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Abstract— In the last two decades, several highly sophisti-
cated cyberattacks have targeted process control systems (PCSs)
that operate chemical processes. To enhance PCS cybersecurity,
cyberattack detection schemes utilizing operational data to
reveal the presence of attacks on PCSs have received extensive
attention. Stealthy attacks are designed to evade detection by
an operational technology-based detection scheme. Their detec-
tion may require an active detection method, which perturbs
the process by utilizing an external intervention for attack
detection. In this work, two control modes that may be used
to induce perturbations for active attack detection of steathly
false-data injection cyberattacks are presented. A reachability
analysis is used to develop a set-based condition indicating that
if met by a specific stealthy attack, the attack will be detected
and therefore, the control mode is considered to be “attack-
revealing”. Leveraging the condition, a screening algorithm
that may be used to select an attack-revealing control mode
is presented. Using an illustrative process, the application of
the screening algorithm is demonstrated.

I. INTRODUCTION

In the United States, the chemical manufacturing sector is

one of 16 critical infrastructure sectors because of the sector’s

impact on security, national economics, and national public

health and safety [1]. Process control systems (PCSs) are

industrial control systems operating chemical manufacturing

processes and, over the past two decades, have been subject

to highly sophisticated false data injection (FDI) cyberattacks

that aim to compromise the integrity of the data over the

PCS communication channels [1]. To manage the risk of

a cyberattack on a PCS, operational technology (OT)-based

approaches for the detection, identification, and mitigation

of the impact of a cyberattack are being developed [2], [3].

Many OT-based approaches for cyberattack detection are

designed to detect an attack if the data over the PCS network

deviate from their baseline values [4], [5]. OT-based attack

detection approaches may be broadly classified as passive

detection schemes and active detection methods. Passive at-

tack detection schemes monitor a process for attacks without

utilizing an external intervention. Approaches for passive

attack detection in the literature include those using standard

anomaly detection approaches such as the χ2 detection

scheme and the cumulative sum detection scheme [6]–[8].

Approaches utilizing machine learning and pattern mining

to detect attacks have also been proposed [9]–[11].
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Stealthy FDI attacks are an important type of attacks,

as they evade detection. Active detection methods using an

external intervention to perturb the process may be used to

detect stealthy attacks that cannot be detected by passive

detection schemes. Active detection of stealthy attacks has

received some attention [12]–[19]. For a process monitored

by a residual-based detection scheme, an active detection

method using injection of external signals has been explored

in [12]. Some active detection methods have considered

injection of randomized inputs [13] or injecting random

inputs and designing a secure control architecture [14] to

prevent an attack from being stealthy (indirectly enabling

attack detection). Moving target defense is another active

detection method, under which, an external auxiliary system

with additional actuators and sensors and with time-varying

dynamics is added [15]–[17]. In our prior work [18], [19],

control parameter switching to operate the process under

an “attack-sensitive” mode was proposed where the attack-

sensitive mode is one where some attacks destabilize the

process, thereby leading to attack detection. However, attack

detection by destabilization may be undesirable.

In this work, alternative (non-destabilizing) active de-

tection methods for detecting stealthy false-data injection

cyberattacks that alter the data communicated over the PCS

communication channels are considered. In particular, an

active detection method employing one or both of two

possible control modes, one involving changing set points

and the other involving switching control parameters, is

considered for the active detection of a class of stealthy false

data injection attacks. Implementing either control mode in-

duces perturbations in the closed-loop process. A reachability

analysis is used to develop a set-based condition. If the

condition is satisifed for a specific stealthy attack, the attack

is guarantted to be detected under the control mode, forming

the basis for “attack-revealing” control modes. Using the

condition, a screening algorithm that may be used to choose

a control mode to guarantee attack detection is presented.

The application of the screening algorithm is demonstrated

using an illustrative process example.

II. PRELIMINARIES

A. Class of Processes

Processes modeled by discrete-time linear time-invariant

dynamics are considered:

xt+1 = Axxt +Buut +Bwwt (1a)

yt = Cxxt + vt (1b)
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where xt ∈ R
n is the state vector, ut ∈ R

l is the manipulated

input vector, wt ∈ W ⊂ R
p is the process disturbance vector,

yt ∈ R
m is the measured output vector, and vt ∈ V ⊂ R

m is

the measurement noise vector. Without loss of generality,

t = 0 is taken to be the initial time. The sets W and

V are convex polytopes. Ax, Bu, and Cx are matrices of

appropriate dimensions, and Bu has full column rank.

A Luenberger observer is used to estimate the states:

x̂t+1 = Axx̂t +Buut + L(yt − ŷt) (2a)

ŷt = Cxx̂t (2b)

where x̂t ∈ R
n is the estimated state vector, ŷt ∈ R

m is the

estimated output vector, and L ∈ R
n × R

m is the observer

gain. The control objective is to operate at a desired operating

steady-state xs ∈ R
n. To achieve the control objective, a

linear tracking controller is employed, given by:

ut = −K(x̂− xs) + us (3)

where K ∈ R
l × R

n is the controller gain and us is

the controller bias used to achieve offset-free control. For

simplicity, the expected value of the process disturbance is

assumed to be zero. The bias may be computed from:

us = Gu(I −Ax)xs (4)

where Gu = ((Bu)TBu)−1(Bu)T ∈ R
l × R

n is the left

pseudo-inverse of Bu. In this work, changing the operating

steady-state is considered. The operating steady-state is re-

ferred to as the set point for simplicity. The set points are

assumed to be selected such that they are reachable in the

sense that there exists us ∈ R
l satisfying Eq. 4.

The state estimation error dynamics are given by: et+1 =
(Ax − LCx)et + Bwwt − Lvt where et := xt − x̂t ∈ R

n

denotes the state estimation error. The collective dynamics

of the closed-loop process encompass both the process

states and the estimation error. To facilitate the analysis, an

augmented state vector ξt := [xT
t eTt ]

T is defined, and its

dynamics are given by:

ξt+1 =

[
Ax −BuK BuK

0 Ax − LCx

]

︸ ︷︷ ︸

=:Aξ(K,L)

ξt

+

[
Bw 0
Bw −L

]

︸ ︷︷ ︸

=:Bd(L)

dt +

[
Bu(Gu(I −Ax) +K)

0

]

︸ ︷︷ ︸

=:Bs(K)

xs

(5)

where dt := [wT
t vTt ]

T ∈ D and D :=W×V . For simplicity

of presentation, the vector dt is called the disturbance vector

and the set D is called the disturbance set. Since W and V
are assumed to be convex polytopes, D is a convex polytope.

To ensure stable closed-loop behavior, the controller and

observer gains are selected such that all eigenvalues of the

matrices Ax − BuK and Ax − LCx are strictly within the

unit circle. Due to the presence of process disturbances and

measurement noise, the closed-loop process is persistently

perturbed. As a result, the augmented state of the process is

ultimately bounded within the minimum invariant set, which

is the limit set of all trajectories of the process [20]. The

minimum invariant set of the process is given by [21]:

Rξ
∞
(xs) =

∞⊕

i=0

Aξ(K,L)iDe(xs) (6)

where ⊕ represents the Minkowski sum,
⊕

∞

i=0 F
iX = X ⊕

FX ⊕ F 2X ⊕ . . . (X is a set X ⊆ R
n and F is a square

matrix), and De(xs) = Bd(L)D ⊕Bs(K){xs}.

B. Class of False Data Injection Attacks

The process is vulnerable to false data injection (FDI)

attacks which alter the output (yt) transmitted via the

sensor-controller link and the input (ut) conveyed over the

controller-actuator link so that the altered values are received

by the controller and actuators. Additive and multiplicative

FDI attacks are considered where the relationships between

the unaltered and altered values may be described as:

yat = Λyyt + δ
y
t (7a)

ua
t = Λuut + δut (7b)

If Λθ ̸= I (θ ∈ {y, u}), the attack alters the data over a

communication link by multiplying it with the factor Λθ. If

δθt ̸= 0, the attack alters the data over a communication link

by adding a bias δθt . θ = y represents the sensor-controller

link, and θ = u represents the controller-actuator link. The

variables δ
y
t and δut are assumed to be bounded within a

convex polytope, i.e., δt :=

[
δut
δ
y
t

]

∈ ∆ for all t ∈ Z+

An attack on the closed-loop process alters the evolution

of its augmented state as follows:

ξt+1 =

[
Ax −BuΛuK BuΛuK

L(I − Λy)Cx Ax − LCx

]

︸ ︷︷ ︸

=:Aξa (K,L)

ξt +

[
0 Bu

−L 0

]

︸ ︷︷ ︸

=:Bδa (L)

δt

+

[
Bw 0
Bw −LΛy

]

︸ ︷︷ ︸

=:Bda (L)

dt +

[
BuΛu(Gu(I −Ax) +K)

0

]

︸ ︷︷ ︸

=:Bsa (K)

xs

(8)

From Eq. 8, the process can be destabilized by a multiplica-

tive attack, with ρ(Aξa(K,L)) := maxi|λi(A
ξa(K,L))| >

1, where λi(A
ξa(K,L) is ith eigenvalue of the matrix

Aξa(K,L). However, an additive attack with Λu = I and

Λy = I cannot destabilize the closed-loop process.

When the process is subjected to an FDI attack, the process

is referred to as the attacked process. The term attack-free

process is used to describe the closed-loop process without

an attack. When the attacked process is stable, the augmented

states are ultimately bounded within its minimum invariant

set, which is a compact set. The minimum invariant set is:

Rξ
∞
(xs) =

∞⊕

i=0

Aξa(K,L)iDa(xs) (9)

where Da(xs) := BdaD ⊕Bδa∆⊕Bsa(K){xs}.
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C. Monitoring Variable and Set-Based Detection Scheme

An attack alters the evolution of the augmented state from

its expected attack-free evolution. However, since the aug-

mented state cannot be measured directly, detection schemes

monitor the evolution of a monitoring variable to detect

anomalous behavior. A monitoring variable (η := [yT rT ]T )

that is a concatenation of the measured output and the

residual vector (r := y − ŷ) is used to monitor the process.

For the attack-free process, its monitoring variable may be

expressed as a linear combination of the augmented state and

the disturbance vectors:

ηt =

[
Cx 0
0 Cx

]

︸ ︷︷ ︸

=:Cη

ξt +

[
0 I

0 I

]

︸ ︷︷ ︸

=:Dη

dt (10)

For the attacked process, its monitoring variable may be

expressed as a linear combination of the augmented state,

the disturbance vector, and the attack biases added to the

sensor-controller link as:

ηt =

[
ΛyCx 0

(Λy − I)Cx Cx

]

︸ ︷︷ ︸

=:Cηa

ξt +

[
0 Λy

0 Λy

]

dt +

[
δ
y
t

δ
y
t

]

︸ ︷︷ ︸

=:da
t

(11)

where dat ∈ D
ηa :=

[
0 Λy

0 Λy

]

D ⊕

[
0 I

0 I

]

∆ for t ∈ Z+.

Chemical processes typically operate at steady-state for

extended duration, ensuring that the augmented state remains

within its minimum invariant set. In the absence of attacks,

the monitoring variable is contained within a well-defined

set when ξt ∈ R
ξ
∞
(xs). From Eq. 9 and Eq. 10, this set,

called the terminal set, is represented as:

Rη
∞
(Rξ

∞
(xs)) = CηRξ

∞
(xs)⊕DηD (12)

The terminal set for the attack-free process encompasses

all conceivable values of the monitoring variable across all

time steps (t ∈ Z+) and under all disturbances (dt ∈ D)

when ξt ∈ R
ξ
∞
(xs). Therefore, the terminal set can be

used to verify the integrity of monitoring variable values.

To monitor for attacks, a terminal set membership-based

detection scheme can be used where the containment of the

monitoring variable in the terminal set is verified. If the

monitoring variable is outside the set, an alarm is raised and

an attack is detected (refer to [18] for more details).

If the process operates for a sufficiently long period

after an attack and the closed-loop process is stable, the

augmented state will converge to the minimum invariant

set under the attack (Rξa
∞
(xs)). For analysis purposes, the

corresponding terminal set of the monitoring variable can be

computed from Rξa
∞
(xs), given by:

Rηa
∞
(Rξa

∞
(xs)) = CηaRξa

∞
(xs)⊕Dηa (13)

III. ACTIVE DETECTION FOR STEALTHY ATTACKS

The terminal set-based detection scheme described above

is passive, as it monitors the process for attacks without

utilizing any external interventions or perturbations. An

attacker may be able to carry out stealthy attacks capable of

evading detection. Stealthy attacks with respect to the passive

terminal set-based detection scheme are attacks where the

monitoring variable is maintained within its expected ter-

minal set (ηt ∈ R
η
∞
(Rξ

∞
(xs))). As a result, the terminal

set-based detection scheme will fail to detect the attack.

An active detection method involving operating under the

attack-sensitive mode could be applied to detect stealthy

attacks that destabilize the process [18], [19]. However,

operating in a mode that allows some attacks to destabilize

the process may be undesirable. In this work, two active

detection methods are considered: changing the control pa-

rameters and the set point, which define alternative operating

modes of the control system to enable the detection of

stealthy attacks. A framework for evaluating if an attack

is guaranteed to be detected under this active method is

developed for these control modes.

A. Alternative Active Detection without Destabilization

The process after extended operation near the initial set

point xs
i under control parameters (Ki, Li) is considered so

that the augmented state has converged to either Rξ
∞
(xs

i ) or

Rξa
∞
(xs

i ), depending on whether the process is attack-free or

subjected to an attack. Under the active detection method,

the set point changes from xs = xs
i to xs = xs

f , and/or

the control parameters switch from (K,L) = (Ki, Li) to

(K,L) = (Kf , Lf ). The time step in which this change

occurs is taken to be t = 0. The initial set point and

control parameters (Ki, Li) are selected based on the desired

operating set point and standard controller design methods.

However, the final set point and control parameters are

selected to enable the detection of a given attack, defined

by Λu, Λy , and ∆, that is stealthy with respect to the

terminal set-based detection scheme. The attack-free and

attacked process are assumed to be stable under both sets

of control parameters in the sense that ρ(Aξa(Ki, Li)) < 1
and ρ(Aξa(Kf , Lf )) < 1.

The change(s) perturb(s) the process by exciting the pro-

cess dynamics, in the sense that after the change(s), the

augmented state may be outside its corresponding minimum

invariant set. From Eq. 10 and Eq. 11, the values of the

monitoring variable depend upon the augmented state, the

disturbances acting on the process, and the attack (if the

process is attacked). During the transient period (when the

state is outside the minimum invariant set), the monitoring

variable may take values outside its terminal set. For such

cases, the terminal set-based detection scheme will raise an

alarm, even for the attack-free process, since the scheme

does not account for such transient behavior. A reachable set-

based detection scheme can monitor the process during the

transient period without generating false alarms [22]. During

the transient period, the possible states reached for the attack-

free and attacked process are described by the reachable sets

of the process. The reachable sets of the attack-free and the

attacked process are:

Rξ
t (x

s
f ) = Aξ(K,L)Rξ

t−1(x
s
f )⊕D

e(xs
f ) (14a)

Rξa
t (xs

f ) = Aξa(K,L)Rξa
t−1(x

s
f )⊕D

a(xs
f ) (14b)
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for t > 0 where, with slight abuse of notation, the initial

sets are Rξ
0 = Rξ

∞
(xs

i ) and Rξa
0 = Rξa

∞
(xs

i ). Eq. 14a

describes the evolution of the reachable sets for the attack-

free augmented states from an initial set of states that is the

minimum invariant set of the attack-free process at the initial

steady-state. Eq. 14b describes the evolution of the reachable

sets for the augmented states of the attacked process from

an initial set of states that is the minimum invariant set of

the attacked process at the initial steady-state. From Eq. 10

and Eq. 11, the reachable sets of the monitoring variables

describe their evolution for the attacked and the attack-free

processes as (for t > 0):

Rη
t (R

ξ
t (x

s
f )) = CηRξ

t (x
s
f )⊕DηD (15a)

Rηa

t (Rξa
t (xs

f )) = CηaRξa
t (xs

f )⊕D
ηa (15b)

For the attack-free process, its monitoring variable values

evolve within its reachable sets. A reachable set-based de-

tection scheme designed to utilize the reachable sets for the

attack-free process to monitor the process for attacks can be

used [22], given by:

ϕt(ηt) =

{

0, ηt ∈ R
η
t (R

ξ
t (x

s
f ))

1, ηt ̸∈ R
η
t (R

ξ
t (x

s
f ))

(16)

where ϕt(ηt) is the output of the detection scheme at the

time step t > 0. The detection scheme generates an output

of 1 if the monitoring variable is not contained within its

attack-free reachable set, meaning that an attack is detected.

However, if the monitoring variable is contained within the

attack-free reachable set, then the detection scheme generates

an output of 0 indicating a lack of attack detection.

B. Selecting an Attack-Revealing Control Mode for Active

Detection

From Eq. 15a and Eq. 15b, the monitoring variable values

for the attack-free and the attacked processes are contained

within their respective reachable sets. If at some time, the

reachable sets of the monitoring variable for the attacked and

the attack-free processes at that time step do not intersect,

then there exist no values of monitoring variable values of the

attacked process, that are contained within the reachable set

of the attack-free process. It follows from this reasoning that

the perturbation induced by switching the control mode is

attack-revealing if, at some time step t > 0, the reachable sets

of the monitoring variable for the attacked and the attack-free

process satisfy:

Rη
t (R

ξ
t (x

s
f )) ∩R

ηa

t (Rξa
t (xs

f )) = ∅ (17)

The reachable set-based detection scheme in Eq. 16 monitors

the process based on the reachable sets for the attack-free

process, meaning that attack detection is guaranteed at the

time step t if the perturbation induced is attack-revealing,

i.e., if Eq. 17 is satisfied.

In the discussion that follows, a screening algorithm that

leverages Eq. 17 to enable the selection of a control mode

that guarantees attack detection is presented. The algorithm

is implemented offline and requires that the reachable sets

for the attacked and the attack-free processes operated under

a given control mode be computed, and the satisfaction of

Eq. 17 be checked. If at some time step td ∈ Z+, the

reachable sets of the attack-free and the attacked processes

satisfy Eq. 17, then the control mode chosen induces attack-

revealing perturbations in that it guarantees the attack detec-

tion. However, if Eq. 17 is never satisfied, then the control

mode induced does not guarantee attack detection.

First, a practical implementation challenge is discussed.

Ensuring the satisfaction of Eq. 17 requires computing

reachable sets for both the attack-free and attacked processes,

potentially extending to an infinite number of time steps,

which is infeasible. The algorithm must strike a balance

between checking a finite number of reachable sets and the

computational complexity. More specifically, a possibility

exists that the condition in Eq. 17 is satisfied for some

time step after the algorithm is terminated. To manage

this tradeoff, a parameter tf > 0 is introduced, which is

the number of time steps to compute the reachable sets

before terminating the algorithm. Opting for a large tf may

reduce the possibility that Eq. 17 is satisfied for some time

after tf but may increase computational demands; selecting

a small tf may heighten this possibility but may reduce

computation. This is grounded in the understanding that,

given an error threshold, there exists a time duration large

enough for the reachable sets to converge to an invariant

set containing the minimum invariant set. The discrepancy

between the invariant set and the true minimum invariant set

depends on the chosen error threshold [21, Theorem 1]. On

a more practical level, choosing tf could involve selecting

the number of time steps at which it becomes essential to

detect the attack, especially if operating under the alternative

control mode for prolonged periods is undesirable. With

these considerations, the algorithm is as follows:

Algorithm 1: Algorithm to screen an active detection

method for its ability to guarantee attack detection

Inputs: Λy , Λu, ∆, (Kf , Lf ), xs
f , tf , Rξ

t (x
s
f ) and

Rξa
t (xs

f ) for t ∈ (0, tf ].

Initialization: t = 0, Rξ
0 = Rξ

∞
(xs

i ),
Rξa

0 = Rξa
∞
(xs

i ), td =∞,

(K,L) = (Kf , Lf )
1 do

2 Compute reachable sets per Eq. 15a and Eq. 15b.

3 if Eq. 17 is satisfied then

4 The chosen control mode guarantees attack

detection at td = t.
5 else if t = tf then

6 The chosen control mode does not guarantee

attack detection.

7 else

8 Set t← t+ 1

9 while td =∞ or t < tf ;
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IV. APPLICATION TO AN ILLUSTRATIVE PROCESS

A process under a simultaneous sensor-controller link and

controller-actuator link FDI attack is considered:

xt+1 = xt + ua
t + wt

ua
t = −ΛuK(x̂t − xs) + δut

yat = Λy(xt + vt) + δ
y
t

where xt ∈ R is the state, ua
t ∈ R is the control action

received by the control actuators, wt ∈ W := {w′ | |w′| ≤
1} is the process disturbance, yat ∈ R

m is the measured

output received by the controller, and vt ∈ V := {v′ | |v′| ≤
1} is the measurement noise. For this integrating process,

there is an equilibrium manifold corresponding to the steady-

state input us = 0. The initial steady-state is the origin, i.e.,

xs
i = 0. The control parameters chosen to operate the process

at the initial steady-state are (Ki, Li) = (0.8541, 0.618).
An attack with Λy = 0.86, Λu = 1.1, δ

y
t = 0.1, and

δut = −0.028 is considered. The MPT 3.0 toolbox is used

for polytope computations [23].

To verify the detectability characteristics of the attack

across the detection methods and schemes considered, 1000

simulation scenarios, each scenario spanning 100 time steps,

are considered. Within each scenario, an initial condition is

randomly selected from the minimum invariant set of the

attacked process (Rξa
∞
(xs

i )). To simulate process disturbances

and measurement noise, random sequences with each ele-

ment drawn from N (0, 3.33× 10−2) are generated.

The detectability properties of this attack under the ter-

minal set-based detection scheme are first investigated. To

analyze the detectability of the attack under the detection

scheme, the terminal sets of the monitoring variable for the

attack-free and the attacked process are computed. The termi-

nal set of the attacked process is contained entirely within the

terminal set of the attack-free process, i.e., Rηa
∞
(Rξa

∞
(xs

i )) ⊂
Rη

∞
(Rξ

∞
(xs

i )). This implies that the attack is undetectable,

i.e., stealthy with respect to the detection scheme because for

any ξt ∈ R
ξa
∞
(xs

i ), ηt ∈ R
ηa
∞
(Rξa

∞
(xs

i )) ⊂ R
η
∞
(Rξ

∞
(xs

i )).
To verify the undetectability of the attack, 1000 closed-

loop simulations of the attacked process are performed. The

attack is not detected in any of these simulations. One

active detection approach that can enable the detection of

this attack is to change the control parameters to so-called

attack-sensitive parameters, where the closed-loop process

with these parameters is stable under attack-free operation

and is destabilized under the attack [18], [19]. However,

destabilization for attack detection may be undesirable, and

alternative active detection methods are considered. To check

if a particular active detection method guarantees attack

detection, Algorithm 1 is applied and implemented.

The method described in [20] is used to compute an outer

approximation of the minimum invariant sets of the attack-

free and attacked processes for the initial steady-state and

control parameters and the final steady-state and control

parameters, i.e., the sets Rξ
∞
(xs

i ), R
ξa
∞
(xs

i ), R
ξ
∞
(xs

f ), and

Rξa
∞
(xs

f ). The specified error bound on these calculations

is 1 × 10−3. To determine the termination time of the

Fig. 1: Reachable sets and the terminal sets of the monitoring

variable at t = 1 for the attacked and the attack-free process

under a control mode with xs
f = −2 and (Kf , Lf ) =

(1.5, 0.1).

algorithm (tf ), the reachable sets of the attack and attack-

free process with initial sets Rξ
∞
(xs

i ) and Rξa
∞
(xs

i ) are

computed until the reachable sets are contained within the

outer approximation of the attack-free and attacked minimum

invariant sets for the final steady-state and control parame-

ters. Defining t1 and t2 as the time steps at which the attack-

free and attacked reachable sets are first contained with

their corresponding minimum invariant sets, respectively, tf
is taken to be max(t1, t2). The satisfaction of Eq. 17 is

verified by checking for the existence of a point satisfying

both sets of inequalities describing the two reachable sets of

the monitoring variable for the attack-free and the attacked

processes. Specifically, a feasibility problem, cast as a linear

program, is constructed and solved for all t ∈ [0, tf ].

The first alternative active detection method considered

utilizes a set point change to shift the operation of the

process to a neighborhood of the steady-state xs
f = −2 and

with the control parameters (Kf , Lf ) = (1.5, 0.1). Under

these control parameters, the eigenvalues of the closed-loop

attacked process are -0.67 and 0.92, indicating that the

closed-loop process is stable in the presence of attack. In this

case, t1 = 53 and t2 = 75, so tf = 75. Using Algorithm 1,

Eq. 17 is not satisfied for any time step, and therefore, attack

detection is not guaranteed. Fig. 1 illustrates the reachable

sets of monitoring variable for the attacked and the attack-

free processes at the time step t = 1, and the terminal sets of

the monitoring variable values for the attacked and the attack-

free processes under the chosen active detection method,

showing that Eq. 17 is not satisfied because the sets always

intersect. To verify the detection properties of the attack

under the first alternative active detection method, 1000

closed-loop simulations of the attacked process monitored

by the reachable set-based detection scheme in Eq. 16 are

performed under the active detection method. The attack is

detected in 114 simulations. For the simulations where the

attack is detected, the attack is detected at either time step 1

or 2. The results demonstrate that while the attack may be
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Fig. 2: Reachable sets of the monitoring variable for the

attacked and the attack-free process at td = 1 under a control

mode with xs
f = −30 and (Kf , Lf ) = (1.5, 0.1).

detected with this active detection method, detection is not

guaranteed.

A second active detection method using a set point change

to xs
f = −30, and a control parameter switch to (Kf , Lf ) =

(1.5, 0.1) is considered. The reachable sets of the augmented

state for the attacked and the attack-free processes are

computed and the termination time step for Algorithm 1 is

determined to be as tf = max(t1, t2) = 119, with t1 = 92
and t2 = 119. Algorithm 1 is applied, and the control mode

chosen is determined to guarantee attack detection at the time

step td = 1. Fig. 2 illustrates that the reachable sets for the

attacked and the attack-free processes do not intersect at the

time step td = 1, satisfying Eq. 17. One thousand simulations

of the attacked process under this active detection method

and monitored by the reachable set-based detection scheme

are performed. The attack is detected in all simulations at

the time step td = 1, demonstrating that the active detection

method chosen guarantees attack detection.

V. CONCLUSIONS

Two control modes for the active detection of a class

of stealthy false data injection cyberattacks were presented.

Reachability analysis was used to present a screening algo-

rithm that may be used to select an active detection method

that guarantees attack detection. The application of the

screening algorithm was demonstrated using an illustrative

process example.
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[20] S. V. Raković, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne,
“Invariant approximations of the minimal robust positively invariant
set,” IEEE Transactions on Automatic Control, vol. 50, no. 3, pp. 406–
410, 2005.

[21] V. M. Kuntsevich and B. N. Pshenichnyi, “Minimal invariant sets
of dynamic systems with bounded disturbances,” Cybernetics and

Systems Analysis, vol. 32, no. 1, pp. 58–64, 1996.
[22] S. Narasimhan, N. H. El-Farra, and M. J. Ellis, “A reachable set-

based scheme for the detection of false data injection cyberattacks on
dynamic processes,” Digital Chemical Engineering, vol. 7, p. 100100,
2023.

[23] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, “Multi-
Parametric Toolbox 3.0,” in Proceedings of the European Control
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