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Nonlinear hydroelastic waves along a compressed ice sheet lying on top of a
two-dimensional fluid of infinite depth are investigated. Based on a Hamiltonian
formulation of this problem and by applying techniques from Hamiltonian perturbation
theory, a Hamiltonian Dysthe equation is derived for the slowly varying envelope of
modulated wavetrains. This derivation is further complicated here by the presence of cubic
resonances for which a detailed analysis is given. A Birkhoff normal form transformation
is introduced to eliminate non-resonant triads while accommodating resonant ones. It also
provides a non-perturbative scheme to reconstruct the ice-sheet deformation from the wave
envelope. Linear predictions on the modulational instability of Stokes waves in sea ice are
established, and implications for the existence of solitary wave packets are discussed for a
range of values of ice compression relative to ice bending. This Dysthe equation is solved
numerically to test these predictions. Its numerical solutions are compared with direct
simulations of the full Euler system, and very good agreement is observed.
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1. Introduction
This paper is devoted to the study of hydroelastic waves describing the deformations of an
ice sheet floating on water, a problem of importance in the polar regions. It is part of a large
class of hydroelasticity problems concerning the interaction between deformable bodies
and a surrounding fluid, and it has many engineering and industrial applications. A major
challenge concerns modelling the mutual interactions between sea ice and water waves.
On one hand, the presence of sea ice affects the wave dynamics in various different ways.
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On the other hand, waves can deform the sea ice, move it vertically and horizontally, and
possibly break it up. There is a large literature on linear models, valid for small-amplitude
waves and small ice deflections, which have focused on quantifying wave attenuation due
to sea ice via scattering or other dissipative processes (Chen, Gilbert & Guyenne 2019;
Squire 2020). In this framework, a multitude of configurations have been considered,
including a continuous ice cover or a fragmented ice cover made of multiple discrete floes
with possibly different characteristics.

However, intense wave-in-ice events have been reported and their analysis suggests
that linear theory is not sufficient to explain these observations (Marko 2003). It is also
expected that, in the context of climate change, the proliferation of open water (or more
compliant sea ice) in the polar regions will promote wave growth with larger amplitudes
and stronger nonlinear effects. Motivated in part by these considerations, nonlinear theory
has drawn increasing attention in recent years, with an emphasis on describing nonlinear
ice deformations subject to water wave excitation. Such studies have typically represented
the ice cover as a continuous elastic plate of infinite extent, with various effects depending
on the complexity of the elasticity model. Their results range from direct numerical
simulations of the full nonlinear equations to weakly nonlinear predictions in asymptotic
scaling regimes of interest, for freely evolving wave solutions or generated by a load
moving on the ice (Dinvay, Kalisch & Părău 2019). Nonlinear dissipative models for
wave attenuation in sea ice have also been investigated recently (Guyenne & Părău 2017;
Alberello & Părău 2022; Alberello, Părău & Chabchoub 2023; Slunyaev & Stepanyants
2024).

We are interested here in the modulational regime where approximate solutions are
sought in the form of slow modulations of near-monochromatic waves. In this case,
perturbation calculations typically yield the nonlinear Schrödinger (NLS) equation which
governs the nonlinear dispersive behaviour of the slowly varying wave envelope at leading
order. The NLS equation is a canonical reduced model that arises in many areas of
nonlinear science. Aside from its relative simplicity, its popularity owes much to its many
mathematical properties, including a Hamiltonian formulation and exact travelling wave
solutions such as envelope solitons.

Recent findings from both field observations and direct numerical simulations support
the relevance of this modulational regime for wave–ice interactions in the ocean (Xu &
Guyenne 2023). In particular, several sets of measurements from the Arctic Ocean have
found that groupiness is a common trait of the wave field under open-water and ice-covered
conditions (Gemmrich, Mudge & Thomson 2021). These observations even suggest that
the group structure is enhanced when waves interact with sea ice. Wave groups with their
inherent nonlinearity may be prone to wave focusing due to modulational instability and
may produce unusually large amplitudes (Collins et al. 2015), which has implications for
ice breaking and ice decline as well as for safety of ship navigation in the polar regions.
Furthermore, this modulational approximation is of interest to the related problem where
hydroelastic waves are induced by a moving load, having in mind, for example, frozen lakes
that are used in winter for roads and aircraft runways. Experiments in Lake Saroma by
Takizawa (1985) showed that a Ski-Doo snowmobile travelling at a certain speed generates
localized disturbances of appreciable amplitude, which bear resemblance to solitary wave
packets or envelope solitons.

For this hydroelastic problem, a body of work using modulation theory has developed
NLS models in a variety of configurations. Pioneering results have been obtained by
Liu & Mollo-Christensen (1988) and Marchenko & Shrira (1992), with the former
authors considering nonlinear effects from ice bending, compression and inertia based
on the Kirchhoff–Love (KL) formulation of a thin elastic plate, while the latter authors
1002 A24-2

1�
��

:

  

�7
2�7

�0
 �

��
��

�	
 �/

�
��

��
��

��
��

��
��

42:
1.

��
76

426
.�

�!
��

��
��

2�
0.

�

62

 .
�:

2�!
��

�.
::

https://doi.org/10.1017/jfm.2024.1161


A Hamiltonian Dysthe equation for hydroelastic waves

incorporated linearized versions of these effects (without inertia). Nonlinear models based
on KL theory have been widely used in both mathematical and numerical investigations.
Subsequent examples include Părău & Dias (2002) who examined the response of a
floating ice sheet to a moving load and derived a steady form of the NLS equation with a
forcing term. They showed that solitary wave packets exist for certain ranges of parameter
values. Milewski, Vanden-Broeck & Wang (2011) performed direct numerical simulations
of the forced and unforced wave dynamics, with a focus on solutions having near-minimum
phase speeds. They also produced asymptotic results based on a time-dependent NLS
equation that was found to be of defocusing type at this minimum (i.e. for small-amplitude
forcing) and was corroborated by the numerics. More recently, Slunyaev & Stepanyants
(2022) proposed another NLS equation with a more elaborate elasticity model and
identified in detail the domains of modulational instability for a broad range of physical
parameters. Unlike Milewski et al. (2011) or Părău & Dias (2002), they adopted an
extended version of the KL representation for ice bending and also included effects from
ice compression and inertia. A similar parametric analysis was conducted by Hartmann
et al. (2020) using the NLS equation of Liu & Mollo-Christensen (1988).

Alternatively, an important advance has been made by Plotnikov & Toland (2011) who
devised a thin-plate formulation based on the special Cosserat theory of hyperelastic shells,
coupled with nonlinear potential-flow theory for the fluid dynamics. A distinctive feature
of their model as compared with KL is a more nonlinear dependence of the bending
force exerted by the ice cover on the water surface, together with the fact that it has a
conservative form. This allows such a model to be framed within the classical Hamiltonian
formulation of the water wave problem by Zakharov (1968), providing a generalization
to nonlinear hydroelastic waves. A number of subsequent studies have adopted Cosserat
theory, including Guyenne & Părău (2012, 2014) and Milewski & Wang (2013) who
conducted a weakly nonlinear analysis in the modulational regime and recovered earlier
predictions from KL (Milewski et al. 2011) on the non-existence of small-amplitude wave
packets (i.e. a defocusing NLS equation at the minimum phase speed).

Beyond the NLS equation in this asymptotic limit, the next-order approximation as
originally proposed by Dysthe (1979) for surface gravity waves on deep water, has also
drawn much attention and has since been extended to other settings. This so-called
Dysthe equation has been shown to compare better with laboratory experiments and
direct numerical simulations than the NLS equation does for larger wave steepnesses.
For example, it can capture the asymmetry of evolving wave packets, whereas the NLS
equation is unable to do so (Guyenne et al. 2021). Another effect arising at this higher level
of approximation is the wave-induced mean flow which has an influence on the stability of
finite-amplitude waves. However, unlike the NLS equation, earlier versions of the Dysthe
equation lack a Hamiltonian structure that would comply with the primitive equations
(i.e. the Euler system). Because it is desirable that important structural properties such as
energy conservation be preserved for various reasons, recent effort has been devoted to
establishing a Hamiltonian version of the Dysthe equation. In particular, Craig, Guyenne
& Sulem (2021a), Guyenne, Kairzhan & Sulem (2022a) and Guyenne, Kairzhan & Sulem
(2022b) developed a systematic approach to derive Hamiltonian Dysthe equations for
water waves with or without a shear current by applying techniques from Hamiltonian
perturbation theory, which involve reduction to normal form, homogenization and other
canonical transformations. Such a reduction is achieved by eliminating non-resonant
triads according to the linear dispersion relation. As a byproduct of this approach,
the normal form transformation offers a non-perturbative procedure to reconstruct the
surface elevation from the wave envelope, via the solution of an auxiliary Hamiltonian
system of evolution equations. This contrasts with more standard techniques like the
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method of multiple scales where the reconstruction is implemented perturbatively via a
Stokes expansion. For hydroelastic waves, we are not aware of any previous report on a
(Hamiltonian or non-Hamiltonian) Dysthe equation from the literature.

Pursuing this line of inquiry, the present work is an extension of Guyenne & Părău
(2012) in several important directions. The starting point is a Hamiltonian formulation
for nonlinear potential flow, coupled with a nonlinear representation of the ice cover
based on Cosserat theory (Plotnikov & Toland 2011). Our viewpoint is motivated in
part by the significance of Zakharov’s Hamiltonian formulation which has formed the
theoretical basis for a countless number of results on nonlinear water waves ranging from
rigorous mathematical analysis to operational wave forecasting. The Dirichlet–Neumann
operator (DNO) is introduced to accomplish the reduction to a lower-dimensional system
in terms of surface variables, and its Taylor series expansion is exploited to carry out
the perturbation calculations. We focus on the two-dimensional problem of hydroelastic
waves on water of infinite depth. In this framework, our new contributions include the
following.

(i) Consideration of nonlinear models for both ice bending and compression, which is
a refinement over previous studies based on simpler elasticity models (Marchenko
& Shrira 1992; Milewski et al. 2011; Guyenne & Părău 2012; Milewski & Wang
2013). The competition between ice bending and compression can affect the
focusing/defocusing nature of this modulational regime, with implications on the
existence of solitary wave packets.

(ii) Derivation of a Dysthe equation for the wave envelope, with a well-defined
Hamiltonian structure and a conserved energy. This follows from a Birkhoff normal
form transformation which is given by the explicit solution of a cohomological
relation, involving an auxiliary system of integrodifferential equations in the Fourier
space. An additional difficulty here is the presence of resonant cubic terms due to
the more complicated dispersion relation.

(iii) Development of a splitting scheme in the Fourier space to handle these resonant
triads. Their detailed analysis leads to corrections in the normal form transformation
as well as in the envelope equation, especially for the mean-flow term. Such
corrections are absent in the pure gravity case (Craig et al. 2021a; Guyenne et al.
2022a) and differ fundamentally from previous adjustments to the Dysthe equation
in similar situations such as gravity-capillary waves (Hogan 1985).

(iv) Linear analysis of the modulational stability of Stokes waves in sea ice and
validation against numerical solutions of the Dysthe equation under these conditions.
A comparison with NLS predictions and with direct numerical simulations of the
full Euler system is also presented. For this purpose, the surface reconstruction
is accomplished in a non-perturbative manner by inverting the normal form
transformation.

The remainder of this paper is organized as follows. The hydroelastic problem under
consideration is described in § 2, including the Hamiltonian formulation in terms of
the DNO, the Taylor expansion for small-amplitude waves and the linear dispersion
relation. Section 3 examines the issue of cubic resonances and proposes a treatment in
this theoretical setting. Section 4 presents the basic tools from Hamiltonian perturbation
theory, focusing on the development of the Birkhhoff normal form transformation
to deal with resonant and non-resonant triads. The modulational ansatz for weakly
nonlinear quasimonochromatic waves is introduced in § 5, and the Dysthe equation with
its associated Hamiltonian is derived in § 6. Finally, § 7 gives an analytical prediction
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A Hamiltonian Dysthe equation for hydroelastic waves

on modulational instability, which is tested against numerical solutions of the Dysthe
equation. This model’s performance is also assessed relative to NLS computations and
direct simulations of the full Euler system. Results are discussed for a range of ice and
wave parameters.

2. Formulation of the problem

2.1. Equations of motion
We consider nonlinear hydroelastic waves propagating along an elastic sheet (e.g. ocean
waves in sea ice) on top of a two-dimensional ideal fluid of infinite depth. In the
thin-plate approximation, the ice sheet is assumed to coincide with the fluid surface
{y = η(x, t)} and to bend in unison with it. The fluid domain is then given by S(η) :=
{(x, y) : x ∈ R, −∞ < y < η(x, t)}. Assuming that the fluid is incompressible, inviscid
and irrotational, it is described by a potential flow such that the velocity field u(x, y, t) =
∇ϕ satisfies

∇2ϕ = 0, (2.1)

in the fluid domain S(η), where the symbol ∇ denotes the spatial gradient (∂x, ∂y).
On the surface y = η(x, t), we impose the standard kinematic condition

∂tη = ∂yϕ − (∂xη)(∂xϕ), (2.2)

as well as the dynamic boundary condition

∂tϕ = −gη − 1
2

(
∂2

x ϕ + ∂2
yϕ
)

− D
(
∂2

s κ + 1
2
κ3
)

− Pκ. (2.3)

This condition is derived from the Bernoulli balance of forces following Plotnikov &
Toland (2011) for the interaction between an elastic ice sheet and water beneath it, while
the compression term is proportional to the curvature of the fluid–ice interface. Here,
g is the acceleration due to gravity, D is the coefficient of flexural rigidity, P is the
coefficient of ice compression, κ is the curvature of the fluid–ice interface caused by the
plate deflection and s is the arclength along this interface. The curvature κ , in terms of η,
is given by

κ = ∂2
x η(

1 + (∂xη)2
)3/2 , (2.4)

so that the part in (2.3) that describes the bending of the ice sheet becomes

∂2
s κ + 1

2
κ3 = 1

√
1 + (∂xη)2

∂x

(
1

√
1 + (∂xη)2

∂x

(
∂2

x η(
1 + (∂xη)2

)3/2

))

+ 1
2

(
∂2

x η(
1 + (∂xη)2

)3/2

)3

. (2.5)

The boundary condition at the bottom reads

|∇ϕ| → 0, as y → −∞. (2.6)
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2.2. Hamiltonian formulation
Following Zakharov (1968) and Craig & Sulem (1993), the system of (2.2)–(2.6) has a
Hamiltonian formulation in terms of the variables (η, ξ), where ξ(x, t) = ϕ(x, η(x, t), t)
denotes the trace of the fluid velocity potential evaluated at the surface (Guyenne & Părău
2012).

Indeed, introducing the DNO for the fluid domain, which associates with the Dirichlet
data ξ on y = η(x, t) the normal derivative of ϕ at the surface with a normalizing factor,
namely

G(η) : ξ &→
√

1 + (∂xη)2∂nϕ

∣∣∣∣
y=η

, (2.7)

the equations of motion (2.2)–(2.3) are equivalent to the following canonical Hamiltonian
system:

∂t

(
η
ξ

)
=
(

0 1
−1 0

)(
∂ηH
∂ξH

)
, (2.8)

where the Hamiltonian H(η, ξ) is the total energy

H(η, ξ) = 1
2

∫

R
ξG(η)ξ dx + 1

2

∫

R

(

gη2 + D (∂2
x η)

2

(
1 + (∂xη)2

)5/2

− 2P
(√

1 + (∂xη)2 − 1
))

dx. (2.9)

The first integral is the kinetic energy, while the second integral is the potential energy
due to gravity, bending (or rigidity) and compression. The Hamiltonian H, together with
the momentum

I =
∫

R
η(∂xξ) dx, (2.10)

and the volume

V =
∫

R
η dx, (2.11)

are invariants of motion.
In Fourier variables, the system (2.8) preserves its canonical form. Indeed, denoting the

Fourier transform of f (x) by f̂k = (1/
√

2π)
∫

R e−i kxf (x) dx, we have

∂t

(
η̂−k

ξ̂−k

)

=
(

0 1

−1 0

)(
∂η̂k H

∂ξ̂k
H

)

, (2.12)

where we have used that (η̂−k, ξ̂−k) = ( ¯̂ηk,
¯̂
ξk) since η(x) and ξ(x) are real-valued

functions. Due to the conservation of volume (2.11), we can choose η̂0 = 0. In the
following, we drop the hats when denoting Fourier modes if there is no confusion.
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2.3. Non-dimensionalization
The ice parameters are defined by

D = σ

ρ
, σ = Eh3

12(1 − ν2)
, P = Ph

ρ
, (2.13a–c)

where ρ is the density of the underlying fluid, h is the thickness of the ice sheet, ν is
Poisson’s ratio for ice, E is Young’s modulus and P is the compressive stress. Numerical
values of these physical parameters are listed in table 1 of Părău & Dias (2002) for two
sets of experimental data. Introducing the characteristic length and time scales

) =
(
σ

ρg

)1/4
=
(
D
g

)1/4
, τ =

(
σ

ρg5

)1/8
=
(
D
g5

)1/8
, (2.14a,b)

respectively (Guyenne & Părău 2012; Xu & Guyenne 2023), the dimensionless equations
of motion follow (2.8) with Hamiltonian (2.9) modulo the change

P → Ph
√
σρg

= P
√

gD
, D → 1, g → 1, (2.15)

where the first dimensionless parameter measures the relative importance of compression
to gravity and rigidity. In typical physical situations, it is of order 1 (see for example Liu
& Mollo-Christensen (1988) for realistic values of physical parameters and a discussion
by Slunyaev & Stepanyants (2022)).

For convenience, we will use the same notations hereafter but it is understood
that all variables and parameters are now dimensionless according to this choice of
non-dimensionalization.

2.4. Taylor expansion of the Hamiltonian near equilibrium
It is known that the DNO is analytic in η (Coifman & Meyer 1985), and admits a
convergent Taylor series expansion

G(η) =
∞∑

m=0

G(m)(η), (2.16)

about η = 0. For each m, the term G(m)(η) is homogeneous of degree m in η, and can be
calculated explicitly via recursive relations (Craig & Sulem 1993). Denoting D = −i ∂x,
the first three terms are

G(0)(η) = |D|,

G(1)(η) = DηD − G(0)ηG(0),

G(2)(η) = −1
2

(
|D|2η2G(0) + G(0)η2|D|2 − 2G(0)ηG(0)ηG(0)

)
.





(2.17)

This in turn provides an expansion of the Hamiltonian near the stationary solution (η, ξ) =
(0, 0),

H(η, ξ) = 1
2

∫

R

[
ξG(0)(η)ξ + gη2 + D(∂2

x η)
2 − P(∂xη)

2 + ξG(1)(η)ξ

+ ξG(2)(η)ξ − 5
2
D(∂xη)

2(∂2
x η)

2 + 1
4
P(∂xη)

4 + · · ·
]

dx. (2.18)
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In Fourier variables, the above expansion can be written as

H = H(2) + H(3) + H(4) + · · · (2.19)

where each term H(m) is homogeneous of degree m in η and ξ . In particular, we have

H(2) = 1
2

∫ (
|k||ξk|2 + (g − Pk2 + Dk4)|ηk|2

)
dk,

H(3) = − 1
2
√

2π

∫
(k1k3 + |k1||k3|)ξ1η2ξ3δ123 dk123





(2.20)

and

H(4) = − 1
8π

∫
|k1||k4|(|k1| + |k4| − 2|k3 + k4|)ξ1η2η3ξ4δ1234 dk1234

+ 1
4π

∫ (
5D
2

k2
1k2

2k3k4 + P
4

k1k2k3k4

)
η1η2η3η4δ1234 dk1234, (2.21)

where we have used the compact notations (ηj, ξj) = (ηkj, ξkj), dk1...n = dk1 . . . dkn and
δ1...n = δ(k1 + · · · + kn), where δ(·) is the Dirac distribution δ(k) = (1/2π)

∫
R e−i kx dx.

The domain of integration is now omitted from all integrals and is understood to be R for
each xj or kj. Notice that the ice parameters P and D appear explicitly in the expressions
for H(2) and H(4), but not in H(3).

2.5. Dispersion relation
The linearized system for (2.8) around (η, ξ) = (0, 0) is

∂tη = |D|ξ,

∂tξ = −gη − P∂2
x η − D∂4

x η.

}

(2.22)

For

ω2(k) = ω2
k := |k|

(
g − Pk2 + Dk4

)
, (2.23)

equation (2.22) admits periodic plane-wave solutions

η(x, t) ∝ ei(kx−ωkt) and ξ(x, t) ∝ ei(kx−ωkt). (2.24a,b)

Equation (2.23) is known as the linear dispersion relation. By construction, for a particular
choice of P,D and k the value of ω2

k may be either positive or negative. When ω2
k is

positive, the solutions in (2.24a,b) are travelling waves since ωk ∈ R. On the other hand,
when ω2

k < 0, one has ωk ∈ i R, and therefore, the solutions in (2.24a,b) represent either
evanescent or growing waves due to the factor e±|ωk|t in the expressions of η and ξ .

For parameters P,D and k with ω2
k > 0, it is convenient to introduce the complex

symplectic coordinates which diagonalize the quadratic Hamiltonian H(2) in (2.20).
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A Hamiltonian Dysthe equation for hydroelastic waves

In the Fourier space, these are given by
(

zk
z̄−k

)
= 1√

2

(
ak i a−1

k
ak −i a−1

k

)(
ηk
ξk

)
, (2.25)

where a2
k := ωk/|k|. The quadratic term H(2) becomes

H(2) =
∫
ωk|zk|2 dk, (2.26)

while the cubic term H(3) takes the form

H(3) = 1
8
√

π

∫
(k1k3 + |k1||k3|)

a1a3

a2
(z1 − z̄−1)(z2 + z̄−2)(z3 − z̄−3)δ123 dk123, (2.27)

where z±j := z±kj and aj := akj . Moreover, since the mapping (2.25) is canonical
(Guyenne et al. 2022a), the full Hamiltonian system (2.12) becomes

∂t

(
zk

z̄−k

)
=
(

0 −i
i 0

)(
∂zk H
∂z̄−k H

)
. (2.28)

We note that the expressions (2.26) and (2.27) coincide in structure with the corresponding
formulae for the quadratic and cubic Hamiltonians in the case of deep-water surface waves
(Craig & Sulem 2016). This is because the parameters of ice rigidity and ice compression,
appearing in our problem, are hidden in the definitions of ωk and ak.

One finds the values of P when ω2
k is positive for any k by analysing the quartic

inequality

Dk4 − Pk2 + g > 0. (2.29)

Recall that g = 1 and D = 1 in dimensionless units. For a given P , one has ω2
k > 0 for

small or large k. When k takes moderate values, ω2
k could be negative. One can find the

zeros of ω2
k analytically but it is more convenient to plot the dispersion relation ω2

k as a
function of k for various values of the parameter P as shown in figure 1. Note that ω2

k
remains always positive whenever P < 2. When P = 2, ω2

k = 0 for k = 1. A detailed
analysis of the linear dispersion relation in terms of various physical parameters including
ice bending and compression can also be found in Schulkes, Hosking & Sneyd (1987).

We are interested in having ω2
k > 0 for all real values of k since we are looking for

travelling wave solutions, not evanescent or growing waves. Thus, throughout the paper,
we make the assumption

0 ≤ P < 2. (2.30)

3. Resonant triads

3.1. Existence of resonant triads
We now address the question of existence of non-zero resonant triads (k1, k2, k3) satisfying

k1 + k2 + k3 = 0, (3.1)

and at least one of the equations

ω1 ± ω2 ± ω3 = 0, (3.2)
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k
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0

1

2

Figure 1. Linear dispersion relation ω2(k) as a function of k for P = 0.1 (blue), P = 1 (red),
P = 2 (magenta), P = 5 (green).

where ωj stands for ωkj . To find all the possible triads satisfying (3.1)–(3.2), we consider
the following function:

d123 = d(k1, k2, k3) := (ω1 + ω2 + ω3)(ω1 + ω2 − ω3)(ω1 − ω2 + ω3)(ω1 − ω2 − ω3).
(3.3)

From the construction of d123, we have that (k1, k2, k3) is a resonant triad if and only if it
solves the system

k1 + k2 + k3 = 0,

d(k1, k2, k3) = 0,

kj /= 0, j = {1, 2, 3}.





(3.4)

The analogue of the system (3.4) was studied in detail by Craig & Sulem (2016) for surface
gravity water waves. In that case, due to the absence of physical parameters P and D, the
expression for d123 is much simpler and the computations can be performed by hand.
However, in the present case, it is difficult to solve (3.4) explicitly due to the complexity
of the dispersion relation (2.23) and the high degree of the polynomial function d123.

Furthermore, as shown in Craig & Sulem (2016), the function d123 appears together with
the constraint

k1k3 + |k1| |k3| /= 0. (3.5)

Therefore, we provide estimates for d123 under the constraint (3.5) and the assumption
k1 + k2 + k3 = 0.

LEMMA 3.1. Assuming sgn(k1) = sgn(k3) and k1 + k2 + k3 = 0, we have

d123 = k1k3d̃(k1, k3), (3.6)

where

d̃(k1, k3) := k1k3(k1 + k3)
2
(

3P − 5D(k2
1 + k1k3 + k2

3)
)2

− 4(g − Pk2
1 + Dk4

1)(g − Pk2
3 + Dk4

3). (3.7)
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A Hamiltonian Dysthe equation for hydroelastic waves

The function d̃ has the following symmetry properties:

d̃(k1, k3) = d̃(k3, k1) and d̃(k1, k3) = d̃(−k1, −k3). (3.8a,b)

Proof . The results are based on direct computations under the above assumptions. Below,
we provide a short overview of steps.

First, rewrite d123 as

d123 = (ω2
1 + ω2

3 − ω2
2)

2 − 4ω2
1ω

2
3. (3.9)

Observe that the second term on the right-hand side of (3.9) identifies with the second line
in (3.7). For the first term on the right-hand side of (3.9), we write

ω2
1 + ω2

3 − ω2
2 = g(|k1| + |k3| − |k2|) − P(|k1|3 + |k3|3 − |k2|3)

+ D(|k1|5 + |k3|5 − |k2|5). (3.10)

Given the assumptions, the first term vanishes since

|k1| + |k3| − |k2| = 0, (3.11)

and for the cubic terms, we have

|k1|3 + |k3|3 − |k2|3 = |k2|(k2
1 − k1k3 + k2

3) − |k2|3 = −3|k2|k1k3. (3.12)

Similarly, for fifth-power terms, we have

|k1|5 + |k3|5 − |k2|5 = −5|k2|k1k3(k2
1 + k1k3 + k2

3). (3.13)

Substituting these expressions back into (3.9), we obtain (3.6). The properties (3.8a,b) are
straightforward to verify.

Based on Lemma 3.1, finding resonant triads (k1, k2, k3) in (3.4) under the constraint
(3.5) is equivalent to finding the non-zero roots of the equation

d̃(k1, k3) = 0, with sgn(k1) = sgn(k3), (3.14)

where k2 = −k1 − k3. Solving (3.14) explicitly seems to be impossible due to the
complicated structure of d̃(k1, k3) in (3.7). Therefore, we find solutions to (3.14)
numerically. Since d̃ is invariant under sign change of variables, d̃(k1, k3) = d̃(−k1, −k3),
we only concentrate on the positive roots of (3.14) and the negative roots are found by
symmetry. Setting P = 1 for simplicity, the solution curve C+ for positive roots of (3.14)
is displayed in figure 2. A similar solution curve is present for other values of P < 2.
We note that the curve C+ is unbounded, has the k1- and k3-axes as asymptotes and never
intersects these axes. The negative roots of (3.14) are given by the solution curve C−, which
is obtained from C+ by symmetry with respect to the origin. Combining these curves, all
non-zero roots of (3.14) are given by

C := C+ ∪ C−. (3.15)

In our analysis later, various integrals involve expressions where the function d̃(k1, k3)
appears in the denominator. To avoid this ‘small divisors’ issue, we will restrict the integral
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Figure 2. Solution curve C+ (blue curve) for positive roots (k1, k3) of (3.14) and its neighbourhood C+
µ (grey

area) for P = 1.

to regions away from the solution curve C. To do so, we construct a neighbourhood of C,
referred to as Cµ, for sufficiently small µ, such that

|d̃(x, y)| ≥ const.µ, for all (x, y) ∈ R2\Cµ, (3.16)

where const.µ is a constant depending on µ only. More precisely, at every point (k1, k3) ∈
C+, denote a normal vector to C+ by n(k1, k3). Then, consider the set of points in the
(k1, k3)-plane given by

{
(k1, k3) + µ t n(k1, k3) : t ∈ [−1, 1] and (k1, k3) ∈ C+} , (3.17)

which geometrically looks like a ‘tube’ around the curve C+ with a width µ. We then
construct a neighbourhood of C+, denoted by C+

µ , as

C+
µ := {the set (3.17)} ∩ {(x, y) : x ≥ 0, y ≥ 0}. (3.18)

A sketch of C+
µ is shown in figure 2 for P = 1. The neighbourhood C−

µ for the curve C−

is constructed similarly, and can be seen as the reflection of C+
µ with respect to the origin.

Combining these sets, we get the neighbourhood of the set C in (3.15) as Cµ := C+
µ ∪ C−

µ .
We now provide formal arguments to show that (3.16) is satisfied for the set Cµ

constructed above. It suffices to show that (3.16) is satisfied on the boundary of C+
µ for

small values of k1, which corresponds to the far end of the neighbourhood in figure 2
located at the top left-hand corner. Then, the validity of (3.16) for all (x, y) outside Cµ

follows by continuity arguments and symmetry.
First, we note that, under assumption (2.30), the points (k1, k3) ∈ C satisfy k3 ≈

(4g/(25Dk1))
1/3 whenever k1 . 1. Indeed, from (3.7), it is clear that if k1 . 1 then
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A Hamiltonian Dysthe equation for hydroelastic waves

k3 / 1. As a result, for k1 . 1, we have

0 = d̃(k1, k3) ≈ 25D2k1k7
3 − 4gDk4

3 =⇒ k3 ≈
(

4g
25Dk1

)1/3
. (3.19)

Therefore, the normal vector of C+ for small values of k1 is approximately given by

n(k1, k3) =

(

k1, 3k4/3
1

(
25D
4g

)1/3
)

∥∥∥∥∥k1, 3k4/3
1

(
25D
4g

)1/3
∥∥∥∥∥

≈ (1, 0). (3.20)

The points on the boundary of C+
µ with k1 . 1 are

(0, k3) and (k1 + µ, k3), (3.21)
where k3 satisfies the estimate (3.19). Applying simple algebraic steps to (3.7), it can be
shown that the value of d̃(0, k3) under the assumption (2.30) is bounded away from zero
by ∣∣∣d̃(0, k3)

∣∣∣ ≥
∣∣∣d̃(0,

√
P/(2D))

∣∣∣ = g
D

(4gD − P2) > 0. (3.22)

To estimate the value of d̃(k1 + µ, k3) we use the Taylor expansion

d̃(k1 + µ, k3) ≈ d̃(k1, k3) + µ ∂k1 d̃(k1, k3) = µ ∂k1 d̃(k1, k3). (3.23)
Taking the derivative of (3.7) with respect to k1, we have

∂k1 d̃(k1, k3) = k3(3k1 + k3)(k1 + k3)
(

3P − 5D(k2
1 + k1k3 + k2

3)
)2

− 10k1k3(k1 + k3)
2
(

3P − 5D(k2
1 + k1k3 + k2

3)
)
D (2k1 + k3)

+ 4(2Pk1 − 4Dk3
1)(g − Pk2

3 + Dk4
3), (3.24)

which, under (3.19), is approximated by

∂k1 d̃(k1, k3) ≈ 25D2k7
3, (3.25)

whenever k1 . 1. As a result, the estimate in (3.23) takes the form
d̃(k1 + µ, k3) ≈ 25µD2k7

3, (3.26)
which is bounded away from zero as desired. Later in the analysis, the function d123 will
appear in the denominator and we will set µ = ε, where ε is the small parameter in the
modulational regime.

In view of (3.4) and (3.6), the set of resonant triads satisfying (3.1)–(3.2) is given by

R := {(k1, −k1 − k3, k3) ∈ R3 : (k1, k3) ∈ C}. (3.27)
The neighbourhood of R is defined by

Nµ := {(k1, −k1 − k3, k3) ∈ R3 : (k1, k3) ∈ Cµ}, (3.28)
as illustrated in figure 2. We also define a characteristic function χNµ(k1, k2, k3) supported
in the neighbourhood Nµ as

χNµ(k1, k2, k3) :=
{

1, if (k1, k2, k3) ∈ Nµ,
0, otherwise. (3.29)
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Figure 3. Phase speed c(k) (blue) and group speed cg(k) (red) as functions of k for (a) P = 1, (b) P = 2,
(c) P = 5.

3.2. Phase and group speeds
Assuming k > 0 without loss of generality (since ωk is an even function of k), the phase
speed associated with the linear dispersion relation (2.23) is given by

c(k) = ωk

k
=

√
g − Pk2 + Dk4

k
, (3.30)

while the group speed reads

cg(k) = ∂kωk = g − 3Pk2 + 5Dk4

2ωk
. (3.31)

It can be easily shown that, if the phase speed c has a local minimum at k = kmin, then
the phase and group speeds coincide at this minimum. The equation c = cg reduces to
g + Pk2 − 3Dk4 = 0 which is quadratic in k2. The only possible solution that is real and
positive takes the form

kmin =

√
P +

√
P2 + 12gD
6D

. (3.32)

In the flexural-gravity case (P = 0), this solution yields the well-known value kmin =
(g/(3D))1/4 (Guyenne & Părău 2012). Figure 3 shows the phase and group speeds for
values P = {1, 2, 5}.

4. Transformation theory
The method of Hamiltonian transformation theory has been previously applied to
deep-water irrotational gravity waves in two and three dimensions (Craig et al. 2021a;
Guyenne et al. 2022a), and waves with constant vorticity (Guyenne et al. 2022b) to derive a
Hamiltonian Dysthe equation for the envelope of the surface elevation. In all of these cases,
the set of resonant triads, satisfying the analogue of (3.2), is either empty or naturally ruled
out from the analysis. This is not the case in the present problem.
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A Hamiltonian Dysthe equation for hydroelastic waves

We recall that the Poisson bracket of two functionals K(η, ξ) and H(η, ξ) of real-valued
functions η and ξ is defined as

{K, H} =
∫ (

∂ηH∂ξK − ∂ξH∂ηK
)

dx. (4.1)

Assuming in addition that K and H are real-valued, the Poisson bracket takes the form

{K, H} =
∫ (

∂ηk1
H∂ξk2

K − ∂ξk1
H∂ηk2

K
)
δ12 dk12,

= 1
i

∫ (
∂zk1

H∂z̄−k2
K − ∂z̄−k1

H∂zk2
K
)
δ12 dk12. (4.2)

4.1. Canonical transformation
We first construct a transformation that eliminates non-resonant terms from the cubic
Hamiltonian (2.27). More precisely, we are looking for a canonical transformation of the
physical variables (η, ξ)

τ : w =
(
η
ξ

)
&−→ w′ =

(
η′

ξ ′

)
, (4.3)

defined in a neighbourhood of the origin, such that the transformed Hamiltonian satisfies

H′(w′) = H(τ−1(w′)), ∂tw′ = J ∇H′(w′), (4.4a,b)

and reduces to

H′(w′) = H(2)(w′) + Z(3) + Z(4) + · · · + Z(m) + R(m+1), (4.5)

where Z( j) only consists of resonant terms of order j and R(m+1) is the remainder term at
order m (Craig & Sulem 2016; Craig, Guyenne & Sulem 2021b). The transformation τ is
obtained as a Hamiltonian flow ψ from ‘time’ s = −1 to ‘time’ s = 0 governed by

∂sψ = J ∇K(ψ), ψ(w′)|s=0 = w′, ψ(w′)|s=−1 = w, (4.6)

and associated with an auxiliary Hamiltonian K. Such a transformation is canonical and
preserves the Hamiltonian structure of the system. The Hamiltonian H′ satisfies H′(w′) =
H(ψ(w′))|s=−1 and its Taylor expansion around s = 0 is

H′(w′) = H(ψ(w′))|s=0 − dH
ds

(ψ(w′))|s=0 + 1
2

d2H
ds2 (ψ(w′))|s=0 − · · · . (4.7)

Abusing notations, we further drop the primes and use w = (η, ξ)2 to denote the new
variable w′. Terms in this expansion can be expressed using Poisson brackets as

H(ψ(w))|s=0 = H(w),

dH
ds

(ψ(w))|s=0 =
∫ (

∂ηH∂sη + ∂ξH∂sξ
)

dx,

=
∫ (

∂ηH∂ξK − ∂ξH∂ηK
)

dx = {K, H}(w), (4.8)

1002 A24-15

1�
��

:

  

�7
2�7

�0
 �

��
��

�	
 �/

�
��

��
��

��
��

��
��

42:
1.

��
76

426
.�

�!
��

��
��

2�
0.

�

62

 .
�:

2�!
��

�.
::

https://doi.org/10.1017/jfm.2024.1161


P. Guyenne, A. Kairzhan and C. Sulem

and similar expressions can be obtained for higher-order s-derivatives. The Taylor
expansion of H′ around s = 0 now has the form

H′(w) = H(w) − {K, H}(w) + 1
2
{K, {K, H}}(w) − · · · . (4.9)

Substituting this transformation into the expansion (2.19) of H, we obtain

H′(w) = H(2)(w) + H(3)(w) + · · ·

− {K, H(2)}(w) − {K, H(3)}(w) − {K, H(4)}(w) − · · ·

+ 1
2
{K, {K, H(2)}}(w) + 1

2
{K, {K, H(3)}}(w) + · · · . (4.10)

If K is homogeneous of degree m and H(n) is homogeneous of degree n, then {K, H(n)}
is of degree m + n − 2. Thus, if we construct an auxiliary Hamiltonian K = K(3) that is
homogeneous of degree 3 and satisfies the relation

H(3) − {K(3), H(2)} = 0, (4.11)

we will have eliminated all cubic terms from the transformed Hamiltonian H′. We can
repeat this process at each order.

4.2. Third-order Birkhoff normal form
We recall that the complex symplectic coordinates zj and z̄−j diagonalize the coadjoint
operator coadH(2) := {·, H(2)}, that is, the linear operation of taking Poisson brackets
with H(2) (Craig & Sulem 2016; Guyenne et al. 2022a). When applying the operator to
monomial terms such as I :=

∫
z1z2z̄−3δ123 dk123, we have

{I, H(2)} = i
∫

(ω1 + ω2 − ω3)z1z2z̄−3δ123 dk123. (4.12)

We use the diagonal property as in (4.12) to find the auxiliary Hamiltonian K(3)

from (4.11). The presence of resonant triads (3.27) does not allow us to eliminate H(3)

completely by virtue of (4.11). Instead, we are only able to find K(3) such that

{K(3), H(2)} = H(3)
NoRes, (4.13)

where H(3)
NoRes stands for the non-resonant part of the third-order Hamiltonian. Explicitly,

we define the non-resonant part of H(3) as H(3)
NoRes := H(3) − H(3)

Res, where

H(3)
Res = 1

8
√

π

∫
χNµ(k1, k2, k3)S123(z1z̄−2z3 + z̄−1z2z̄−3)δ123 dk123, (4.14)

is a resonant part of (2.27),

S123 = S(k1, k2, k3) := (k1k3 + |k1||k3|)
a1a3

a2
, (4.15)

and χNµ is the characteristic function defined in (3.29).
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A Hamiltonian Dysthe equation for hydroelastic waves

PROPOSITION 4.1. The cohomological equation (4.13) has a unique solution K(3) which,
in complex symplectic coordinates, is

K(3) = 1
8i

√
π

∫
S123

[
z1z2z3 − z̄−1z̄−2z̄−3

ω1 + ω2 + ω3
− 2

z1z2z̄−3 − z̄−1z̄−2z3

ω1 + ω2 − ω3

+
(
1 − χNµ(k1, k2, k3)

) z1z̄−2z3 − z̄−1z2z̄−3

ω1 − ω2 + ω3

]
δ123 dk123. (4.16)

Alternatively, in the variables (η, ξ), K(3) has the form

K(3) = 1√
2π

∫
(P123η1η2ξ3 + Q123 η1ξ2η3 + R123ξ1ξ2ξ3) δ123 dk123, (4.17)

where the denominator d123 is given in (3.3) and the coefficients are

P123 = 1 + sgn(k1)sgn(k3)

4d̃(k1, k3)
a2

1

(
4ω1(ω

2
1 − ω2

2 − ω2
3) − χNµ(k1, k2, k3)Π123

)
,

Q123 = 1 + sgn(k1)sgn(k3)

8d̃(k1, k3)

(
a2

1a2
3

a2
2

)
(
8ω1ω2ω3 + χNµ(k1, k2, k3)Π123

)
,

R123 = 1 + sgn(k1)sgn(k3)

8d̃(k1, k3)

(
1
a2

2

)(
4ω2(ω

2
1 − ω2

2 + ω2
3) − χNµ(k1, k2, k3)Π123

)
,






(4.18)

with Π123 := (ω1 + ω2 + ω3)(ω1 + ω2 − ω3)(ω1 − ω2 − ω3).

Proof . The derivations of (4.16) and (4.17) are based on straightforward computations.
The expression (4.16) is obtained by applying the diagonal property (4.12) to the
non-resonant part of the cubic Hamiltonian, H(3)

NoRes. The expression (4.17) is derived from
(4.16) by substituting the relation (2.25).

We point out that the coefficients P123, Q123 and R123 are well defined in the
neighbourhood of the resonant triads (3.27). This is due to the construction of K(3) in
(4.16) which avoids the resonant triads that make the denominator ω1 − ω2 + ω3 equal to
0. This is the principal reason why we solve (4.13) to find K(3) rather than the full relation
{K(3), H(2)} = H(3) in (4.11). The latter equation would lead to an ill-defined K(3) with
vanishing denominator ω1 − ω2 + ω3, which we cannot handle.

The third-order normal form defining the new coordinates is obtained as the solution
map at s = 0 of the Hamiltonian flow

∂s

(
η
ξ

)
=
(

0 1
−1 0

)(
∂ηK(3)

∂ξK(3)

)
, (4.19)

with initial condition at s = −1 being the original variables (η, ξ). Equivalently, in Fourier
coordinates,

∂sη−k = ∂ξk K(3), ∂sξ−k = −∂ηk K(3), (4.20a,b)
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P. Guyenne, A. Kairzhan and C. Sulem

where

∂ξk K(3) = 1√
2π

∫
((P12k + Q1k2) η1η2 + (R12k + R2k1 + Rk12) ξ1ξ2) δ12k dk12,

∂ηk K(3) = 1√
2π

∫
(P1k2 + Pk12 + Q12k + Qk21) η1ξ2δ12k dk12,






(4.21)
by virtue of (4.17).

5. Reduced Hamiltonian
The new Hamiltonian H′ obtained after applying the third-order normal form
transformation has the form

H(w) = H(2)(w) + H(3)
Res(w) + H(4)(w) − {K(3), H(3)}(w)

+ 1
2
{K(3), {K(3), H(2)}}(w) + R(5)

= H(2)(w) + H(3)
Res(w) + H(4)

+ (w) + R(5), (5.1)

where R(5) denotes all terms of order 5 and higher, and H(4)
+ is the new fourth-order term

H(4)
+ = H(4) − 1

2
{K(3), H(3)

NoRes} − {K(3), H(3)
Res}, (5.2)

where we have used the relation (4.13). Note that the presence of resonant terms did not
eliminate all homogeneous cubic terms in H, and the resonant terms also contribute to the
quartic part of the Hamiltonian.

In view of the forthcoming modulational ansatz, the only important quartic terms are
given by

H(4)
+R =

∫
Tz1z2z̄3z̄4δ1+2−3−4 dk1234. (5.3)

The other quartic terms will not contribute under this ansatz due to homogenization; we
refer to § 4 of Guyenne et al. (2022a) for details. In § 5.3, we show that the resonant
cubic Hamiltonian H(3)

Res in (5.1) can also be ruled out of the computations. As a result, the
Hamiltonian H in (5.1) is at leading order

H(w) = H(2)(w) + H(4)
+R(w) + R̃. (5.4)

Denoting

H(4)
R =

∫
T0z1z2z̄3z̄4δ1+2−3−4dk1234, (5.5)

{K(3), H(3)
NoRes}R =

∫
TNoResz1z2z̄3z̄4δ1+2−3−4 dk1234,

{K(3), H(3)
Res}R =

∫
TResz1z2z̄3z̄4δ1+2−3−4 dk1234,





(5.6)

the contributions of zzz̄z̄-type monomials to the terms of (5.2), we have that T appearing
in (5.3) identifies to

T = T0 − 1
2

TNoRes − TRes. (5.7)
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A Hamiltonian Dysthe equation for hydroelastic waves

5.1. Explicit computations of T0, TRes and TNoRes

Here, we provide precise formulae for the coefficients T0, TRes and TNoRes appearing in
(5.5)–(5.6).

PROPOSITION 5.1. We have T0 = T(1)
0 + T(2)

0 , where

T(1)
0 = −V12(−3)(−4) − V(−4)(−3)21 − V1(−3)2(−4) − V(−4)2(−3)1

+ V1(−4)(−3)2 + V(−3)21(−4),

T(2)
0 = k1k2k3k4

32πa1a2a3a4
(5D(k1k2 − k1k3 − k1k4 − k2k3 − k2k4 + k3k4) − 3P) ,






(5.8)

with

V1234 = a1a4

32πa2a3
|k1| |k4|(|k1| + |k4| − 2|k3 + k4|). (5.9)

Proof . The proof is given in Appendix B.

PROPOSITION 5.2. Let B123 := S123(1 − χNµ(k1, k2, k3)) with S123 and χNµ given in
(4.15) and (3.29), respectively. Then, TNoRes = T(1)

NoRes + T(2)
NoRes + T(3)

NoRes with

T(1)
NoRes = 1

64π

(
S(−1−2)12 + S2(−1−2)1 + S12(−1−2)

) (
S(−3−4)34 + S4(−3−4)3 + S34(−3−4)

)

×
(

1
ω1 + ω2 + ω1+2

+ 1
ω3 + ω4 + ω3+4

)

+ 1
16π

(
S(3−1)(−3)1 + S1(3−1)(−3)

) (
S(4−2)2(−4) + S(−4)(4−2)2

)

×
(

1
ω3−1 + ω3 − ω1

+ 1
ω4−2 + ω2 − ω4

)

− 1
16π

S12(−1−2)S34(−3−4)

(
1

ω1 + ω2 − ω1+2
+ 1
ω3 + ω4 − ω3+4

)
, (5.10)

T(2)
NoRes = 1

32π

(
S12(−1−2)B3(−3−4)4 + S34(−3−4)B1(−1−2)2

)

×
(

1
ω1 + ω2 − ω1+2

+ 1
ω3 + ω4 − ω3+4

)

− 1
16π

B(4−2)(−4)2
(
S(3−1)(−3)1 + S(−3)(3−1)1

)

×
(

1
ω3−1 + ω3 − ω1

+ 1
ω4−2 + ω2 − ω4

)

− 1
16π

B(3−1)1(−3)

(
S(4−2)2(−4) + S2(4−2)(−4)

)

×
(

1
ω3−1 + ω3 − ω1

+ 1
ω4−2 + ω2 − ω4

)
(5.11)
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P. Guyenne, A. Kairzhan and C. Sulem

and

T(3)
NoRes = − 1

64π
B1(−1−2)2B3(−3−4)4

(
1

ω1 + ω2 − ω1+2
+ 1
ω3 + ω4 − ω3+4

)

+ 1
16π

B(3−1)1(−3)B(4−2)(−4)2

(
1

ω3−1 + ω3 − ω1
+ 1
ω4−2 + ω2 − ω4

)
.

(5.12)

Here, based on (4.15), S(3−1)(−3)1 reads

S(3−1)(−3)1 = ((k3 − k1)k1 + |k3 − k1||k1|)
a(k3 − k1)a(k1)

a(−k3)
, (5.13)

and B(3−1)(−3)1 = S(3−1)(−3)1(1 − χNµ(k3 − k1, −k3, k1)).

Proof . The proof is given in Appendix C.

PROPOSITION 5.3. Recall that S123 is given by (4.15) and B123 := S123(1 −
χNµ(k1, k2, k3)). Then, TRes = T(1)

Res + T(2)
Res with

T(1)
Res = 1

32π

(
S12(−1−2)

ω1 + ω2 − ω1+2
[χS]3(−3−4)4 + S34(−3−4)

ω3 + ω4 − ω3+4
[χS]1(−1−2)2

)

− 1
16π(ω3−1 + ω3 − ω1)

(
S(3−1)(−3)1 + S(−3)(3−1)1

)
[χS](4−2)(−4)2

− 1
16π(ω4−2 + ω2 − ω4)

(
S(4−2)2(−4) + S2(4−2)(−4)

)
[χS](3−1)1(−3), (5.14)

and

T(2)
Res = 1

16π

(
B(3−1)1(−3)

ω3−1 + ω3 − ω1
[χS](4−2)(−4)2 + B(4−2)(−4)2

ω4−2 + ω2 − ω4
[χS](3−1)1(−3)

)

− 1
64π

(
B1(−1−2)2

ω1 + ω2 − ω1+2
[χS]3(−3−4)4 + B3(−3−4)4

ω3 + ω4 − ω3+4
[χS]1(−1−2)2

)
,

(5.15)

where we define

[χS]123 := B123 − S123 = χNµ(k1, k2, k3)S123. (5.16)

Proof . The proof is similar to the proof of proposition 5.2 in Appendix C. In particular,
using the decomposition of K(3) given by terms (C1), we write

{K(3), H(3)
Res} = {K(3)

0 , H(3)
Res} + {K(3)

χ , H(3)
Res}. (5.17)

Then the first Poisson bracket leads to the coefficient (5.14), while the second bracket
implies (5.15).
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A Hamiltonian Dysthe equation for hydroelastic waves

5.2. Modulational ansatz
We restrict ourselves to solutions in the form of near-monochromatic waves with carrier
wavenumber k0 > 0. For this purpose, we introduce the modulational ansatz

k = k0 + ελ, where
λ

k0
= O(1), ε . 1, (5.18)

and, accordingly, a function U is defined in the Fourier space as

U(λ) = z(k0 + ελ), Ū(λ) = z̄(k0 + ελ), (5.19a,b)

where the time dependence is omitted. In the physical space,

z(x) = 1√
2π

∫
z(k)ei kx dk = ε√

2π

∫
U(λ)ei k0xei λεx dλ = ε u(X)ei k0x, (5.20)

where u, as a function of the long scale X = εx, is the inverse Fourier transform of U. After
the change of variables (5.18), the following integral identity for any function C holds:

∫
C(k1, k2, k3, k4)z1z2z̄3z̄4δ1+2−3−4 dk1234

= ε3
∫

C̃(λ1, λ2, λ3, λ4)U1U2Ū3Ū4δ
(λ)
1+2−3−4 dλ1234, (5.21)

where Uj stands for U(λj), the Dirac distribution on the right-hand side is
defined as δ(λ)1+2−3−4 = (1/2π)

∫
exp(−i(λ1 + λ2 − λ3 − λ4)X) dX and C(k1, k2, k3, k4)

= C̃(λ1, λ2, λ3, λ4).

5.3. Vanishing of the resonant cubic term H(3)
Res

We show that, under the modulational regime (5.18), the resonant cubic Hamiltonian H(3)
Res

given in (4.14) is sufficiently small and can be neglected. The estimates will be done for a
cubic term of type

I :=
∫

Tk1,k2,k3z1z̄2z3δ(k1 − k2 + k3) dk123, (5.22)

which can be similarly repeated for each term of (4.14). After the change of variables
(5.18), we have

I = ε3

2π

∫
e−i k0x

∫
T̃λ1,λ2,λ3U1Ū2U3 exp(−i(λ1 − λ2 + λ3)(εx)) dλ123 dx, (5.23)

where T̃λ1,λ2,λ3 := Tk0+ελ1,k0+ελ2,k0+ελ3 . We identify the inner integral above with the
function f (εx) as

f (εx) :=
∫

T̃λ1,λ2,λ3U1Ū2U3 exp(−i(λ1 − λ2 + λ3)(εx)) dλ123. (5.24)

As a result, we have

I = ε3

2π

∫
e−i k0xf (εx) dx. (5.25)

To show that the integral (5.25) is negligible, we use the scale-separation lemma 4.4 of
Guyenne et al. (2022a).
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P. Guyenne, A. Kairzhan and C. Sulem

5.4. Quartic interactions in the modulational regime
We approximate the coefficients in propositions 5.1 and 5.2 under the modulational regime
(5.18).

LEMMA 5.4. Under the modulational ansatz (5.18), we have

∫
T0z1z2z̄3z̄4δ1+2−3−4 dk1234

= ε3
∫ (

cl
0 + εcr

0(λ2 + λ3)
)

U1U2Ū3Ū4δ
(λ)
1+2−3−4 dλ1234 + O(ε5), (5.26)

where T0 is given in proposition 5.1 and the coefficients are

cl
0 =

k3
0

8π
+

k6
0

16πω2
0

(
3
2
P − 5Dk2

0

)
,

cr
0 =

3k2
0

16π
+

k6
0

16πω2
0

[(
3
2
P − 5Dk2

0

)(
2
k0

+
g + Pk2

0 − 3Dk4
0

2ω2
0

)

− 5Dk0

]

.






(5.27)

Proof . The proof is based on the direct expansion of the coefficients (5.8) under the
modulational regime (5.18) using the identities in (A1). For more detailed computations,
we refer to the proof of lemma 5.2 in Guyenne et al. (2022b).

LEMMA 5.5. Under the modulational ansatz (5.18), we have

∫
T(1)

NoResz1z2z̄3z̄4δ1+2−3−4 dk1234

= ε3
∫ (

cl
1 + εcr

1(λ2 + λ3)
)

U1U2Ū3Ū4δ
(λ)
1+2−3−4 dλ1234

+
ε4k2

0
4π

∫
|λ1 − λ3|U1U2Ū3Ū4δ

(λ)
1+2−3−4 dλ1234 + O(ε5), (5.28)

∫
T(2)

NoResz1z2z̄3z̄4δ1+2−3−4 dk1234 = O(ε5), (5.29)
∫

T(3)
NoResz1z2z̄3z̄4δ1+2−3−4 dk1234

= ε3
∫ (

1 − χNµ(k1, −k1 − k2, k2)
) (

1 − χNµ(k3, −k3 − k4, k4)
)

×
(

cl
2 + εcr

2(λ2 + λ3)
)

U1U2Ū3Ū4δ
(λ)
1+2−3−4 dλ1234

+
ε4k2

0
4π

∫ (
1 − χNµ(k3 − k1, k1, −k3)

) (
1 − χNµ(k4 − k2, −k4, k2)

)

× (1 + sgn(λ1 − λ3))|λ1 − λ3|U1U2Ū3Ū4δ
(λ)
1+2−3−4 dλ1234 + O(ε5), (5.30)
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A Hamiltonian Dysthe equation for hydroelastic waves

where

cl
1 =

k3
0ω

2
0

4πω2k0(2ω0 + ω2k0)
,

cr
1 =

cl
1

2

(
3g − 5Pk2

0 + 7Dk4
0

ω2
0

+
g + 4Pk2

0 − 48Dk4
0

ω2
2k0

−
g − 12Pk2

0 + 80Dk4
0

ω2k0(2ω0 + ω2k0)
−

g − 3Pk2
0 + 5Dk4

0
ω0(2ω0 + ω2k0)

)

,

cl
2 = −

k3
0ω

2
0

4πω2k0(2ω0 − ω2k0)
,

cr
2 =

cl
2

2

(
3g − 5Pk2

0 + 7Dk4
0

ω2
0

+
g + 4Pk2

0 − 48Dk4
0

ω2
2k0

+
g − 12Pk2

0 + 80Dk4
0

ω2k0(2ω0 − ω2k0)
−

g − 3Pk2
0 + 5Dk4

0
ω0(2ω0 − ω2k0)

)

.






(5.31)

Proof . The proof is presented in Appendix D.

LEMMA 5.6. Under the modulational ansatz (5.18), we have
∫

TResz1z2z̄3z̄4δ1+2−3−4 dk1234

=
ε4k2

0
8π

∫ [
χNµ(k3 − k1, k1, −k3) + χNµ(k4 − k2, −k4, k2)

− 2χNµ(k3 − k1, k1, −k3)χNµ(k4 − k2, −k4, k2)
]

× (1 + sgn(λ1 − λ3))|λ1 − λ3|U1U2Ū3Ū4δ
(λ)
1+2−3−4 dλ1234

+ ε3

2

∫ [
χNµ(k1, −k1 − k2, k2) + χNµ(k3, −k3 − k4, k4)

− 2χNµ(k1, −k1 − k2, k2)χNµ(k3, −k3 − k4, k4)
]

× (cl
2 + εcr

2(λ2 + λ3))U1U2Ū3Ū4δ
(λ)
1+2−3−4 dλ1234. (5.32)

Proof . The proof can be found in Appendix E.

Based on lemmas 5.4–5.6, the reduced Hamiltonian H(4)
+ has the form

H(4)
+ = ε3

∫
α

4π
U1U2Ū3Ū4δ

(λ)
1+2−3−4 dλ1234

+ ε4
∫ (

β

8π
(λ2 + λ3) −

k2
0

8π
γ |λ1 − λ3|

)

U1U2Ū3Ū4δ
(λ)
1+2−3−4 dλ1234 + O(ε5), (5.33)

1002 A24-23

1�
��

:

  

�7
2�7

�0
 �

��
��

�	
 �/

�
��

��
��

��
��

��
��

42:
1.

��
76

426
.�

�!
��

��
��

2�
0.

�

62

 .
�:

2�!
��

�.
::

https://doi.org/10.1017/jfm.2024.1161


P. Guyenne, A. Kairzhan and C. Sulem

where, using kj = k0 + ελj from (5.18), we denote

α

4π
:= cl

0 − 1
2

cl
1 − 1

2
[
1 − χNµ(k1, −k1 − k2, k2)χNµ(k3, −k3 − k4, k4)

]
cl

2, (5.34)

β

8π
:= cr

0 − 1
2

cr
1 − 1

2
[
1 − χNµ(k1, −k1 − k2, k2)χNµ(k3, −k3 − k4, k4)

]
cr

2 (5.35)

and

γ = 1 +
[
1 − χNµ(k3 − k1, k1, −k3)χNµ(k4 − k2, −k4, k2)

]
(1 + sgn(λ1 − λ3)).

(5.36)

6. Hamiltonian Dysthe equation
From the expressions (5.34)–(5.36), it is clear that the coefficients in the Hamiltonian
(5.33) depend on k0 via (5.27) and (5.31), and on the characteristic function at
corresponding points inside the integral. In turn, the choices of µ in the definition of
χNµ in (3.29) and of k0 in our modulational ansatz (5.18) affect the evaluation of these
characteristic functions. We concentrate on two examples of values for k0, motivated by
the three-wave resonant curve (figure 2) and the numerical simulations validating our
asymptotics in § 7. We choose k0 = 0.9 and k0 = 2, which lead to different values of
characteristic functions appearing in (5.34)–(5.36). In both cases, we set µ = O(ε). Details
are given in the next subsection.

6.1. Explicit formulae for α,β and γ

6.1.1. Case k0 = 0.9
Based on the construction of the neighbourhood around the resonant set in (3.28), we have
the following identities:

χNµ(k1, −k1 − k2, k2) = 0, (6.1)

and
χNµ(k4 − k2, −k4, k2) = 0 whenever sgn(k4 − k2) = +1. (6.2)

The validity of (6.1) follows from (5.18) and the choice µ = O(ε):

(k1, k2) ∈ Bc(k0) := {(x, y) : x = k0 + O(ε), y = k0 + O(ε)} 4⊆ Cµ

=⇒ (k1, −k1 − k2, k2) /∈ Nµ. (6.3)

As for (6.2), under (5.18), we have k4 − k2 = ε(λ4 − λ2) = O(ε) and k2 = k0 + ελ2.
Then, if k4 − k2 > 0, the points (k4 − k2, k2) are located far away from the set C+

µ and
so

(k4 − k2, k2) ∈ Bs(k0) := {(x, y) : 0 ≤ x ≤ O(ε), y = k0 + O(ε)} 4⊆ C+
µ

=⇒ (k4 − k2, −k4, k2) /∈ Nµ. (6.4)

As a result, the coefficients in (5.34)–(5.36) reduce to

α

4π
= cl

0 − 1
2
(cl

1 + cl
2),

β

8π
= cr

0 − 1
2
(cr

1 + cr
2), γ = 2 + sgn(λ1 − λ3). (6.5a–c)
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A Hamiltonian Dysthe equation for hydroelastic waves

When substituting γ into the integral (5.33), the term sgn(λ1 − λ3) will disappear since
∫

sgn(λ1 − λ3)|λ1 − λ3|U1U2Ū3Ū4δ
(λ)
1+2−3−4 dλ1234

=
∫

(λ1 − λ3)U1U2Ū3Ū4δ
(λ)
1+2−3−4 dλ1234

= 1
2

∫
(λ1 + λ2 − λ3 − λ4)U1U2Ū3Ū4δ

(λ)
1+2−3−4 dλ1234 = 0, (6.6)

where we have used the index rearrangement (λ1, λ2, λ3, λ4) → (λ2, λ1, λ3, λ4) and the
delta condition λ1 + λ2 − λ3 − λ4 = 0. As a consequence, we will simply write γ = 2 in
this case.

6.1.2. Case k0 = 2
If k0 is sufficiently large, we have

χNµ(k1, −k1 − k2, k2) = 0, (6.7)
and

χNµ(k4 − k2, −k4, k2) = 1 whenever sgn(k4 − k2) = +1. (6.8)
Equation (6.7) holds due to estimates similar to (6.3). Equation (6.8) is different from (6.2)
since, for a sufficiently large value of k0, the points (k4 − k2, k2) are located inside the set
C+

µ ,

(k4 − k2, k2) ∈ {(x, y) : 0 ≤ x ≤ O(ε), y = k0 + O(ε)} ⊂ C+
µ

=⇒ (k4 − k2, −k4, k2) ∈ Nµ, (6.9)
and we get

α

4π
= cl

0 − 1
2
(cl

1 + cl
2),

β

8π
= cr

0 − 1
2
(cr

1 + cr
2), γ = 1. (6.10a–c)

Figure 4 shows the location of points (k1, k2) and (k4 − k2, k2) with k4 − k2 > 0 for
k0 = 0.9 (figure 4a) and k0 = 2 (figure 4b) relative to the neighbourhood Cµ. In figure 4(a)
for k0 = 0.9, Box 1 represents the set Bs(k0) of all possible values of (k4 − k2, k2) with
k4 − k2 > 0 under the modulational ansatz (5.18), according to (6.4). Box 2 represents the
set Bc(k0) in (6.3). Similar sets are depicted in figure 4(b) for k0 = 2.

6.2. Derivation of the Dysthe equation
The third-order normal form transformation has eliminated all cubic terms from the
Hamiltonian H. In the modulational regime (5.18), the reduced Hamiltonian (now denoted
by H) is

H = H(2) + H(4)
+ , (6.11)

up to fourth order. In the physical variables (u, ū), it reads

H = ε

∫
ūω(k0 + εDX) u dX + ε3α

2

∫
|u|4 dX

+ ε4β

2

∫
|u|2Im(ū∂Xu) dX − ε4 γ k2

0
4

∫
|u|2|DX||u|2 dX + O(ε5), (6.12)

where DX = −i ∂X for the slow spatial variable X (so that its Fourier symbol is λ) and
accordingly |DX| is the non-local operator whose Fourier symbol is |λ|. Expanding the
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y
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0.5

1.0

1.5

2.0 Box 1

Box 1

Box 2

Box 2

2.5

0 0.5 1.0 1.5
x

2.0 2.5

(b)(a)

Figure 4. Location of points (k1, k2) and (k4 − k2, k2) with k4 − k2 > 0 relative to the neighbourhood Cµ, in
the case (a) k0 = 0.9 and (b) k0 = 2 for P = 1. Box 1 represents the set Bs(k0) and Box 2 represents the set
Bc(k0).

linear dispersion relation in (6.12) around k0 as

ω(k0 + εDX) = ω0 + εω′
0DX + 1

2
ε2ω′′

0D2
X + 1

6
ε3ω′′′

0 D3
X + O(ε4), (6.13)

gives an alternate form of the Hamiltonian H in physical variables

H =
∫ [

ε ω0 |u|2 + ε2ω′
0Im(ū∂Xu) + 1

2
ε3ω′′

0 |∂Xu|2 + 1
2
ε3α|u|4

−1
6
ε4ω′′′

0 Im(ū∂3
Xu) + 1

2
ε4β|u|2Im(ū∂Xu) − 1

4
ε4γ k2

0|u|2|DX||u|2
]

dX + O(ε5). (6.14)

Coefficients in (6.13) have the following expressions:

ω′
0 := ∂kω(k0) =

g + 5Dk4
0 − 3Pk2

0
2ω0

,

ω′′
0 := ∂2

kω(k0) =
15D2k8

0 − 22DPk6
0 + 30gDk4

0 + 3P2k4
0 − 6gPk2

0 − g2

4ω3/2
0

,

ω′′′
0 := ∂3

kω(k0) = 3
(

5D3k12
0 − 13D2Pk10

0 − 5gD2k8
0 + 15DP2k8

0

− 34gDPk6
0 + P3k6

0 + 55g2Dk4
0 − 5gP2k4

0 − 5g2Pk2
0 + g3

)
/
(

8ω5/2
0

)
.






(6.15)

The Hamiltonian system

∂t

(
u
ū

)
= ε−1

(
0 −i
i 0

)(
∂uH
∂ūH

)
, (6.16)
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A Hamiltonian Dysthe equation for hydroelastic waves

implies

i ∂tu = ε−1∂ūH,

= ω0u − iεω′
0∂Xu − 1

2
ε2ω′′

0∂
2
Xu + ε2α|u|2u

+ i
6
ε3ω′′′

0 ∂
3
Xu − i ε3β|u|2∂Xu − ε3 γ k2

0
2

u|DX||u|2, (6.17)

which is a Hamiltonian Dysthe equation for two-dimensional hydroelastic waves on deep
water. It describes modulated waves moving in the positive x-direction at group speed ω′

0
as shown by the advection term. The non-local term u|DX||u|2, a signature of the Dysthe
equation, reflects the presence of the wave-induced mean flow as in the classical derivation
using the method of multiple scales. The coefficient of this mean-flow term is similar to
that in the pure gravity case (D = 0, P = 0) except for the dependence on γ .

The first two terms on the right-hand side of (6.17) can be eliminated via phase
invariance and reduction to a moving reference frame. The latter is equivalent, in the
framework of canonical transformations, to subtraction from H of a multiple of the
momentum (2.10) which reduces to

I =
∫
η (∂xξ) dx =

∫ [
k0|u|2 + ε Im(ū∂Xu)

]
dX, (6.18)

while the former is equivalent to subtraction from H of a multiple of the wave action

M = ε

∫
|u|2 dX, (6.19)

which is conserved due to the phase-invariance property of the Dysthe equation. The
resulting Hamiltonian is given by

Ĥ = H − εω′
0I − (ω0 − k0ω

′
0)M, (6.20)

which, after introducing a new long-time scale τ = ε2t, leads to the following version of
the Hamiltonian Dysthe equation:

i ∂τu = −1
2
ω′′

0∂
2
Xu + α|u|2u + i

6
εω′′′

0 ∂
3
Xu − i εβ|u|2∂Xu − ε

γ k2
0

2
u|DX||u|2. (6.21)

REMARK 6.1. The Hamiltonian Dysthe equation derived by Craig et al. (2021a) for
two-dimensional deep-water surface gravity waves (D = 0, P = 0) reads

i ∂τu = g
8ω3

0
∂2

Xu + k3
0|u|2u + i ε

g3

16ω5
0
∂3

Xu − 3i εk2
0|u|2∂Xu − εk2

0u|DX||u|2. (6.22)

It is natural to expect that, in the limit D → 0 and P → 0, the coefficients of (6.21)
converge to those of (6.22). Indeed, a direct computation verifies this convergence for
the coefficients of the linear terms as well as α → k3

0, β → 3k2
0 together with γ → 2 for

any k0 because resonant triads are ruled out in this situation, hence χNµ = 0.

REMARK 6.2. We have checked that the coefficients ω′′
0 and α in the NLS part of

(6.17) coincide with those of the NLS equation proposed by Trichtchenko et al. (2019)
for g, D /= 0, and by Slunyaev & Stepanyants (2022) for g, P /= 0. Trichtchenko
et al. (2019) employed the same Cosserat model (2.5) for ice bending but ignored ice
compression. Slunyaev & Stepanyants (2022) examined ice bending and compression but
they considered a non-Hamiltonian KL-type model for ice bending.
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Figure 5. The BF instability/stability criterion at kmin for the NLS equation as a function of P .

6.3. Envelope solitons
We take this opportunity to highlight a salient effect of ice compression when added to
ice bending. As analysed by Akylas (1983), a general result about the NLS equation in the
focusing regime is that it admits permanent envelope solitons (i.e. solitary wave packets)
provided that c = cg is realized in the wave system. If so, the wave packet has carrier
wavenumber kmin and propagates in such a way that its crests are stationary relative to its
envelope.

In the flexural-gravity case (P = 0), it has been revealed that such envelope solitons
do not exist (Milewski et al. 2011; Guyenne & Părău 2012), i.e. the corresponding NLS
equation is of defocusing type because of the sign of the Benjamin–Feir index (BFI)
defined as the product of the dispersion coefficient ω′′

0 and the coefficient of the cubic
term α, namely

BFI = −ω′′
0α = −0.006 < 0, at k = kmin = 0.76, (6.23)

according to the Benjamin–Feir (BF) criterion for modulational instability, and with kmin
defined by (3.32). On the other hand, we get

BFI = −ω′′
0α = 0.2954 > 0, at k = kmin = 0.88, (6.24)

for P = 1, which implies a focusing regime. Figure 5 portrays BFI for kmin as a
function of P . As explained earlier, we restrict ourselves to the interval 0 ≤ P < 2 where
non-conservative exponential wave growth/decay is ruled out. We find that the change
from defocusing to focusing occurs around P = 0.39 after which BFI quickly increases.
This regime transition is significant, varying from negative BFI of low magnitude to
positive BFI of high magnitude over a relatively short interval of P . For example, if
P = 1.9, the much larger value of BFI 7 55 is beyond the range displayed in this figure.

7. Numerical results
We show numerical simulations to illustrate the performance of our Hamiltonian Dysthe
equation. We consider the modulational instability of Stokes waves in the presence of
sea ice and examine the influence of ice compression. We compare these results with
predictions by the cubic NLS model and to direct simulations of the full Euler system.
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A Hamiltonian Dysthe equation for hydroelastic waves

We also test the capability of our reconstruction procedure against a more conventional
approach.

7.1. Stability of Stokes waves
We first give the theoretical prediction for modulational or BF instability of Stokes waves
in sea ice. These are represented in (6.17) by the exact uniform solution

u0(t) = B0 exp(−i(ω0 + ε2αB2
0)t), (7.1)

where B0 is a positive real constant. In the gravity water wave case (D = 0, P = 0),
such a solution is known to be linearly unstable with respect to sideband (i.e. long-wave)
perturbations.

The formal calculation consists in linearizing (6.17) about u0 by inserting a perturbation
of the form

u(X, t) = u0(t) [1 + B(X, t)] , (7.2)

where
B(X, t) = B1eΩt+i λX + B2eΩ̄t−i λX, (7.3)

and B1, B2 are complex coefficients. We find that the condition Re(Ω) /= 0 for instability
implies

α1 = −
ω′′

0
2
λ2

[

2B2
0

(

α − ε
γ k2

0
2

|λ|
)

+
ω′′

0
2
λ2

]

> 0. (7.4)

This is a tedious but straightforward calculation for which we omit the details (Craig et al.
2021a; Guyenne et al. 2022b).

In view of the subsequent comparison with numerical simulations of the Euler system,
all variables associated with the envelope model are now rescaled to absorb ε back into
their definition. Figure 6 depicts the normalized growth rate

|Re(Ω)|
ω0

=
√
α1

ω0
, (7.5)

delimiting the instability region as predicted by condition (7.4) for (A0, k0) = (0.1, 0.9)
and (0.01, 5) with varying values of P . These parameter regimes are representative of
the two different cases γ = 2 and 1 for the mean-flow term, as discussed in § 6.1. They
correspond to initial wave steepness ε = k0A0 = 0.09 and 0.05, respectively. Note that the
envelope amplitude B0 and the surface amplitude A0 are related by

B0 = A0

√
ω0

2k0
, (7.6)

according to (2.25) and (5.20).
We see in figure 6 that instability tends to be enhanced with increasing P . The growth

rate is especially strong for (A0, k0) = (0.1, 0.9) and P = 1.9. By contrast, the variations
in P are weaker for (A0, k0) = (0.01, 5). Maximum growth rate occurs around λ = 0.02
for (A0, k0) = (0.1, 0.9) and around λ = 0.1 for (A0, k0) = (0.01, 5). The wavenumber at
maximum growth rate (as well as the extent of the instability region) differs by an order of
magnitude between these two configurations.

The same remark can be made when comparing these results with predictions on BF
instability for the gravity water wave problem with similar values of ε (Craig et al. 2021a;
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Figure 6. Regions of BF instability according to (7.4) for (a) (A0, k0) = (0.1, 0.9) and
(b) (A0, k0) = (0.01, 5). The various curves represent P = 0 (red), P = 1 (blue), P = 1.9 (black).

Guyenne et al. 2022b). Including elasticity leads to narrower regions of instability centred
around smaller sideband wavenumbers λ, which are smaller by orders of magnitude than
their counterparts in the pure gravity case. This implies that a much longer domain
is needed in the present simulations to observe this instability with such long-wave
modulations.

7.2. Reconstruction of the original variables
At any instant t, the surface elevation and velocity potential can be reconstructed from
the wave envelope by inverting the normal form transformation. This is accomplished by
solving the auxiliary system backward from s = 0 to s = −1, with ‘initial’ conditions
given by the transformed variables

η(x, t)|s=0 = 1√
2

a−1(D)
[
u(x, t)ei k0x + ū(x, t)e−i k0x

]
, (7.7)

ξ(x, t)|s=0 = 1
i
√

2
a(D)

[
u(x, t)ei k0x − ū(x, t)e−i k0x

]
, (7.8)

according to (2.25) and (5.20). In these expressions, u obeys (6.17) and a−1(D) =√
|D|/ω(D). The final solution at s = −1 represents the original variables (η, ξ). During

the evolution in s, higher-order harmonic contributions to (η, ξ) are produced by the
nonlinear terms in (4.20a,b) starting from the first harmonics (7.7)–(7.8) associated with
carrier wavenumber k0.

7.3. Simulations
We test this Hamiltonian Dysthe equation against the full equations (2.8) in the context of
BF instability of Stokes waves in sea ice. Following a high-order spectral approach (Craig
& Sulem 1993; Guyenne & Părău 2012), (2.8) are discretized in space by a pseudospectral
method via the fast Fourier transform (FFT). Nonlinear products are calculated in the
physical space, while Fourier multipliers and spatial derivatives are evaluated in the
Fourier space. The computational domain is set to 0 ≤ x < L with periodic boundary
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A Hamiltonian Dysthe equation for hydroelastic waves

conditions and is divided into a regular mesh of N collocation points. Both functions η
and ξ are expressed in terms of truncated Fourier series

(
η(xj, t)
ξ(xj, t)

)
=

N/2−1∑

p=−N/2

(
η̂p(t)
ξ̂p(t)

)
ei κpxj, κp = p5κ, xj = j5x, j = 0, . . . , N − 1,

(7.9)
where 5κ = 2π/L and 5x = L/N. Note that {κp} represents the set of discrete values
associated with any wavenumber k) ∈ R. The DNO is approximated by its series expansion
(2.16) for which a small number M of terms is sufficient to achieve highly accurate
results in light of its analyticity properties. The value M = 6 is selected based on previous
extensive tests (Xu & Guyenne 2009). Time integration of (2.8) is carried out in the Fourier
space so that linear terms can be solved exactly by the integrating factor technique. The
nonlinear terms are integrated in time by using a fourth-order Runge–Kutta scheme with
constant step5t. More details can be found in Guyenne & Părău (2012) and Xu & Guyenne
(2009), with the exception that (2.8) for v = (η, ξ)2 can be written as

∂tv = Lv + N(v), (7.10)

where the linear part Lv is defined by

Lv =
(

0 G(0)

−g − D∂4
x − P∂2

x 0

)(
η
ξ

)
, (7.11)

and the nonlinear part N(v) = (N1, N2)
2 is given by

N1 = G(η) − G(0), (7.12)

N2 = −1
2
(∂xξ)

2 + 1
2

[G(η)ξ + (∂xη)(∂xξ)]2

1 + (∂xη)2

− D
(
∂2

s κ − ∂4
x η + 1

2
κ3
)

− P(κ − ∂2
x η). (7.13)

In the Fourier space, the integrating factor Θk(t) associated with Lv takes the form

Θk(t) =





cos(ωkt)

√
G(0)

g + Dk4 − Pk2 sin(ωkt)

−

√
g + Dk4 − Pk2

G(0)
sin(ωkt) cos(ωkt)




, (7.14)

for k /= 0, and

Θ0(t) =
(

1 0
−gt 1

)
, (7.15)
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for k = 0 according to l’Hôpital’s rule. The resulting fourth-order Runge–Kutta scheme
reads

f 1 = Nk(v
n
k), (7.16)

f 2 = Θk

(
−5t

2

)
Nk

[
Θk

(
5t
2

)(
vn

k + 5t
2

f 1

)]
, (7.17)

f 3 = Θk

(
−5t

2

)
Nk

[
Θk

(
5t
2

)(
vn

k + 5t
2

f 2

)]
, (7.18)

f 4 = Θk(−5t) Nk
[
Θk(5t)

(
vn

k +5t f 3
)]

, (7.19)

vn+1
k = Θk(5t)vn

k + 5t
6
Θk(5t)

(
f 1 + 2f 2 + 2f 3 + f 4

)
, (7.20)

for the solution vk = (ηk, ξk)
2 advancing from time tn to time tn+1 = tn +5t.

The same numerical methods are used to solve the envelope equation (6.17), with the
same resolutions in space and time. On the other hand, for the reconstruction procedure,
the Fourier integrals in the auxiliary system are not evaluated by a pseudospectral method
with the FFT because they cannot be expressed in terms of convolution integrals, unlike
the case of surface gravity waves (Craig et al. 2021a; Guyenne et al. 2022a). A reason
is the more complicated expression of the linear dispersion relation in this problem due
to ice bending and compression, which does not allow for further simplification of the
interaction kernels in (4.20a,b). Instead, these Fourier integrals are computed by direct
quadrature. More specifically, they are reduced to one-dimensional integrals in k1 (or k2)
by integrating out the Dirac delta functions before applying the trapezoidal rule. The
interval of integration as well as all Fourier coefficients in the integrands are confined
to the truncated spectrum −N/2 ≤ p ≤ N/2 − 1 by virtue of (7.9). The coupled system
(4.20a,b) is evolved in s via a fourth-order Runge–Kutta scheme, with step size5s = 105t
or 1005t. By construction, (4.20a,b) are purely nonlinear (i.e. quadratic in nonlinearity)
and do not contain any stiff linear terms. Accordingly, the value of 5s may be selected
so that 0 < 5t . 5s . 1, which helps speed up the s-marching process to mitigate the
computational cost entailed by the quadrature rule. We have checked that using a smaller
value of 5s (say 5s = 5t) gives similar results.

While the FFT cannot be exploited for the reconstruction procedure, direct quadrature of
the Fourier integrals in (4.20a,b) was not found to be a major issue in this two-dimensional
setting. Because this computation is not performed at each instant t (only when data are
recorded) and because it is performed over a short interval −1 ≤ s ≤ 0, the associated cost
is insignificant overall. We point out again that (4.20a,b) are an exact representation of the
normal form transformation to eliminate non-resonant cubic interactions in this problem.
They are solved numerically in their full form, without resorting to any asymptotic
approximation. Indetermination due to a2

1 or a2
3 being singular at k1 = 0 or k3 = 0 in P123

and Q123 may be lifted by simply setting the corresponding contributions to zero by virtue
of the zero-mass assumption. Because wavenumbers are discrete in this numerical context
and to accommodate floating-point arithmetic, the characteristic function χN (k1, k2, k3)
in (4.17) is implemented under relaxed conditions

χN (k1, k2, k3) =
{

1, if k1 + k2 + k3 = 0, |ω1 − ω2 + ω3| < 5,
0, otherwise, (7.21)

with 0 < 5 . 1. We have tested different values of 5, i.e. 5 = {10−12, 10−6, 10−2} and
obtained similar results, which suggests that such a resonant triad does not contribute
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Figure 7. Relative errors on η between fully and weakly nonlinear solutions for P = 1 with (a) (A0, k0, λ) =
(0.1, 0.9, 0.02) and (b) (A0, k0, λ) = (0.01, 5, 0.1): blue curve, Dysthe equation; red curve, NLS
equation.

substantially to the reconstruction process. This result may be attributed to the spectral
discretization which limits the possibilities for resonances, or to conditions of the
modulational regime being simulated for which quartic resonances are dominant.

Initial conditions of the form

u(x, 0) = B0 [1 + 0.1 cos(λx)] , (7.22)

are prescribed for (6.17), where a long-wave perturbation of wavenumber λ. k0 is
superimposed to a uniform solution of amplitude B0. For the full system, the initial
conditions η(x, 0) and ξ(x, 0) are reconstructed by solving (2.8) from transformed initial
data (7.7)–(7.8) combined with (7.22). This allows for a meaningful comparison with
matching initial conditions. Figure 7 illustrates the time evolution of the relative L2 errors

‖ηf − ηw‖2

‖ηf ‖2
, (7.23)

on η between the fully (ηf ) and weakly (ηw) nonlinear solutions for P = 1 with
(A0, k0, λ) = (0.1, 0.9, 0.02) and (0.01, 5, 0.1) as considered in the previous stability
analysis. The numerical parameters are set to L = 200π, N = 1024 (5κ = 0.01, 5x =
0.61), 5t = 0.01 for (A0, k0, λ) = (0.1, 0.9, 0.02), and to L = 20π, N = 1024 (5κ =
0.1, 5x = 0.06), 5t = 0.0002 for (A0, k0, λ) = (0.01, 5, 0.1). As mentioned earlier,
a sufficiently long domain is specified in x so that long-wave modulations can be
resolved. Needless to say the time scale of these modulations is commensurate with
their wavelength. For reference, errors from the cubic NLS equation (by neglecting the
higher-order terms in (6.17)) are also shown in this figure. The same reconstruction
procedure for η based on (4.20a,b) is adopted in both cases. Overall, L2 errors from
the NLS equation are noticeably higher than those from the Dysthe equation, which
confirms the superiority of the latter model in this asymptotic regime. Their values tend
to gradually grow over time due to accumulation and amplification of numerical errors
during the BF instability process. For (A0, k0, λ) = (0.1, 0.9, 0.02), these two models
differ in performance by almost an order of magnitude. If we switched from γ = 1 to
γ = 2 for (A0, k0, λ) = (0.01, 5, 0.1), these curves would be flipped with NLS errors
being lower than Dysthe errors. Therefore, figure 7 may serve to validate (5.36) of γ ,
hence our treatment of cubic resonances.
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Figure 8. Comparison of η between fully and weakly nonlinear solutions for (A0, k0, λ) = (0.1, 0.9, 0.02) and
P = 1 at (a) t = 0, (b) t = 3400, (c) t = 4000, (d) t = 5000, (e) t = 7000, ( f ) t = 10 000: blue curve, Dysthe
equation; red curve, NLS equation; black dots, Euler system.

A comparison of surface profiles η obtained from these two models and the full
nonlinear (Euler) system is presented in figures 8 and 9 with snapshots at various instants
for P = 1. Again, the two configurations (A0, k0, λ) = (0.1, 0.9, 0.02) and (0.01, 5, 0.1)
are examined. Due to the large aspect ratio and the presence of short oscillations, we
simply plot the local maxima (i.e. crests) and local minima (i.e. troughs) of the Euler
solution by using dots, without showing its entire profile to avoid cluttering these graphs.
Development of the BF instability and associated near-recurrence over time are clearly
observed. The snapshots at t = 5000 (figure 8) and at t = 170 (figure 9) correspond to
a time of maximum wave growth with modes λ = 0.02 (two humps |p| = 2) and λ = 0.1
(a single hump |p| = 1) being amplified, respectively, which is consistent with the previous
stability analysis (see figure 6).
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Figure 9. Comparison of η between fully and weakly nonlinear solutions for (A0, k0, λ) = (0.01, 5, 0.1) and
P = 1 at (a) t = 0, (b) t = 170, (c) t = 320, (d) t = 620, (e) t = 860, ( f ) t = 980: blue curve, Dysthe equation;
red curve, NLS equation; black dots, Euler system.

Here the waves travel from left to right but, owing to the periodic boundary conditions,
they re-enter the domain from one side whenever they exit it through the other side.
A striking feature of figure 8 for (A0, k0, λ) = (0.1, 0.9, 0.02) is the excellent match in
phase, amplitude and shape between the Dysthe and Euler solutions throughout the entire
simulation. By contrast, the NLS wave packet seems to move faster and the resulting
shift accentuates over time. A slight left–right asymmetry is discernible near the tails
of the Dysthe and Euler pulses, especially when wave modulation is strong, while such
an asymmetry is absent from the NLS pulse. The presence of spatial derivatives of
odd order in the Dysthe equation may explain this phenomenon as opposed to the NLS
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equation. For (A0, k0, λ) = (0.01, 5, 0.1), while very good agreement is obtained between
the Dysthe and Euler solutions at early stages of their time evolution, discrepancies arise
during subsequent cycles of BF instability as shown in figure 9. Notably, the Dysthe
wave packet is found to be steeper (respectively, less steep) than the Euler wave packet
at t = 620 (respectively, t = 980), although their phases still match well. In spite of these
differences, all three solutions behave qualitatively in the same way during the process
of wave modulation–demodulation. These results are in line with the L2 errors reported
in figure 7. Similar observations can be made for other values of 0 ≤ P < 2 and are not
displayed for convenience.

We further assess the performance of our reconstruction procedure by testing it against
independent predictions from the NLS equation proposed by Trichtchenko et al. (2019) for
flexural-gravity waves (P = 0) on deep water. In this framework, the surface variables are
determined perturbatively by a Stokes expansion

η = η1ei θ + η2e2i θ + c.c., Q = ω0η1ei θ + 2ω0η2e2i θ + c.c., (7.24a,b)
up to second order, where c.c. denotes complex conjugation, θ = k0x − ω0t and Q = ∂xξ .
The surface velocity potential ξ can be readily deduced from Q as ξ = ∂−1

x Q by using the
FFT combined with the zero-mass assumption (to handle indetermination at k = 0). The
carrier wave envelope η1 obeys

i (∂t + ω′
0∂x)η1 +

ω′′
0

2
∂2

x η1 + Γ |η1|2η1 = 0, (7.25)

with ω2
0 = gk0 + k5

0 and

ω′
0 =

g + 5k4
0

2ω0
, ω′′

0 = −
g2 − 30gk4

0 − 15k8
0

4ω3
0

, Γ = −
ω0k2

0(4g2 − 27gk4
0 + 44k8

0)

2(g + k4
0)(g − 14k4

0)
,

(7.26a–c)
while the second-harmonic component η2 is bound to η1 via

η2 =
ω2

0η
2
1

g − 14k4
0
. (7.27)

Recall that the coefficients ω′′
0 and Γ for dispersion and nonlinearity coincide with ours

in this situation. The NLS equation (7.25) was derived following the method of multiple
scales based on an integral reformulation of the Euler system (Trichtchenko et al. 2019).
The algebraic equations (7.24a,b) to reconstruct (η, ξ) are more explicit and more efficient
than (4.20a,b), but they are perturbative and devoid of any Hamiltonian structure. On
the other hand, our reconstruction procedure is non-perturbative and involves solving
an auxiliary system of Hamiltonian differential equations, as motivated by the basic
Hamiltonian formulation of this problem.

Restricting our attention to P = 0, figure 10 compares L2 errors (7.23) from our NLS
equation with (η, ξ) calculated according to (4.20a,b) and from its counterpart (7.25) with
(η, ξ) given by (7.24a,b). For each of these models, the L2 error is estimated relative to
the Euler solution with respective initial conditions η(x, 0) and ξ(x, 0). In the case where
(7.25) is tested against (2.8), these initial conditions are provided by (7.24a,b) and (7.27)
with

η1(x, 0) = A0

2
[1 + 0.1 cos(λx)] , (7.28)

noting again that A0 and B0 are related through (7.6) to ensure matching wave parameters
between these two NLS models. We adopt the same numerical schemes as described
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Figure 10. Relative errors on η between fully and weakly nonlinear solutions for P = 0 with (A0, k0, λ) =
(0.1, 0.9, 0.02): blue curve, our NLS equation; red curve, NLS equation from Trichtchenko et al.
(2019).

earlier, together with the same resolutions in space and time, to solve (7.25) and evaluate
(7.24a,b). The initially perturbed Stokes wave is again prescribed by A0 = 0.1, k0 = 0.9
and λ = 0.02. We find that the two sets of errors are indistinguishable as shown in
this figure. This is not surprising given the fact that, for such mild initial conditions
and for such a weakly nonlinear solution as produced by the NLS equation, high-order
harmonics are not expected to contribute significantly to the wave spectrum. In light of this
remarkable agreement, figure 10 helps provide a cross-validation of these two independent
methods for reconstructing (η, ξ) from the wave envelope: on one hand, our dynamical
system approach based on the numerical solution of (4.20a,b) and, on the other hand,
an asymptotic approach based on the second-order algebraic formulae (7.24a,b). Such a
validation was not presented by Trichtchenko et al. (2019). Finally, the conservation of
energy H and wave action M by the Dysthe equation (6.17) is demonstrated in figure 11
where the relative errors

5H
H0

= |H − H0|
H0

,
5M
M0

= |M − M0|
M0

, (7.29a,b)

are plotted as functions of time t for A0 = 0.1, k0 = 0.9 and λ = 0.02. Integration over x
in (6.14) and in the L2 norm (7.23) is carried out via the trapezoidal rule over the periodic
domain [0, L]. The reference values H0 and M0 denote the initial values of (6.14) and (6.19)
at t = 0. Overall, both H and M are very well conserved by (6.17) for various values of P .
The gradual loss of accuracy over time is likely attributed to accumulation of numerical
errors as enhanced by the BF instability.

8. Conclusions
The two-dimensional problem of nonlinear hydroelastic waves propagating along an ice
sheet on an ocean of infinite depth is investigated theoretically and computationally.
Of interest is the asymptotic modulational regime which is applicable to wave groups
as commonly observed under open-water or ice-covered conditions. Based on the
Hamiltonian formulation for nonlinear potential flow coupled to a thin-plate representation
of the ice cover with nonlinear effects from ice bending and compression, we propose
a Hamiltonian version of the Dysthe equation (a higher-order NLS equation) for the

1002 A24-37

1�
��

:

  

�7
2�7

�0
 �

��
��

�	
 �/

�
��

��
��

��
��

��
��

42:
1.

��
76

426
.�

�!
��

��
��

2�
0.

�

62

 .
�:

2�!
��

�.
::

https://doi.org/10.1017/jfm.2024.1161


P. Guyenne, A. Kairzhan and C. Sulem

10–16

10–15

10–14

10–13

10–12

10–11

0 2000 4000 6000 8000 10 000

#
M

/M
0

#
H

/H
0

0 2000 4000 6000
tt

8000 10 000
10–16

10–15

10–14

10–13

10–12

(b)(a)

Figure 11. Relative errors on (a) H and (b) M for the Dysthe equation with (A0, k0, λ) = (0.1, 0.9, 0.02) and
P = 0 (red), P = 1 (blue), P = 1.9 (black).

slowly varying envelope of weakly nonlinear quasimonochromatic waves. This model
is derived via a systematic approach by applying ideas from Hamiltonian perturbation
theory which involve canonical transformations such as reduction to normal form, use
of a modulational ansatz and homogenization over short spatial scales. Due to the more
complicated dispersion relation (as compared with, for example, the pure gravity case), an
additional difficulty here is the presence of resonant triads for which we conduct a detailed
examination.

Accordingly, special attention is paid to developing a normal form transformation that
eliminates non-resonant triads while accommodating resonant ones. For this purpose,
the cubic resonances are identified and treated separately in the Fourier integral terms.
This leads to corrections in the normal form transformation as well as in the envelope
equation, especially for the mean-flow term. The reduction to normal form is given by an
auxiliary system of integrodifferential equations in the Fourier space, and is also endowed
with a Hamiltonian structure. Its significance is two-fold as it provides a non-perturbative
scheme to reconstruct the ice-sheet deformation from the wave envelope by reversing the
evolutionary process. As a consequence, the entire solution (from the envelope equation
to the surface reconstruction) fits within a Hamiltonian framework.

Application to the time evolution of perturbed Stokes waves in sea ice is considered.
Inspecting first the BF instability criterion for the NLS part of this model, a regime
transition from defocusing to focusing occurs when P 7 0.39 at kmin (at the minimum
phase speed), which implies the existence of small-amplitude travelling wave packets. This
theoretical result contrasts with previous reports on the non-existence of such solutions
(i.e. a defocusing NLS equation at kmin) in the absence of ice compression (P = 0). It is
supportive of recent observations of persistent wave groups in the Arctic Ocean. This linear
stability analysis is then generalized to the higher-order terms for any carrier wavenumber.
Its predictions are tested against numerical solutions of the Dysthe equation in the time
domain. An assessment in comparison with simulations based on the NLS equation and
the full Euler system is also shown. Overall, very good agreement is found, with evidence
confirming that the Dysthe equation performs better than the NLS equation. Finally, the
proposed scheme for surface reconstruction is verified against independent computations
using a more classical approach via a Stokes expansion.

In the future, it would be of interest to carry out a detailed numerical investigation on
solitary wave packets of small to large amplitudes over the range 0 ≤ P < 2, possibly
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induced by a moving load along the ice sheet. Another possible extension of this work
is to tackle the three-dimensional case where a similar Hamiltonian formulation can be
adopted (Guyenne 2015). Furthermore, it is conceivable that the same splitting method
can be applied to dealing with cubic resonances in the related problem of gravity-capillary
waves.
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Appendix A. Useful identities
Here we provide a list of identities commonly used in this manuscript.

A.1. Expansions
Below, we list a number of expansion identities that we rely on during the approximation
procedure. We do not give any proofs as the derivations are straightforward. Under the
modulational regime (5.18), we have the following formulae:

|k| = k0 + ελ+ O(ε2),

sgn(k) = 1,

a(k) =
√
ω0

k0

(

1 − ελ

4ω2
0

(
g + Pk2

0 − 3Dk4
0

))

+ O(ε2),

ω(k) = ω0

(

1 + ελ

2ω2
0

(
g − 3Pk2

0 + 5Dk4
0

))

+ O(ε2),

k1 − k3 = ε(λ1 − λ3),

a1−3 = a(k1 − k3) = g1/4

ε1/4|λ1 − λ3|1/4

(
1 − P

4g
ε2|λ1 − λ3|2

)
+ O(ε7/4),

ω1−3 = ω(k1 − k3) = g1/2ε1/2|λ1 − λ3|1/2
(

1 − P
2g
ε2|λ1 − λ3|2

)
+ O(ε9/2).






(A1)

Moreover, we get the following expansions for terms of type a1+2 = a(k1 + k2) and
ω1+2 = ω(k1 + k2):

a1+2 =
√
ω2k0

2k0

(

1 − ε(λ1 + λ2)

4ω2
2k0

(g + 4Pk2
0 − 48Dk4

0)

)

+ O(ε2),

ω1+2 = ω2k0

(

1 + ε(λ1 + λ2)

2ω2
2k0

(g − 12Pk2
0 + 80Dk4

0)

)

+ O(ε2).






(A2)
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A.2. Integral identities
LEMMA A.1. Under the modulational ansatz (5.18), given the indices j, ) ∈ {1, 2, 3, 4}
together with α,β ∈ {1, 2} and µ, ν ∈ {3, 4}, we have
∫
λjz1z2z̄3z̄4δ1+2−3−4 dk1234 =

∫
λ)z1z2z̄3z̄4δ1+2−3−4 dk1234,

∫
|λα − λµ|z1z2z̄3z̄4δ1+2−3−4 dk1234 =

∫
|λβ − λν |z1z2z̄3z̄4δ1+2−3−4 dk1234.





(A3)

Appendix B. Proof of proposition 5.1
Here we outline the main steps to derive the coefficients in (5.8). For simplicity, we
introduce notations I and II to denote the first and second lines of (2.21), respectively,
so that H(4) = I + II. We rewrite each of I and II in terms of zk and z̄−k via (2.25).

For I, we have

I = 1
32π

∫
|k1||k4| (|k1| + |k4| − 2|k3 + k4|)

a1a4

a2a3

× (z1 − z̄−1)(z2 + z̄−2)(z3 + z̄−3)(z4 − z̄−4)δ1234 dk1234

=
∫

V1234(z1 − z̄−1)(z2 + z̄−2)(z3 + z̄−3)(z4 − z̄−4)δ1234 dk1234, (B1)

where we have used the definition (5.9). Extracting terms of type ‘zzz̄z̄’, we have

IR =
∫

V1234(−z1z2z̄−3z̄−4 − z̄−1z̄−2z3z4 − z1z̄−2z3z̄−4 − z̄−1z2z̄−3z4 + z1z̄−2z̄−3z4

+ z̄−1z2z3z̄−4)δ1234 dk1234. (B2)

This integral can alternatively be written after index rearrangements as

IR =
∫

(−V1234 − V4321 − V1324 − V4231 + V1432 + V3214)z1z2z̄−3z̄−4δ1234dk1234. (B3)

After reindexing (k1, k2, k3, k4) → (k1, k2, −k3, −k4), we get

IR =
∫ [

−V12(−3)(−4) − V(−4)(−3)21 − V1(−3)2(−4) − V(−4)2(−3)1

+ V1(−4)(−3)2 + V(−3)21(−4)

]
z1z2z̄3z̄4δ1+2−3−4 dk1234, (B4)

with coefficient equal to T(1)
0 . The computations for II are similar and involve T(2)

0 .

Appendix C. Proof of proposition 5.2
Here we outline the main steps to derive the coefficients in (5.10). The terms in
{K(3), H(3)

NoRes} associated with TNoRes in (5.5) are of the form zzz̄z̄. To find these terms,
we compute the Poisson bracket {K(3), H(3)

NoRes} using the expressions (4.16) for K(3)

and H(3)
NoRes = H(3) − H(3)

Res with H(3)
Res given in (4.14). To distinguish between the indices

associated with K(3) and H(3), we use {1, 2, 3} for K(3) and {4, 5, 6} for H(3).
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A Hamiltonian Dysthe equation for hydroelastic waves

To simplify the computations, we decompose K(3) = K(3)
0 + K(3)

χ with

K(3)
0 = 1

8i
√

π

∫
S123

[
z1z2z3 − z̄−1z̄−2z̄−3

ω1 + ω2 + ω3
− 2

z1z2z̄−3 − z̄−1z̄−2z3

ω1 + ω2 − ω3

]
δ123 dk123,

K(3)
χ = 1

8i
√

π

∫
B123

z1z̄−2z3 − z̄−1z2z̄−3

ω1 − ω2 + ω3
δ123 dk123,






(C1)

where we have used the definition B123 = S123(1 − χ123). Similarly, we decompose
H(3)

NoRes = H(3)
NoRes,0 + H(3)

NoRes,χ with

H(3)
NoRes,0 = 1

8
√

π

∫
S456

[
z4z5z6 + z̄−4z̄−5z̄−6 − 2(z4z5z̄−6 + z̄−4z̄−5z6)

]
δ456 dk456,

H(3)
NoRes,χ = 1

8
√

π

∫
B456 (z4z̄−5z6 − z̄−4z5z̄−6) δ456 dk456.






(C2)

This allows us to rewrite {K(3), H(3)
NoRes} as the sum of Poisson brackets

{K(3)
0 , H(3)

NoRes,0} + {K(3)
0 , H(3)

NoRes,χ } + {K(3)
χ , H(3)

NoRes,0} + {K(3)
χ , H(3)

NoRes,χ }. (C3)

Then, the first bracket in (C3) implies T(1)
NoRes, the sum of the two brackets in the middle

implies T(2)
NoRes and the last bracket gives T(3)

NoRes. Below we only show the computations
for the last bracket in (C3) and verify that it leads to T(3)

NoRes in (5.10). The other Poisson
brackets can be treated in a similar way.

Using the formula (4.2), we have

i {K(3)
χ , H(3)

NoRes,χ }R = 1
64πi

[∫
B123B456

1
ω1 − ω2 + ω3

z1z3z̄−4z̄−6δ25δ123δ456 dk123456

− 4
∫

B123B456
1

ω1 − ω2 + ω3
z2z̄−3z̄−5z6δ14δ123δ456 dk123456

− 4
∫

B123B456
1

ω1 − ω2 + ω3
z̄−2z3z5z̄−6δ14δ123δ456 dk123456

+
∫

B123B456
1

ω1 − ω2 + ω3
z̄−1z̄−3z4z6δ25δ123δ456 dk123456

]
.

(C4)

The formula above needs some clarifications, since the direct application of (4.2) produces
10 different integrals. However, it turns out that some of these integrals are equivalent after
index rearrangements as in the following example:

∫
B123B456

1
ω1 − ω2 + ω3

z̄−1z2z4z̄−5δ14δ123δ456 dk123456

=
∫

B123B456
1

ω1 − ω2 + ω3
z2z̄−3z̄−5z6δ14δ123δ456 dk123456, (C5)

after rearranging the indices (1, 2, 3) → (3, 2, 1) and (4, 5, 6) → (6, 4, 5) and using the
symmetry B123 = B321. As a result, there are two groups of four equivalent integrals which
produce the coefficient 4 on the right-hand side of (C4).
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To write the integrals in (C4) in terms of z1z2z̄3z̄4 as in (5.5), we use an appropriate
modification of indices, which we explain now. For the first integral in (C4), we start by
integrating over k2 and k5. Using δ123 and δ456, this leads to

∫
B123B456

1
ω1 − ω2 + ω3

z1z3z̄−4z̄−6δ25δ123δ456 dk123456

=
∫

B1(−1−3)3B4(−4−6)6
1

ω1 − ω1+3 + ω3
z1z3z̄−4z̄−6δ1346 dk1346. (C6)

Next we reindex (k1, k3, k4, k6) → (k1, k2, −k3, −k4) and get
∫

B1(−1−3)3B4(−4−6)6
1

ω1 − ω1+3 + ω3
z1z3z̄−4z̄−6δ1346 dk1346

=
∫

B1(−1−2)2B3(−3−4)4
1

ω1 − ω1+2 + ω2
z1z2z̄3z̄4δ1+2−3−4 dk1234, (C7)

where we have used the symmetry B(−3)(3+4)(−4) = B(3)(−3−4)(4) and δ1+2−3−4 =
δ(k1 + k2 − k3 − k4). The resulting coefficient

B1(−1−2)2B3(−3−4)4
1

ω1 − ω1+2 + ω2
, (C8)

corresponds to the first term on the first line of the expression for T(3)
NoRes in (5.12). The

other integrals in (C4) are treated in a similar way.

Appendix D. Proof of lemma 5.5
Below we provide an outline of the computational steps that lead to expressions (5.28),
(5.29) and (5.30).

Proof of (5.28). First, we note that the terms S(−1−2)12, S12(−1−2), S(−3−4)34 and S34(−3−4)

in the expressions (5.10)–(5.12) vanish. This can be shown by expanding these terms under
the modulational ansatz in view of identities in Appendix A. For example, for k1 = k0 +
ελ1 and k2 = k0 + ελ2, one can see that

1 + sgn(−k1 − k2)sgn(k2) = 0, (D1)

which is sufficient to verify that S(−1−2)12 = 0. As a result, we rewrite T(1)
NoRes as

T(1)
NoRes = 1

64π
S2(−1−2)1S4(−3−4)3

(
1

ω1 + ω2 + ω1+2
+ 1
ω3 + ω4 + ω3+4

)

+ 1
16π

S(3−1)(−3)1S(4−2)2(−4)

(
1

ω3−1 + ω3 − ω1
+ 1
ω4−2 + ω2 − ω4

)
. (D2)

Using the expansions (A1)–(A2) together with the definitions (4.15) and (5.13), we get for
S2(−1−2)1, S(3−1)(−3)1 the following expressions:

S2(−1−2)1 = S(k2, −k1 − k2, k1),

= ω0k0

√
2k0

ω2k0

(

1 + ε(λ1 + λ2)

4

(
4
k0

+
g + 4Pk2

0 − 48Dk4
0

ω2
2k0

−
g + Pk2

0 − 3Dk4
0

ω2
0

))

(D3)
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A Hamiltonian Dysthe equation for hydroelastic waves

and

S(3−1)(−3)1 = k0g1/4ε3/4(1 + sgn(λ3 − λ1))|λ3 − λ1|3/4. (D4)

Performing similar computations on the remaining terms in (D2), its first line becomes

1
64π

S2(−1−2)1S4(−3−4)3

(
1

ω1 + ω2 + ω1+2
+ 1
ω3 + ω4 + ω3+4

)

= cl
1 + 1

2
cr

1ε(λ1 + λ2 + λ3 + λ4), (D5)

while the second line of (D2) is equivalent to

1
16π

S(3−1)(−3)1S(4−2)2(−4)

(
1

ω3−1 + ω3 − ω1
+ 1
ω4−2 + ω2 − ω4

)

=
εk2

0
4π

(1 + sgn(λ3 − λ1))|λ3 − λ1|. (D6)

In view of (5.21) and Lemma A.1, this leads to (5.28).

Proof of (5.29). Similarly, noting additionally that S(−3)(3−1)1 and S2(4−2)(−4) vanish, the
term T(2)

NoRes reduces to

T(2)
NoRes = − 1

16π
B(4−2)(−4)2S(3−1)(−3)1

(
1

ω3−1 + ω3 − ω1
+ 1
ω4−2 + ω2 − ω4

)

− 1
16π

B(3−1)1(−3)S(4−2)2(−4)

(
1

ω3−1 + ω3 − ω1
+ 1
ω4−2 + ω2 − ω4

)
. (D7)

Due to the presence of δ1+2−3−4 inside the right-hand side integral in (5.29), we will see
that the leading terms of T(2)

NoRes in (D7) are zero. Indeed, from the definitions of S123 and
B123, the first line in (D7) contains the factor B(4−2)(−4)2S(3−1)(−3)1 involving

(1 + sgn(k4 − k2)sgn(k2))(1 + sgn(k3 − k1)sgn(k1)). (D8)

From the constraint k1 + k2 − k3 − k4 = 0, we have

k1 − k3 = k4 − k2 =⇒ sgn(k3 − k1) = −sgn(k4 − k2). (D9)

Since, under the modulational regime (5.18), sgn(k1) = sgn(k2) = +1, direct computations
show that the expression (D8) vanishes, and so does the first line in (D7).

We follow similar steps for the leading term on the second line of (D7). The factor
B(3−1)1(−3)S(4−2)2(−4) involves

(1 + sgn(k3 − k1)sgn(−k3))(1 + sgn(k4 − k2)sgn(−k4)), (D10)

which vanishes under the constraint k1 + k2 − k3 − k4 = 0. This leads to (5.29).

Proof of (5.30). The computations for T(3)
NoRes show the effect of resonances in our problem

on the coefficients of the quartic Hamiltonian.
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Recall the definition B123 = (1 − χNµ(k1, k2, k3))S123. Then, using expansions as in
(D3), the first line of (5.12) becomes

− 1
64π

B1(−1−2)2B3(−3−4)4

(
1

ω1 + ω2 − ω1+2
+ 1
ω3 + ω4 − ω3+4

)

= (1 − χNµ(k1, −k1 − k2, k2))(1 − χNµ(k3, −k3 − k4, k4))

×
(

cl
2 + 1

2
cr

2ε(λ1 + λ2 + λ3 + λ4)

)
. (D11)

For the second line in (5.12), we perform computations similar to (D6), and obtain that
it is equal to

1
16π

B(3−1)1(−3)B(4−2)(−4)2

(
1

ω3−1 + ω3 − ω1
+ 1
ω4−2 + ω2 − ω4

)

= (1 − χNµ(k3 − k1, k1, −k3))(1 − χNµ(k4 − k2, −k4, k2))

×
εk2

0
4π

(1 + sgn(λ1 − λ3))|λ1 − λ3|. (D12)

Appendix E. Proof of lemma 5.6
The computational steps are similar to those in the proof of lemma 5.5, and we give an
outline of these steps below.

For T(1)
Res in (5.14), the first line can be neglected due to the presence of S12(−1−2) and

S34(−3−4), both of which vanish due to the presence of a factor of type (D1). For the second
line, we also have S(−3)(3−1)1 = 0 and it reduces to

− 1
16π(ω3−1 + ω3 − ω1)

S(3−1)(−3)1[χS](4−2)(−4)2, (E1)

which has a factor given by (D8) vanishing under the assumption k1 + k2 − k3 − k4 = 0.
The third line of (5.14) is treated similarly.

For T(2)
Res, we follow the steps used in the proof of lemma 5.5. As a result, we get

B(3−1)1(−3)

ω3−1 + ω3 − ω1
[χS](4−2)(−4)2 = 2εk2

0
(
1 − χNµ(k3 − k1, k1, −k3)

)

× χNµ(k4 − k2, −k4, k2) (1 + sgn(λ1 − λ3)) |λ1 − λ3|.
(E2)

Combining this expression with a similar one for the second term on the first line of (5.15),
we obtain the first integral contribution to (5.32) under (5.21). Repeating the computation
as in (D3) for the terms on the second line of (5.15), we get

−1
64π

(
B1(−1−2)2

ω1 + ω2 − ω1+2
[χS]3(−3−4)4 + B3(−3−4)4

ω3 + ω4 − ω3+4
[χS]1(−1−2)2

)

= 1
2
[
χNµ(k1, −k1 − k2, k2) + χNµ(k3, −k3 − k4, k4)

−2χNµ(k1, −k1 − k2, k2)χNµ(k3, −k3 − k4, k4)
] (

cl
2 + εcr

2(λ2 + λ3)
)

, (E3)

which yields the second integral contribution to (5.32).
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