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Simple Summary: A synchronized global genome is a flexible, homeostatic system that underwrites

ontogenic development and deprograming in disease.

Abstract: As human progenitor cells differentiate into neurons, the activities of many genes change;

these changes are maintained within a narrow range, referred to as genome homeostasis. This process,

which alters the synchronization of the entire expressed genome, is distorted in neurodevelopmental

diseases such as schizophrenia. The coordinated gene activity networks formed by altering sets

of genes comprise recurring coordination modules, governed by the entropy-controlling action of

nuclear FGFR1, known to be associated with DNA topology. These modules can be modeled as

energy-transferring circuits, revealing that genome homeostasis is maintained by reducing oscillations

(noise) in gene activity while allowing gene activity changes to be transmitted across networks; this

occurs more readily in neuronal committed cells than in neural progenitors. These findings advance

a model of an “entangled” global genome acting as a flexible, coordinated homeostatic system that

responds to developmental signals, is governed by nuclear FGFR1, and is reprogrammed in disease.

Keywords: genome integration; entropy; noise and information processing; schizophrenia; development

1. Introduction

Systems biology postulates that complex biological systems have emergent properties that
cannot be explained solely by the properties of their components [1]. It applies the general
systems theory of Bertalanffy [2], and investigates the thermodynamic aspects of living organ-
isms [1]. Cells, organelles, macromolecular complexes, and regulatory and metabolic pathways
are examples of biological systems from the micro- to the nanoscopic scale.

Recently, protein-mediated DNA–DNA interactions between distant chromosome
regions, 100 s or 1000 s of kilobases apart and even between DNAs of different chromo-
somes [3,4] have been revealed through new chromatin conformation capture (3C) and
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high-throughput interaction assays (Hi-C and HiChIP) [3,4]. The billions of possible inter-
actions among thousands of genes suggest the existence of a coordinate systems genome in
which gene activities may be related to one another.

The decision on cell type fate relies on selective expression of multi-gene programs,
as the genome of every cell harbors information for all types of cells in the body. Whereas
pluripotent embryonic stem cells develop into all types of cells in the body, tissue-specific
multipotent stem cells have restricted potential [5]. For example, multipotent neural stem
progenitor cells (NPCs), which reside in the brain ventricles, can produce only brain cells:
neurons, astrocytes, and oligodendrocytes [6].

As the populations of human NPCs begin differentiating into neuronal committed
cells (NCCs), the activities of a common population of 4646 genes change, including genes
in ontogenic programs for “development of the nervous system”, “development of the
brain and its parts”, “stem cell self-renewal program”, “cell division and proliferation”,
“neuronal differentiation”, “axonal guidance and growth”, “synapse formation”, “neuronal
survival”, etc. [7].

Studies over the last three decades have corroborated a pan-ontogenic mechanism
known as integrative nuclear FGFR1 signaling engaged in widespread gene programming
during cell development [6–16]. The regulatory control is exerted by a nuclear form of
FGFR1 protein (nFGFR1) that integrates signals from development-initiating factors and
targets thousands of genes encoding mRNAs and microRNAs as well as long noncod-
ing RNAs. nFGFR1 interacts with the common transcription coregulator CBP [8], forms
complexes with RAR/RXR, Nurs, and estrogen receptors, and binds to thousands of
conserved loci of the mouse and human genome including diverse transcription factor
binding elements [6,8,10,13,17,18]. Our recent studies demonstrate the widespread inter-
and intrachromosomal interactions differ between embryonic stem cells and NCCs [19].
The differences were apparent in chromatin looping structures and topology-associating
domains (TADs), which grouped genes for related ontogenic functions, e.g., proliferation
and metabolic functions in embryonic stem cells and neuronal development and transcrip-
tional regulation in NCCs. We proposed a topologically integrated genome archipelago
model in which there are extensive transformations through the formation of islands of
TADs that comprise genes in changing ontogenic programs [19]. The nFGFR1-targeted
genomic sites are concentrated in the borders of TADs and include a sequence that binds
chromatin structure-controlling CTCF. nFGFR1 affects the formation of DNA loops and
could underwrite/facilitate global genome function via topology-associated domains [19].

Studies in several laboratories showed the localization of FGFR1 and other FGFR
proteinsin the nuclei of diverse types of cells including fibroblasts [12,20], neurons and
endocrine cells [14,21,22], astrocytes [23], developing skeletal cells [24], and different types
of cancer [25]. Loss- and gain-of-function experiments [8] have shown that nFGFR1 instructs
stem cells to form new neurons and regulates their development in vitro and in vivo.
Disruption of nFGFR1 actions in the nervous system has been linked to the neuropsychiatric
disorder schizophrenia [10] and disruption in other tissues has been associated with a
variety of cancers, including glioma [15,16], pancreatic [17,23,26], osteosarcoma [27], and
breast cancer [18,28]. In the present study, we assessed global control of genome function
during the developmental transition of NPCs to NCCs, in schizophrenia, the degree to
which gene functions are synchronized, and what mechanisms control genome coordination
and homeostasis. We examined the effects of nucleus-targeted dominant-negative nFGFR1
and nFGFR1 overexpression [7] to reveal the role of integrative nFGFR1 signaling in global
genome function and synchronization.

2. Results

2.1. Gene Activity during NCC Differentiation: Genome Homeostasis and Role of nFGFR1

We calculated the logarithmic fold changes in average gene expression in three inde-
pendent biological samples to quantify the differences between the following experimental
groups (Methods, Figure S1B): group A, 4646 genes whose activity changed when NPCs
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transition to NCCs; group B, 332 genes whose activity changed by reduction in nFGFR1
function in NPCs [via transfection of a dominant negative nuclear FGFR1(SP-/NLS)(TK-),
hereafter referred to as NPCTK−]; group C, 861 genes whose activity changed by reduction
in nFGFR1 function in NCCs (i.e., NCCTK−); group D, 478 genes whose activity changed
when NPCTK−s transition to NCCTK−s (Figure 1A).

Figure 1. Group comparisons. (A) Intersecting groups analyzed. (B) Table compares fold gene f ac-
tivity changes in NCC/NPC vs. NCCTK2/NPCTK2 in diferent intersecting subgroups from Figure 1 
A. Results of two statistical tests4t test and Kolmogorov3Smirnov (KS) test are shown. Only the 
group A-C-D (nFGFR1 suppression in NCCs) showed a statistically signiocant diference. (C) His-
togram for group A-C-D (histograms for A-B-D and A-B-C-D are shown in Figure S2). The logarith-
mic function redeoned a 1-fold change as 0 and a 2-fold change as 1 (shown by the dashed vertical 
black and red lines) and is divided into three zones: a green zone (genes with low fold changes) and 
pink and yellow zones (high inhibition and activation fold changes, respectively). (D) k-means clus-
tering was employed to perform unsupervised data clustering, which partitions n observations into 

Figure 1. Group comparisons. (A) Intersecting groups analyzed. (B) Table compares fold gene

f activity changes in NCC/NPC vs. NCCTK−/NPCTK− in different intersecting subgroups from

Figure 1 A. Results of two statistical tests—t test and Kolmogorov–Smirnov (KS) test are shown.

Only the group A-C-D (nFGFR1 suppression in NCCs) showed a statistically significant difference.

(C) Histogram for group A-C-D (histograms for A-B-D and A-B-C-D are shown in Figure S2). The

logarithmic function redefined a 1-fold change as 0 and a 2-fold change as 1 (shown by the dashed

vertical black and red lines) and is divided into three zones: a green zone (genes with low fold

changes) and pink and yellow zones (high inhibition and activation fold changes, respectively).

(D) k-means clustering was employed to perform unsupervised data clustering, which partitions

n observations into k clusters, with each observation belonging to the cluster with the nearest mean;

k values determined by Calinski–Harabasz evaluation identified nine as an optimal number of clusters

(left). Note, NCC/NPC inhibitory zones are represented by clusters 3 and 6, and the NCC/NPC

activation zone is represented by the remaining clusters; t test evaluation of differences between

NCC/NPC versus NCCTK−/NCCTK− clusters. Distribution of fold changes in the individual clusters

is shown in Figure S3.
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The effects of the dominant negative nFGFR1 on the transitional changes in gene
activities were determined by comparing the fold changes for NPC → NCC (group A)
with those for NPCTK−

→ NCCTK− (group D). To determine how gene dysregulation by
dominant negative nFGFR1 in NPCs (group C) and/or NCCs (group B) affected these
transitional changes, the gene changes common between A ∩ C ∩ D, A ∩ B ∩ C, and
A ∩ B ∩ C ∩ D were determined (Figure 1A). The statistical significance of the transitional
fold changes for NPC → NCC and NPCTK−

→ NCCTK− was determined using a t test, and
the difference in binned distributions was determined using a Kolmogorov–Smirnov test.

Figure 1C shows frequency histograms of the log fold changes in gene expression
during the transitions of NPCs to NCCs and of NPCTK−s to NCCTK−s. The frequencies
follow a normal Gaussian distribution, with most genes displaying moderate changes
and only a few showing extreme changes. However, the distribution of expression
changes during the NPC → NCC transition was significantly different from that dur-
ing the NPCTK−

→ NCCTK− transition. The genes that differed were those affected by
diminished nFGFR1 function in NCCs (A-C-D common group), as neither the A-B-D
nor A-B-C-D common group showed a significant effect of reduced nFGFR1 function
(Figures 1B and S2A). The attenuation of nFGFR1 function specifically in developing NCCs
affected gene activities in the NPCTK−

→ NCCTK− transition by decreasing the number
of genes with moderate fold changes and increasing the number of genes with high fold
changes. In other words, nFGFR1′s effect increased proportionally to the magnitude of the
fold change in gene activity (Figure S2B).

The genes common to groups A, C, and D optimally separate into nine clusters, with
clusters 3 and 6 representing inhibitory fold changes, clusters 1, 5, 7, 8, and 9 representing
moderately activating fold changes, and clusters 2 and 4 representing strongly activating fold
changes (Figure 1D). Analyses via t tests for both NPC → NCC and NPCTK−

→ NCCTK−

transitions revealed statistically significant differences for genes in clusters 1, 2, 5, 7, 8, and
9. Genes in clusters 1, 2, and 5 displayed low, moderate, and high positive log fold changes,
respectively; the expression of most genes increased during the transition when nFGFR1 function
was reduced (Figure S2C–E). Notably, the pattern of RNF170 expression (gene in cluster 1)
reversed: the gene was activated (rather than suppressed) during transition with reduced
nFGFR1 function (Figure S2E). The inhibition of most of the genes in clusters 3 and 6 was stronger
in the NCCTK−

→ NPCTK− transition than in the NCC → NPC transition (Figure S2F,G). The
expression of C7ORF43 (in cluster 3) changed from being suppressed during NPC → NCC
transition to enhanced during NPCTK−

→ NCCTK− transition (Figure S2F).

2.2. Coordination of Nervous System Development Genes during NPC → NCC Transition: Role
of nFGFR1

We assessed the coordinated expression of genes by using RNA-seq data from three
independent biological samples. The data were first standardized with a z-score to have a
mean of 0 and standard deviation of 1 (example, Figure S1C). Coordination was quantified
by the Pearson correlation coefficient (r). Positive correlations describe gene pairs whose
expression activities were both suppressed or enhanced during the transition, whereas
negative correlations describe gene pairs whose expression activity changed in opposite
directions. Pearson correlation coefficients from standardized RNA-seq data for each
experimental group are displayed as frequency histograms in Figures 2, 3 and S4–S6.

Among the 4646 genes regulated during NPC → NCC transition, 835 genes were
in the nervous system development (NSD) GO category. The distributions of NSD gene
correlations differed significantly (χ2, p < 0.0001) between NPCs and NCCs, such that the
frequencies of strongly correlated gene pairs (r > ±0.96) were higher in NCCs: i.e., more
NSD genes were positively or negatively correlated in NCCs (Figure 2A).
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Figure 2. Correlation frequencies. Coordination of nervous system development (NSD) genes: fre-
quency distributions of calculated Pearson coeocients (r). χ2 diferences between compared condi-
tions for entire range of correlations (21 to +1): **** p < 0.0001); ns, nonsigniocant. Gene coordination 
in NPCs and NCCs (A), NCCs and NCCTK2s (B), NCCs and NCCNLSs (C), and NPCs and NPCTK2s 
(D). From panels (A3D) we selected the NSD gene pairs which in the reference conditions had r > 
positive and r < negative critical r threshold values listed in Figure S3B. Table (E) compares the av-
erage Pearson coeocients (ravg) and the numbers of these strongly correlated gene pairs; *** p < 0.001 

Figure 2. Correlation frequencies. Coordination of nervous system development (NSD) genes:

frequency distributions of calculated Pearson coefficients (r). χ2 differences between compared

conditions for entire range of correlations (−1 to +1): **** p < 0.0001); ns, nonsignificant. Gene

coordination in NPCs and NCCs (A), NCCs and NCCTK−s (B), NCCs and NCCNLSs (C), and NPCs

and NPCTK−s (D). From panels (A–D) we selected the NSD gene pairs which in the reference

conditions had r > positive and r < negative critical r threshold values listed in Figure S3B. Table (E)

compares the average Pearson coefficients (ravg) and the numbers of these strongly correlated gene

pairs; *** p < 0.001 for both positive and negative correlations. Entropy changes associated with the

correlation frequency distributions are listed in Table S1.
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The distribution of NSD gene correlations was significantly affected (χ2, p < 0.00001)
by nFGR1 function, which was observed by comparing NCCs with those that transitioned
when nFGFR1 function was reduced (i.e., NCCTK−s) (Figure 2B) and with those that
transitioned in the presence of constitutively active nFGFR1 [by transfecting NPCs with
an FGFR1(SP-/NLS) construct; NCCNLSs] (Figure 2C). The frequencies of strongly corre-
lated pairs (negatively and positively correlated) were greater in NCCTK−s and lower in
NCCNLSs, indicating that nFGFR1 activity dampens gene coordination in NCCs. In NPCs,
however, the reduction in nFGFR1 function did not significantly affect the correlations
(Figure 2D).

The average r values (ravg) (positive or negative) for the pairs of the NSD genes that
were strongly coordinated in NPCs were significantly lower in NCCs and in NPCTK−s
(Figure 2E). Likewise, the ravg values for the pairs of NSD genes strongly coordinated in
NCCs were much lower in NCCTK−s and NCCNLSs. Similar results were obtained when
examining gene pairs for other ontogenic GO categories (“CNS development” alone or
combined with “generation of neurons”) (not shown). Thus, alteration of nFGFR1 activity
significantly altered the coordination of gene activity during NPC → NCC transition.

2.3. nFGFR1 Coordinates the Entire Expressed Genome during NPC → NCC Transition

Further analyses showed that the distributions of correlations were significantly dif-
ferent between NPCs and NCCs such that the frequencies of strongly negative or positive
correlations were higher for NCC genes. These differences were observed when examining
all 16,137 expressed genes (Figure 3A) and when separately examining either the 4646
genes which changed their activities during NPC → NCC transition and were referred to
as regulated (Reg) genes (Figure 3B) or the 11,491 genes that did not change their activi-
ties and were referred to as not regulated (nonReg) genes (Figure 3C). Furthermore, the
cross-correlation of Reg and nonReg genes differed significantly between NPCs and NCCs
(Figure 3D). These findings are summarized in Figure 3F.

for both positive and negative correlations. Entropy changes associated with the correlation fre-
quency distributions are listed in Table S1.

2.3. nFGFR1 Coordinates the Entire Expressed Genome during NPC → NCC Transition 
Further analyses showed that the distributions of correlations were signiocantly dif-

ferent between NPCs and NCCs such that the frequencies of strongly negative or positive 
correlations were higher for NCC genes. These diferences were observed when examin-
ing all 16,137 expressed genes (Figure 3A) and when separately examining either the 4646 
genes which changed their activities during NPC → NCC transition and were referred to 
as regulated (Reg) genes (Figure 3B) or the 11,491 genes that did not change their activities 
and were referred to as not regulated (nonReg) genes (Figure 3C). Furthermore, the cross-
correlation of Reg and nonReg genes difered signiocantly between NPCs and NCCs (Fig-
ure 3D). These ondings are summarized in Figure 3F.

Figure 3. Cont.
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Figure 3. Distributions of gene correlations. χ2 tests were used for comparisons of conditions for

the entire range (−1 to +1) of Pearson coefficients for NPCs vs. NCCs (A–D) and for NCCs from

patients with schizophrenia versus those from control individuals (E). Comparisons of correlations

for all expressed genes (16,137 genes) (A), for 4646 regulated (Reg) genes (average activity levels

changed in NCCs compared to that in NPCs) (B), for 11,491 non-regulated (nonReg) genes (average

activity levels did not change in NCCs compared to that in NPCs) (C), for cross-correlation of Reg

and nonReg genes (D), 1386 genes commonly dysregulated in schizophrenia patients (Dysreg genes)

(E1), all expressed genes in differentiating NCCs from patients and controls (15,279) (E2), 13,893

non-dysregulated (nonDysreg) genes (E3), cross-correlation of Dysreg with nonDysreg genes (E4).

(F) Summary of the observed changes in r frequency histograms (based on Figures 2A–D, 3A–E

and S4–S6). **** (p < 0.0001; NS, not significant) refer to χ2 tests of −1 to + 1 range of correlations.

(decreases and (+) increases mark direction of changes in strong positive or negative correlations.

Entropy changes associated with the correlation frequency distributions are listed in Table S1.
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We also examined how nFGFR1 function affects the coordination of the different gene
sets. Reduction in nFGFR1 function significantly altered the distributions of correlations
in both NPCTK−s (Figure S4A–D) and NCCTK−s (Figure S5A–D) for all 16,137 expressed
genes, the 4646 Reg genes, the 11,491 nonReg genes, and the cross-correlated Reg and
nonReg gene pairs. Specifically, there were fewer negatively correlated pairs for all gene
sets in NPCTK−s. In NCCTK−s, however, the frequencies of positive correlations increased
for the Reg, NSD, and Reg–nonReg genes and decreased for nonReg genes. Overexpression
of the active nFGFR1 in NCCs reduced the frequencies of both the strongly positive and
negative correlations in all gene sets (except NSD genes) (NCCNLSs; Figure S6A–D), further
indicating that nFGFR1 dampens the coordination of gene activity. However, the role of
nFGFR1 in coordinating nonReg genes appears to be different in NPCs (supporting role)
than in NCCs (opposing role). The findings from Figures 2, 3 and S4–S6 are summarized in
Figure 3F.

2.4. Global Genome Coordination in NCCs Is Altered in Schizophrenia

Similar to the changes in genome programing during the NPC → NCC transition that
we observed, significant changes in the global genome coordination in NCCs was also
observed in cells derived from individuals with schizophrenia (Figure 3E). Our earlier
studies revealed 1349 dysregulated (Dysreg) genes common among NCCs derived from
four patients with schizophrenia [10]. The changes were associated with a loss of nFGFR1
protein in developing cortical neurons in cerebral organoids [7]. The present analyses show
significant differences (χ2, p < 0.00001) in global genome coordination between control and
schizophrenia conditions: Dysreg genes in schizophrenia were enriched among strongly
positive correlations (Figure 3E1). The enrichments were observed also when analyzing all
expressed 15,279 genes (Figure 3E2), 13,893 nonDysreg genes (Figure 3E3), and the cross-
correlation of the Dysreg and nonDysreg genes (Figure 3E4). These findings are consistent
with the global genome coordination model and implicate its relevance in schizophrenia
(data summarized in Figure 3F).

2.5. Entropy of Gene Correlation Is Influenced by NPC → NCC Transition, nFGFR1, and
Schizophrenia

The significant changes in the frequencies of gene correlations in NCCs compared
to that in NPCs were accompanied by changes in the entropy of coordination which are
summarized in Table S1. Whereas the entropy decreased with the correlation changes
among all expressed genes, nonReg genes, and in the cross-correlation of the Reg–nonReg
genes (indicating that their coordination becomes more ordered in NCCs), the entropy
increased for the Reg genes, including NSD genes (Table S1). The significant differences
in the distributions of correlations in NCCTK−s (Figures 2 and S4–S6) were associated
with increased entropy for the coordination of all expressed genes, Reg genes, and for the
cross-correlation of the Reg–nonReg genes but not for the NSD genes (Table S1). Similarly,
increased entropy was noted for all genes in NCCNLSs (Table S1). Thus, any shift in nFGFR1
function makes the genome less organized. (A coordinate gene model inspired by these
entropy changes is depicted in Discussion.)

In NCCs from patients with schizophrenia, the coordination for all gene categories
(all expressed genes, Dysreg, nonDysreg, and cross-correlated Dysreg–nonDysreg genes)
was associated with a decrease in entropy relative to that in NCCs from control individuals
(Table S1), showing a generalized over-synchronization of the genome.

2.6. Reconstruction of the Strongly Correlated Genome during NPC → NCC Transition and in
Schizophrenia

To determine what gene activity is coordinated during NPC → NCC transition, we an-
alyzed the strongly correlated gene pairs (those within the 95–100% r correlation threshold
values). First, the positive (>0 to +1) and negative (<0 to −1) r frequency data were fitted to
a β model (Figure S3A), and the 95% positive and negative confidence threshold values for
all expressed genes in different experimental groups were established: values were similar
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and are listed in Figure S3B. Among the gene sets that showed high coordination in NPCs
[i.e., all expressed genes, Reg genes, cross-correlated Reg–nonReg genes (Table S2) and
NSD genes (Figure 2E)] the ravg values (positive or negative) were significantly lower in
NCCs. Likewise, the strongly correlated genes in NCCs had significantly lower ravg values
in NPCs. Thus, the strongly correlated gene sets in NPCs are replaced by different sets of
strongly correlated genes in NCCs. The formations of the strongly correlated gene sets in
NPCs and NCCs were governed by nFGFR1, as all strongly correlated expressed genes,
Reg genes, cross-correlated Reg–nonReg genes, and NSD genes had significantly lower ravg

values when nFGFR1 was overexpressed or when nFGFR1 function was reduced (Table S2).
Similarly, different sets of strongly correlated genes occurred in NCCs from patients with
schizophrenia and from controls (Table S2).

2.7. NSD Coordinate GANs Are Reconstructed during NPC → NCC Transition: Role of nFGFR1

To determine if the significant changes in NSD ravg values (Table S2) reflect different
coordinate GANs, we exported the correlation pairs with r values of >0.99 to Cytoscape [29],
which displays gene names (nodes) in a circle; lines connect those with strong positive
correlations (Materials and Methods).

The GAN in Figure 4A shows positive correlations among 83 Reg genes for which
activity changed during NPC → NCC transition (results summarized in Figure 4D). These
genes formed a smaller GAN in NCCs, with 9-fold fewer connections (Figure 4A, middle)
and a decrease of 59% in the clustering coefficient. Although all 83 genes were included in
the GAN for NPCTK−s, there was a 47% decrease in the number of neighbors compared to
that in NCCs and the clustering coefficient was 19% lower (Figure 4A, right; Figure 4D).
Thus, the reduction in nFGFR1 function disrupts the coordination of NSD gene activity.

The 131 most highly coordinated (r > 0.99) NSD genes in NCCs, whose expression
was influenced by nFGFR1 function, formed two GANs linked by PCDH15 and SEMA3D
(Figure 4B,D). In NPCs, the same 131 genes had >9-fold fewer connections and average
neighbors and a 27% lower clustering coefficient (Figure 4D). Thus, there were separate
GANs for NPCs and NCCs. More than 50% of the genes were excluded from the GAN
for NCCTK−s, with 78% fewer average neighbors and 27% lower clustering coefficient
(Figure 3D), while the remaining genes formed associations with only with a few other
genes and smaller GANs (Figure 4B). Thus, highly coordinated GANs in NPCs and NCCs
were deconstructed when nFGFR1 function was reduced, while new GANs were formed
(Figure S7A,B).

Ninety of the NSD genes whose activity was affected by constitutively active nFGFR1
function formed a single GAN in NCCs (Figure 4C,D). In NCCNLSs, this GAN had 33%
fewer connections, 25% fewer node neighbors, and an 11% lower clustering coefficient. On
the other hand, the overall GAN that formed in NCCNLSs had ~33% fewer connection and
node neighbors than the GAN in control NCCs (Figure S7C). Altogether, the data show
that any shift in nFGFR1 signaling deconstructs NSD GANs and promotes the formation of
the new GANs.
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and node neighbors than the GAN in control NCCs (Figure S7C). Altogether, the data 
show that any shift in nFGFR1 signaling deconstructs NSD GANs and promotes the for-
mation of the new GANs.

A：

Figure 4. Cont.
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D：

Figure 4. Correlation of the Reg NSD genes: circular network analysis of strongly positively corre-
lated (r > 0.99) genes. ; the strongest 20 correlated genes are marked red. (A) Gene activity network 
(GAN) formed by the 83 strongly correlated genes in NPCs and the GANs formed by those genes 
in NCCs and in NPCTK2s; 83 genes represent Reg genes whose average activity was altered by re-
duced nFGFR1 function. (B) GAN formed by 131 NSD genes strongly positively correlated in NCCs 
and GANs formed by those genes in NPCs and NCCTK2s; 131 genes represent Reg genes whose 
average activity was altered by reduced nFGFR1 function. (C) GAN formed by 90 NSD genes 
strongly positively correlated in NCCs and the GAN formed by those genes in NCCNLSs; 90 genes 
represent Reg genes whose average activity was altered by overexpression of nFGFR1. (D) Circular 
network characteristics for genes with strong positive correlations; ref, reference condition for a 
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2.8. Intra- and Intercluster Synchronization of Functionally Related GAN Genes

To investigate the biological consequence of gene coordination in the identified NSD
GANs, we first performed unsupervised hierarchical clustering to highlight the relationships
among specific genes. The gene functions (listed in Table S3A–C) were assigned based on
the analyses using g:Profiler sapiens and Reactome and are listed in Table S3A–C. Figure 5A
(top) shows that the 83 genes (listed in Table S3A) of the NPC GAN (see Figure 4A) formed
ten color-coded clusters, with five non-clustered connector (Ct) genes; genes in this GAN
are involved with mitochondrion-related apoptosis, mitotic cycle, cell adhesion, extracellular
matrix remodeling, and synapse formation (Table S3A). Several pathways were associated
with two or more clusters, such as pathways for nerve growth factor signaling, tropomyosin-
related kinase A, and mitogen-activated protein kinase signaling (clusters I, III, and VI),
clathrin-mediated endocytosis (clusters III, VIII, and X), Wnt signaling (clusters VII, VIII,
X, and connectors), Notch signaling known to prevent neuronal differentiation (clusters II
and X), and survival (three anti-apoptotic humanin genes were in cluster I, two in cluster
III, and one in cluster X). This organization indicates that the NPC GAN has genes with
complementing developmental functions via intra- and intercluster gene synchronization.
Many of the genes that formed the clusters in NPCs were organized in a markedly different,
less-coordinated (less-connected) manner in NCCs, and 45 of the genes were outside the
network, including genes 1, 2, and 4–8 (listed in Table S3), which had the most connections
(52) in NPCs (Figure 5A, middle).

The NPC network and clusters changed markedly when nFGFR1 function was reduced
(Figure 5A, bottom). For instance, genes from NPC clusters II, III, and IV became dispersed
throughout the NPCTK− network, indicating that nFGFR1 coordinates the expression of
genes important for cell adhesion, axon guidance, synaptic formation, mitochondrion-
related apoptosis, and Notch and neurotrophic tropomyosin-receptor kinase signaling.
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Figure 5. Clustered organization of coordinated GANs. (A) Clustered network formed by 83-gene 
NSD GAN in NPCs and its changes in NCCs and NPCTK2s. The NPC network formed nine clusters 
and eight non-clustered genes referred to as connectors (Cts) labeled with diferent colors. All genes 
and cluster assignments are listed in Table S3A. (B) Clustered network formed by the 131-gene NSD 
GAN in NCCs (Figure 3B) and networks of the same genes in NPCs and NCCTK2s. The NPC network 
formed 12 clusters and eight non-clustered connectors (Cts). Genes discussed in the text are listed 
in table inset. All genes are listed in Table S3B. (C) Clustered network formed by 90-gene GAN in 
NCCs (Figure 3C) and by the same genes in NCCNLSs (Figure 3C). The NCC network was composed 
of four clusters and 14 non-clustered connectors (Cts). All genes are listed in Table S3C.

Figure 5. Clustered organization of coordinated GANs. (A) Clustered network formed by 83-gene

NSD GAN in NPCs and its changes in NCCs and NPCTK−s. The NPC network formed nine clusters

and eight non-clustered genes referred to as connectors (Cts) labeled with different colors. All genes

and cluster assignments are listed in Table S3A. (B) Clustered network formed by the 131-gene NSD

GAN in NCCs (Figure 3B) and networks of the same genes in NPCs and NCCTK−s. The NPC network

formed 12 clusters and eight non-clustered connectors (Cts). Genes discussed in the text are listed in

table inset. All genes are listed in Table S3B. (C) Clustered network formed by 90-gene GAN in NCCs

(Figure 3C) and by the same genes in NCCNLSs (Figure 3C). The NCC network was composed of four

clusters and 14 non-clustered connectors (Cts). All genes are listed in Table S3C.



Int. J. Mol. Sci. 2024, 25, 5647 21 of 41

We then analyzed the GANs of the strongest positively correlated (r > 0.99) NCC genes
affected by reduced nFGFR1 function (131 genes) (Figure 5B, bottom; Table S3B); 20 of the
genes had significantly fewer connections (40.7 ± 1.52; p < 0.001) than in the NPC GAN
(Figure 5B, top; Table S3A). Additionally, 20 of the 90 genes that were strongly positively
correlated in NCCs and affected by nFGFR1 overexpression (Figure 5C, bottom; Table
S3C) had significantly fewer connections (34.93 ± 5.28; p < 0.0001) than in the NPC GAN
(51.05 ± 1.36, Figure 5B, middle; Table S3A). Thus, in general, the GAN was more complex
in NPCs than in NCCs.

The 131-gene NCC GAN consisted of 12 clusters plus eight non-clustered connector
genes (Figure 5B, top; Table S3B). Four genes encoding Wnt proteins and two Wnt signaling
genes were concentrated in clusters VI and XII, with the additional Wnt signaling genes in
clusters IV, V, and VIII. Nerve growth factor/neurotrophic tropomyosin-receptor kinase
signaling genes were associated with clusters I, III, and VI, and axon guidance genes were
associated with five clusters: one in cluster I, two in clusters II and X, four in cluster III, and
one was a connector gene. Multiple transcription regulators were represented in clusters
II–VI, VIII, and X–XII and two were connectors. Of the 131 NCC connected genes, 92 were
excluded from the GAN in NPCs; the remaining genes were dispersed throughout the
network (Figure 5B, middle). Thus, the NCC clusters form during NPC → NCC transition.

Reduction in nFGFR1 function fractured the NCC GAN into seven disconnected
networks, a single two-gene pair, and 13 disconnected genes (Figure 5B, bottom). The
latter included transcription factor genes PAX7 (node #8), MYC (#114), and LEF1 (#128),
SLFN13 for RNA processing (#70), lncRNA DIO30S (#97) known to be associated with
glioma, PCDH15 for a protocadherin (#120), LRP2 encoding a lipoprotein-receptor-related
protein (#66), RTN1 for a reticulon (#123), PRKCH encoding protein kinase C (#54), PLG2
for a plasminogen (#62), and USH1G for a scaffolding protein (#85). The remnants of the
highly coordinated NCC clusters I–III either separated from the main cluster (note the
spread of red, green, and yellow nodes) or remained in the group in reduced numbers.
Hence, reducing nFGFR1 function in NCCs disrupts a highly synchronized clustered GAN.

The NCC network formed by the 90 genes affected by nFGFR1 overexpression formed
four clusters with 14 connector genes (Figure 5C, top; Table S3C). A striking feature in this
network is the grouping of 17 genes for transcription factors in a single cluster (cluster
IV). In NCCNLSs, small networks of two to four connected nodes formed outside the main
network (Figure 5C, bottom), and 14 genes were disconnected from the network: from
cluster I, SYT13 for synaptotagmin (node #72), NR4A2 for a transcription factor (#74), and
S100B for nuclear signaling (#85); from cluster II, PRKCH for G-protein coupled receptor
signaling (#59), and genes encoding protocadherin for axon guidance-cell contact (#60)
and synaptotagmin (#90) involved in synapse formation; cluster III, SNPH for control of
mitochondrial function (#47), TNFRSF21 for a tumor necrosis factor receptor for control of
apoptosis (#53), a gene for synaptic neuromedin (#71), BARLH2 encoding a transcription
factor (#78), and EID1 for a global transcription coregulator (#84). Genes from cluster
IV were dispersed throughout the NCCNLS network, connected by longer edges (less
coordinated), and forming fewer edges than in control NCCs: two genes from cluster IV
encoding transcription factors, FOS (#10) and NR4A3 (#15), were no longer connected
with other network genes. Hence, excessive nFGFR1 signaling alters the formation of a
synchronous network of genes of complementary neurodevelopmental functions.

We also analyzed changes in the strengths of the positive interactions between selected
gene pairs critical for neural development by comparing their correlation coefficient values
in the experimental groups. In general, the interactions observed in NPCs were absent in
NCCs, and vice versa. Furthermore, many of the positive correlations were eliminated or
altered by shifts in nFGFR1 function (Table S4A–C).
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2.9. Cross-Coordination of Transcription Factor Genes and Neurodevelopmental Genes Is Changed
during NPC → NCC Transition and Influenced by nFGFR1

In the feed-forward-and-gate model [6], nFGFR1 controls neurodevelopmental genes
directly by targeting their promoters as well as indirectly by targeting and regulating
promoters of the upstream TF transcription factor genes. Hence, we next examined if
nFGFR1 controls cross-correlation between diverse transcription factor genes and other
neurodevelopment genes. We focused on a subgroup of the 4646 Reg genes (whose activity
changed during NPC → NCC transition) that had the strongest correlation (r > ±0.96)
between neurodevelopmental and transcription factor genes (Figure 6). In NCCs, the
numbers of these strongly correlated gene pairs increased 2.5-fold for those with r values >
+0.96 and 1.7-fold for those with r values < −0.96; the ravg (−0.145) shifted significantly to
a positive value (+0.0816). Both the numbers of pairs and ravgs were reduced in NCCTK−s
and in NCCNLSs (Figure 6B). Entropy of the cross-correlation matrices (Figures 6 and S8)
changed positively in NPCTK−s versus NPCs, in NCCTK−s, and in NCCNLSs versus NCCs.
Thus, nFGFR1 promotes synchronization of neurodevelopmental and transcription factor
genes.

Figure 6A shows a heat map of the strongly correlated transcription factor genes and
neurodevelopmental genes in NCCs. Genes for transcription factors such as CREB and the
families of EGR, Fos, Fox, GLIS, HES, Jun, Sox or TEADs, and ZNF display similar patterns
of coordination (positive or negative) similar to those for with the neurodevelopmental
genes; these are referred to as group I. The pattern of cross-correlations formed by transcrip-
tion factors of the ZNF family, ZBTB, and ZFP (referred to as group II) were mostly opposite
to that of group I. These distinct patterns were largely absent in NPCs, which suggests that
transcription factors in groups I and II act in concert to program the neurodevelopmental
genes during NPC → NCC transition. However, the functions of groups I and II appear to
be opposite. The mirror-like patterns of the NCC gene cross-coordination were disrupted
in NCCTK−s and in NCCNLSs (Figure 6A).

In NPCs, genes for a diversity of transcription factors cross-coordinated with those encod-
ing humanin-like neuroprotective mitochondrial proteins located on different chromosomes:
MTRNR2L4 (Ch 16), neuroprotective MTRN2RL8 (Ch 11), and MTRN2RL6 (Ch 7). This pattern
was disrupted in NPCTK−s (Figure 6A).

An analysis of transcription factor and neurodevelopmental genes of the entire popu-
lation of 4646 Reg genes (Figure S8) verified that the numbers of positively or negatively
cross-correlated gene pairs doubled, their ravg values were significantly higher in NCCs
than in NPCs, and both were reduced with diminished nFGFR1 function. The average
negative cross-correlation in NCCs was also reduced by nFGFR1 overexpression.

We conclude that the synchronized cross-coordination of the transcription factor genes
with their effector neurodevelopmental genes depends on the developmental stage and is
dictated by nFGFR1 (i.e., affected by diminished nFGFR1 function in NPCs and NCCs and by
overexpression of nFGFR1 in NCCs). Thus, any shift in nFGFR1 signaling leads to the formation
of less-organized (higher entropy) transcription factor neurodevelopmental gene systems.
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Figure 6. Cross-correlation of transcription factor genes with neurodevelopmental genes. (A) Heat 
maps show cross-correlations of gene pairs among the 4.646 Reg genes. Panels are shown combined 
in Figure S8. (B) Results from quantitative analyses of strongly correlated (red, r > +0.96; blue, r < 
20.96) gene pairs of * p < 0.05; *** p < 0.001; S, entropy; ΔS, entropy change.

2.10. GANs Comprise Recurring Coordination Modules (RCMs): The Distribution of RCMs 
Changes during NPC → NCC Transition and Is Programmed by nFGFR1

The directional now of information through the cascades of transcription factor genes 
in gene regulatory networks proceeds through a relatively small set of recurring simple 
regulator motifs [30], which are organized into dense overlapping regulons to underwrite 
genome regulatory function. These recurring simple regulator motifs were identioed with 
open-source software developed by Kashtan et al. [31]. To determine whether nondirec-
tional gene coordination in GANs also involves recurring coordination modules, we used 
FANMOD software (fanmod-windows.zip) [32], which detects motifs as paterns that oc-
cur more frequently in a given network than in random networks of the same size and 
with the same connectivity properties. The software accepts network data (list of the in-
teractions between diferent genes) and outputs the recurring motifs within the network. 
Given the limitations of the available computational power, we investigated motifs com-
posed of three to six gene nodes. The signiocantly overrepresented RCMs are listed in 
Supplementary Materials along with their entropy values.

To analyze the distribution of the RCMs in NPC and NCC GANs, we binned the 
RCMs on the basis of their complexity (number of edges). The frequency data were con-
verted to a logarithmic scale to analyze paterns among the groups. The best trend line for 
six nodes was graphed (Figure 7A,B); separate graphs for three to six nodes are available 
in Figure S9A,B. A Shapiro3Wilk test showed that the RCM frequency curves in NCC and 
NPC GANs were not normally distributed; therefore, a nonparametric Wilcoxon rank sum 
test was applied and showed that (i) the RCM distribution in the NPC GAN (6-node RCM, 
Figure 7A; and 3- to 6-node RCMs, Figure S9A) was signiocantly diferent from the distri-
bution in the NCC or NPCTK2 GAN, and (ii) the RCM distribution within the NCC GAN 
(6-node RCM, Figure 7B; and 3- to 6-node RCMs, Figure S9B) was signiocantly diferent 
from the distribution in the NPC or NCCTK2 GAN.

Figure 6. Cross-correlation of transcription factor genes with neurodevelopmental genes. (A) Heat

maps show cross-correlations of gene pairs among the 4.646 Reg genes. Panels are shown combined in

Figure S8. (B) Results from quantitative analyses of strongly correlated (red, r > +0.96; blue, r < −0.96)

gene pairs of * p < 0.05; *** p < 0.001; S, entropy; ∆S, entropy change.

2.10. GANs Comprise Recurring Coordination Modules (RCMs): The Distribution of RCMs
Changes during NPC → NCC Transition and Is Programmed by nFGFR1

The directional flow of information through the cascades of transcription factor genes
in gene regulatory networks proceeds through a relatively small set of recurring simple
regulator motifs [30], which are organized into dense overlapping regulons to underwrite
genome regulatory function. These recurring simple regulator motifs were identified with
open-source software developed by Kashtan et al. [31]. To determine whether nondirec-
tional gene coordination in GANs also involves recurring coordination modules, we used
FANMOD software (fanmod-windows.zip) [32], which detects motifs as patterns that occur
more frequently in a given network than in random networks of the same size and with the
same connectivity properties. The software accepts network data (list of the interactions
between different genes) and outputs the recurring motifs within the network. Given the
limitations of the available computational power, we investigated motifs composed of three
to six gene nodes. The significantly overrepresented RCMs are listed in Supplementary
Materials along with their entropy values.

To analyze the distribution of the RCMs in NPC and NCC GANs, we binned the RCMs
on the basis of their complexity (number of edges). The frequency data were converted
to a logarithmic scale to analyze patterns among the groups. The best trend line for six
nodes was graphed (Figure 7A,B); separate graphs for three to six nodes are available in
Figure S9A,B. A Shapiro–Wilk test showed that the RCM frequency curves in NCC and
NPC GANs were not normally distributed; therefore, a nonparametric Wilcoxon rank
sum test was applied and showed that (i) the RCM distribution in the NPC GAN (6-node
RCM, Figure 7A; and 3- to 6-node RCMs, Figure S9A) was significantly different from
the distribution in the NCC or NPCTK− GAN, and (ii) the RCM distribution within the
NCC GAN (6-node RCM, Figure 7B; and 3- to 6-node RCMs, Figure S9B) was significantly
different from the distribution in the NPC or NCCTK− GAN.
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Figure 7. Recurring coordination modules (RCMs). Six-node RCMs overrepresented in GANs formed

by the NSD genes: the relationships between complexity (measured by number of edges), entropy,

and the frequency of RCMs. (A) RCMs of the NPC 83-gene GAN (Figures 3A and 4A) are compared
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to RCMs formed by the same genes in NPCTK−s and NCCs. The average entropy (Savg) values were

calculated for low-complexity (6 edges), medium-complexity (7–12 edges), and high-complexity

(13–15 edges) RCMs. (B) RCMs of the NCC 131-gene GAN (Figures 3B and 4B) are compared to

the same genes in NCCTK−s and NPCs. The Savg values were calculated for medium- and high-

complexity RCMs. (C) Modeling RCMs as information-transferring electrical circuits. Equivalent

electrical circuit for the 6- and 14-node circuits is based on R-L-C circuit theory, which defines a

source connected to resistor (R), inductor (L), and capacitor (C). While R, L, and C are connected in

series with the source, the output voltage (energy) is measured across C. While the L/C ratio defines

oscillations, the R acts as a dampener for the circuit. For the drawn circuit, the more-connected

14-edge network has a lower net inductance, while R and C remain constant. The circuit’s lower

L causes more-dampened oscillations. (D) The R-L-C response to transient stimulus: the effect of

six-node topology on the dampening of the response. The topology of six-node circuits was used

to calculate the output response. The less-connected circuits exhibit lower dampening of the circuit

activity changes at the onset and offset of the stimulus impulse. The more-connected R-L-C circuit

exhibits higher dampening in response to the stimulus. (E) Effect of the motif complexity on signal

transmission. (Left) Two levels of cascading between two identical motifs. (Right) Lines show the

signal arriving in the second motif and its oscillation (noise) dampening. The six-edge motif generates

an under-dampened response, with the information corrupted by noise. The ten-edge motif exerts

critical dampening with no signal loss. The 14-edge motif over-dampens the signal—the information

is lost.

The 83-gene NSD GAN of NCCs B and Figure 4B) formed six-node RCMs of low
complexity (3–6 edges) with intermediate entropy (Savg = 0.893), RCMs of medium com-
plexity (7–12 edges) with high entropy (Savg = 0.9729), and RCMs of high complexity (13–15
edges) with low entropy (Savg = 0.7555) (Figure 6A). The frequency of RCMs in NPCs
declined between the low- and high-complexity RCMs (from the simple 5-edge RCM to the
most complex 15-edge RCM). After the transition to NCCs, the medium-complexity/high-
entropy RCMs became less frequent, and the formation of medium-complexity/high-
entropy and high-complexity/low-entropy RCMs was reduced in NPCTK−s. Thus, in the
NPC GAN, nFGFR1 promotes the formation of medium-complexity/high-entropy and
high-complexity/low-entropy RCMs.

The 131-gene GAN of NCCs (Figures 3B and 4B) formed six-node RCMs of medium
complexity (7–12 edges) with high entropy (Savg = 0.9789) and RCMs of high complexity
(13–15 edges) with low entropy (Savg = 0.7798). However, unlike the NPC GAN, the NCC
GAN did not contain low-complexity (3–6 edges)/intermediate-entropy RCMs. There
were fewer occurrences of the NCC medium-complexity/high-entropy RCMs and the
high-complexity/low-entropy RCMs in NPCs, indicating that these NCC RCMs form
largely during the NPC → NCC transition. Frequencies of the medium-complexity/high-
entropy NCC RCMs were reduced markedly in NCCTK−s. Thus, in the NCC GAN, nFGFR1
promotes the formation of medium-complexity/high-entropy RCMs.

The patterns noted above were reproduced for three-node to six-node RCMs analyzed
together (Figure S9A,B), further demonstrating the role of nFGFR1 in the formation of
medium-complexity/high-entropy and high-complexity/low-entropy RCMs in NPCs and
medium-complexity/high-entropy RCMs in NCCs.

2.11. Modeling RCMs as Information-Processing Circuits: RCMs Influence Regulatory Noise and
Signal Transmission

The dynamics of gene activity responses are an inherent source of noise during activity
oscillations [33]. One potential role of the RCMs is to mitigate this problem. To examine
this, we modeled the signal (information)-processing functions of RCMs as an equivalent
electrical R-L-C circuit, with an individual gene-node acting as an inductor (L), resistor
(R), and capacitor (C) (Figure 7C). Alternatively, the functions could be modeled as an
equivalent mechanical system (see Figure S10C). In an electrical circuit, R causes a loss
of supplied energy (and restricts the flow); in the genome function circuit, R reflects the
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innate resistance of gene promoters and epigenomic modifications. In an electrical circuit,
L is a phasor element that initially blocks alternating current before sending it through
with an added phase/delay; in the genome function circuit, L reflects the time required to
evoke the change in activity of the next node (gene) in the network, causing a delay and a
change of phase. In the electrical circuit, C is also a phasor element and stores energy; in the
genome function circuit, C reflects mechanical energy stored in looped or supercoiled DNA
as well as subthreshold accumulation of an effector. In an electrical circuit, oscillations are
produced by L and C, which also decide the frequency and sensitivity to the oscillations.
Using transfer function (see Supplementary Materials, Computational Methods, Modeling
RCMs as information-processing resistor (R), inductor (L), capacitor (C) circuit) we can calculate
the transfer function of the network by cascading them as follows:

H(s1, s2...) = H(s1)H(s2)...

Figure 7D and Figure S10D illustrate the step responses of different complexity R-L-C
circuits (modeled on detected RCMs) to a transient stimulus according to R-L-C network
theory (see Supplementary text). The R-L-C model predicts that 14-node (edge) RCMs
will have lower effective L than 6-edge RCMs. More densely connected nodes (such
as 10- and 14-edge inductor networks in R-L-C circuits) have reduced L that decreases
oscillations, effectively increasing the overall dampening in the circuit. In a gene network,
a more interconnected gene could thus provide resilience to stimuli fluctuations and
regulate genomic functions by absorbing some of the energy from oscillations. Thus, highly
connected RCM genes may dampen the excess energy oscillations and thereby prevent
corruption of the information in GANs.

We next considered the transmission of signal (information) between the RCMs. For
simplicity, we considered transmission between identical RCMs (for detail, see Figure S11).
Figure 7E shows the dampening function of 6, 10, and 14 edges for a two-level RCM system
and the effect of such dampening on the flow of information into the next module. In a
low-dampened network (six edges), low “subcritical” levels of intramodular connectivity
are associated with excessive network noise, and although the information is transmitted,
it may be corrupted by node oscillations. The RCM with the highest “overcritical” connec-
tivity (16 edges) would dampen the noise but also diminish or eliminate the transmitted
signal, thereby blocking the flow of information. An intermediate “critical” state of in-
tramodular connectivity (10 edges) reduces network noise while allowing the transmission
of uncorrupted signal within the GAN.

The model illustrates the potential effects of intramodular connectivity on the com-
munications between the RCMs and, thus, the overall flow of information through the
GANs. As can be inferred from the graphs in Figure 7A,B and Figure S9A,B, nFGFR1
promotes the critical and overcritical connectivity in NPCs and critical connectivity in
NCCs. The influences of low dampening, critical dampening, and overcritical dampening
on information transfer are further illustrated in Figure S11B (video).

3. Discussion

The present study brings to the forefront the concept of the systems genome, in which
gene activities (i.e., during cell development) are coordinated under global control. This
control promotes moderate changes and counteracts extreme changes in gene activities.
This process is actively regulated by nFGFR1, which acts as a “band-pass filter” to maintain
genome activity within a set range (i.e., genome homeostasis).

Although studies of development tend to focus on genes with the greatest change in
activity, many more genes are subject to moderate up- or downregulation, and the majority
of genes do not change significantly their activity. These so-called “background bystanders”
were not considered active participants in genome regulation. The present study challenges
this view by revealing widespread coordination among expressed genes that is subject to
developmental regulation.
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3.1. Entropy-Based Genome Synchronization Model: Over-Synchronization in Schizophrenia

Genome homeostasis was associated with an enrichment of highly correlated (positively
and negatively) genes within the population of 16,167 genes expressed in NPCs and NCCs; gene
sets included 4646 Reg genes (whose expression was altered during NPC → NCC transition),
a subset comprising NSD genes, 11,136 nonReg genes (whose activity was not altered during
transition), and a subset of Reg–nonReg cross-correlated genes. In all these gene populations,
the distribution of gene coordination was significantly altered between NPCs and NCCs, with
an additional enrichment of highly correlated gene pairs in NCCs and different sets of NPC and
NCC genes forming the highly coordinated pairs.

Alterations in the frequencies of gene correlations (Figures 2A–D, 3A–E and S4–S6)
during NPC → NCC transition were associated with changes in overall correlation entropy
(summarized in Table S1). These findings inspired an entropy-based genome synchroniza-
tion model (Figure 8A) in which the activity of nonReg genes becomes more synchronized
(lowering their entropy) during the transition, while the activity of Reg genes becomes less
synchronized (increasing their entropy) but increasingly more cross-synchronized with the
activity of nonReg genes (lowering entropy). This process is driven by endogenous nFGFR1
and further augmented by an excess of nFGFR1. The nFGFR1-dependent cross-coordination
and cross-synchronization of the Reg–nonReg genes could potentially underwrite the
nFGFR1 band-pass filter-like control of genome function during NPC → NCC transition.
In general, with the lower entropy of Reg–nonReg gene cross-synchronization, nFGFR1
ensures more useful energy is available for other biological processes, such as global gene
regulation. By the same token, the increased entropy of Reg gene synchronization in NCCs
indicates that nFGFR1 raises their regulatory flexibility.processes, such as global gene regulation. By the same token, the increased entropy of Reg 

gene synchronization in NCCs indicates that nFGFR1 raises their regulatory nexibility.
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Figure 8. (A) Entropy-based genome synchronization model. (A1): in neural development (NPC → 
NCC transition), the global expressed genome becomes more synchronized, and the nonReg genes 
(whose average activity does not change) become more synchronized with each other (lower en-
tropy). The Reg genes (whose average activity changes) become less synchronized to each other but 
more synchronized to the nonReg genes. The model implies that the nonReg genes increasingly 
shape the regulation and homeostasis of the Reg genes. This process is controlled by nFGFR1, which 
makes the NCC Reg genes synchronize less with themselves and more with the nonReg genes. (A2): 
in schizophrenia, neuronal development in the brain is impaired and nFGFR1 expression is dysreg-
ulated. The population of Dysreg genes (genes with diferent average activity in NCCs from patients 
with schizophrenia compared to that in NCCs from control individuals) and the global expressed 
genome become more synchronized. The nonDysreg genes (whose activity is not diferent in schiz-
ophrenia and control NCCs) also become more synchronized with each other and with the Dysreg 
genes. The model implies that the nonDysreg genes shape the activity changes of the Dysreg genes 
and thus brain maldevelopment in schizophrenia. (B) nFGFR1 as a proportional-integral-derivative 
controller and band-pass olter. nFGFR1 maintains gene programming at an ontogenic setpoint by 
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genes (whose average activity does not change) become more synchronized with each other (lower

entropy). The Reg genes (whose average activity changes) become less synchronized to each other but

more synchronized to the nonReg genes. The model implies that the nonReg genes increasingly shape

the regulation and homeostasis of the Reg genes. This process is controlled by nFGFR1, which makes

the NCC Reg genes synchronize less with themselves and more with the nonReg genes. (A2): in

schizophrenia, neuronal development in the brain is impaired and nFGFR1 expression is dysregulated.

The population of Dysreg genes (genes with different average activity in NCCs from patients with

schizophrenia compared to that in NCCs from control individuals) and the global expressed genome

become more synchronized. The nonDysreg genes (whose activity is not different in schizophrenia

and control NCCs) also become more synchronized with each other and with the Dysreg genes. The

model implies that the nonDysreg genes shape the activity changes of the Dysreg genes and thus

brain maldevelopment in schizophrenia. (B) nFGFR1 as a proportional-integral-derivative controller

and band-pass filter. nFGFR1 maintains gene programming at an ontogenic setpoint by (i) assessing

the genome’s output through signals that converge on integrated nuclear FGFR1 signaling (INFS),

(ii) determining the difference between the setpoint and the measured output, and (iii) adjusting

coordinate gene activities (GANs) through the DNA topology and discriminating fold changes

(band-pass filter) such that genome programming closely matches the setpoint.

Changes in global genome coordination in schizophrenia affect neuron and brain
development, which can be modeled in NCCs and cerebral organoids derived from pa-
tient cells (induced pluripotent stem cells) [10]. nFGFR1 is dysregulated in NCCs from
patients with schizophrenia [7,10], which we observed in the present study as radically
increased gene coordination associated with the entropy-based changes, marking a global
genome over-synchronization (Figure 3E). The over-synchronization was observed among
the Dysreg and the nonDysreg genes and as an increased cross-synchronization of Dys-
reg and nonDysreg genes (Figure 3E and Table S1). Thus, in schizophrenia, genome
dysfunction in developing neurons generates a differently synchronized (generally over-
synchronized) global genome. The role of nFGFR1 in this process needs to be further
investigated. The augmented synchrony between Dysreg and nonDysreg genes raises the
“egg or hen” question about which is the primary cause of genome dysregulation and
etiology of schizophrenia (Figure 8A). An additional question raised is whether the global
dysregulation paradigm applies to other diseases, including many types of cancer in which
nFGFR1 is dysregulated [17,18,23,27] and thus could be targeted for new therapies.

In the systems genome proposed here, changes in gene synchronization during devel-
opment or in disease extend beyond the regulated genes to engage the entire genome. Such
an “entangled” global genome could act as a flexible coordinated system that responds
to developmental signals and is reprogrammed in disease. However, new approaches
to control the coordination of large populations of genes are needed to determine the
significance of these global changes in genome coordination. Perhaps targeting recently
identified genomic DNA-interacting sequences [19] and controlling chromatin interactions
in defined nuclear/chromatin loci (such as with novel optogenomic tools [10]) will bring
us closer to this challenging goal.

3.2. GANs

Highly coordinated genes were also overrepresented within the ontological Reg gene
subcategories, including NSD genes, which form different highly coordinated pairs in NPCs
and NCCs. For each set of genes, the circular layout in Cytoscape [29] facilitated an intuitive
representation of the connectivity and co-regulation among highly correlated genes, underlining
the influence of nFGFR1 functional changes on gene expression networks. This methodological
approach provided a robust framework for comparing gene activity under various experimental
manipulations, illustrating the pivotal role of nFGFR1 in regulating gene networks across
different cellular contexts. We refer to these as GANs to differentiate them from the directional
gene regulatory networks [30] that serve to transmit information (stimulation or inhibition) from
the first “receptive” genes to the final “effector” genes.
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Deconstruction of NPC GANs and construction of NCC GANs during transition were
represented in their circular networks, in which gene activity coordination was marked by
node connections. The deconstruction of NPC GANs was represented by reduced numbers
of gene neighbors and lower clustering coefficients (Figure 3A). They were replaced, how-
ever, by highly correlated GANs in NCCs, with more gene neighbors and higher clustering
coefficients (Figure 4B). The hierarchical networks show that GANs contain clusters of
functionally related genes representing different developmental pathways and subject to
intra- and inter-cluster coordination. The NPC clusters include genes for mitochondrion-
related apoptosis, mitotic cycle, cell adhesion, extracellular matrix remodeling, and synapse
formation. NGF, TRK, and MAPK signaling genes were highly coordinated in both NPCs
and NCCs. An interesting feature of the NCC GANs is the inclusion of genes for the
Wnt/FZD pathway, for transcription factors PAZ7 or MYCL1 centered around control of
neural development, and for TRM71, which regulates mitochondrial RNA and microRNA
biogenesis. Moreover, highly coordinated clusters comprise multiple transcription factor
genes, indicating that their coordinated actions are important for cell differentiation.

Shifts in nFGFR1 function in NPCs and NCCs were associated with extensive disrup-
tion or remodeling of the highly synchronized clustered GANs, indicating that nFGFR1
controls the formation of hierarchical gene networks. nFGFR1 coordinates the activities of
transcription factor genes with those of other developmental genes (Figure 5 and Figure
S8). For example, two groups of transcription factors in NCCs had miror-like patterns of
correlations with neurodevelopmental genes (group I and group II), indicating they exert
antagonistic positive and negative control of the neurodevelopmental genes (Figure 5).
These correlation patterns are set by the endogenous levels of nFGFR1, as they were de-
constructed by either diminished function or overexpression of nFGFR1. We conclude that
nFGFR1, which targets the promoters of many of the GAN genes, underwrites the coordi-
nate transcriptome by shifting the balance of positive and negative cross-coordination and
lowering the corresponding entropy.

In our investigation of NPC → NCC differentiation, we have focused primarily on
the bona fide neurodevelopmental pathways. Neurons produce and respond to a variety of
cytokines and other pro-inflammatory molecules which control their development [34] and
may play a role in schizophrenia [35]. The nFGFR1-controlled GANs include genes which
encode cytokine receptor TNFRSF21, signaling molecule ANKRD18DP, MAPK proteins,
Notch, WNT, and WNT receptors, all known to mediate actions of neuroinflammatory
proteins. Furthermore, in cerebral organoids, the iPSCs develop also to microglia, astrocytes,
and oligodendrocytes, all of which are controlled by FGFR [36–38] and may contribute
to the cortical maldevelopment in schizophrenia. For example, activation of microglia
by TNF leads to cortical malformations similar to those observed in the schizophrenia
organoids [38].

3.3. RCMs Are Kernels of GANs

In gene regulatory networks, simple integrative motifs (i.e., feedback motifs, feed-
forward-and-gate motifs, etc.) can combine into dense overlapping regulons that transduce
and often sustain irreversible developmental decisions; these combined motifs may persist
after the input signal has vanished [30]. Analogous to these integrative motifs, RCMs
of GANs may combine into larger genome groupings, which we call “coordinons.” We
modeled RCMs as R-C-L circuits, which enabled us to show that an increasing complexity
of RCMs progressively eliminates gene activity fluctuations and dampens activity noise
to ensure genome homeostasis. In the proposed model, an overly complex RCM acts as
a genome low entropy sink that extinguishes the incoming information flow, whereas a
less complex (critical complexity) higher entropy RCM allows the information to reliably
continue on while minimizing noise and thus disinformation (i.e., gene activity).

In NPCs, the RCM genomic sink promoted by nFGFR1 could maintain a nondif-
ferentiated state by resisting stimuli that extinguish cell renewal networks and initiate
differentiation. On the other hand, the critical complexity RCMs in NCCs promoted by
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nFGFR1 facilitate transmission of developmental signals across GANs to allow neuronal
differentiation while minimizing disinformation noise. Similar models have been proposed
for brain activity networks in which an overly complex network with low entropy is less
amenable to functional modification than a less complex, higher entropy network [39].

3.4. nFGFR1 Coordination of Gene Activities May Reflect Control of Genome Topology

The sprawling number of interactions among thousands of genes and non-genic
genome regions implies a vastly connected systems genome in which even distant groups of
genes can be physically connected and their activities coordinated [3,4,19]. The growing size
of the genome throughout evolution was likely accompanied by mechanisms to coordinate
the expression of genes at different loci, thereby counteracting dyscoordination and a rise
in entropy. One such mechanism has been linked to integrated nFGFR1 signaling, in which
the coordination of diverse signals enables concerted changes in gene activities [6,8,13].
FGFR1 has an atypical transmembrane domain that allows the newly translated receptor
to be released from the pre-Golgi membrane and translocated into the nucleus along with
its NLS-containing ligands where it associates with RNA co-transcriptional processing
of nuclear speckles [8] and targets thousands of chromatin sites [10,17,18,28,40]. Indeed,
nFGFR1 was recently shown to be enriched at topology-associated domains and DNA
loops and influence their formation along with CTCF [19]. Moreover, nFGFR1 binds and
activates a common transcriptional cofactor (CBP), thereby triggering diverse signaling
paths for a concerted global genome response [8].

3.5. Is nFGFR1 a Proportional-Integral-Derivative Controller?

By receiving feedback from a variety of receptors and signaling pathways, nFGFR1
could maintain homeostasis and modulate the genome responses akin to a proportional-
integral-derivative controller. In general, the proportional-integral-derivative controller
maintains a system setpoint by registering a system’s output and taking action to minimize
any departure from the setpoint. In our proposed model (Figure 8B), nFGFR1 maintains
genome responses at a specific setpoint: nFGFR1 registers the genome output through the
feedback signals that control integrative nFGFR1 signaling and coordinates GANs (gene–
gene coordination and fold changes) to match the evolutionary set point, thus maintaining
homeostasis of the global systems genome. Although nuclear translocation and functions
of FGFR1 are controlled by a variety of developmental signals (influenced by genome
activities), it is not known whether the actions of FGFR1 are proportional to the difference
between the setpoint and registered state.

In summary, the present investigation advances a systems genome paradigm in which
genes with small fold changes underscore the ontogeny, and their coordination with the
rest of the genome (including the nonReg genes) governs the genome’s responses. The
present study also advances the role of nFGFR1 as a global gene activity coordinator and a
band-pass filter that maintains gene activities and their developmental regulation within a
set homeostatic range. nFGFR1 does this by controlling the information noise and transfers
via the formation of RCMs and GANs.

4. Materials and Methods

4.1. Experimental Design

The RNA-seq databases generated in our earlier studies [7,10] were used in the analy-
ses of the present study. These experiments are summarized below.

4.2. Cell Cultures and Treatments

The analyses were performed using RNA-seq data sets [7] from homogenous cultures
of NPCs and NCCs differentiated from H9 human embryonic stem cells. To induce NCCs,
NPCs were treated with 20 ng/mL BDNF (Peprotech), 20 ng/mL GDNF (Peprotech), 1 mM
dibutyryl-cyclic AMP (Sigma), and 200 nM ascorbic acid (Sigma) [10] for 2 days. To study
the role of nFGFR1, recombinant DNA constructs encoding FGFR1 were used as previously



Int. J. Mol. Sci. 2024, 25, 5647 37 of 41

described in the earlier reports. The FGFR1 (SP-/NLS) construct was used in which the
signal peptide (SP) is replaced with a nuclear localization signal (NLS), for constitutive
active nuclear nFGFR1 that does not require NLS containing ligand for the nuclear translo-
cation [11,12]. To reduce nuclear nFGFR1 function, a dominant negative variant of the
nuclear receptor, FGFR1 (SP-/NLS) (TK-), was used, generated by deleting the C-terminal
tyrosine kinase domain (TK-); the construct competes with endogenous nFGFR1 for binding
with CBP and DNA targets, thus preventing nFGFR1-regulated transcription [11].

NPCs were transfected with a control β-galactosidase-expressing plasmid, dominant
negative FGFR1 (SP-/NLS) (TK-) (abbreviated as TK-), or constitutively active FGFR1
(SP-/NLS) (abbreviated as NLS). After 24 h, cells referred to as NPCs were incubated for
48 h in non-differentiating medium, whereas the cells referred to as NCCs were incubated
for 48 h in neuronal differentiation medium with cAMP, BDNF, and GDNF.

Figure S1A provides a summary of the five conditions: NPC, NPCTK−, NCC, NCCTK−,
and NCCNLS. Experiments were performed using three biological samples from separate
cell culture and transfection experiments, and the average gene expression was calculated
from three independent biological samples [7]. RNAs of 4636 genes showed significant
differences in expression between NCCs and NPCs (and thus are referred to as regulated
[Reg] genes). Within this group of Reg genes, 332 genes showed significant difference
in expression between NPCs and NPCTK−s, 861 genes showed significant difference in
expression between NCCs and NCCTK−s, and 440 genes showed significant difference in
expression between NCCs and NCCNLS s. These results were included in our previous
report [7], and the RNA-seq data were deposited in NCBI GEO with accession code
GSE103307.

To analyze changes in gene expression in differentiating NCCs under conditions of
schizophrenia, we used RNA-seq data from the NCCs developed from induced pluripotent
stem cells from four patients with schizophrenia having different genetic abnormalities and
from four control individuals (GSE92874) [10]; 1349 RNAs from all 15,279 expressed genes
showed a significant difference in expression (and thus are referred to as schizophrenia
dysregulated [Dysreg] genes) [10].

In both data sets, changes in gene expression were quantified as logarithmic fold
change. In both studies, the significant differences were identified as having a false-
discovery rate q value of <0.05 [7,10].

4.3. Analysis of the Coordination of Gene Activities

We assessed the coordinated expression of genes by using RNA-seq data from three
independent biological samples. The data were first standardized with a z-score to have a
mean of 0 and standard deviation of 1 (example, Figure S1C). Coordination was quantified by
the Pearson correlation coefficient (r) ranging from −1 to +1, thus providing both magnitude
and direction of the coordinated expression. Positive correlations describe gene pairs whose
expression activities were both suppressed or enhanced during the transition, whereas negative
correlations describe gene pairs whose expression activity changed in opposite directions. The
differences between the analyzed groups were evaluated with χ2 tests.

4.4. Computational Methods and Statistical Analysis

Computational methods are detailed in Supplemental Materials and in Section 4.5
Statistical analyses were performed as referred in the text, and included t tests, ANOVAs,
χ2 tests, the Kolmogorov–Smirnov test of normality, and nonparametric Wilcoxon rank
sum tests.

4.5. Complex Network Analyses

Cytoscape is an open-source platform designed to visualize complex networks and
integrate them with various types of attribute data [29]. We used Cytoscape to calculate the
complex network characteristics including the clustering coefficient, which is the degree
to which nodes tend to cluster. The circular graph layout in Cytoscape aims to enhance
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the visualization of group and tree structures within a network. This layout algorithm
employs a method of partitioning the network based on connectivity data, organizing
these partitions into distinct circles. In Cytoscape, we assessed the connectivity structure
of the network—nodes and their links (edges)—to form clusters that are then visually
separated into circles. This clustering is typically based on connectivity metrics, such as
node degree or betweenness centrality, which determine how nodes are grouped together.
The hierarchical layout is designed to depict the main direction or flow within a network,
which is useful for illustrating data with inherent directional or hierarchical relationships
(e.g., gene regulatory networks). Nodes are placed on different layers, with the goal of
minimizing the number of crossings between edges that connect these nodes. This involves
sorting nodes within each layer in a way that aligns outgoing edges downward to the
next layer with minimal crossing which includes layer assignment, crossing reduction, and
coordinate assignment steps.

We used the following circular network characteristics from Cytoscape [29] (see Sup-
plementary Materials for further details).

Number of Nodes and Edges: These are the fundamental units of a network, representing
entities and their connections, respectively.
Average Number of Neighbors: This metric calculates the average connectivity of nodes,
reflecting the typical structural environment of a node within the network.
Network Diameter: Defined as the longest shortest path between any two nodes in the
network, this metric indicates the “largeness” of the network’s scope.
Shortest Path Length (Characteristic Path Length): This is a key metric in network theory,
indicating the minimum path length between two nodes, and is crucial for understanding
the efficiency of network connectivity. The average of these shortest paths across all pairs is
the characteristic path length.
Clustering Coefficient: This metric describes the likelihood that nodes adjacent to any
given node are also connected to each other, forming a cluster.

The clustering coefficient for a node n in an undirected network is mathematically
expressed as:

Cn =
2en

kn(kn − 1)

Here, kn represents the number of neighbors of n, and en is the number of edges that
exist between all pairs of neighbors of n.

In directed networks, the formula for the clustering coefficient adjusts slightly:

Cn =
en

kn(kn − 1)

For both types of networks, the clustering coefficient, Cn, is essentially a ratio, N
M ,

where:

- N is the actual number of edges among the neighbors of n;
- M is the total possible number of edges that could exist among the neighbors.

This coefficient is a value that ranges from 0 to 1, representing the extent to which
nodes in a network cluster together. A value of 0 indicates no clustering, while a value of 1
denotes maximum clustering.

Network Density: This normalized metric reflects the ratio of actual connections to possible
connections in the network, providing insight into how densely the network is populated
with edges.
Connected Components: A measure of the network’s overall connectivity, indicating how
many sub-networks exist that are not interconnected.
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Abbreviations

GAN gene activity network

RCM recurring coordination module

R-C-L resistor-capacitor-inductor electrical circuit

nFGFR1 nuclear form of FGFR1

FGFR1(SP-/NLS) recombinant constitutively active nuclear FGFR1

FGFR1(SP-/NLS)(TK-)
recombinant dominant negative nuclear FGFR1 with tyrosine kinase

domain deleted

INFS Integrative NuclearFGFR1 Signaling

NPC neural progenitor cell

NPCTK− NPC transfected with FGFR1(SP-/NLS)(TK-)

NCC neuronal committed cell (early neurons, differentiated from NPCs)

NCCTK−
NPC transfected with FGFR1(SP-/NLS)(TK-) and stimulated to

differentiate to NCC

NCCNLS NPC transfected with FGFR1(SP-/NLS) and stimulated to

differentiate to NCC

NSD nervous system development (GO category)

Reg
regulated genes whose average activity changes during

NPC → NCC transition

nonReg
non-regulated genes whose activity does not change during

NPC → NCC transition

Dysreg
genes whose activity is dysregulated in NCCs derived from

schizophrenia patients

nonDysreg
genes whose activity is not dysregulated in NCCs derived from

schizophrenia patients
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