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Key Points: 27 

• We examined how intra-specific light plasticity in leaf traits affects modeled tropical 28 

tree demography and long-term forest dynamics. 29 

• Observation-constrained light plasticity enabled an accurate prediction of tree growth 30 

rates, forest structure, and biomass regrowth. 31 

• Light plasticity improved modeled forest composition and trait diversity, which cannot 32 

be achieved by adding new plant functional types. 33 
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Abstract 35 

Predicting tropical tree demography is a key challenge in understanding the future 36 

dynamics of tropical forests. While demographic processes are known to be regulated by leaf 37 

trait diversity, only the effect of inter-specific trait variation has been evaluated, and it remains 38 

unclear as to what degree the intra-specific trait plasticity across light gradients (hereafter light 39 

plasticity) regulates tree demography, and how this will further shape long-term community 40 

and ecosystem dynamics. By combining in situ trait measurements and forest census data with 41 

a terrestrial biosphere model, we evaluated the impact of observation-constrained light 42 

plasticity on demography, forest structure, and biomass dynamics in a Panamanian tropical 43 

moist forest. Modeled leaf physiological traits vary across and within plant functional types 44 

(PFT), which represent the inter-specific trait variation and the intra-specific light plasticity, 45 

respectively. The simulation using three non-plastic PFTs underestimated 20-year-average 46 

understory growth rates by 41%, leading to a biased forest size structure and leaf area profile, 47 

and a 44% underestimate in long-term biomass. The simulation using three plastic PFTs 48 

generated accurate understory growth rates, resulting in a realistic forest structure and a 49 

smaller biomass underestimate of 15%. Expanding simulated trait diversity using 18 non-plastic 50 

PFTs similarly improved the prediction of demography and biomass. However, only the 51 

plasticity-enabled model predicted realistic long-term PFT composition and within-canopy trait 52 

profiles. Our results highlight the distinct role of light plasticity in regulating forest dynamics 53 

that cannot be replaced by inter-specific trait diversity. Accurately representing light plasticity is 54 

thus crucial for trait-based prediction of tropical forest dynamics. 55 

Plain Language Summary 56 

Ecosystem functions such as biomass dynamics and forest structure are strongly 57 

regulated by plant diversity. In addition to species diversity, plant characteristics also vary 58 

within the same species, particularly in response to environmental gradients. However, it 59 

remains largely unclear how this intra-specific diversity across environmental gradients 60 

regulates forest dynamics. Here we used vegetation modeling to investigate how the intra-61 

specific diversity across different light environments regulates tropical tree demography, forest 62 
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composition, and carbon cycle. We found that incorporating intra-specific diversity in the 63 

model substantially influenced tree growth rates, forest structure, and long-term carbon 64 

accumulation. Constraining intra-specific diversity with observations improved model 65 

predictions of these processes. In addition, incorporating the intra-specific diversity improved 66 

the prediction of forest composition, and such an effect cannot be replaced by solely 67 

incorporating higher species diversity. These results highlight the importance of characterizing 68 

the intra-specific diversity across environmental gradients for predicting long-term tropical 69 

forest dynamics. 70 

 71 

1 Introduction 72 

The future fate of tropical forests, particularly the persistence of old-growth forest 73 

carbon sink and the regrowth potential of secondary forests, critically influences the global 74 

carbon cycle, biodiversity, and the realization of several Sustainable Development Goals 75 

(Anderson-Teixeira et al., 2016; Pan et al., 2011; United Nations General Assembly, 2015). 76 

Predicting the community and ecosystem dynamics of these forests fundamentally depends on 77 

a realistic representation of demographic processes such as growth and mortality. However, 78 

accurately predicting tropical tree demography remains an open challenge for process-based 79 

terrestrial biosphere models (TBM), and a common modeling bias is the underestimate of the 80 

abundance of understory trees (Koven et al., 2020; Longo et al., 2019a), which can lead to 81 

further biases in the prediction of long-term canopy regeneration and forest succession. 82 

Understory trees in closed-canopy tropical forests are limited by low light availability 83 

(Chazdon & Fetcher, 1984; Clark et al., 1996), thus their demographic rates are strongly 84 

regulated by the diversity in light use-associated traits (Denslow, 1987; Detto et al., 2021; 85 

Finegan, 1984; Moorcroft et al., 2001). The inter-specific variation in these traits, particularly 86 

the trait variation between light-demanding and shade-tolerant species, has been shown to 87 

influence demographic rates and ecosystem functioning (Reich, 2014; Wright et al., 2010). In 88 

addition to the inter-specific variation, leaf traits within the same species also vary substantially 89 

across light gradients in tropical forests (Xu et al. 2017). This intra-specific trait variation largely 90 
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results from phenotypic plasticity in response to within-canopy light gradients (hereafter light 91 

plasticity), although ontogeny and other environmental factors also contribute to the variation 92 

(Cavaleri et al., 2010; Coste et al., 2009; Dang-Le et al., 2013; Detto & Xu, 2020; Wen et al., 93 

2008). To date, it has not been evaluated as to what degree light plasticity regulates understory 94 

tree demography in tropical forests. 95 

Both light plasticity and inter-specific variation enhance functional diversity and thus are 96 

expected to influence forest dynamics, but light plasticity can affect ecosystem processes 97 

through two unique mechanisms. First, it can increase net carbon gain in the understory by 98 

reducing respiration cost and increasing specific leaf area (Niinemets et al., 2015; Poorter et al., 99 

2019), which can directly increase tree fitness during their early life stages and thus enhance 100 

their growth, survival, and abundance. In contrast, inter-specific trait variation can not lead to 101 

tree-level trait adjustments within their lifetime. Second, the inter-specific trait variation 102 

characterizes the tradeoff between growth in high light environment and survival in low light 103 

environment, whereas plasticity-enabled trait variation weakens such tradeoff by increasing 104 

understory survival (Sterck et al., 2013). Based on these mechanisms, light plasticity is expected 105 

to shape demographic processes and community composition differently than the inter-specific 106 

trait variation. 107 

In TBMs, the inter-specific trait variation is often modeled as plant functional types 108 

(PFT), which are groups of species with similar trait values, and light plasticity has been 109 

commonly represented as intra-PFT trait variation across light gradients. While many studies 110 

have aimed to improve the model representation of inter-PFT variation (Butler et al., 2022; 111 

Pappas et al., 2016; Pavlick et al., 2013; Rius et al., 2023; Sakschewski et al., 2016), fewer 112 

studies have attempted to refine the representation of plasticity and evaluate its impact on 113 

predicting forest dynamics (Needham et al., 2025). In fact, TBMs often incorrectly assume that 114 

the extent of light plasticity is identical across different PFTs and traits (see Table 1 for a 115 

summary of light plasticity implementation in TBMs), despite field observations demonstrating 116 

that different species and traits exhibit a wide range of light plasticity (Chmura et al., 2017; 117 

Osunkoya et al., 1994; Valladares et al., 2000). For example, both leaf dark respiration rate and 118 

maximum carboxylation rate of photosynthesis (Vcmax) decrease with lower light levels, but leaf 119 
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dark respiration has a higher degree of plasticity than that of Vcmax, resulting in a lower 120 

respiration to Vcmax ratio (Lamour et al., 2023) and thus a higher shade tolerance in the 121 

understory. The absence of difference in modeled respiration and Vcmax plasticity likely explains 122 

the underestimate of understory abundance in plasticity-enabled TBMs (Koven et al., 2020; 123 

Longo et al., 2019a), and this is partly supported by previous research showing that a higher 124 

degree of leaf dark respiration plasticity in FATES model increases understory leaf area 125 

(Needham et al., 2025). However, it remains unknown whether a comprehensive and realistic 126 

representation of light plasticity, i.e., incorporating its variation across species and multiple 127 

traits, can fully correct for the model biases in understory growth and survival and further 128 

improve the prediction of long-term forest dynamics. 129 

To examine the role of light plasticity in explaining and predicting tropical forest 130 

dynamics, we combined in situ trait measurements in Panama and forest inventories at Barro 131 

Colorado Island (BCI) with the Ecosystem Demography Model version 2.2 (ED2) (Longo et al., 132 

2019b). The ED2 model is a trait-based, demography-enabled TBM, and it represents light 133 

plasticity in leaf physiological traits as intra-PFT parameter variation driven by light gradient. 134 

The modeled light plasticity is constrained by local observations, and the degree of light 135 

plasticity varies across PFTs and traits (Table 1; Fig. 1).  136 

Overall, we expected that light plasticity would improve the prediction of forest 137 

structure and long-term forest succession by better capturing understory demography, and its 138 

effect would be different from that of inter-specific trait diversity. Specifically, we hypothesized 139 

that: (1) a non-plastic model containing only inter-PFT trait variation would underestimate 140 

growth rates and overestimate mortality rates in the understory, consequently underestimating 141 

tree abundance and leaf area; (2) incorporating observation-constrained light plasticity would 142 

yield more accurate demographic rates and thus a more realistic forest size structure and leaf 143 

area vertical profile; (3) during long-term secondary succession, light plasticity would promote 144 

forest biomass accumulation; (4) expanding inter-specific diversity in the non-plastic model by 145 

adding more PFTs would have a smaller positive effect on understory growth and long-term 146 

biomass than light plasticity. 147 
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Table 1. Current representation of light plasticity in TBMs and its impact on modeled ecological processes. 148 

Model 
Traits that have  
light plasticity 

Do traits differ in  
light plasticity 

Do PFTs differ in  
light plasticity 

Ecological impact of 
light plasticity 

Reference 

Joint UK Land 
Environment Simulator 
(JULES) 

Vcmax; 
Jmax; 
Leaf dark respiration; 
Leaf nitrogen content; 

No. 
All traits have the 
same plasticity. 

No. 
All PFTs have the 
same plasticity 

Small, positive effect 
on canopy 
photosynthesis  

Mercado 
et al. 
2007 

Community 
Land Model version 4 
(CLM4) 

Vcmax; 
Jmax; 
Leaf dark respiration; 
Leaf nitrogen content 

No. 
All traits have the 
same plasticity. 

No. 
All PFTs have the 
same plasticity. 

Small, positive effect 
on gross primary 
productivity (GPP)  

Bonan et 
al. 2011 

Lund-Potsdam-Jena 
General Ecosystem 
Simulator (LPJ-GUESS) 

Vcmax; 

Jmax; 
Leaf dark respiration; 
Leaf nitrogen content; 

No. 
All traits have the 
same plasticity. 

No. 
All PFTs have the 
same plasticity. 

Not examined 
Smith et 
al. 2014 

Trait-based Forest 
Simulator version 2 
(TFSv.2) 

Vcmax; 
Jmax; 
Leaf dark respiration; 
Specific leaf area; 
Leaf lifespan 

Yes. 
The light plasticity of 
leaf lifespan is 
different from that of 
other traits. 

No. 
All PFTs have the 
same plasticity. 
 

Not examined 
Fauset et 
al. 2019 

 149 
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Table 1. (continued) 150 

Functionally Assembled 
Terrestrial Ecosystem 
Simulator (FATES) 

Vcmax; 
Jmax; 
Leaf dark respiration; 
Leaf nitrogen content; 
Specific leaf area 

Yes. 
Leaf dark respiration 
is the most plastic, 
and all other traits 
have the same 
plasticity. 

Yes. 
Early-successional 
PFT is the most 
plastic. 

Positive effect on leaf 
area and vegetation 
carbon  

Needham 
et al. 
2025 

Organizing Carbon and 
Hydrology In Dynamic 
Ecosystems (ORCHIDEE) 

Vcmax; 
Jmax; 
Leaf dark respiration; 
Leaf nitrogen content 

No. 
All traits have the 
same plasticity. 

No. 
All PFTs have the 
same plasticity 

Not examined 
Zhang et 
al. 2020 

Ecosystem demography 
Model version 2.2 
(ED2) 

Vcmax; 
Jmax; 
Leaf dark respiration; 
Specific leaf area; 
Leaf lifespan 

Yes. 
Each trait plasticity is 
parameterized 
separately. 

Yes. 
Early-
successional PFT 
is the most 
plastic. 

Large effect on tree 
demography, forest 
structure, 
composition, trait 
diversity, and 
biomass 

This 
study 

151 
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 171 

Figure 1. Representation of plant functional diversity in ED2 model for four traits of interest: 172 

leaf dark respiration rate at 25°C, maximum carboxylation rate of photosynthesis (Vcmax) at 173 

25°C, specific leaf area, and leaf lifespan. The upper panel is a conceptual diagram of the 174 

different components of plant functional diversity in each model. Open and closed circles 175 

represent the trait variation between top-of-canopy cohorts and understory cohorts. ED2-176 

baseline only contains trait variation across three PFTs, without intra-PFT variation. ED2-plastic 177 

contains both trait variation across three PFTs and intra-PFT light plasticity. ED2-static only 178 

contains trait variation across 18 PFTs, without intra-PFT variation. The lower panel shows the 179 

model parameterization of within-canopy trait variation. ED2-baseline, ED2-plastic, ED2-static 180 

are represented by purple, orange, and green colors, and each point or line represents a 181 

different PFT. Light plasticity in ED2-plastic was parameterized based on top-of-canopy and 182 

understory trait values from the W03 dataset (described in section 2.3 and 2.4). Although not 183 

shown here, simulated maximum rate of photosynthetic electron transport (Jmax) in ED2 is 184 

proportional to Vcmax by a constant factor, therefore, it is also a plastic trait and it has the same 185 

light plasticity as Vcmax. 186 

 187 

 188 

2 Materials and Methods 189 

2.1 Study site 190 

The study site is a long-term, 50-ha forest plot at Barro Colorado Island (BCI) in Panama. 191 

The BCI site is an old-growth moist tropical forest with a mean annual precipitation of 2660 mm 192 
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and a four-month dry season. The plot was established in 1981. The species identity, spatial 193 

coordinates within the plot, and diameter at breast height (DBH) of all stems with DBH ≥ 1 cm 194 

were first inventoried in 1982 and then recorded every five years since 1985 (Condit et al., 195 

2017).  196 

2.2 Model description 197 

The ED2 model is a cohort-based TBM that simulates vegetation dynamics and land 198 

surface processes (Longo et al., 2019b). In this model, the smallest spatial unit is a patch, which 199 

is a collection of areas with similar disturbance histories, and its size is usually comparable to a 200 

forest gap (~20m). Within each patch, there are multiple cohorts, which are individuals of 201 

similar size and same PFT. Each cohort is always shaded by all other taller cohorts within the 202 

same patch, therefore, cohorts experience height-structured competition for light, which 203 

further drives vegetation dynamics.  204 

Cohort-level growth and mortality rates are simulated based on ecophysiological 205 

principles and are tracked explicitly throughout the simulation. DBH growth rate is determined 206 

by cohort-level net carbon balance, which is further governed by photosynthesis,  respiration, 207 

and carbon allocation among different plant compartments. The cohort-level mortality rate is 208 

modeled as the sum of growth-independent and growth-dependent components and is 209 

described by the following equation based on Camac et al. (2018).  210 

𝑴 = 𝑴𝒃 +  𝑴𝒅 + 𝜶 ∗ 𝒆𝜷∗𝒈𝒓𝒐𝒘𝒕𝒉,                                                                                      (1) 211 

𝑴 is the total cohort-level mortality rate. 𝑴𝒃 is baseline mortality rate, and it is a 212 

prescribed parameter that differs across PFTs. 𝑴𝒅 is disturbance-related mortality, and it has 213 

the same value for all PFTs. The last term in this equation describes the growth-dependent 214 

mortality rate. 𝜶 and 𝜷 are both PFT-dependent parameters, and 𝜷 is always negative, meaning 215 

that this growth-dependent mortality rate declines exponentially with larger DBH growth rates.  216 

To isolate the effect of light plasticity and inter-specific trait variation, we generated 217 

three ED2 versions that have different representations of intra-PFT light plasticity and inter-PFT 218 
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trait variation (Fig. 1). ED2-baseline characterizes three PFTs (described in section 2.5) that do 219 

not have light plasticity, meaning that traits do not vary with light levels. ED2-plastic has three 220 

plastic PFTs, and their traits respond to light gradients (described in section 2.3 and 2.4). ED2-221 

static characterizes 18 PFTs that do not have light plasticity, but its inter-PFT trait variation 222 

covers a similar range of variation as the intra-PFT light plasticity in ED2-plastic (described in 223 

section 2.5). 224 

2.3 Model representation of light-driven plasticity 225 

Five leaf traits vary across cohorts and are modeled as plastic: leaf dark respiration rate, 226 

Vcmax, maximum rate of photosynthetic electron transport (Jmax), specific leaf area (SLA), and 227 

leaf lifespan. These traits are selected because they are available in a local trait dataset 228 

(described in section 2.4) and they are important in determining leaf-level carbon balance and 229 

leaf turnover rates. The values of these plastic traits vary both across and within PFTs, and the 230 

intra-PFT variation across cohorts depends on the cohort-level overtopping leaf area index 231 

(oLAI). For each cohort of interest, oLAI is the total leaf area index (LAI) for all cohorts that grow 232 

in the same patch and are taller than the cohort of interest. Leaf area is modeled by a power-233 

law function of DBH, and this function is estimated from the leaf area profile measured by 234 

LiDAR (light detection and ranging) at the BCI 50-ha plot (Detto et al., 2015). We used oLAI 235 

rather than absolute light levels to characterize the light environment for the following reasons. 236 

First, there was no direct measurement of the light environment at the BCI plot. Second, oLAI 237 

characterizes neighborhood shading, which is a major source of within-canopy light 238 

environment variation.  239 

We assumed that plasticity-induced trait changes only occur with leaf turnover, i.e., the 240 

trait value of a new leaf is calculated based on the current oLAI (equation 2) and will then 241 

remain constant at the leaf level.  The cohort-level trait value is an average across new and old 242 

leaves (equation 3), and there is no within-crown trait variation. As described previously, oLAI is 243 

calculated from DBH, which is updated monthly, thus cohort-level oLAI and trait values are both 244 

updated monthly.    245 
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The cohort-level trait value is calculated based on the following equations:  246 

𝑿𝒊,𝒋,𝒏𝒆𝒘 = 𝑿𝒊,𝟎 ∗ 𝒆𝒌𝒊∗𝒐𝑳𝑨𝑰𝒊,𝒋,                                                                                           (2) 247 

𝑿𝒊,𝒋,𝒕+𝟏 = (𝟏 −   𝒕𝒖𝒓𝒏𝒐𝒗𝒆𝒓𝒊,𝒋,𝒕) ∗ 𝑿𝒊,𝒋,𝒕 +  𝒕𝒖𝒓𝒏𝒐𝒗𝒆𝒓𝒊,𝒋,𝒕 ∗  𝑿𝒊,𝒋,𝒏𝒆𝒘                    (3)  248 

The equation 2 is based on Lloyd et al. (2010). 𝑿𝒊,𝒋,𝒏𝒆𝒘 is the trait value of a new leaf in 249 

cohort j within PFT i. 𝑿𝒊,𝟎 is the trait value for a top-of-canopy cohort (oLAI=0) of PFT i. 𝒌𝒊 is the 250 

light plasticity coefficient for PFT i. 𝑿𝒊,𝟎 and 𝒌𝒊 are prescribed parameters for each trait and 251 

each PFT. 𝒐𝑳𝑨𝑰𝒊,𝒋 is the light environment of cohort j within PFT i. The parameterization of 𝒌𝒊 is 252 

described in section 2.4, and the parameterization of 𝑿𝒊,𝟎 is described in section 2.5. 253 

In equation 3, 𝑿𝒊,𝒋,𝒕+𝟏 is the cohort-level trait value at month t+1. 𝑿𝒊,𝒋,𝒕 is the value at 254 

month t. 𝒕𝒖𝒓𝒏𝒐𝒗𝒆𝒓𝒊,𝒋,𝒕 is the leaf turnover rate of cohort j within PFT i at month t, and it is the 255 

inverse of leaf lifespan (measured in the unit of month). Larger values of 𝒕𝒖𝒓𝒏𝒐𝒗𝒆𝒓𝒊,𝒋,𝒕 suggest 256 

that leaf turnover occurs at a faster rate and that traits more closely track changes in the light 257 

environment.  258 

2.4 Parameterization of PFT-level light plasticity  259 

To parameterize the PFT-level light plasticity coefficient 𝒌𝒊, we first calculated the 260 

observed species-level light plasticity based on a trait dataset collected during 1999-2002 at the 261 

San Lorenzo site and the Parque Natural Metropolitano site in Panama (hereafter W03 dataset; 262 

more detail is available in Xu et al., 2017). These sites are equipped with cranes that are 42 m 263 

and 52 m, respectively. For 64 measured species, leaf samples were collected from both their 264 

understory saplings and sun-exposed branches of top-of-canopy trees, and we assumed that 265 

the measured vertical trait variation is completely explained by light plasticity. Neither height 266 

nor light level was measured at the site of the sampling, so samples were labeled categorically 267 

as “understory” (oLAI > 0) or “top-of-canopy” (oLAI = 0). Measured traits include SLA, leaf 268 

lifespan, light-saturated leaf photosynthesis rate at ambient temperature, and leaf dark 269 

respiration rate at ambient temperature. We calculated Vcmax at 25°C from the photosynthesis 270 

rate using the FvCB photosynthesis model (Xu et al., 2017).  271 
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Based on equation 2, we generated the following equation to estimate species-level 272 

light plasticity: 273 

𝒌𝒑 =
𝟏

𝒐𝑳𝑨𝑰𝒖𝒏𝒅
𝒍𝒐𝒈𝒆 (

𝑿𝒑,𝒖𝒏𝒅

𝑿𝒑,𝒕𝒐𝒄
),                                                                                          (4)                                                                      274 

where 𝒌𝒑 is the light plasticity coefficient of species p, 𝑿𝒑,𝒖𝒏𝒅 is the average understory 275 

leaf trait value of species p, 𝑿𝒑,𝒕𝒐𝒄 is the average top-of-canopy leaf trait value of species p. We 276 

estimated oLAIund as 5 m2 m-2 based on the measured leaf area profile at BCI (Detto et al., 277 

2015). The across-species medians of 𝒌𝒑 were -0.233, -0.227, 0.184, and 0.139 for leaf dark 278 

respiration rate, Vcmax, SLA, and leaf lifespan, respectively (Fig. 2A).  279 

To parameterize PFT-level 𝒌𝒊 from species-level 𝒌𝒑, we analyzed the relationship 280 

between species-average, top-of-canopy traits and their 𝒌𝒑 values (Fig. 2B-2E). We found that 281 

Vcmax plasticity was positively and linearly related to top-of-canopy Vcmax across species, so kvcmax 282 

was parameterized as a linear function of top-of-canopy Vcmax (equation 5). Similarly, leaf dark 283 

respiration plasticity was parameterized as a linear function of top-of-canopy leaf dark 284 

respiration rate (equation 6).  285 

𝒌𝒗𝒄𝒎𝒂𝒙,𝒊 =  −(𝟎. 𝟎𝟎𝟐𝟒𝟐 ∗ 𝑽𝒄𝒎𝒂𝒙 𝒊,𝟎 + 𝟎. 𝟎𝟔𝟐𝟏𝟐)                                                 (5) 286 

𝒌𝒓𝒆𝒔𝒑,𝒊 =  −(𝟎. 𝟏𝟖𝟗𝟕𝟒 ∗ 𝑹𝒆𝒔𝒑𝒊𝒓𝒂𝒕𝒊𝒐𝒏𝒊,𝟎 + 𝟎. 𝟏𝟏𝟕𝟒𝟒)                                      (6) 287 

Where 𝒌𝒗𝒄𝒎𝒂𝒙,𝒊 is the Vcmax plasticity of PFT i, 𝑽𝒄𝒎𝒂𝒙 𝒊,𝟎 is the Vcmax at 25°C for a top-of-288 

canopy cohort within PFT i.  𝒌𝒓𝒆𝒔𝒑,𝒊 is leaf dark respiration plasticity of PFT i, 𝑹𝒆𝒔𝒑𝒊𝒓𝒂𝒕𝒊𝒐𝒏𝒊,𝟎 is 289 

the leaf dark respiration at 25°C for a top-of-canopy cohort within PFT i. SLA plasticity and leaf 290 

lifespan plasticity were not significantly related to their top-of-canopy trait values, so we 291 

calculated the average kSLA (0.199) and kLL (0.240) across all species and assigned them to all 292 

PFTs. Jmax in ED2 is modeled as proportional to Vcmax by a constant factor, therefore, we 293 

assumed that kJmax equals kvcmax for all PFTs (Table S1).  294 

 295 
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 312 

Figure 2. Species-level light plasticity of leaf dark respiration rate, Vcmax, specific leaf area, and 313 

leaf lifespan observed in the W03 dataset. (A) shows the distribution of species-level light 314 

plasticity coefficient (kp in equation 4). Dashed horizontal lines indicate kp values at which traits 315 

increase or decrease by fivefold across an oLAI gradient of 0-5 m2 m-2. (B)-(E) show the 316 

relationship between observed top-of-canopy leaf traits and their light plasticity coefficients. A 317 

solid line indicates a significant linear relationship (p < 0.05), whereas a dashed line indicates an 318 

insignificant relationship. Green lines and numbers indicate the regression results fitted without 319 

outlier (leaf dark respiration > 2 μmol m-2 s-1 or specific leaf area > 20 m2 kg-1). 320 

 321 

2.5 PFT definition and parameterization 322 
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Tropical tree species are commonly classified into PFTs based on plant physiological 323 

traits, particularly wood density, because these traits are associated with a species’ position on 324 

a growth-mortality tradeoff axis (Wright et al., 2010). However, 35% of all inventoried species 325 

at the BCI plot do not have wood density information, and only 8% of all species have local 326 

measurements for all leaf traits of interest (leaf dark respiration rate, Vcmax, SLA, and leaf 327 

lifespan), thus a trait-based PFT definition is limited by data availability. To overcome this data 328 

limitation, we developed a metric named demographic niche score to define PFTs based on 329 

demography rather than physiological traits, following previous practices to classify tropical 330 

species using demographic rates (Condit & Rüger, 2022; Rüger et al., 2020). 331 

First, we grouped all inventoried individuals into 20-meter patches based on their spatial 332 

locations and calculated oLAI for each individual within each patch. oLAI values were calculated 333 

from a DBH-based leaf area allometric function as described in section 2.3. Second, for each 334 

species, we calculated the relative DBH growth rate of individuals under high light (the smallest 335 

25% oLAI) and the mortality rate of individuals under low light (the largest 25% oLAI). Third, we 336 

performed principal component analysis (PCA) for the species-level high light growth rates and 337 

low light mortality rates (both were log transformed before the PCA analysis). We used the first 338 

principal component as the demographic niche score, which explained 71% of the total 339 

variation in demographic rates (Fig. S1).  340 

Standard major axis regression revealed a strong positive relationship between species-341 

level demographic niche score and wood density (Fig. S2A), implying that our demographic 342 

niche score can reasonably represent species’ position on the growth-mortality tradeoff axis.  343 

In ED2-baseline and ED2-plastic, there are three PFTs: early-successional (species with 344 

lowest 33% demographic niche score), late-successional (species with top 33% demographic 345 

niche score), and mid-successional (intermediate score). From 1990-2010, the BCI plot on 346 

average has 6.65, 9.40, and 15.1 cm2 m-2 (measured by basal area) of early-, mid- and late-347 

successional PFT. To parameterize top-of-canopy leaf trait values (𝑿𝒊,𝟎 in equation 2) for these 348 

three PFTs, we performed standardized major axis regression between species-level 349 

demographic niche score and top-of-canopy Vcmax at 25°C, SLA, and leaf lifespan in W03 dataset 350 
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(Fig. S2), then we parameterized 𝑿𝒊,𝟎 based on the median demographic niche score of each 351 

PFT. Based on the regression models, early-successional PFT has the highest top-of-canopy 352 

Vcmax, largest SLA, and shortest leaf lifespan. For 𝑹𝒆𝒔𝒑𝒊𝒓𝒂𝒕𝒊𝒐𝒏𝒊,𝟎, we parameterized it to be 353 

proportional to 𝑽𝒄𝒎𝒂𝒙 𝒊,𝟎 by a factor of 0.015. When oLAI > 0, the simulated respiration to Vcmax 354 

ratio will deviate from 0.015 because leaf dark respiration is more plastic than Vcmax (Table S1), 355 

resulting in a lower ratio with increasing oLAI (Fig. S3E). 356 

The three PFTs described above are parameterized by top-of-canopy leaf trait values. 357 

For ED2-static, we defined an additional 15 PFTs which are parameterized by understory leaf 358 

trait values. Specifically, for each of the three original PFTs, we calculated leaf dark respiration 359 

at 25°C, Vcmax at 25°C, SLA, and leaf lifespan values at oLAI of 1, 2, 3, 4, 5 m2 m-2 based on 360 

equation 2, then we generated five new PFTs by assigning these leaf trait values as new 𝑿𝒊,𝟎  361 

and keeping all other traits (e.g., wood density, mortality parameters) the same as the original 362 

PFT. In total, ED2-static includes six early-successional PFTs, six mid-successional PFTs, and six 363 

late-successional PFTs. The variation in 𝑿𝒊,𝟎  across these 18 PFTs is identical to the plasticity-364 

driven variation in 𝑿𝒊,𝒋,𝒏𝒆𝒘 across an oLAI gradient of 0-5 m2 m-2. 365 

2.6 Simulation protocol 366 

To test our first two hypotheses, we initialized the model with the BCI forest census in 367 

1990, ran the model from 1989 to 2010 (hereafter short-term simulation), and compared 368 

demographic rates and forest structure simulated by ED2-baseline, ED2-plastic, and ED2-static. 369 

Since we were interested in the dynamics of tree species, we excluded herbaceous species and 370 

only used the census information of woody species in the initialization. To test the third and 371 

fourth hypotheses, we simulated 300-year forest secondary succession from a near bare-372 

ground condition (hereafter long-term simulation), and compared the forest composition and 373 

functioning simulated by the three models. A near bare-ground condition means that there are 374 

only a few tree seedlings of each PFT at the start of the simulation. The forest was simulated for 375 

300 years because total basal area and aboveground biomass reached steady state during this 376 

time frame. We used an in situ climate dataset collected at BCI from 1985-2012 as 377 

meteorological forcing (available through the Smithsonian Tropical Research Institutes’ Physical 378 
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Monitoring Program), and all simulations used repeated cycles of this multi-year climate 379 

dataset. The long-term simulations used a disturbance rate of 0.014 year-1, which is the default 380 

value in ED2 (Moorcroft et al., 2001).  381 

2.7 Model benchmarking and analysis 382 

To evaluate the prediction of demographic rates and forest structure, we calculated the 383 

simulated growth rate, mortality rate, plant density, and leaf area averaged during 1990-2010 384 

in short-term simulations, then compared it to observations. Specifically, we calculated 385 

observed annual DBH growth rates and mortality rates for every two BCI censuses and then 386 

calculated average demographic rates during 1990-2010. We didn’t use census data earlier than 387 

1990, since DBH values smaller than 5.5 cm were rounded down to the nearest 5 mm in earlier 388 

censuses. In terms of forest structure, we calculated the size distribution of plant density 389 

averaged during 1990-2010. We also used a leaf area vertical profile estimated by airborne 390 

LiDAR (Detto et al., 2015) as a model benchmark.  391 

To measure the simulated tree shade tolerance, we calculated the PFT-level growth 392 

compensation point (GCP), defined as the oLAI at which DBH growth rate declines to 0.01 cm 393 

year -1 (Fig. 3A). A higher GCP value suggests a higher shade tolerance. The community-level 394 

GCP is calculated using all cohorts across all PFTs with DBH ≥ 1 cm. 395 

To evaluate the prediction of long-term forest functioning, we calculated the plant 396 

density, basal area, LAI, and gross primary productivity (GPP) averaged across the last 20 years 397 

of long-term simulations. We also compared the simulated aboveground biomass (AGB) 398 

trajectories with two sets of field-based AGB estimates: one is AGB estimates across a 300-year 399 

chronosequence in Panama (Batterman et al., 2013), and the other is a BCI plot-level estimate 400 

calculated based on the 2010 census and a local height allometry (Cano et al., 2019). Besides, 401 

we compared simulated GPP to flux tower-based GPP measurements at BCI (Detto & Pacala, 402 

2022). 403 

To evaluate the prediction of trait diversity, we calculated a metric named community-404 

level vertical trait gradient for both observations and simulations. Using ten vertical leaf trait 405 
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profiles measured in Panama, Lamour et al. (2023) fitted power law equations between 406 

observed trait values (pooled across multiple species) and oLAI. The fitted scaling exponent 407 

(reported in Table S3 and S4 of Lamour et al. 2023) represents the observed community-level 408 

vertical trait gradient, which is the result of both intra-specific light plasticity and vertical 409 

stratification of species composition. We similarly calculated the modeled community-level 410 

vertical trait gradient by fitting a power law equation between cohort-level trait values and 411 

modeled oLAI.  412 

Figure 3. The definition of growth compensation point and the simulated relationship between 413 

DBH growth rate and overtopping LAI. (A) shows a conceptual diagram of how growth 414 

compensation point (GCP) is defined. GCP is a measure of simulated shade tolerance, and it is 415 

calculated as the overtopping LAI at which modeled DBH growth rate declines to 0.01 cm year-1 416 

(represented by the dotted line), and a larger GCP indicates a higher shade tolerance. (B) 417 

Simulated relationships between DBH growth rate and overtopping LAI for all DBH ≥ 1 cm 418 

cohorts during short-term simulations. ED2-baseline, ED2-plastic, and ED2-static are 419 

represented by purple, orange, and green lines, respectively. Inserted texts report simulated 420 

GCP for each model.  421 

 422 

3 Results 423 

3.1 Tree demographic rates in short-term simulations 424 

We compared 20-year-average growth rates predicted by ED2-baseline and ED2-plastic 425 

in short-term simulations with the census data. In ED2-baseline, the DBH growth rate of 426 
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understory cohorts (DBH: 1-10cm) was 0.0429 cm year-1, and incorporating observation-427 

constrained light plasticity in ED2-plastic increased simulated understory growth rate to 0.0865 428 

cm year-1, closer to the observed 0.0723 cm year-1 (Fig. 4A). At the PFT level, ED2-baseline 429 

predicted understory growth to be 0.0107, 0.00447, and 0.0456 cm year-1 for early-, mid-, and 430 

late-successional PFTs, lower than the observed growth rates of 0.203, 0.0637, and 0.0679 cm 431 

year-1 (Fig. 4B). Light plasticity improved model-data agreement by increasing the PFT-level 432 

understory growth to 0.145, 0.0878, and 0.0847 cm year-1. This increase was substantially larger 433 

in early- and mid-successional PFT than in late-successional PFT (1255% and 1864% compared 434 

to 85.7%). 435 

We also tested the growth effect of increasing inter-specific diversity. The average 436 

understory growth rate simulated by ED2-static was 0.0949 cm year-1, which more than 437 

doubled the estimate of ED2-baseline and better aligned with the observation (Fig. 4A). At the 438 

PFT level, simulated growth rates were 0.104, 0.0415, and 0.111 cm year-1 for early-, mid-, and 439 

late-successional PFT, and these PFT-level estimates were higher than ED2-baseline and 440 

comparable to ED2-plastic (Fig. 4B). 441 

Although both light plasticity and inter-specific diversity improved model-data 442 

agreement of understory growth rates, only ED2-plastic correctly predicted that the understory 443 

growth rate of early-successional PFT was highest among all PFTs (Fig. 4B), whereas ED2-444 

baseline and ED2-static wrongly predicted late-successional PFT to have the fastest growth. 445 

The understory mortality rate simulated by ED2-baseline was 126% higher than the 446 

census observation (0.0531 year-1 compared to 0.0235 year-1). ED2-plastic and ED2-static 447 

reduced the model overestimate to 0.0380 and 0.0388 year-1, respectively (Fig. 5).  448 

 449 

 450 

 451 

 452 
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 464 

 465 

 466 

Figure 4. Light plasticity effect on 20-year-average tree growth during short-term simulations. 467 

(A) shows modeled and observed DBH growth rates for different size classes. ED2-baseline, 468 

ED2-plastic, and ED2-static are represented by purple, orange, and green bars, respectively. (B) 469 

shows modeled and observed understory DBH growth rates for different PFTs. Understory is 470 

defined as trees or cohorts with DBH between 1-10 cm. Error bars indicate 95% confidence 471 

intervals calculated by bootstrapping. 472 

 473 

 474 

 475 

Figure 5. Light plasticity effect on 20-year-average mortality rate during short-term simulations. 476 

(A) shows modeled and observed mortality rates for different size classes. ED2-baseline, ED2-477 

plastic, and ED2-static are represented by purple, orange, and green bars, respectively. (B) 478 

shows modeled and observed understory mortality rates for different PFTs. Understory is 479 

defined as trees or cohorts with DBH between 1-10 cm.  480 

 481 
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3.2 Forest structure in short-term simulations 482 

We analyzed the 20-year-average size distribution of plant density and leaf area profile 483 

in the short-term simulations. Simulated understory plant density in ED2-baseline was 0.0931 484 

plant m-2, and light plasticity increased community-level understory plant density to 0.260 plant 485 

m-2, bringing it closer to the observed 0.391 plant m-2 (Fig. 6A). At the PFT level, the understory 486 

plant density of early-, mid-, and late-successional PFT were 0.00106, 0.0110, and 0.0847 plant 487 

m-2 in ED2-baseline, which were an order of magnitude lower than the observed 0.0272, 0.161, 488 

and 0.203 plant m-2. Light plasticity increased plant densities to 0.00301, 0.0972, and 0.159 489 

plant m-2, reducing the underestimates (Fig. 6B). The increase in mid-successional PFT 490 

abundance contributed the most to the improved model-data agreement of community-level 491 

understory plant density. 492 

ED2-static increased community-level understory plant density to a more realistic 0.217 493 

m-2, accompanied by 86.9-252% PFT-level increases relative to ED2-baseline. Community- and 494 

PFT-level understory plant density predictions were comparable between ED2-static and ED2-495 

plastic (Fig. 6). 496 

Underestimates of plant density in ED2-baseline further led to underestimated leaf area 497 

in the understory (Fig. 6C). Meanwhile, the leaf area vertical profile simulated by ED2-plastic 498 

and ED2-static aligned with an airborne LiDAR-based estimate (Detto et al., 2015). The total LAI 499 

predicted by ED2-plastic and ED2-static (5.86 and 5.24 m2 m-2) was higher than ED2-baseline 500 

prediction of 3.11 m2 m-2, and ED2-plastic estimate best aligned with a total LAI estimate of 5.9 501 

± 0.4 m2 m-2 based on hemispherical photos (Detto et al., 2018). 502 

 503 
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 504 

 505 

Figure 6. Light plasticity effect on 20-year-average forest structure during short-term 506 

simulations. (A) shows modeled and observed plant density for different size classes. ED2-507 

baseline, ED2-plastic, and ED2-static are represented by purple, orange, and green bars, 508 

respectively. The inset figure is an enlarged version of the modeled and observed plant density 509 

for cohorts with DBH ≥ 30 cm. Error bars indicate 95% confidence intervals calculated by 510 

bootstrapping. (B) shows modeled and observed understory plant density for different PFTs. 511 

The inset figure is an enlarged version of the modeled and observed plant density for early-512 

successional PFT. Error bars indicate 95% confidence intervals calculated by bootstrapping. (C) 513 



manuscript submitted to Journal of Geophysical Research-Biogeosciences 

 

shows the vertical profile of overtopping LAI. Inserted texts report the observed and modeled 514 

total LAI. Airborne-LiDAR based estimate is 5.4 m2 m-2 (Detto et al., 2015), and hemispherical 515 

photo-based estimate is 5.9 m2 m-2 (Detto et al., 2018). Gray shaded area indicates 95% 516 

confidence interval of the LiDAR-based estimate. 517 

 518 

3.3 Forest dynamics in long-term simulations 519 

We examined AGB, GPP, PFT composition, and trait composition during simulations of 520 

300-year forest secondary succession. At the 12th and 80th years of succession, the forest 521 

simulated by ED2-baseline stored 32.4 and 123 Mg ha-1 of AGB, lower than chronosequence-522 

based estimates of 88.0 and 160 Mg ha-1 (Batterman et al., 2013), and ED2-plastic generated 523 

higher and more realistic estimates of 50.7 and 175 Mg ha-1 (Fig. 7A; Table 2). At the 300th year, 524 

ED2-plastic predicted AGB to be 224 Mg ha-1 (Table 2), which was 50.3% higher than ED2-525 

baseline estimate, though still lower than the census-based estimate of 263-266 Mg ha-1 (Cano 526 

et al., 2019). ED2-static predicted total AGB to be 57.5, 154, and 233 Mg ha-1 after 12, 80, and 527 

300 years of succession, which were similar to or higher than the predictions with light 528 

plasticity.  529 

During the last 20 years of succession, ED2-plastic produced the highest GPP estimate of 530 

3.39 kg C m-2 year-1, whereas ED2-static predicted the lowest GPP of 2.23 kg C m-2 year-1. The 531 

prediction of ED2-baseline (2.83 kg C m-2 year-1) best aligned with the observed value of 2.8 kg 532 

C m-2 year-1 (Detto & Pacala, 2022). 533 

All models exhibited a similar temporal trend of community composition, where early-534 

successional PFT initially dominated the forest and was eventually outcompeted by late-535 

successional PFT (Fig. 8). During the last 20 years of succession, all models underestimated the 536 

basal area of early-successional PFT relative to the abundance observed in BCI forest censuses 537 

(Fig. 7B), but the ED2-plastic estimate of 3.07 cm2 m-2 best aligned with the observed 6.65 cm2 538 

m-2, whereas ED2-baseline and ED2-static underestimated the basal area by an order of 539 

magnitude (0.417 and 0.618 cm2 m-2). 540 

 541 
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 559 

Figure 7. Light plasticity effect on 300-year forest secondary succession in long-term 560 

simulations. (A) shows the trajectory of aboveground biomass (AGB) modeled by ED2-baseline 561 

(purple line), ED2-plastic (orange line), and ED2-static (green line). Gray points represent 562 

observations from a chronosequence in Panama (Batterman et al., 2013). The black point 563 

represents the plot-level AGB estimate based on censuses and local allometric equations (Cano 564 

et al., 2019). (B) shows the simulated and modeled PFT abundance averaged during the last 20 565 

years of succession. (C) shows modeled and observed community-level vertical trait gradients 566 

of leaf dark respiration rate at 25°C, Vcmax at 25°C, specific leaf area, and leaf lifespan. The 567 

definition and calculation of community-level vertical trait gradient are described in section 2.7. 568 

ED2-baseline, ED2-plastic, and ED2-static are represented by purple, orange, and green bars, 569 

respectively. Error bars for these simulated results are 95% confidence intervals calculated by 570 

bootstrapping. Gray bars and gray error bars represent the observed community-level vertical 571 

trait gradients and their confidence intervals reported in Table S3 and S4 in Lamour et al. 572 

(2023). The observed leaf lifespan gradient is marked as “NA” because Lamour et al. (2023) did 573 

not collect leaf lifespan data. 574 

 575 

 576 

The simulated community-level trait diversity also differed across models. In ED2-plastic, 577 

the community-level vertical trait gradient (defined in section 2.7) of leaf dark respiration, 578 

Vcmax, and SLA were -0.195, -0.141, and 0.149, which were comparable to the -0.14, -0.08, and 579 

0.12 reported in Lamour et al. (2023) based on in situ trait measurements (Fig. 7C). In contrast, 580 

both ED2-baseline and ED2-static showed vertical trait gradients that were close to zero, i.e., 581 
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leaf dark respiration, Vcmax, and SLA were largely constant within the canopy. Aside from trait 582 

profiles, community-average leaf traits (weighted by cohort-level leaf area) during the last 20 583 

years of succession were also different between models. Average leaf dark respiration and 584 

Vcmax were 104% and 64.1% higher in ED2-plastic than in ED2-static, while SLA, leaf lifespan, 585 

and wood density were 40.3%, 50.6%, 3.72% higher in ED2-static than in ED2-plastic (Table 2). 586 

 587 

 588 

 589 

 590 
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 616 

 617 

 618 

Figure 8. Light plasticity effect on community composition in long-term simulations. (A)-(C) 619 

show PFT composition in ED2-baseline, ED2-plastic, and ED2-static. Early-, mid, and late-620 

successional PFTs are shown in yellow, gray, and blue areas, respectively. 621 

 622 
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Table 2. Modeled forest structure, composition, trait diversity, and functioning in long-term 623 

simulations. Trait values are calculated as community-level averages weighted by cohort-level 624 

leaf area during the last 20 years of simulation. All other variables are calculated as ecosystem-625 

level averages during the last 20 years of simulation, except for AGB. AGB is an annual average. 626 

For example, AGB at the 12th year is calculated as the ecosystem-level, annual average during 627 

the 12th year of the simulation.  628 

 ED2-baseline ED2-plastic ED2-static Observation 

Forest structure and composition 

Total plant density 
(individuals m-2) 

0.206 0.424 0.367 0.433 (forest census) 

Understory plant 
density (individuals 

m-2) 
0.181 0.378 0.325 0.391 (forest census) 

Total basal area 
(cm2 m-2) 

16.9 28.7 28.7 30.7 (forest census) 

Total LAI 
(m2 m-2) 

3.16 6.25 5.81 

5.42  
(Detto et al., 2018); 

5.9  
(Detto et al., 2015) 

Basal area of early-
successional PFT 

(cm2 m-2) 
0.417 3.07 0.618 6.65 (forest census) 

Community-level 
trait diversity 

    

Leaf dark respiration 
rate at 25°C 

(μmol m-2 s-1) 
0.760 0.417 0.204 NA 

Vcmax at 25°C 
(μmol m-2 s-1) 

50.7 32.5 19.8 NA 

Specific leaf area 
(m2 kg-1) 

11.2 21.6 30.3 NA 

Leaf lifespan 
(month) 

12.0 26.9 40.5 NA 

Wood density 
(g cm-3) 

0.622 0.619 0.642 NA 
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Forest functioning 

AGB at 12th year 
(Mg ha-1) 

32.4 50.7 57.5 
88.0  

(Batterman et al., 
2013) 

AGB at 80th year 
(Mg ha-1) 

123 175 154 
160  

(Batterman et al., 
2013) 

AGB at 300th year 
(Mg ha-1) 

149 224 233 
263-266  

(Cano et al., 2019) 

Gross primary 
productivity  

(kg C m-2 year-1) 
2.85 3.39 2.23 

2.8  
(Detto & Pacala, 2022) 

 629 

4 Discussion 630 

4.1 Light plasticity and inter-specific diversity similarly correct for model biases in understory 631 

growth and forest structure 632 

Consistent with our first hypothesis, growth rates of understory trees were 633 

underestimated by 40.7% when they were not plastic and were parameterized by top-of-634 

canopy leaf traits (Fig. 4A). Incorporating observation-based light plasticity corrected for this 635 

growth underestimate and further enabled accurate prediction of tree size distribution and leaf 636 

area profile (Fig. 4 and 6), which supports our second hypothesis. These findings provide the 637 

first quantitative evidence that light plasticity is critical for explaining demographic processes 638 

and forest structure, and that observation-constrained light plasticity largely corrects for the 639 

model underestimate of understory growth and abundance in tropical forests. 640 

The modeled effects of light plasticity arise from increased plant shade tolerance. The 641 

simulated community-level GCP doubled with light plasticity (Fig. 3B), with the largest increase 642 

in early-successional PFT (Fig. S4). Field experiments have similarly shown that plants in low 643 

light treatment substantially reduce their light compensation point (LCP; a lower LCP suggests a 644 

higher shade tolerance) compared to conspecifics in high light treatment. For example, Kitajima 645 
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(1994) showed that tropical tree seedlings grown in the shaded treatment can reduce their leaf-646 

level LCP by more than 50% compared to conspecifics grown in the full sun. Sterck et al. (2013) 647 

showed that the plant-level LCP of tropical tree seedlings grown at the low light level decreased 648 

to one-third of conspecifics grown at the high light level. The magnitude of increase in shade 649 

tolerance is comparable between field observations and our modeling results, suggesting that 650 

the simulated physiological consequences of light plasticity are realistic. 651 

Meanwhile, ED2-static with higher inter-specific diversity predicted similar understory 652 

growth and forest structure as ED2-plastic during short-term simulations (Fig. 4 and 6). 653 

Although ED2-static did not incorporate light plasticity, it generated within-canopy trait profiles 654 

and GCPs that were similar to ED2-plastic (Fig. S3 and S4) by including additional PFTs. 655 

Therefore, incorporating within-canopy variation in leaf traits, either by including intra-specific 656 

light plasticity or expanding inter-specific diversity, is necessary to predict realistic understory 657 

growth and tropical forest structure.  658 

This finding is relevant to recent efforts to improve the representation of fine-scale 659 

functional diversity in TBMs. For example, hyperspectral imaging has been used to initialize PFT 660 

composition at a high spatial resolution (Bogan et al., 2019). Although this approach captures 661 

spatial heterogeneity in plant functional traits, it does not explicitly account for the within-662 

canopy trait variation. Our results emphasize that a TBM only including the trait variation 663 

observed at the top canopy (such as ED2-baseline) is insufficient for predicting tropical forest 664 

structure, instead, such prediction requires incorporating the within-canopy trait diversity. 665 

Future research should extend beyond our plot-level findings to quantify the ecological 666 

consequences of within-canopy trait diversity at a larger spatial scale and across different 667 

tropical regions. 668 

4.2 Light plasticity effect on long-term functional composition and within-canopy trait profiles 669 

cannot be compensated by inter-specific diversity 670 

The demographic effects of light plasticity and inter-specific diversity further modulate 671 

long-term forest succession and regrowth. We found that ED2-plastic and ED2-static similarly 672 
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enhanced modeled biomass accumulation relative to ED2-baseline during 300 years of 673 

succession (Table 2; Fig. 7A), supporting our third hypothesis but not the fourth hypothesis.  674 

Despite the positive effects of light plasticity and inter-specific diversity, AGB predictions 675 

at the 300th year across all models were still lower than the plot-level estimate based on local 676 

allometry (Cano et al., 2019). This is attributed to an underestimate of large tree growth and an 677 

overestimate in their mortality rates (Fig. 4A and 5A), which may be related to the inaccurate 678 

representation of size dependence in reproductive allocation and aboveground versus 679 

belowground allocation (Xu et al., 2024). 680 

Although ED2-plastic and ED2-static generated similar predictions of AGB, the effect of 681 

light plasticity on improving the prediction of functional composition cannot be compensated 682 

by inter-specific diversity. Early-successional PFT was largely outcompeted by mid- and late-683 

successional PFTs in ED2-static, whereas it coexisted with other PFTs at a substantially higher 684 

abundance in ED2-plastic (Table 2). This difference arises because inter-specific diversity and 685 

light plasticity shape community assembly differently. In ED2-static, light limitation imposes a 686 

strong selection pressure on understory trees, particularly for early-successional PFTs. In 687 

contrast, intra-PFT plasticity enhances individual fitness, especially the fitness of early-688 

successional PFT which is the most plastic (Table S1), eventually promoting coexistence. 689 

The unique effect of light plasticity on composition is also evident at the trait level. 690 

During long-term simulations, ED2-plastic generated a realistic community-level vertical trait 691 

gradient (defined in section 2.7), whereas leaf traits simulated by ED2-static did not vary 692 

significantly across the vertical gradient (Fig. 7C). This is because in ED2-static, only trees with 693 

shade-tolerant traits can survive the understory stage and then reach the top canopy, thus ED2-694 

static simulated values of leaf dark respiration rate and Vcmax were always low, and values of 695 

SLA and leaf lifespan were always high, regardless of the canopy position (Fig. S5). In contrast, 696 

trees in ED2-plastic dynamically adjust their traits based on light levels throughout their 697 

lifetime. As a result, ED2-static had 51.1% and 39.1% lower community-level leaf dark 698 

respiration and Vcmax than ED2-plastic, further leading to a 34.2% lower GPP (Table 2). The 699 
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community-average leaf dark respiration and Vcmax were the highest in ED2-baseline because all 700 

cohorts in this model had top-of-canopy trait values.  701 

Interestingly, GPP simulated by ED2-baseline best aligned with the flux tower-based 702 

estimate during 2012-2017 (Detto & Pacala, 2022). This model-data agreement in GPP does not 703 

arise from an accurate representation of ecophysiological processes, rather, it arises from the 704 

compensatory effect of an underestimated LAI and a high Vcmax. Meanwhile, ED2-plastic 705 

predicted realistic trait profiles and LAI, but overestimated GPP by 21.1%. This may be 706 

explained by a lack of hydraulic limitation (Xu et al., 2016) in the version of ED2 used for our 707 

study and possible biases in stomatal parameters and photosynthetic temperature 708 

dependence.  709 

Results of PFT composition and community-level trait diversity suggest that light 710 

plasticity regulates tropical forest functional composition differently from inter-specific trait 711 

variation, and this finding sheds new light on how we should represent functional diversity in 712 

trait-based modeling. Higher simulated functional diversity have been shown to improve the 713 

prediction of ecosystem carbon fluxes and biomass resilience, and this higher diversity is often 714 

achieved by increasing the number of PFTs (Butler et al., 2022; Pappas et al., 2016; Pavlick et 715 

al., 2013; Rius et al., 2023; Sakschewski et al., 2016). Extending beyond these findings, we show 716 

that increasing the inter-PFT diversity is not sufficient for predicting long-term forest dynamics, 717 

and the intra-PFT trait variation across microenvironmental gradients is required for realistic 718 

prediction of forest functional composition. 719 

Based on the demonstrated role of light plasticity in demography, forest structure, and 720 

composition, we further hypothesize that light plasticity will regulate ecosystem responses to 721 

light environment variability, particularly gap formations and post-disturbance forest 722 

regeneration. First, light plasticity maintains the abundance of light-demanding species prior to 723 

gap formation and thus facilitates future gap colonization and regrowth of these species. 724 

Second, light plasticity will increase the photosynthesis and growth of previously suppressed 725 

understory trees after gap formation by trait adjustment to elevated light levels. These 726 

hypotheses, although yet to be tested, are particularly relevant for mechanistic understanding 727 
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of tropical secondary forests, which now occupy more than half of all tropical forests (Food and 728 

Agriculture Organization of the United Nations, 2010) and are predicted to have large regrowth 729 

potential (Anderson-Teixeira et al., 2016; Pan et al., 2011; Pugh et al., 2019; Shevliakova et al., 730 

2009). Future research should investigate the role of light plasticity in predicting the multi-731 

dimensional recovery of tropical secondary forests (Poorter et al., 2021). 732 

4.3 Toward mechanistic modeling of trait plasticity 733 

By incorporating the variation in light plasticity across different species and traits, our 734 

study provides a more realistic representation of light plasticity than previous TBMs (Table 1). 735 

However, our representation of light plasticity has several assumptions about the degree, 736 

timescale, and ecological consequences of trait plasticity. These assumptions, which have not 737 

been thoroughly evaluated, highlight the key challenges and opportunities for further 738 

developing a more mechanistic characteriziation of trait plasticity in TBMs. 739 

We assumed that intra-specific light plasticity is the only driver of observed within-740 

canopy trait gradient, which may lead to an overestimate of the degree of light plasticity. While 741 

light is a primary cue of the vertical variation, ontogeny can also contribute significantly to leaf 742 

trait plasticity, particularly for non-pioneer species (Wen et al., 2008). In addition, thermal 743 

stress, water stress, and herbivory can all contribute to the vertical trait profile (Cavaleri et al., 744 

2010; Coste et al., 2009; Dang-Le et al., 2013). Field-based trait measurements across a wider 745 

range of ontogenetic stages and microenvironmental gradients will be instrumental in 746 

disentangling the contribution of trait plasticity from these other sources of variation.  747 

Another key assumption is that light plasticity only occurs at the time of leaf turnover 748 

and that traits remain constant within a leaf’s lifetime, and such assumption may have 749 

underestimated the rate of plasticity adjustment. Results from warming experiments have 750 

shown that the timescale of temperature acclimation in leaf dark respiration varies from two 751 

weeks to two months (Reich et al., 2021; Ren et al., 2024), and a similar analysis is yet to be 752 

conducted to determine the timescale of plasticity-induced trait adjustments driven by other 753 

environmental factors. 754 
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Our results emphasized the benefits of light plasticity, but phenotypic plasticity is not 755 

necessarily adaptive. For example, the expression of plasticity can be energetically costly, and 756 

plasticity may lower fitness under certain scenarios (DeWitt et al., 1998). We did not model 757 

these processes because field-based quantitative assessments are rare, and the few studies did 758 

not find consistent evidence for the costs and tradeoffs associated with plasticity (Avramov et 759 

al., 2007; McIntyre & Strauss, 2014; Liu et al., 2016). On the other hand, TBM can serve as a 760 

useful tool to quantify the cost of plasticity. For example, the metabolic cost of trait plasticity 761 

can be incorporated as a model parameter, and optimizing the parameter against observed 762 

forest demography and carbon fluxes may serve as a first-order estimate of the cost.  763 

While we focused on the light-driven plasticity of leaf physiological traits in this study, 764 

trait plasticity is a widespread phenomenon observed in other traits and across other 765 

environmental gradients (Poorter et al., 2019; Siefert et al., 2015). For example, plant structural 766 

traits such as leaf angle vary substantially within the canopy, which can influence carbon and 767 

energy fluxes (Yang et al., 2023). In addition to leaf traits, plant allometry and root traits are 768 

also known to be plastic (Poorter et al., 2019; Yaffar et al., 2024). A mechanistic understanding 769 

and representation of trait plasticity is thus a research frontier in vegetation modeling, and it 770 

will ultimately benefit from field-based trait sampling accompanied by comprehensive 771 

measurements of the microenvironment. Recent years have already seen increasing field 772 

campaigns that measure plant morphological and physiological traits across different 773 

microenvironments (Lamour et al., 2023; Poorter et al., 2018). These datasets attempt to 774 

characterize the variation of both functional traits and environmental factors at a scale that is 775 

ecologically relevant to individual plant performance, and they will provide useful information 776 

for both quantitative characterization of trait plasticity and its incorporation in trait-based 777 

models. 778 

 779 

5 Conclusions 780 
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Plant functional diversity in traits associated with light use, including both inter-specific 781 

and intra-specific variation, critically shapes tropical forest dynamics by modulating tree 782 

demography. By combining trait measurements, long-term census data, and trait-based 783 

ecosystem modeling, we showed that observation-constrained light plasticity enhances 784 

understory growth and abundance. This demographic effect further increases long-term 785 

tropical forest biomass accumulation and strongly modulates forest structure and composition. 786 

Importantly, the community and ecosystem effects of light plasticity cannot be fully 787 

compensated by increasing inter-specific functional diversity, particularly in terms of 788 

community composition and within-canopy trait gradients. These findings suggest that light 789 

plasticity is crucial for trait-based prediction of tropical forest regrowth and resilience, 790 

especially in secondary forests which experience high variability and heterogeneity in the light 791 

environment. Future research should quantify phenotypic plasticity across a broader range of 792 

traits and environmental gradients and evaluate their community and ecosystem-level impact. 793 
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