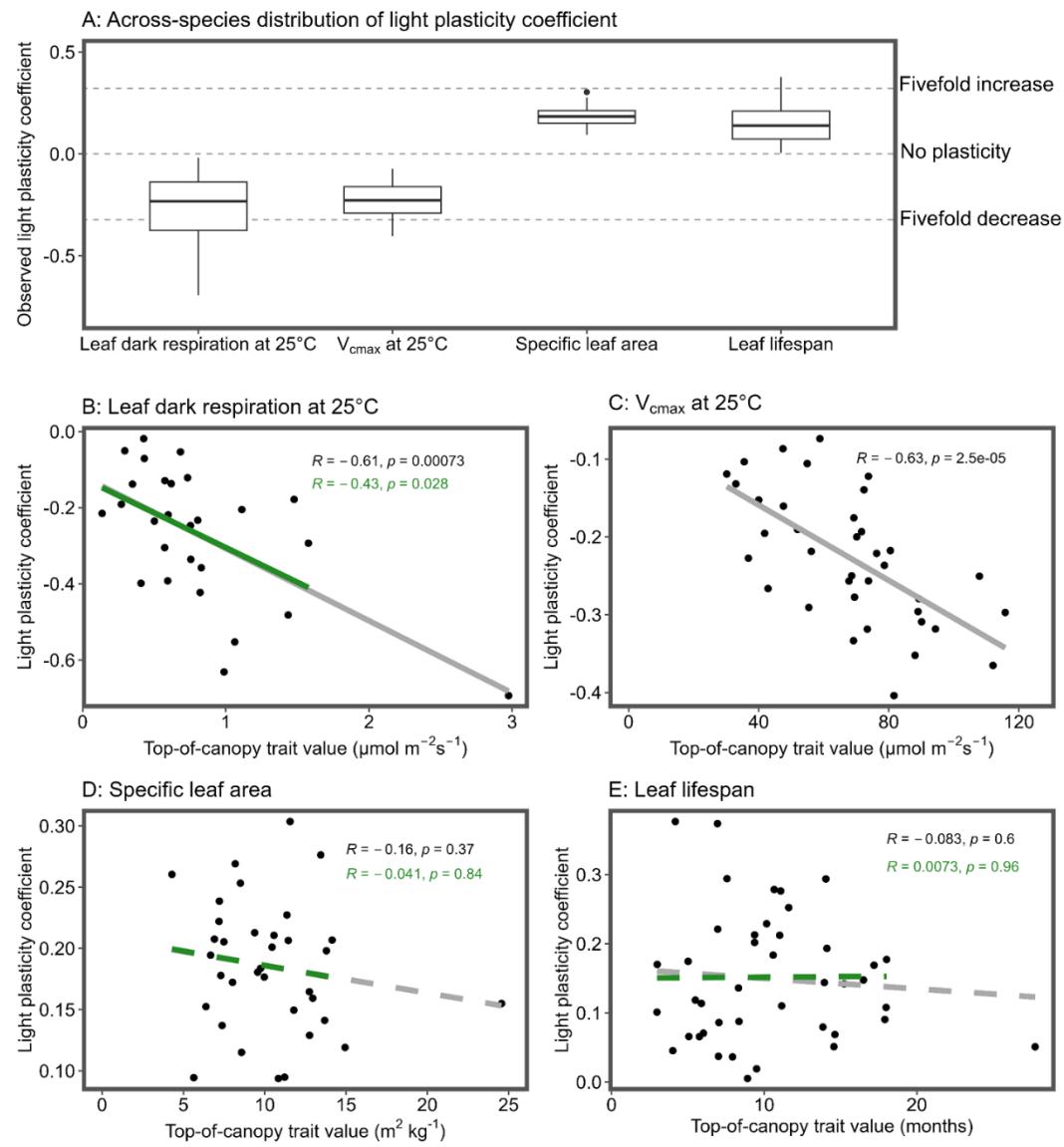
286
$$k_{vcmax,i} = -(0.00242 * V_{cmax,i,0} + 0.06212) \quad (5)$$

287
$$k_{resp,i} = -(0.18974 * \text{Respiration}_{i,0} + 0.11744) \quad (6)$$

288 Where $k_{vcmax,i}$ is the V_{cmax} plasticity of PFT i , $V_{cmax,i,0}$ is the V_{cmax} at 25°C for a top-of-
 289 canopy cohort within PFT i . $k_{resp,i}$ is leaf dark respiration plasticity of PFT i , $\text{Respiration}_{i,0}$ is
 290 the leaf dark respiration at 25°C for a top-of-canopy cohort within PFT i . SLA plasticity and leaf
 291 lifespan plasticity were not significantly related to their top-of-canopy trait values, so we
 292 calculated the average k_{SLA} (0.199) and k_{LL} (0.240) across all species and assigned them to all
 293 PFTs. J_{max} in ED2 is modeled as proportional to V_{cmax} by a constant factor, therefore, we
 294 assumed that k_{Jmax} equals k_{vcmax} for all PFTs (**Table S1**).

295

296



297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

321

322

2.5 PFT definition and parameterization

Figure 2. Species-level light plasticity of leaf dark respiration rate, V_{cmax} , specific leaf area, and leaf lifespan observed in the W03 dataset. (A) shows the distribution of species-level light plasticity coefficient (k_p in equation 4). Dashed horizontal lines indicate k_p values at which traits increase or decrease by fivefold across an oLAI gradient of 0-5 $\text{m}^2 \text{m}^{-2}$. (B)-(E) show the relationship between observed top-of-canopy leaf traits and their light plasticity coefficients. A solid line indicates a significant linear relationship ($p < 0.05$), whereas a dashed line indicates an insignificant relationship. Green lines and numbers indicate the regression results fitted without outlier (leaf dark respiration $> 2 \mu\text{mol m}^{-2} \text{s}^{-1}$ or specific leaf area $> 20 \text{ m}^2 \text{kg}^{-1}$).

323 Tropical tree species are commonly classified into PFTs based on plant physiological
324 traits, particularly wood density, because these traits are associated with a species' position on
325 a growth-mortality tradeoff axis (Wright et al., 2010). However, 35% of all inventoried species
326 at the BCI plot do not have wood density information, and only 8% of all species have local
327 measurements for all leaf traits of interest (leaf dark respiration rate, V_{cmax} , SLA, and leaf
328 lifespan), thus a trait-based PFT definition is limited by data availability. To overcome this data
329 limitation, we developed a metric named demographic niche score to define PFTs based on
330 demography rather than physiological traits, following previous practices to classify tropical
331 species using demographic rates (Condit & Rüger, 2022; Rüger et al., 2020).

332 First, we grouped all inventoried individuals into 20-meter patches based on their spatial
333 locations and calculated oLAI for each individual within each patch. oLAI values were calculated
334 from a DBH-based leaf area allometric function as described in section 2.3. Second, for each
335 species, we calculated the relative DBH growth rate of individuals under high light (the smallest
336 25% oLAI) and the mortality rate of individuals under low light (the largest 25% oLAI). Third, we
337 performed principal component analysis (PCA) for the species-level high light growth rates and
338 low light mortality rates (both were log transformed before the PCA analysis). We used the first
339 principal component as the demographic niche score, which explained 71% of the total
340 variation in demographic rates (**Fig. S1**).

341 Standard major axis regression revealed a strong positive relationship between species-
342 level demographic niche score and wood density (**Fig. S2A**), implying that our demographic
343 niche score can reasonably represent species' position on the growth-mortality tradeoff axis.

344 In ED2-baseline and ED2-plastic, there are three PFTs: early-successional (species with
345 lowest 33% demographic niche score), late-successional (species with top 33% demographic
346 niche score), and mid-successional (intermediate score). From 1990-2010, the BCI plot on
347 average has 6.65, 9.40, and 15.1 $\text{cm}^2 \text{m}^{-2}$ (measured by basal area) of early-, mid- and late-
348 successional PFT. To parameterize top-of-canopy leaf trait values ($X_{i,0}$ in equation 2) for these
349 three PFTs, we performed standardized major axis regression between species-level
350 demographic niche score and top-of-canopy V_{cmax} at 25°C, SLA, and leaf lifespan in W03 dataset

351 (Fig. S2), then we parameterized $X_{i,0}$ based on the median demographic niche score of each
352 PFT. Based on the regression models, early-successional PFT has the highest top-of-canopy
353 V_{cmax} , largest SLA, and shortest leaf lifespan. For $Respiration_{i,0}$, we parameterized it to be
354 proportional to $V_{cmax i,0}$ by a factor of 0.015. When oLAI > 0, the simulated respiration to V_{cmax}
355 ratio will deviate from 0.015 because leaf dark respiration is more plastic than V_{cmax} (Table S1),
356 resulting in a lower ratio with increasing oLAI (Fig. S3E).

357 The three PFTs described above are parameterized by top-of-canopy leaf trait values.
358 For ED2-static, we defined an additional 15 PFTs which are parameterized by understory leaf
359 trait values. Specifically, for each of the three original PFTs, we calculated leaf dark respiration
360 at 25°C, V_{cmax} at 25°C, SLA, and leaf lifespan values at oLAI of 1, 2, 3, 4, 5 $m^2 m^{-2}$ based on
361 equation 2, then we generated five new PFTs by assigning these leaf trait values as new $X_{i,0}$
362 and keeping all other traits (e.g., wood density, mortality parameters) the same as the original
363 PFT. In total, ED2-static includes six early-successional PFTs, six mid-successional PFTs, and six
364 late-successional PFTs. The variation in $X_{i,0}$ across these 18 PFTs is identical to the plasticity-
365 driven variation in $X_{i,j,new}$ across an oLAI gradient of 0-5 $m^2 m^{-2}$.

366 2.6 Simulation protocol

367 To test our first two hypotheses, we initialized the model with the BCI forest census in
368 1990, ran the model from 1989 to 2010 (hereafter short-term simulation), and compared
369 demographic rates and forest structure simulated by ED2-baseline, ED2-plastic, and ED2-static.
370 Since we were interested in the dynamics of tree species, we excluded herbaceous species and
371 only used the census information of woody species in the initialization. To test the third and
372 fourth hypotheses, we simulated 300-year forest secondary succession from a near bare-
373 ground condition (hereafter long-term simulation), and compared the forest composition and
374 functioning simulated by the three models. A near bare-ground condition means that there are
375 only a few tree seedlings of each PFT at the start of the simulation. The forest was simulated for
376 300 years because total basal area and aboveground biomass reached steady state during this
377 time frame. We used an *in situ* climate dataset collected at BCI from 1985-2012 as
378 meteorological forcing (available through the Smithsonian Tropical Research Institutes' Physical

379 Monitoring Program), and all simulations used repeated cycles of this multi-year climate
380 dataset. The long-term simulations used a disturbance rate of 0.014 year^{-1} , which is the default
381 value in ED2 (Moorcroft et al., 2001).

382 2.7 Model benchmarking and analysis

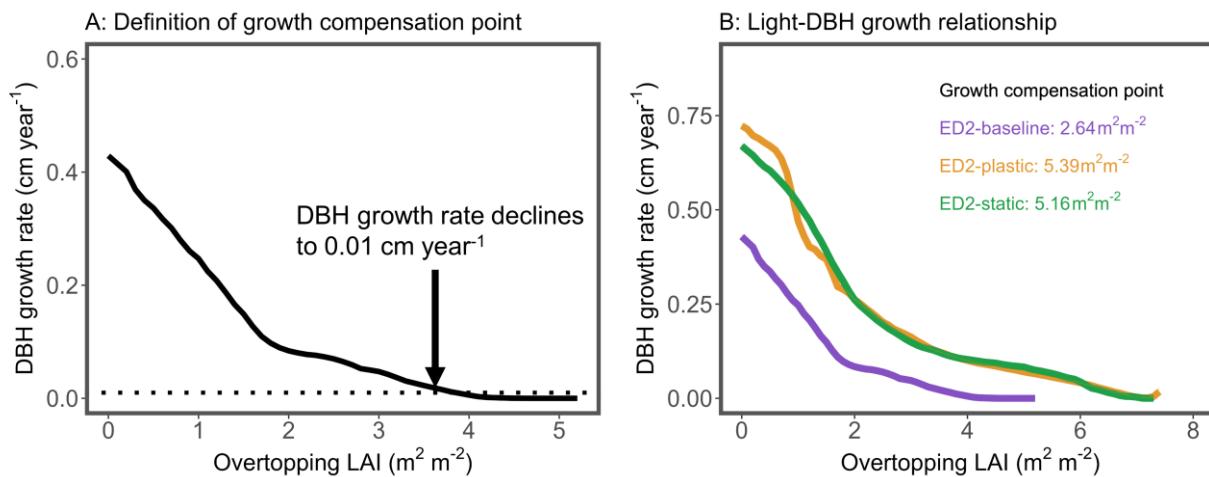
383 To evaluate the prediction of demographic rates and forest structure, we calculated the
384 simulated growth rate, mortality rate, plant density, and leaf area averaged during 1990-2010
385 in short-term simulations, then compared it to observations. Specifically, we calculated
386 observed annual DBH growth rates and mortality rates for every two BCI censuses and then
387 calculated average demographic rates during 1990-2010. We didn't use census data earlier than
388 1990, since DBH values smaller than 5.5 cm were rounded down to the nearest 5 mm in earlier
389 censuses. In terms of forest structure, we calculated the size distribution of plant density
390 averaged during 1990-2010. We also used a leaf area vertical profile estimated by airborne
391 LiDAR (Dettlo et al., 2015) as a model benchmark.

392 To measure the simulated tree shade tolerance, we calculated the PFT-level growth
393 compensation point (GCP), defined as the oLAI at which DBH growth rate declines to 0.01 cm
394 year^{-1} (Fig. 3A). A higher GCP value suggests a higher shade tolerance. The community-level
395 GCP is calculated using all cohorts across all PFTs with $\text{DBH} \geq 1 \text{ cm}$.

396 To evaluate the prediction of long-term forest functioning, we calculated the plant
397 density, basal area, LAI, and gross primary productivity (GPP) averaged across the last 20 years
398 of long-term simulations. We also compared the simulated aboveground biomass (AGB)
399 trajectories with two sets of field-based AGB estimates: one is AGB estimates across a 300-year
400 chronosequence in Panama (Batterman et al., 2013), and the other is a BCI plot-level estimate
401 calculated based on the 2010 census and a local height allometry (Cano et al., 2019). Besides,
402 we compared simulated GPP to flux tower-based GPP measurements at BCI (Dettlo & Pacala,
403 2022).

404 To evaluate the prediction of trait diversity, we calculated a metric named community-
405 level vertical trait gradient for both observations and simulations. Using ten vertical leaf trait

406 profiles measured in Panama, Lamour et al. (2023) fitted power law equations between
 407 observed trait values (pooled across multiple species) and oLAI. The fitted scaling exponent
 408 (reported in Table S3 and S4 of Lamour et al. 2023) represents the observed community-level
 409 vertical trait gradient, which is the result of both intra-specific light plasticity and vertical
 410 stratification of species composition. We similarly calculated the modeled community-level
 411 vertical trait gradient by fitting a power law equation between cohort-level trait values and
 412 modeled oLAI.



413 **Figure 3.** The definition of growth compensation point and the simulated relationship between
 414 DBH growth rate and overtopping LAI. (A) shows a conceptual diagram of how growth
 415 compensation point (GCP) is defined. GCP is a measure of simulated shade tolerance, and it is
 416 calculated as the overtopping LAI at which modeled DBH growth rate declines to 0.01 cm year⁻¹
 417 (represented by the dotted line), and a larger GCP indicates a higher shade tolerance. (B)
 418 Simulated relationships between DBH growth rate and overtopping LAI for all DBH \geq 1 cm
 419 cohorts during short-term simulations. ED2-baseline, ED2-plastic, and ED2-static are
 420 represented by purple, orange, and green lines, respectively. Inserted texts report simulated
 421 GCP for each model.

422

423 **3 Results**

424 **3.1 Tree demographic rates in short-term simulations**

425 We compared 20-year-average growth rates predicted by ED2-baseline and ED2-plastic
 426 in short-term simulations with the census data. In ED2-baseline, the DBH growth rate of

427 understory cohorts (DBH: 1-10cm) was $0.0429 \text{ cm year}^{-1}$, and incorporating observation-
428 constrained light plasticity in ED2-plastic increased simulated understory growth rate to $0.0865 \text{ cm year}^{-1}$, closer to the observed $0.0723 \text{ cm year}^{-1}$ (**Fig. 4A**). At the PFT level, ED2-baseline
429 predicted understory growth to be 0.0107 , 0.00447 , and $0.0456 \text{ cm year}^{-1}$ for early-, mid-, and
430 late-successional PFTs, lower than the observed growth rates of 0.203 , 0.0637 , and $0.0679 \text{ cm year}^{-1}$ (**Fig. 4B**). Light plasticity improved model-data agreement by increasing the PFT-level
431 understory growth to 0.145 , 0.0878 , and $0.0847 \text{ cm year}^{-1}$. This increase was substantially larger
432 in early- and mid-successional PFT than in late-successional PFT (1255% and 1864% compared
433 to 85.7%).

436 We also tested the growth effect of increasing inter-specific diversity. The average
437 understory growth rate simulated by ED2-static was $0.0949 \text{ cm year}^{-1}$, which more than
438 doubled the estimate of ED2-baseline and better aligned with the observation (**Fig. 4A**). At the
439 PFT level, simulated growth rates were 0.104 , 0.0415 , and $0.111 \text{ cm year}^{-1}$ for early-, mid-, and
440 late-successional PFT, and these PFT-level estimates were higher than ED2-baseline and
441 comparable to ED2-plastic (**Fig. 4B**).

442 Although both light plasticity and inter-specific diversity improved model-data
443 agreement of understory growth rates, only ED2-plastic correctly predicted that the understory
444 growth rate of early-successional PFT was highest among all PFTs (**Fig. 4B**), whereas ED2-
445 baseline and ED2-static wrongly predicted late-successional PFT to have the fastest growth.

446 The understory mortality rate simulated by ED2-baseline was 126% higher than the
447 census observation (0.0531 year^{-1} compared to 0.0235 year^{-1}). ED2-plastic and ED2-static
448 reduced the model overestimate to 0.0380 and 0.0388 year^{-1} , respectively (**Fig. 5**).

449

450

451

452

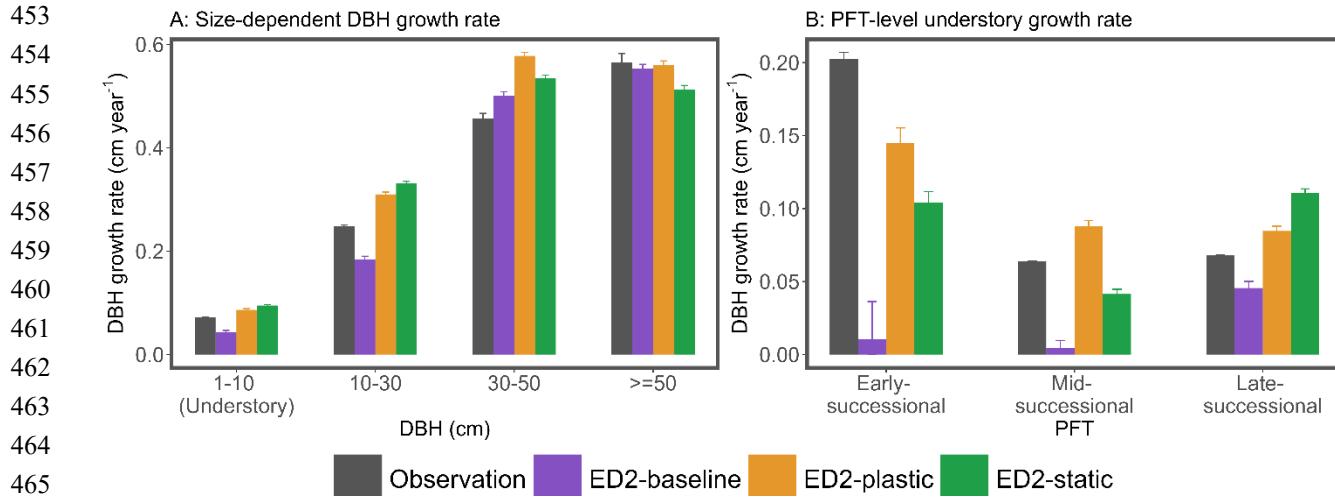


Figure 4. Light plasticity effect on 20-year-average tree growth during short-term simulations. (A) shows modeled and observed DBH growth rates for different size classes. ED2-baseline, ED2-plastic, and ED2-static are represented by purple, orange, and green bars, respectively. (B) shows modeled and observed understory DBH growth rates for different PFTs. Understory is defined as trees or cohorts with DBH between 1-10 cm. Error bars indicate 95% confidence intervals calculated by bootstrapping.

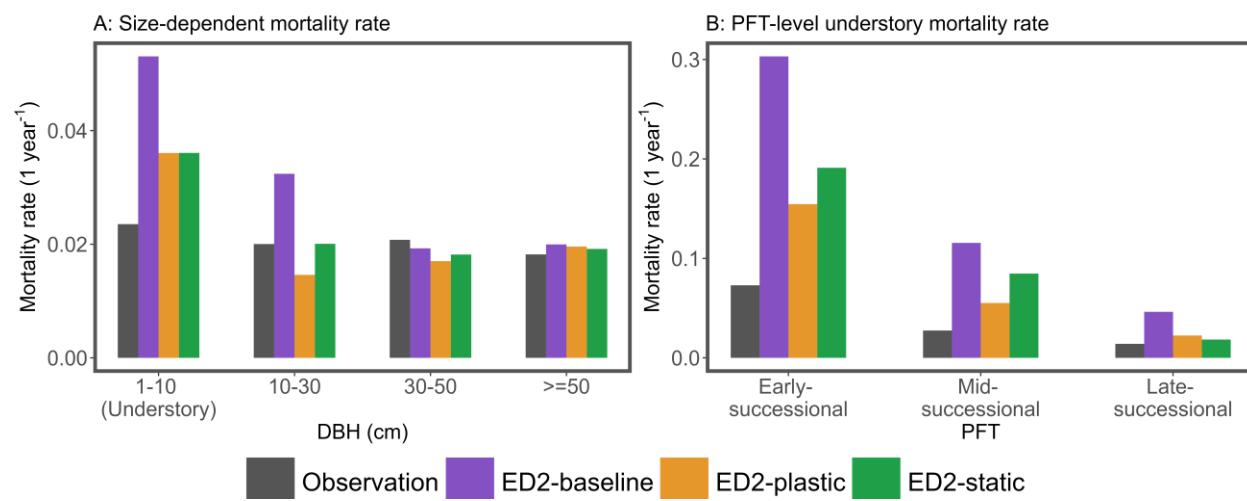


Figure 5. Light plasticity effect on 20-year-average mortality rate during short-term simulations. (A) shows modeled and observed mortality rates for different size classes. ED2-baseline, ED2-plastic, and ED2-static are represented by purple, orange, and green bars, respectively. (B) shows modeled and observed understory mortality rates for different PFTs. Understory is defined as trees or cohorts with DBH between 1-10 cm.

482 3.2 Forest structure in short-term simulations

483 We analyzed the 20-year-average size distribution of plant density and leaf area profile
484 in the short-term simulations. Simulated understory plant density in ED2-baseline was 0.0931
485 plant m^{-2} , and light plasticity increased community-level understory plant density to 0.260 plant
486 m^{-2} , bringing it closer to the observed 0.391 plant m^{-2} (**Fig. 6A**). At the PFT level, the understory
487 plant density of early-, mid-, and late-successional PFT were 0.00106, 0.0110, and 0.0847 plant
488 m^{-2} in ED2-baseline, which were an order of magnitude lower than the observed 0.0272, 0.161,
489 and 0.203 plant m^{-2} . Light plasticity increased plant densities to 0.00301, 0.0972, and 0.159
490 plant m^{-2} , reducing the underestimates (**Fig. 6B**). The increase in mid-successional PFT
491 abundance contributed the most to the improved model-data agreement of community-level
492 understory plant density.

493 ED2-static increased community-level understory plant density to a more realistic 0.217
494 m^{-2} , accompanied by 86.9-252% PFT-level increases relative to ED2-baseline. Community- and
495 PFT-level understory plant density predictions were comparable between ED2-static and ED2-
496 plastic (**Fig. 6**).

497 Underestimates of plant density in ED2-baseline further led to underestimated leaf area
498 in the understory (**Fig. 6C**). Meanwhile, the leaf area vertical profile simulated by ED2-plastic
499 and ED2-static aligned with an airborne LiDAR-based estimate (Dettlo et al., 2015). The total LAI
500 predicted by ED2-plastic and ED2-static (5.86 and 5.24 $\text{m}^2 \text{m}^{-2}$) was higher than ED2-baseline
501 prediction of 3.11 $\text{m}^2 \text{m}^{-2}$, and ED2-plastic estimate best aligned with a total LAI estimate of 5.9
502 $\pm 0.4 \text{ m}^2 \text{m}^{-2}$ based on hemispherical photos (Dettlo et al., 2018).

503

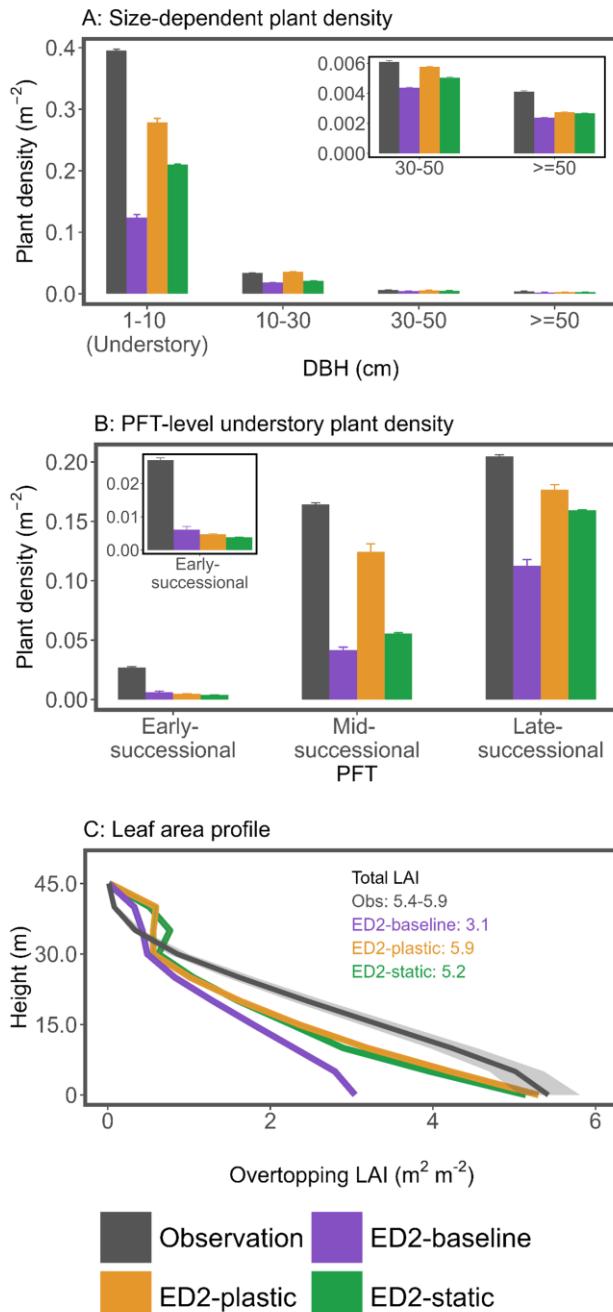


Figure 6. Light plasticity effect on 20-year-average forest structure during short-term simulations. (A) shows modeled and observed plant density for different size classes. ED2-baseline, ED2-plastic, and ED2-static are represented by purple, orange, and green bars, respectively. The inset figure is an enlarged version of the modeled and observed plant density for cohorts with DBH ≥ 30 cm. Error bars indicate 95% confidence intervals calculated by bootstrapping. (B) shows modeled and observed understory plant density for different PFTs. The inset figure is an enlarged version of the modeled and observed plant density for early-successional PFT. Error bars indicate 95% confidence intervals calculated by bootstrapping. (C)

514 shows the vertical profile of overtopping LAI. Inserted texts report the observed and modeled
515 total LAI. Airborne-LiDAR based estimate is $5.4 \text{ m}^2 \text{ m}^{-2}$ (Dettlo et al., 2015), and hemispherical
516 photo-based estimate is $5.9 \text{ m}^2 \text{ m}^{-2}$ (Dettlo et al., 2018). Gray shaded area indicates 95%
517 confidence interval of the LiDAR-based estimate.

518

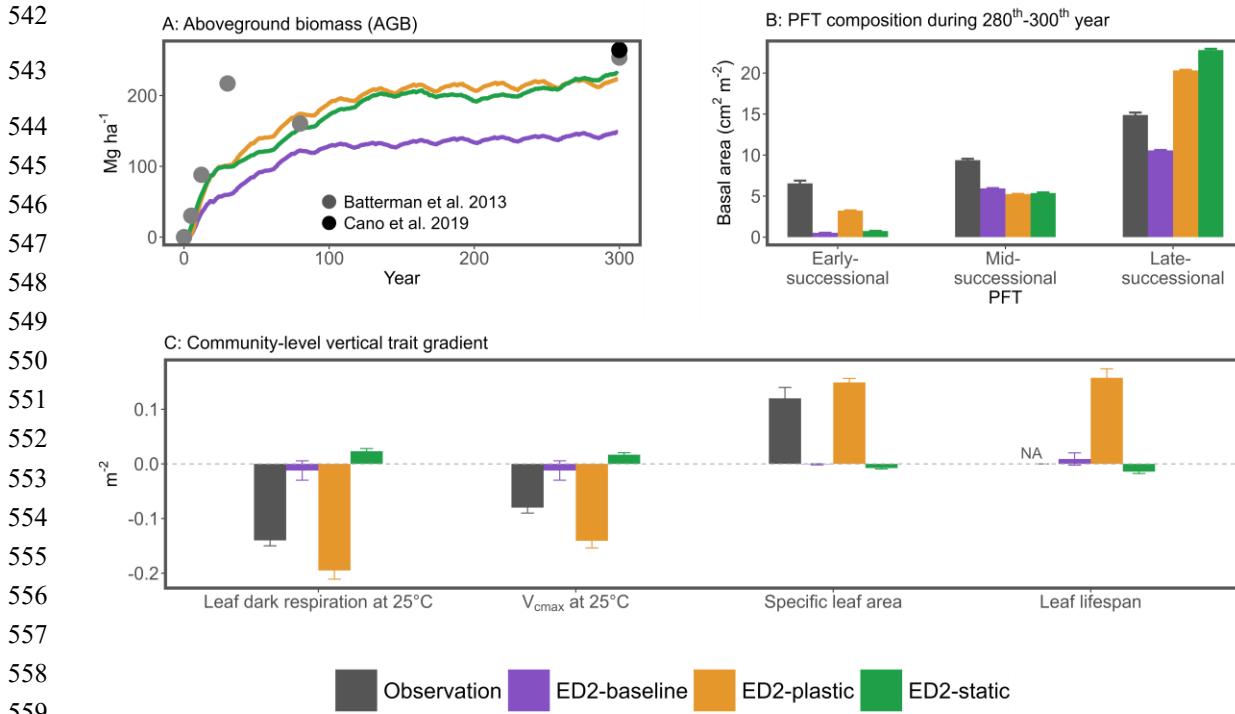
519 3.3 Forest dynamics in long-term simulations

520 We examined AGB, GPP, PFT composition, and trait composition during simulations of
521 300-year forest secondary succession. At the 12th and 80th years of succession, the forest
522 simulated by ED2-baseline stored 32.4 and 123 Mg ha⁻¹ of AGB, lower than chronosequence-
523 based estimates of 88.0 and 160 Mg ha⁻¹ (Batterman et al., 2013), and ED2-plastic generated
524 higher and more realistic estimates of 50.7 and 175 Mg ha⁻¹ (**Fig. 7A; Table 2**). At the 300th year,
525 ED2-plastic predicted AGB to be 224 Mg ha⁻¹ (**Table 2**), which was 50.3% higher than ED2-
526 baseline estimate, though still lower than the census-based estimate of 263-266 Mg ha⁻¹ (Cano
527 et al., 2019). ED2-static predicted total AGB to be 57.5, 154, and 233 Mg ha⁻¹ after 12, 80, and
528 300 years of succession, which were similar to or higher than the predictions with light
529 plasticity.

530 During the last 20 years of succession, ED2-plastic produced the highest GPP estimate of
531 $3.39 \text{ kg C m}^{-2} \text{ year}^{-1}$, whereas ED2-static predicted the lowest GPP of $2.23 \text{ kg C m}^{-2} \text{ year}^{-1}$. The
532 prediction of ED2-baseline ($2.83 \text{ kg C m}^{-2} \text{ year}^{-1}$) best aligned with the observed value of 2.8 kg
533 $\text{C m}^{-2} \text{ year}^{-1}$ (Dettlo & Pacala, 2022).

534 All models exhibited a similar temporal trend of community composition, where early-
535 successional PFT initially dominated the forest and was eventually outcompeted by late-
536 successional PFT (**Fig. 8**). During the last 20 years of succession, all models underestimated the
537 basal area of early-successional PFT relative to the abundance observed in BCI forest censuses
538 (**Fig. 7B**), but the ED2-plastic estimate of $3.07 \text{ cm}^2 \text{ m}^{-2}$ best aligned with the observed 6.65 cm^2
539 m^{-2} , whereas ED2-baseline and ED2-static underestimated the basal area by an order of
540 magnitude (0.417 and $0.618 \text{ cm}^2 \text{ m}^{-2}$).

541



560 **Figure 7.** Light plasticity effect on 300-year forest secondary succession in long-term
561 simulations. (A) shows the trajectory of aboveground biomass (AGB) modeled by ED2-baseline
562 (purple line), ED2-plastic (orange line), and ED2-static (green line). Gray points represent
563 observations from a chronosequence in Panama (Batterman et al., 2013). The black point
564 represents the plot-level AGB estimate based on censuses and local allometric equations (Cano
565 et al., 2019). (B) shows the simulated and modeled PFT abundance averaged during the last 20
566 years of succession. (C) shows modeled and observed community-level vertical trait gradients
567 of leaf dark respiration rate at 25°C, V_{cmax} at 25°C, specific leaf area, and leaf lifespan. The
568 definition and calculation of community-level vertical trait gradient are described in section 2.7.
569 ED2-baseline, ED2-plastic, and ED2-static are represented by purple, orange, and green bars,
570 respectively. Error bars for these simulated results are 95% confidence intervals calculated by
571 bootstrapping. Gray bars and gray error bars represent the observed community-level vertical
572 trait gradients and their confidence intervals reported in Table S3 and S4 in Lamour et al.
573 (2023). The observed leaf lifespan gradient is marked as “NA” because Lamour et al. (2023) did
574 not collect leaf lifespan data.

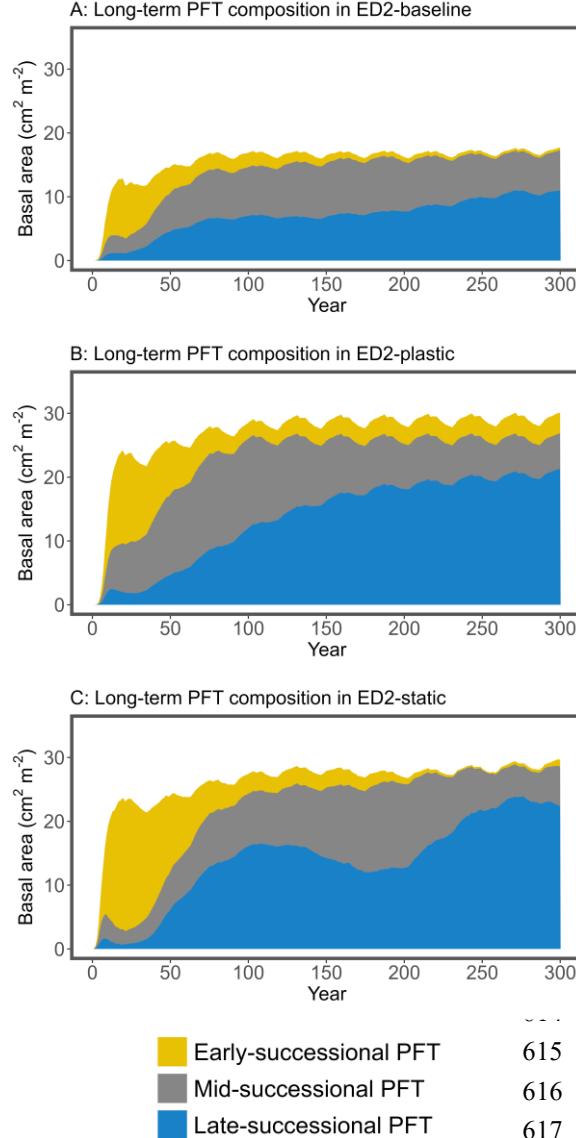
575

576

577 The simulated community-level trait diversity also differed across models. In ED2-plastic,
578 the community-level vertical trait gradient (defined in section 2.7) of leaf dark respiration,
579 V_{cmax} , and SLA were -0.195, -0.141, and 0.149, which were comparable to the -0.14, -0.08, and
580 0.12 reported in Lamour et al. (2023) based on in situ trait measurements (Fig. 7C). In contrast,
581 both ED2-baseline and ED2-static showed vertical trait gradients that were close to zero, i.e.,

582 leaf dark respiration, Vcmax, and SLA were largely constant within the canopy. Aside from trait
 583 profiles, community-average leaf traits (weighted by cohort-level leaf area) during the last 20
 584 years of succession were also different between models. Average leaf dark respiration and
 585 Vcmax were 104% and 64.1% higher in ED2-plastic than in ED2-static, while SLA, leaf lifespan,
 586 and wood density were 40.3%, 50.6%, 3.72% higher in ED2-static than in ED2-plastic (Table 2).

587



618

619 **Figure 8.** Light plasticity effect on community composition in long-term simulations. (A)-(C)
 620 show PFT composition in ED2-baseline, ED2-plastic, and ED2-static. Early-, mid, and late-
 621 successional PFTs are shown in yellow, gray, and blue areas, respectively.

622

623 **Table 2.** Modeled forest structure, composition, trait diversity, and functioning in long-term
 624 simulations. Trait values are calculated as community-level averages weighted by cohort-level
 625 leaf area during the last 20 years of simulation. All other variables are calculated as ecosystem-
 626 level averages during the last 20 years of simulation, except for AGB. AGB is an annual average.
 627 For example, AGB at the 12th year is calculated as the ecosystem-level, annual average during
 628 the 12th year of the simulation.

	ED2-baseline	ED2-plastic	ED2-static	Observation
Forest structure and composition				
Total plant density (individuals m ⁻²)	0.206	0.424	0.367	0.433 (forest census)
Understory plant density (individuals m ⁻²)	0.181	0.378	0.325	0.391 (forest census)
Total basal area (cm ² m ⁻²)	16.9	28.7	28.7	30.7 (forest census)
Total LAI (m ² m ⁻²)	3.16	6.25	5.81	5.42 (Dettlo et al., 2018); 5.9 (Dettlo et al., 2015)
Basal area of early- successional PFT (cm ² m ⁻²)	0.417	3.07	0.618	6.65 (forest census)
Community-level trait diversity				
Leaf dark respiration rate at 25°C (μmol m ⁻² s ⁻¹)	0.760	0.417	0.204	NA
V _{cmax} at 25°C (μmol m ⁻² s ⁻¹)	50.7	32.5	19.8	NA
Specific leaf area (m ² kg ⁻¹)	11.2	21.6	30.3	NA
Leaf lifespan (month)	12.0	26.9	40.5	NA
Wood density (g cm ⁻³)	0.622	0.619	0.642	NA

Forest functioning

AGB at 12 th year (Mg ha ⁻¹)	32.4	50.7	57.5	88.0 (Batterman et al., 2013)
AGB at 80 th year (Mg ha ⁻¹)	123	175	154	160 (Batterman et al., 2013)
AGB at 300 th year (Mg ha ⁻¹)	149	224	233	263-266 (Cano et al., 2019)
Gross primary productivity (kg C m ⁻² year ⁻¹)	2.85	3.39	2.23	2.8 (Dettlo & Pacala, 2022)

629

630 **4 Discussion**

631 4.1 Light plasticity and inter-specific diversity similarly correct for model biases in understory
632 growth and forest structure

633 Consistent with our first hypothesis, growth rates of understory trees were
634 underestimated by 40.7% when they were not plastic and were parameterized by top-of-
635 canopy leaf traits (**Fig. 4A**). Incorporating observation-based light plasticity corrected for this
636 growth underestimate and further enabled accurate prediction of tree size distribution and leaf
637 area profile (**Fig. 4 and 6**), which supports our second hypothesis. These findings provide the
638 first quantitative evidence that light plasticity is critical for explaining demographic processes
639 and forest structure, and that observation-constrained light plasticity largely corrects for the
640 model underestimate of understory growth and abundance in tropical forests.

641 The modeled effects of light plasticity arise from increased plant shade tolerance. The
642 simulated community-level GCP doubled with light plasticity (**Fig. 3B**), with the largest increase
643 in early-successional PFT (**Fig. S4**). Field experiments have similarly shown that plants in low
644 light treatment substantially reduce their light compensation point (LCP; a lower LCP suggests a
645 higher shade tolerance) compared to conspecifics in high light treatment. For example, Kitajima

646 (1994) showed that tropical tree seedlings grown in the shaded treatment can reduce their leaf-
647 level LCP by more than 50% compared to conspecifics grown in the full sun. Sterck et al. (2013)
648 showed that the plant-level LCP of tropical tree seedlings grown at the low light level decreased
649 to one-third of conspecifics grown at the high light level. The magnitude of increase in shade
650 tolerance is comparable between field observations and our modeling results, suggesting that
651 the simulated physiological consequences of light plasticity are realistic.

652 Meanwhile, ED2-static with higher inter-specific diversity predicted similar understory
653 growth and forest structure as ED2-plastic during short-term simulations (**Fig. 4 and 6**).
654 Although ED2-static did not incorporate light plasticity, it generated within-canopy trait profiles
655 and GCPs that were similar to ED2-plastic (**Fig. S3 and S4**) by including additional PFTs.
656 Therefore, incorporating within-canopy variation in leaf traits, either by including intra-specific
657 light plasticity or expanding inter-specific diversity, is necessary to predict realistic understory
658 growth and tropical forest structure.

659 This finding is relevant to recent efforts to improve the representation of fine-scale
660 functional diversity in TBMs. For example, hyperspectral imaging has been used to initialize PFT
661 composition at a high spatial resolution (Bogan et al., 2019). Although this approach captures
662 spatial heterogeneity in plant functional traits, it does not explicitly account for the within-
663 canopy trait variation. Our results emphasize that a TBM only including the trait variation
664 observed at the top canopy (such as ED2-baseline) is insufficient for predicting tropical forest
665 structure, instead, such prediction requires incorporating the within-canopy trait diversity.
666 Future research should extend beyond our plot-level findings to quantify the ecological
667 consequences of within-canopy trait diversity at a larger spatial scale and across different
668 tropical regions.

669 4.2 Light plasticity effect on long-term functional composition and within-canopy trait profiles
670 cannot be compensated by inter-specific diversity

671 The demographic effects of light plasticity and inter-specific diversity further modulate
672 long-term forest succession and regrowth. We found that ED2-plastic and ED2-static similarly

673 enhanced modeled biomass accumulation relative to ED2-baseline during 300 years of
674 succession (**Table 2**; **Fig. 7A**), supporting our third hypothesis but not the fourth hypothesis.

675 Despite the positive effects of light plasticity and inter-specific diversity, AGB predictions
676 at the 300th year across all models were still lower than the plot-level estimate based on local
677 allometry (Cano et al., 2019). This is attributed to an underestimate of large tree growth and an
678 overestimate in their mortality rates (**Fig. 4A and 5A**), which may be related to the inaccurate
679 representation of size dependence in reproductive allocation and aboveground versus
680 belowground allocation (Xu et al., 2024).

681 Although ED2-plastic and ED2-static generated similar predictions of AGB, the effect of
682 light plasticity on improving the prediction of functional composition cannot be compensated
683 by inter-specific diversity. Early-successional PFT was largely outcompeted by mid- and late-
684 successional PFTs in ED2-static, whereas it coexisted with other PFTs at a substantially higher
685 abundance in ED2-plastic (**Table 2**). This difference arises because inter-specific diversity and
686 light plasticity shape community assembly differently. In ED2-static, light limitation imposes a
687 strong selection pressure on understory trees, particularly for early-successional PFTs. In
688 contrast, intra-PFT plasticity enhances individual fitness, especially the fitness of early-
689 successional PFT which is the most plastic (**Table S1**), eventually promoting coexistence.

690 The unique effect of light plasticity on composition is also evident at the trait level.
691 During long-term simulations, ED2-plastic generated a realistic community-level vertical trait
692 gradient (defined in section 2.7), whereas leaf traits simulated by ED2-static did not vary
693 significantly across the vertical gradient (**Fig. 7C**). This is because in ED2-static, only trees with
694 shade-tolerant traits can survive the understory stage and then reach the top canopy, thus ED2-
695 static simulated values of leaf dark respiration rate and V_{cmax} were always low, and values of
696 SLA and leaf lifespan were always high, regardless of the canopy position (**Fig. S5**). In contrast,
697 trees in ED2-plastic dynamically adjust their traits based on light levels throughout their
698 lifetime. As a result, ED2-static had 51.1% and 39.1% lower community-level leaf dark
699 respiration and V_{cmax} than ED2-plastic, further leading to a 34.2% lower GPP (**Table 2**). The

700 community-average leaf dark respiration and V_{cmax} were the highest in ED2-baseline because all
701 cohorts in this model had top-of-canopy trait values.

702 Interestingly, GPP simulated by ED2-baseline best aligned with the flux tower-based
703 estimate during 2012-2017 (Detto & Pacala, 2022). This model-data agreement in GPP does not
704 arise from an accurate representation of ecophysiological processes, rather, it arises from the
705 compensatory effect of an underestimated LAI and a high V_{cmax} . Meanwhile, ED2-plastic
706 predicted realistic trait profiles and LAI, but overestimated GPP by 21.1%. This may be
707 explained by a lack of hydraulic limitation (Xu et al., 2016) in the version of ED2 used for our
708 study and possible biases in stomatal parameters and photosynthetic temperature
709 dependence.

710 Results of PFT composition and community-level trait diversity suggest that light
711 plasticity regulates tropical forest functional composition differently from inter-specific trait
712 variation, and this finding sheds new light on how we should represent functional diversity in
713 trait-based modeling. Higher simulated functional diversity have been shown to improve the
714 prediction of ecosystem carbon fluxes and biomass resilience, and this higher diversity is often
715 achieved by increasing the number of PFTs (Butler et al., 2022; Pappas et al., 2016; Pavlick et
716 al., 2013; Rius et al., 2023; Sakschewski et al., 2016). Extending beyond these findings, we show
717 that increasing the inter-PFT diversity is not sufficient for predicting long-term forest dynamics,
718 and the intra-PFT trait variation across microenvironmental gradients is required for realistic
719 prediction of forest functional composition.

720 Based on the demonstrated role of light plasticity in demography, forest structure, and
721 composition, we further hypothesize that light plasticity will regulate ecosystem responses to
722 light environment variability, particularly gap formations and post-disturbance forest
723 regeneration. First, light plasticity maintains the abundance of light-demanding species prior to
724 gap formation and thus facilitates future gap colonization and regrowth of these species.
725 Second, light plasticity will increase the photosynthesis and growth of previously suppressed
726 understory trees after gap formation by trait adjustment to elevated light levels. These
727 hypotheses, although yet to be tested, are particularly relevant for mechanistic understanding

728 of tropical secondary forests, which now occupy more than half of all tropical forests (Food and
729 Agriculture Organization of the United Nations, 2010) and are predicted to have large regrowth
730 potential (Anderson-Teixeira et al., 2016; Pan et al., 2011; Pugh et al., 2019; Sheviakova et al.,
731 2009). Future research should investigate the role of light plasticity in predicting the multi-
732 dimensional recovery of tropical secondary forests (Poorter *et al.*, 2021).

733 **4.3 Toward mechanistic modeling of trait plasticity**

734 By incorporating the variation in light plasticity across different species and traits, our
735 study provides a more realistic representation of light plasticity than previous TBMs (**Table 1**).
736 However, our representation of light plasticity has several assumptions about the degree,
737 timescale, and ecological consequences of trait plasticity. These assumptions, which have not
738 been thoroughly evaluated, highlight the key challenges and opportunities for further
739 developing a more mechanistic characterization of trait plasticity in TBMs.

740 We assumed that intra-specific light plasticity is the only driver of observed within-
741 canopy trait gradient, which may lead to an overestimate of the degree of light plasticity. While
742 light is a primary cue of the vertical variation, ontogeny can also contribute significantly to leaf
743 trait plasticity, particularly for non-pioneer species (Wen et al., 2008). In addition, thermal
744 stress, water stress, and herbivory can all contribute to the vertical trait profile (Cavaleri et al.,
745 2010; Coste et al., 2009; Dang-Le et al., 2013). Field-based trait measurements across a wider
746 range of ontogenetic stages and microenvironmental gradients will be instrumental in
747 disentangling the contribution of trait plasticity from these other sources of variation.

748 Another key assumption is that light plasticity only occurs at the time of leaf turnover
749 and that traits remain constant within a leaf's lifetime, and such assumption may have
750 underestimated the rate of plasticity adjustment. Results from warming experiments have
751 shown that the timescale of temperature acclimation in leaf dark respiration varies from two
752 weeks to two months (Reich et al., 2021; Ren et al., 2024), and a similar analysis is yet to be
753 conducted to determine the timescale of plasticity-induced trait adjustments driven by other
754 environmental factors.

755 Our results emphasized the benefits of light plasticity, but phenotypic plasticity is not
756 necessarily adaptive. For example, the expression of plasticity can be energetically costly, and
757 plasticity may lower fitness under certain scenarios (DeWitt et al., 1998). We did not model
758 these processes because field-based quantitative assessments are rare, and the few studies did
759 not find consistent evidence for the costs and tradeoffs associated with plasticity (Avramov et
760 al., 2007; McIntyre & Strauss, 2014; Liu et al., 2016). On the other hand, TBM can serve as a
761 useful tool to quantify the cost of plasticity. For example, the metabolic cost of trait plasticity
762 can be incorporated as a model parameter, and optimizing the parameter against observed
763 forest demography and carbon fluxes may serve as a first-order estimate of the cost.

764 While we focused on the light-driven plasticity of leaf physiological traits in this study,
765 trait plasticity is a widespread phenomenon observed in other traits and across other
766 environmental gradients (Poorter et al., 2019; Siefert et al., 2015). For example, plant structural
767 traits such as leaf angle vary substantially within the canopy, which can influence carbon and
768 energy fluxes (Yang et al., 2023). In addition to leaf traits, plant allometry and root traits are
769 also known to be plastic (Poorter et al., 2019; Yaffar et al., 2024). A mechanistic understanding
770 and representation of trait plasticity is thus a research frontier in vegetation modeling, and it
771 will ultimately benefit from field-based trait sampling accompanied by comprehensive
772 measurements of the microenvironment. Recent years have already seen increasing field
773 campaigns that measure plant morphological and physiological traits across different
774 microenvironments (Lamour et al., 2023; Poorter et al., 2018). These datasets attempt to
775 characterize the variation of both functional traits and environmental factors at a scale that is
776 ecologically relevant to individual plant performance, and they will provide useful information
777 for both quantitative characterization of trait plasticity and its incorporation in trait-based
778 models.

779

780 **5 Conclusions**

781 Plant functional diversity in traits associated with light use, including both inter-specific
782 and intra-specific variation, critically shapes tropical forest dynamics by modulating tree
783 demography. By combining trait measurements, long-term census data, and trait-based
784 ecosystem modeling, we showed that observation-constrained light plasticity enhances
785 understory growth and abundance. This demographic effect further increases long-term
786 tropical forest biomass accumulation and strongly modulates forest structure and composition.
787 Importantly, the community and ecosystem effects of light plasticity cannot be fully
788 compensated by increasing inter-specific functional diversity, particularly in terms of
789 community composition and within-canopy trait gradients. These findings suggest that light
790 plasticity is crucial for trait-based prediction of tropical forest regrowth and resilience,
791 especially in secondary forests which experience high variability and heterogeneity in the light
792 environment. Future research should quantify phenotypic plasticity across a broader range of
793 traits and environmental gradients and evaluate their community and ecosystem-level impact.

794

795 **Acknowledgments**

796 XX and YM were supported by DOE Environmental System Science Program grant DE-
797 SC0023048 and NSF grant 2140581. AR, JL, KD, and SS were supported by the Next Generation
798 Ecosystem Experiments-Tropics project funded by the US Department of Energy, Office of
799 Science, Office of Biological and Environmental Research, and by U.S. Department of Energy
800 Contract No. DE-SC0012704 to Brookhaven National Laboratory. AR was also supported by U.S.
801 Department of Energy Contract No. DE-AC02-05CH11231 to Lawrence Berkeley National
802 Laboratory. SS was also supported by the NASA Surface Biology and Geology Mission. MD was
803 supported by the Carbon Mitigation Initiative at Princeton University and NSF grant 2017804.

804 The authors declare no conflict of interest.

805

806 **Open Research**

807 Census data used for model benchmarking are publicly available at
808 <https://datadryad.org/stash/dataset/doi:10.15146/5xcp-0d46>. Previously published trait data is

809 described in Lamour et al. (2023). All scripts for ED2 model simulations are available at
810 https://github.com/yixin98/ED2/tree/new_plasticity

811

812 References

- 813 Anderson-Teixeira, K. J., Wang, M. M. H., McGarvey, J. C., & LeBauer, D. S. (2016). Carbon
814 dynamics of mature and regrowth tropical forests derived from a pantropical database
815 (TropForC-db). *Global Change Biology*, 22, 1690–1709.
816 <https://doi.org/10.5061/dryad.t516f>
- 817 Avramov, S., Pemac, D., & Tucić, B. (2007). Phenotypic plasticity in response to an irradiance
818 gradient in Iris pumila: Adaptive value and evolutionary constraints. *Plant Ecology*, 190(2),
819 275–290. <https://doi.org/10.1007/s11258-006-9207-3>
- 820 Batterman, S. A., Hedin, L. O., Van Breugel, M., Ransijn, J., Craven, D. J., & Hall, J. S. (2013). Key
821 role of symbiotic dinitrogen fixation in tropical forest secondary succession. *Nature*,
822 502(7470), 224–227. <https://doi.org/10.1038/nature12525>
- 823 Bogan, S. A., Antonarakis, A. S., & Moorcroft, P. R. (2019). Imaging spectrometry-derived
824 estimates of regional ecosystem composition for the Sierra Nevada, California. *Remote
825 Sensing of Environment*, 228, 14–30. <https://doi.org/10.1016/j.rse.2019.03.031>
- 826 Butler, E. E., Wythers, K. R., Flores-Moreno, H., Ricciuto, D. M., Datta, A., Banerjee, A., Atkin, O.
827 Kattge, J., Thornton, P. E., Anand, M., Burrascano, S., Byun, C., Cornelissen, J. H. C.,
828 Forey, E., Jansen, S., Kramer, K., Minden, V., & Reich, P. B. (2022). Increasing Functional
829 Diversity in a Global Land Surface Model Illustrates Uncertainties Related to Parameter
830 Simplification. *Journal of Geophysical Research: Biogeosciences*, 127(3).
831 <https://doi.org/10.1029/2021jg006606>
- 832 Camac, J. S., Condit, R., FitzJohn, R. G., McCalman, L., Steinberg, D., Westoby, M., Joseph
833 Wright, S., & Falster, D. S. (2018). Partitioning mortality into growth-dependent and
834 growth-independent hazards across 203 tropical tree species. *Proceedings of the National
835 Academy of Sciences of the United States of America*, 115(49), 12459–12464.
836 <https://doi.org/10.1073/pnas.1721040115>
- 837 Cano, I. M., Muller-Landau, H. C., Joseph Wright, S., Bohlman, S. A., & Pacala, S. W. (2019).

- 838 Tropical tree height and crown allometries for the Barro Colorado Nature Monument,
839 Panama: A comparison of alternative hierarchical models incorporating interspecific
840 variation in relation to life history traits. *Biogeosciences*, 16(4), 847–862.
841 <https://doi.org/10.5194/bg-16-847-2019>
- 842 Cavaleri, M. A., Oberbauer, S. F., Clark, D. B., Clark, D. A., & Ryan, M. G. (2010). Height is more
843 important than light in determining leaf morphology in a tropical forest. *Ecology*, 91(6),
844 1730–1739. <https://doi.org/10.1890/09-1326.1>
- 845 Chazdon, R. L., & Fetcher, N. (1984). Photosynthetic Light Environments in a Lowland Tropical
846 Rain Forest in Costa Rica. *The Journal of Ecology*, 72(2), 553–564.
847 <https://doi.org/10.2307/2260066>
- 848 Chmura, D. J., Modrzyński, J., Chmielarz, P., & Tjoelker, M. G. (2017). Plasticity in seedling
849 morphology, biomass allocation and physiology among ten temperate tree species in
850 response to shade is related to shade tolerance and not leaf habit. *Plant Biology*, 19(2),
851 172–182. <https://doi.org/10.1111/plb.12531>
- 852 Clark, D. B., Clark, D. A., Rich, P. M., Weiss, S., & Oberbauer, S. F. (1996). Landscape-scale
853 evaluation of understory light and canopy structure: methods and application in a
854 neotropical lowland rain forest. *Canadian Journal of Forest Research*, 26, 747–757.
- 855 Condit, R., Pérez, R., Lao, S., Aguilar, S., & Hubbell, S. P. (2017). Demographic trends and climate
856 over 35 years in the Barro Colorado 50 ha plot. *Forest Ecosystems*, 4(1), 1–13.
857 <https://doi.org/10.1186/s40663-017-0103-1>
- 858 Condit, R., & Rüger, N. (2022). *Demographic variation and demographic niches of trees species
859 in the Barro Colorado Forest*. <https://doi.org/10.1101/2022.07.07.499151>
- 860 Coste, S., Roggy, J. C., Garraud, L., Heuret, P., Nicolini, E., & Dreyer, E. (2009). Does ontogeny
861 modulate irradiance-elicited plasticity of leaf traits in saplings of rain-forest tree species? A
862 test with *Dicorynia guianensis* and *Tachigali melinonii* (Fabaceae, Caesalpinoideae). *Annals
863 of Forest Science*, 66(7), 709–709. <https://doi.org/10.1051/forest/2009062>
- 864 Dang-Le, A. T., Edelin, C., & Le-Cong, K. (2013). Ontogenetic variations in leaf morphology of the
865 tropical rain forest species *Dipterocarpus alatus* Roxb. ex G. Don. *Trees - Structure and
866 Function*, 27(3), 773–786. <https://doi.org/10.1007/s00468-012-0832-2>

- 867 Denslow, J. S. (1987). Tropical Rainforest Gaps and Tree Species Diversity. *Annual Review of*
868 *Ecology and Systematics*, 18, 431–451.
- 869 Detto, M., Asner, G. P., Muller-Landau, H. C., & Sonnentag, O. (2015). Spatial variability in
870 tropical forest leaf area density from multireturn lidar and modeling. *Journal of*
871 *Geophysical Research: Biogeosciences*, 120, 707–723.
872 <https://doi.org/10.1002/2014JG002774>.Received
- 873 Detto, M., Levine, J. M., & Pacala, S. W. (2021). Maintenance of high diversity in mechanistic
874 forest dynamics models of competition for light. *Ecological Monographs*, 92(2).
875 <https://doi.org/10.1002/ecm.1500>
- 876 Detto, M., & Pacala, S. W. (2022). Plant hydraulics, stomatal control, and the response of a
877 tropical forest to water stress over multiple temporal scales. *Global Change Biology*,
878 28(14), 4359–4376. <https://doi.org/10.1111/gcb.16179>
- 879 Detto, M., Wright, S. J., Calderón, O., & Muller-Landau, H. C. (2018). Resource acquisition and
880 reproductive strategies of tropical forest in response to the El Niño-Southern Oscillation.
881 *Nature Communications*, 9(1), 1–8. <https://doi.org/10.1038/s41467-018-03306-9>
- 882 Detto, M., & Xu, X. (2020). Optimal leaf life strategies determine V_c, max dynamic during
883 ontogeny. *New Phytologist*, 228(1), 361–375. <https://doi.org/10.1111/nph.16712>
- 884 DeWitt, T. J., Sih, A., & Wilson, D. S. (1998). Costs and limits of phenotypic plasticity. *Trends in*
885 *Ecology and Evolution*, 13(2), 77–81. [https://doi.org/10.1016/S0169-5347\(97\)01274-3](https://doi.org/10.1016/S0169-5347(97)01274-3)
- 886 Finegan, B. (1984). Forest succession. *Nature*, 312(8), 109–114.
- 887 Food and Agriculture Organization of the United Nations. (2010). Global forest resources
888 assessment 2010: Main report. *FAO Forestry Paper* 163.
889 <https://www.fao.org/4/i1757e/i1757e.pdf>
- 890 Kitajima, K. (1994). Relative importance of photosynthetic traits and allocation patterns as
891 correlates of seedling shade tolerance of 13 tropical trees. *Oecologia*, 98(3–4), 419–428.
892 <https://doi.org/10.1007/BF00324232>
- 893 Koven, C. D., Knox, R. G., Fisher, R. A., Fisher, R. A., Chambers, J. Q., Chambers, J. Q.,
894 Christoffersen, B. O., Davies, S. J., Detto, M., Detto, M., Dietze, M. C., Faybushenko, B.,
895 Holm, J., Huang, M., Kovenock, M., Kueppers, L. M., Kueppers, L. M., Lemieux, G.,

- 896 Massoud, E., ... Xu, C. (2020). Benchmarking and parameter sensitivity of physiological and
897 vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator
898 (FATES) at Barro Colorado Island, Panama. *Biogeosciences*, 17(11), 3017–3044.
899 <https://doi.org/10.5194/bg-17-3017-2020>
- 900 Lamour, J., Davidson, K. J., Ely, K. S., Le Moguédec, G., Anderson, J. A., Li, Q., Calderón, O.,
901 Koven, C. D., Wright, S. J., Walker, A. P., Serbin, S. P., & Rogers, A. (2023). The effect of the
902 vertical gradients of photosynthetic parameters on the CO₂ assimilation and transpiration
903 of a Panamanian tropical forest. *New Phytologist*, 238, 2345–2362.
904 <https://doi.org/10.1111/nph.18901>
- 905 Liu, Y., Dawson, W., Prati, D., Haeuser, E., Feng, Y., & Van Kleunen, M. (2016). Does greater
906 specific leaf area plasticity help plants to maintain a high performance when shaded?
907 *Annals of Botany*, 118(7), 1329–1336. <https://doi.org/10.1093/aob/mcw180>
- 908 Lloyd, J., Patiño, S., Paiva, R. Q., Nardoto, G. B., Quesada, C. A., Santos, A. J. B., Baker, T. R.,
909 Brand, W. A., Hilke, I., Gielmann, H., Raessler, M., Luizão, F. J., Martinelli, L. A., & Mercado,
910 L. M. (2010). Optimisation of photosynthetic carbon gain and within-canopy gradients of
911 associated foliar traits for Amazon forest trees. *Biogeosciences*, 7(6), 1833–1859.
912 <https://doi.org/10.5194/bg-7-1833-2010>
- 913 Longo, M., Knox, R. G., Levine, N. M., Swann, A. L. S., Medvigy, D. M., Dietze, M. C., Kim, Y.,
914 Zhang, K., Bonal, D., Burban, B., Camargo, P. B., Hayek, M. N., Saleska, S. R., Da Silva, R.,
915 Bras, R. L., Wofsy, S. C., & Moorcroft, P. R. (2019). The biophysics, ecology, and
916 biogeochemistry of functionally diverse, vertically and horizontally heterogeneous
917 ecosystems: The Ecosystem Demography model, version 2.2-Part 2: Model evaluation for
918 tropical South America. *Geoscientific Model Development*, 12(10), 4347–4374.
919 <https://doi.org/10.5194/gmd-12-4347-2019>
- 920 Longo, M., Knox, R. G., Medvigy, D. M., Levine, N. M., Dietze, M. C., Kim, Y., Swann, A. L. S.,
921 Zhang, K., Rollinson, C. R., Bras, R. L., Wofsy, S. C., & Moorcroft, P. R. (2019). The
922 biophysics, ecology, and biogeochemistry of functionally diverse, vertically and
923 horizontally heterogeneous ecosystems: The Ecosystem Demography model, version 2.2-
924 Part 1: Model description. *Geoscientific Model Development*, 12(10), 4309–4346.

- 925 <https://doi.org/10.5194/gmd-12-4309-2019>
- 926 McIntyre, P. J., & Strauss, S. Y. (2014). Phenotypic and transgenerational plasticity promote
927 local adaptation to sun and shade environments. *Evolutionary Ecology*, 28(2), 229–246.
928 <https://doi.org/10.1007/s10682-013-9670-y>
- 929 Moorcroft, P. R., Hurtt, G. C., & Pacala, S. W. (2001). A method for scaling vegetation dynamics:
930 The ecosystem demography model (ED). *Ecological Monographs*, 71(4), 557–586.
931 [https://doi.org/10.1890/0012-9615\(2001\)071\[0557:AMFSVD\]2.0.CO;2](https://doi.org/10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2)
- 932 Needham, J. F., Dey, S., Koven, C. D., Fisher, R. A., Knox, R. G., Lamour, J., Lemieux, G., Longo,
933 M., Rogers, A., & Holm, J. (2025). Vertical canopy gradients of respiration drive plant
934 carbon budgets and leaf area index. *New Phytologist*. <https://doi.org/10.1111/nph.20423>
- 935 Niinemets, Ü., Keenan, T. F., & Hallik, L. (2015). A worldwide analysis of within-canopy
936 variations in leaf structural, chemical and physiological traits across plant functional types.
937 *New Phytologist*, 205(3), 973–993. <https://doi.org/10.1111/nph.13096>
- 938 Osunkoya, O. O., Ash, J. E., Hopkins, M. S., Andrew, W., Osunkoya, O., Ash, J. E., & Hopkininst, M.
939 S. (1994). Influence of Seed Size and Seedling Ecological Attributes on Shade-Tolerance of
940 Rain- Forest Tree Species in Northern Queensland. *Journal of Ecology*, 82(1), 149–163.
- 941 Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., & Philips, O. L. (2011). A
942 Large and Persistent Carbon Sink in the World's Forests. *Science*, 333, 988–993.
943 <https://doi.org/10.1126/science.1204588>
- 944 Pappas, C., Fatichi, S., & Burlando, P. (2016). Modeling terrestrial carbon and water dynamics
945 across climatic gradients: Does plant trait diversity matter? *New Phytologist*, 209(1), 137–
946 151. <https://doi.org/10.1111/nph.13590>
- 947 Pavlick, R., Drewry, D. T., Bohn, K., Reu, B., & Kleidon, A. (2013). The Jena Diversity-Dynamic
948 Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial
949 biogeography and biogeochemistry based on plant functional trade-offs. *Biogeosciences*,
950 10(6), 4137–4177. <https://doi.org/10.5194/bg-10-4137-2013>
- 951 Poorter, H., Niinemets, Ü., Ntagkas, N., Siebenkäs, A., Mäenpää, M., Matsubara, S., & Pons, T. L.
952 (2019). A meta-analysis of plant responses to light intensity for 70 traits ranging from
953 molecules to whole plant performance. *New Phytologist*, 223(3), 1073–1105.

- 954 <https://doi.org/10.1111/nph.15754>
- 955 Poorter, L., Castilho, C. V., Schiatti, J., Oliveira, R. S., & Costa, F. R. C. (2018). Can traits predict
956 individual growth performance? A test in a hyperdiverse tropical forest. *New Phytologist*,
957 219(1), 109–121. <https://doi.org/10.1111/nph.15206>
- 958 Poorter, L., Craven, D., Jakovac, C. C., van der Sande, M. T., Amissah, L., Bongers, F., Chazdon, R.
959 L., Farrior, C. E., Kambach, S., Meave, J. A., Muñoz, R., Norden, N., Rüger, N., van Breugel,
960 M., María Almeyda Zambrano, A., Amani, B., Luis Andrade, J., S Brancalion, P. H.,
961 Broadbent, E. N., ... Héault, B. (2021). Multidimensional tropical forest recovery. *Science*,
962 1370–1376. <https://www.science.org>
- 963 Pugh, T. A. M., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd, V., & Calle, L. (2019).
964 Role of forest regrowth in global carbon sink dynamics. *Proceedings of the National
965 Academy of Sciences of the United States of America*, 116(10), 4382–4387.
966 <https://doi.org/10.1073/pnas.1810512116>
- 967 Reich, P. B. (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto.
968 *The Journal of Ecology*, 102(2), 275–301.
- 969 Reich, P. B., Stefanski, A., Rich, R. L., Sendall, K. M., Wei, X., Zhao, C., Hou, J., Montgomery, R. A.,
970 & Bermudez, R. (2021). Assessing the relevant time frame for temperature acclimation of
971 leaf dark respiration: A test with 10 boreal and temperate species. *Global Change Biology*,
972 27, 2945–2958. <https://doi.org/10.1111/gcb.15609>
- 973 Ren, Y., Wang, H., Harrison, S. P., Prentice, I. C., Atkin, O. K., Smith, N. G., Mengoli, G., Stefanski,
974 A., & Reich, P. B. (2024). Reduced global plant respiration due to the acclimation of leaf
975 dark respiration coupled with photosynthesis. *New Phytologist*, 241(2), 578–591.
976 <https://doi.org/10.1111/nph.19355>
- 977 Rius, B. F., Filho, J. P. D., Fleischer, K., Hofhansl, F., Blanco, C. C., Rammig, A., Domingues, T. F.,
978 & Lapola, D. M. (2023). Higher functional diversity improves modeling of Amazon forest
979 carbon storage. *Ecological Modelling*, 481.
980 <https://doi.org/10.1016/j.ecolmodel.2023.110323>
- 981 Rüger, N., Condit, R., Dent, D. H., DeWalt, S. J., Hubbell, S. P., Lichstein, J. W., Lopez, O. R.,
982 Wirth, C., & Farrior, C. E. (2020). Demographic trade-offs predict tropical forest dynamics.

- 983 *Science*, 368(6487), 165–168. <https://doi.org/10.1126/science.aaz4797>
- 984 Sakschewski, B., Von Bloh, W., Boit, A., Poorter, L., Peña-Claros, M., Heinke, J., Joshi, J., &
- 985 Thonicke, K. (2016). Resilience of Amazon forests emerges from plant trait diversity.
- 986 *Nature Climate Change*, 6(11), 1032–1036. <https://doi.org/10.1038/nclimate3109>
- 987 Shevliakova, E., Pacala, S. W., Malyshev, S., Hurt, G. C., Milly, P. C. D., Caspersen, J. P.,
- 988 Sentman, L. T., Fisk, J. P., Wirth, C., & Crevoisier, C. (2009). Carbon cycling under 300 years
- 989 of land use change: importance of the secondary vegetation sink. *Global Biogeochemical*
- 990 *Cycles*, 23(2). <https://doi.org/10.1029/2007GB003176>
- 991 Siefert, A., Violle, C., Chalmandrier, L., Albert, C. H., Taudiere, A., Fajardo, A., Aarssen, L. W.,
- 992 Baraloto, C., Carlucci, M. B., Cianciaruso, M. V., de L. Dantas, V., de Bello, F., Duarte, L. D.
- 993 S., Fonseca, C. R., Freschet, G. T., Gaucherand, S., Gross, N., Hikosaka, K., Jackson, B., ...
- 994 Wardle, D. A. (2015). A global meta-analysis of the relative extent of intraspecific trait
- 995 variation in plant communities. *Ecology Letters*, 18(12), 1406–1419.
- 996 <https://doi.org/10.1111/ele.12508>
- 997 Sterck, F. J., Duursma, R. A., Pearcy, R. W., Valladares, F., Cieslak, M., & Weemstra, M. (2013).
- 998 Plasticity influencing the light compensation point offsets the specialization for light niches
- 999 across shrub species in a tropical forest understorey. *Journal of Ecology*, 101(4), 971–980.
- 1000 <https://doi.org/10.1111/1365-2745.12076>
- 1001 United Nations General Assembly. (2015). *A/RES/70/1 - Transforming our world: The 2030*
- 1002 *agenda for sustainable development*. <https://doi.org/10.4324/9781843146575-59>
- 1003 Valladares, F., Wright, S. J., Lasso, E., Kitajima, K., & Pearcy, R. W. (2000). Plastic phenotypic
- 1004 response to light of 16 congeneric shrubs from a panamanian rainforest. *Ecology*, 81(7),
- 1005 1925–1936. [https://doi.org/10.1890/0012-9658\(2000\)081\[1925:PPRTLO\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2)
- 1006 Wen, S., Fetcher, N., & Zimmerman, J. K. (2008). Acclimation of tropical tree species to
- 1007 hurricane disturbance: ontogenetic differences. *Tree Physiology*, 28, 935–946.
- 1008 Wright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R.,
- 1009 Dalling, J. W., Davies, S. J., DíAz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks,
- 1010 C. O., Ruiz-Jaen, M. C., Salvador, C. M., & Zanne, A. E. (2010). Functional traits and the
- 1011 growth-mortality trade-off in tropical trees. *Ecology*, 91(12), 3664–3674.

- 1012 https://doi.org/10.1890/09-2335.1

1013 Xu, X., Medvigy, D., Joseph Wright, S., Kitajima, K., Wu, J., Albert, L. P., Martins, G. A., Saleska, S.
1014 R., & Pacala, S. W. (2017). Variations of leaf longevity in tropical moist forests predicted by
1015 a trait-driven carbon optimality model. *Ecology Letters*, 20, 1097–1106.

1016 https://doi.org/10.1111/ele.12804

1017 Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M., & Guan, K. (2016). Diversity in plant hydraulic
1018 traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally
1019 dry tropical forests. *The New Phytologist*, 212(1), 80–95.

1020 https://doi.org/10.1111/nph.14009

1021 Xu, X., van der Sleen, P., Groenendijk, P., Vlam, M., Medvigy, D., Moorcroft, P., Petticord, D.,
1022 Ma, Y., & Zuidema, P. A. (2024). Constraining long-term model predictions for woody
1023 growth using tropical tree rings. *Global Change Biology*, 30(1).

1024 https://doi.org/10.1111/gcb.17075

1025 Yaffar, D., Lugli, L. F., Wong, M. Y., Norby, R. J., Addo-Danso, S. D., Arnaud, M., Cordeiro, A. L.,
1026 Dietterich, L. H., Diaz-Toribio, M. H., Lee, M. Y., Ghimire, O. P., Smith-Martin, C. M., Toro,
1027 L., Andersen, K., McCulloch, L. A., Meier, I. C., Powers, J. S., Sanchez-Julia, M., Soper, F. M.,
1028 & Cusack, D. F. (2024). Tropical root responses to global changes: A synthesis. *Global
1029 Change Biology*, 30(7). https://doi.org/10.1111/gcb.17420

1030 Yang, X., Li, R., Jablonski, A., Stovall, A., Kim, J., Yi, K., Ma, Y., Beverly, D., Phillips, R., Novick, K.,
1031 Xu, X., & Lerdau, M. (2023). Leaf angle as a leaf and canopy trait: Rejuvenating its role in
1032 ecology with new technology. *Ecology Letters*, 26(6), 1005–1020.

1033 https://doi.org/10.1111/ele.14215

1034

1035

1036

1037

1038