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We present an algorithm that combines quantum scattering calculations with probabilistic machine-learning models
to predict quantum dynamics rate coefficients for a large number of state-to-state transitions in molecule - molecule
collisions much faster than with direct solutions of the Schrödinger equation. By utilizing the predictive power of
Gaussian process regression with kernels, optimized to make accurate predictions outside of the input parameter space,
the present strategy reduces computational cost by about 75%, with an accuracy within 5%. Our method uses tem-
perature dependences of rate coefficients for transitions from isolated states of initial rotational angular momentum
j, determined via explicit calculations, to predict temperature dependences of rate coefficients for other values of j.
The approach, demonstrated here for ro-vibrational transitions of SiO due to thermal collisions with H2, uses different
prediction models and is thus adaptive to various time and accuracy requirements. The procedure outlined in this work
can be used to extend multiple inelastic molecular collision databases without the exponentially large computation
resources required for conventional rigorous quantum dynamics calculations.

I. INTRODUCTION

Full-dimensional state-resolved quantum dynamics calcu-
lations have been shown to produce highly accurate inelastic
molecular collision rates1–9. As the kinetic and internal en-
ergies of the collision partners increase, so does the compu-
tational cost to produce these results. The quantum scatter-
ing problem for molecular collisions rapidly becomes more
difficult as the rotational quantum number j and the total an-
gular momentum grow. One can reduce the complexity of
the problem by decoupling various angular momenta and/or
freezing one or more of the internal coordinates. One such
approach is known as the coupled-states (CS) approximation,
which replaces the centrifugal barrier with an effective aver-
age and decouples the orbital angular momentum from the re-
maining sources of angular momenta. For a diatom-diatom
system, the full six dimensional close-coupling (6DCC) for-
mulation may be replaced by a 6DCS approximation10,11 if
the twist-angle dependence of the molecule - molecule poten-
tial energy surface (PES) is not strong. It is also possible to
introduce an additional approximation which reduces the scat-
tering problem to five dimensions (5DCS)12. Although less
accurate than the numerically exact 6DCC calculations, the
5DCS method has produced results in good agreement with
experimental measurements7–9,12–15. While this approxima-
tion reduces the computational complexity of the scattering
problem, the computation time required for the 5DCS calcu-
lations scales with the maximum value of the initial rotational
quantum number j in the basis set leading to the computation
time scaling12,

tCS ∝ j4
max vs tCC ∝ j6

max. (1)

This j4
max scaling still restricts the CS calculations to a lim-

ited range of ro-vibrational states of molecules. At the same
time, astrophysical models require rate coefficients for state-
to-state transitions in molecular collisions for a wide range
of initial and final quantum states, extending to high ener-
gies. Here, we present a data-generation approach that re-
places CS calculations for some state-to-state transitions with
surrogate machine learning models using kernel-based, non-
parametric, probabilistic regression. Our goal is to determine
which (isolated) quantum states must be addressed by the CS
calculations in order to build the most optimal machine learn-
ing (ML) models that can predict the most accurate set of rate
coefficients for state-to-state transitions which span the entire
range of accessible quantum states over a given interval of
temperatures.

ML algorithms have recently found applications in nu-
merous disciplines of physics including nuclear physics16–18,
particle physics19–21, astronomy22–24, cosmology25–27, con-
densed matter physics28–30, and quantum many-body
physics31–33. In the present work, we use Gaussian process
(GP) regression for the prediction of the rate coefficients. In
a previous related study23, it was demonstrated that GP mod-
els could be used to correct some of the errors contained in
approximate 5DCS cross sections using a training set consist-
ing of a small number of accurate 6DCC cross sections. The
utility of this approach depends on the availability of a large
amount of approximate data, which as noted above, may be
impractical to compute. Here, we employ GPs with variable
functional forms of the kernel functions to build models that
maximize inference from a given, limited data set of rate co-
efficients. This is achieved by increasing the complexity of
GP models in order to align GP kernels with target functions
to be learned34,35. A similar approach has been shown to pro-
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duce accurate results for physical extrapolation, i.e. by gener-
alization of observables outside the range of input variables,
in several applications36–42. This prediction power of GPs is
exploited here to construct models with variable kernels se-
lected to reduce the number of quantum dynamics calculations
required to produce accurate rate coefficients for molecule -
molecule collisions over a wide range in j. The resulting
models are trained, and validated, by transitions with only a
few isolated j values and used to predict temperature depen-
dencies of rate coefficients for transitions with other j values
that are not included in the training set. The training sets for
such models are also optimized in order to produce an opti-
mal interplay of CS calculations and ML surrogate models for
accurate predictions of temperature dependencies of rate co-
efficients for a wide range of quantum states.

II. METHODS

The purpose of a GP model is to infer a target function
f (x) given n inputs xi and corresponding output values yi.
GP regression uses the conditional distribution p( f |{X,y})
of a normal distribution of functions, where X is the data ma-
trix collecting the input vectors xi and y is a vector of the
corresponding outputs yi. For a noiseless dataset, yi = f (xi).
A GP is defined by a mean function µ(x) and covariance ma-
trix K. The matrix elements Ki j of K are given by the values
of a kernel function k(xi,x j). Predictions are made by cal-
culating the mean of the conditional distribution at value x∗
given, in the absence of noise on yi, by43

µ(x∗) = k(x∗)
⊤K−1y. (2)

where k(x∗) is a vector of k(x∗,x j).
The choice of k(xi,x j) determines the efficiency of the

model. Commonly used analytical forms of the kernel func-
tions include the following:

kLIN(xi,x j) = σ
2x⊤

i x j, (3)

kRBF(xi,x j) = σ
2 exp

[
−

r2(xi,x j)

2ℓ2

]
, (4)

kEXP(xi,x j) = σ
2 exp

[
−

r(xi,x j)

ℓ

]
, (5)

kMAT(xi,x j) = σ
2 21−ν

Γ(ν)

(√
2νr(xi,x j)

ℓ

)ν

Kν

(√
2νr(xi,x j)

ℓ

)
, (6)

and

kRQ(xi,x j) = σ
2
(

1+
r2(xi,x j)

2αℓ2

)−α

, (7)

FIG. 1. Energy level diagram illustrating SiO relaxation from an
initial state v = 1, j = 5 to a final state v′ = 0, j′ = 3. The plot is not
scaled vertically in energy and the v = 1, j = 0 state energy is not
comparable in energy to the v′ = 0, j′ = 5 state.

where r2(xi,x j) = (xi −x j)
2 is the squared Euclidean dis-

tance between xi and x j. For kMAT, ν is a positive parame-
ter that defines the kernel with values ν = 1/2, 3/2, and 5/2
(which will be denoted k12, k32, k52), Kν is the modified Bessel
function of the second kind, and for kRQ, α is the scale-mixing
free parameter43.

Instead of restricting the choice of the kernel function to
a single kernel, in this work we use a combination of Eqs.
(3) - (7), constructed as described below. Moreover, we use
anisotropic kernel functions, i.e. each kernel function is al-
lowed an independent length-scale parameter per input dimen-
sion. Collectively, the free parameters of the chosen kernel
functions can be represented as θ. The kernel function pa-
rameters θ are estimated by maximizing the logarithm of the
marginal likelihood function43

log p(y|θ) =−1
2
y⊤K−1y− 1

2
log |K|− n

2
log(2π), (8)

where n is the number of input points and K and y are de-
fined above.

We consider inelastic state-resolved diatom-diatom scatter-
ing between SiO molecules in a ro-vibrationally excited state
and para-H2 molecules in the ground state. For astrophysics
applications, the rotational and vibrational state of para-H2
are fixed to v = 0, j = 0, as a significant fraction of H2 in
the interstellar medium is expected to populate this state. The
same approach can be applied to H2 in its lowest ortho state,
i.e. j = 1. The GP models are trained by rate coefficients for
collision-induced relaxation, i.e. transitions depicted by the
energy level diagram in Figure 1. The rate coefficients are
found by thermal averaging the collisional cross sections over
a Maxwellian velocity distribution,

k(T ) =

√
8kBT
πµ

1
(kBT )2

∫
∞

0
Ecσ(Ec)e

−
Ec

kBT dEc, (9)

where Ec is the collision energy, σ(Ec) is the cross section for
a particular transition at a given Ec, µ is the reduced mass of
the SiO+H2 system, kB is the Boltzmann constant, and T is
the temperature in Kelvin. The collision cross sections, σ , are
calculated by the 5DCS method.

We use rate coefficients, instead of the cross sections, for
ML input because the integration in Eq. (9) replaces the en-
ergy dependence of the cross sections, often exhibiting sharp
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resonance features, with a smoother temperature dependence
of the rate coefficients. We expect these smoother functions
to be easier to learn. This is also important because resonant
scattering is often sensitive to small variations of the underly-
ing interaction potentials and details of the calculations. The
approximations of the 5DCS method may result in shifts of
resonances, leading to large errors in cross sections, which
may not manifest themselves in the rate coefficients. Apply-
ing ML to rate coefficients rather than cross sections repre-
sents a change in strategy over a previous work23 which aimed
to model the energy dependence of cross sections with energy-
sparse data. The present approach requires 5DCS cross sec-
tions to be computed with sufficient resolution over a large
range of energies for all transitions used in the training set.
Moreover, it is the rate coefficients that are used in kinetic
astrophysical models.

The input vectors for GP models of rate coefficients are
built using the following physical parameters that can classify
a state-to-state transition:

x=
[
T,∆v,∆ j,v, j,v′, j′,δ∆ j,δ∆v

]
, (10)

where v, j and v′, j′ represent the vibrational and rotational
quantum numbers of the initial and final state of the SiO
molecule, respectively; T is the temperature ranging from 10
to 1000 K by decade, or nineteen temperatures in total; ∆v
and ∆ j are the differences between the final and initial state
vibrational and rotational quantum numbers, ∆v = v′− v and
∆ j = j′ − j. The last two features δ∆ j and δ∆v reflects the
well-known differences in propensities for different types of
internal energy transfer and are defined as

δ∆ j =

{
0 ∆ j even
1 ∆ j odd,

(11)

and

δ∆v =

{
0 ∆v = 0
1 ∆v ̸= 0.

(12)

We have found that these two features play a critically impor-
tant role for the models of state-to-state transitions.

The goal of the present data generation scheme is two-fold.
First, we aim to develop robust models that greatly reduce
the need to explicitly perform approximate quantum dynam-
ics calculations for each value of j, j′, v, and v′. Second, we
aim to limit the amount of training data needed. Due to the
computational expense of the explicit calculations, the goal is
to build a framework that requires less transitions to build the
models than the number of transitions predicted by the mod-
els, without compromising the accuracy of the predictions.

To develop this data prediction scheme, it must be assumed
that most of the rate cofficient data are unavailable. The cur-
rent database of 5DCS transitions for SiO(v, j) – H2 collisions
includes rate coefficients for transitions ranging from jmin = 0
to jmax = 20 with j′min = 0 and j′max = 20 for each value of j as
well as, v = 0,1,2 to all allowed values of v′ based on the de-
excitation requirement. By dividing the current data into sets

of transitions based on j and assuming j = 5 is the highest
j calculated explicitly, it can be determined which additional
sets higher than j = 5 must be calculated explicitly to train an
accurate ML prediction model. The accuracy of the models is
investigated as a function of the number of different sets of j
used to train the model as well as the specific values of j that
are included in the training set.

To achieve this, input training sets are created with all pos-
sible unique sets of j from the current database of 5DCS re-
sults. The training sets have a lower limit of N = 2 and an
upper limit N = 6, where N is the number of different j val-
ues in the training set. The upper limit of N = 6 is due to
the requirement that more data be predicted than used to train
the model. If a particular value of j is included in the train-
ing, all of the transitions in the set with that j are used to train
the model. Each unique input set is then used to train a GP
model with one of seven kernels given by Eqs. (3) - (7) us-
ing GPflow44,45. The seven base kernels include Eq. (6) with
three values of ν for kMAT.

For each N , the input combination that produces the lowest
overall test error is chosen as the input for a particular model,
MN . The test sets in this work includes all transitions with
values of j that are not included in the training set. This means
that the test sets are different for different N , however, the
test sets are larger than the training sets. It is important to
note that the test error is only used as a guide to determine the
spread of the j values that need to be calculated via explicit
quantum dynamics for the training of the models. Datasets
are not built iteratively upon the optimal combination of the
previous dataset as it was found that this does not guarantee
the successive iteration to be an optimal one.

It is clear from Eqs. (3)-(7) that GPs are sensitive to the spe-
cific choice of the kernel function. As shown in Refs.34,35,41,
given a fixed data set, the model performance can be improved
by increasing the complexity of the kernel function. The al-
gorithm of34,35 begins by testing models with a simple kernel
from a given set of simple functions. The kernel complexity
is then increased through an iterative process by selecting the
best performing kernel from the previous iteration and com-
posing new unique kernels using sums and products of this
kernel with the same predetermined set of kernels. For a set
of seven functions in Eqs. (3) – (7), the unique kernels at the
i-th iteration are ki = ki−1 + kLIN, ..., ki = ki−1 + kRQ, ki =
ki−1 × kLIN, ..., ki = ki−1 × kRQ. A new GP model is then
trained with each of the new fourteen possible kernel com-
binations, again choosing the best performing kernel for the
model. This process is repeated until the best performing ker-
nel of a successive iteration is comparable, or worse, to that of
the previous iteration in which case the kernel from the pre-
vious successful iteration is chosen as the optimal kernel. In
this work, the first step of the kernel construction algorithm is
done concurrently with determining the input training sets, as
described above. Each of the five models MN , where MN
encompasses the optimal input combinations and their asso-
ciated single kernel, ksingle

N , are then individually put through
the kernel building algorithm until the optimal kernel kopt

N is
determined. This process is shown schematically in Figure 2.

Refs.34,35,41 used the Bayesian information criterion (BIC)
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FIG. 2. Schematic of the kernel building algorithm over three iter-
ations. The input from each MN is tested with each of the seven
base kernels. The best kernel from the first iteration using only a
single kernel, k1 = ksingle

N , is chosen using a selected model selection
criteria. Fourteen unique kernels are then composed via sums and
products of the seven base kernels with the best kernel from the first
iteration. This process continues until the model selection criteria of
a subsequent run is the same or is worse than the previous iteration in
which case the kernel from the previous successful iteration is cho-
sen as the optimal kernel. This figure shows the process for building
the optimal kernel after three iterations k3 = kopt

N = k52 ×kEXP ×k32.

as the model selection metric for each iteration of the kernel
construction algorithm. In the present work, we find that the
model with the largest value of BIC does not always produce
the lowest test error. To overcome this issue and develop a
method that can be applied to generating new data, we use
error over a validation set instead of BIC for model selection.
The validation set must be based on transitions with values of
j not included in the training set. Given that this adds to the
number of quantum calculations required, the validation set
should be as small as possible and include lower values of j.

For each MN , we use three different validation sets for
the kernel selection process depicted in Figure 2. We have
found that, if there is a minimum of three units between the
values of j in the validation set, then the validation set er-
ror correlates with the corresponding test error. To construct
the validation sets, we start with the following values of j =
{6,9}, {6,12}, {6,9,12}. If one of these values is already
included in the training set, the closest higher value is used.
For example, {6,10,13} is used as the validation set if j = 9
and j = 12 are used in the training set. The procedure outlined
in Figure 2 continues iteratively until the validation error of a
subsequent run remains the same or increases, in which case
the kernel of the previous iteration is chosen.

All data in this work is reported as the common logarithm
of the rate coefficient which allows the reported errors to be
given as a relative percentage. With this, the desired predic-
tion accuracy of these models is better than 5% with an upper
limit of 10%. This is an accuracy range that is suitable for use
in kinetic astrophysical models.

III. RESULTS

The results of optimization of the training sets are shown in
Table I. The optimal input combination for each MN is the

N Values of j in Training ksingle
N Num. of Transitions in Input

2 5, 18 kEXP 195

3 5, 16, 19 k52 309

4 5, 9, 14, 19 k52 393

5 5, 8, 12, 17, 19 k52 498

6 5, 8, 11, 14, 17, 19 k32 600

TABLE I. Results for the optimal input combination of j values for
each MN with the corresponding optimal single kernel, ksingle

N . The
input combination that returned the lowest test error was chosen to be
the input combination for MN which is a guide for selecting which
j values should be calculated via explicit quantum dynamics for the
input. The optimal kernel was determined via the lowest validation
set error using the kernel building algorithm. Only one kernel is
reported per N due to the fact that the models chosen using all three
validation sets for a given N returned the same result for the optimal
kernel with slightly different numerical results.

Values of j in N = 5 Training Set Single Kernel Test Error

5, 8, 12, 17, 19 2.04%

5, 8, 13, 15, 19 2.10%

5, 8, 13, 17, 19 2.21%

5, 8, 11, 17, 19 2.56%

5, 9, 11, 16, 18 2.62%

5, 7, 13, 17, 19 2.89%

5, 8, 12, 16, 19 3.57%

TABLE II. Input combinations for the model M5 that deviate from
the optimal input combination for N = 5 along with the correspond-
ing test error for that model. The first result shown in this table is the
optimal combination as shown in Table I. Each of these results were
produced with the same optimal kernel, ksingle

N=5 = k52.

combination of transitions that produces the lowest test error,
while the optimal kernel is determined with the validation sets
as described above. Also included in Table I is the number of
individual state-to-state transitions used to train each of the
models.

Table I illustrates that the most optimal input combinations
have no adjacent j. This shows the GP models generalize well
to transitions with values of j close to those used in the train-
ing set. Transitions with j < 5 are not included in any of the
input sets as they do not improve the results. One should not
regard this as a general rule as this could be due in part to
this particular situation where these j values are too small to
allow the model to make inferences about transitions involv-
ing higher values of j. It is also important to note that small
deviations from the input values of j for each model do not
result in large deviations of the test error compared to the op-
timal model. This shows that models are not very sensitive
to the specific values of j, provided the values of j used in
the training set have similar separations as the sets reported in
Table I. Some combinations close to our optimal input combi-
nation for M5, but with slightly different j values are shown
in Table II with the corresponding test errors.
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FIG. 3. Test errors for both a single kernel (ksingle
N ) and the optimal

kernel (kopt
N ) after completion of the kernel complexity building algo-

rithm for all MN . The hollow black circles represent the test error
with ksingle

N and the red squares represent the test error using kopt
N .

The errors reported are the test errors from models chosen using the
validation error as model selection metric.

Despite using three different validation sets for each MN
only one kernel is reported for each case in Table I. This is be-
cause each of the three validation sets used to build each MN
returned the same kernel for all iterations of the kernel build-
ing algorithm with slightly different numerical results. This
indicates that the validation error, as designed here, is a good
selection metric. Since we aim to reduce the validation set as
much as possible and restrict it to low j, the first validation
set, 6 and 9, or the closest higher value of j when necessary, is
used in the rest of this work. The composite kernel construc-
tion algorithm is then completed for each MN using only the
chosen validation set for model selection. Figure 3 shows the
test errors for each MN for both ksingle

N and kopt
N , demonstrat-

ing the effect of the kernel complexity on model performance.
Figure 3 shows that increasing from N = 2 to N = 6 re-

sults in a rapid decrease in the test error. However, as the
number of j values used to train the models increases the ac-
curacy gained per step decreases. This indicates convergence
on the number of j values in the training set as the benefit of
performing additional explicit calculations decreases rapidly.
Consequently, this is beneficial as the time and computational
expense required to train a GP model increases nonlinearly
with the number of training points. N = 6 was set as the
maximum number of j values in the training set to ensure that
more data was predicted by the models than was being used to
train them. Figure 3 indicates that this is a logical maximum
due to the minimal gain in accuracy one would obtain by per-
forming more explicit calculations. The largest improvement
in accuracy comes by adding one additional value of j from
N = 3 to N = 4, in which the target accuracy of 5% or less is
achieved.

Figure 3 shows that increasing the kernel complexity con-
sistently improves the model accuracy. The increase in model
accuracy is even more evident in Figure 4 that shows the pre-
dictions for each individual set of j for ksingle

N and kopt
N for

N = 3 and N = 6. Since we limit quantum transitions to de-
excitation, each increase in j opens more transitions. Figure 4
shows that, for N = 6 the optimal model performs better than

the single kernel results for every value of j. The dependence
on the kernel functional form is more mixed for N = 3. This
can be attributed to the model having trouble generalizing for
the higher j predictions. For this model, the individual test er-
rors for j = 15,17, and 18 actually increase with an increase
in kernel complexity which combined with a large improve-
ment in the lower values of j leads to only a small increase
in the overall accuracy of the optimal model. We find that for
N ≥ 4 (not shown) there are no outliers in any of the test er-
rors for any individual values of j. This rules out that any of
the results above this point are skewed incidentally. The red
horizontal lines in Figure 4 show the lowest accuracy of the
prediction of an individual transition for each value of j in the
test set.
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FIG. 4. Test errors for individual values of j representing sums of
errors for all inelastic transitions in collisions of SiO(v, j) with H2
that are not included in the training set. The squares represent the
M3 results, while the circles are the M6 results. The full symbols
show the results obtained with simple kernels and the open symbols
– with composite kernels. The red horizontal lines show the lowest
accuracy of the prediction of an individual transition for each value
of j in the test set for the M6 model. If a certain data point for a
given N is not shown in the plot, the corresponding value of j is
used for training or validating that model.

Table III shows the optimal kernels that were determined
via the kernel building algorithm and used to produce the re-
sults in Figure 3. It reveals the uniqueness of each kernel as
no two optimal kernels were the same. This reinforces that
each input combination has a preferred kernel as opposed to
one globally applicable kernel. It was found during the sin-
gle kernel analysis for M4 that kRQ had the lowest validation
error however, the kernel complexity could not be increased
as the validation errors in the next iteration of the algorithm
were higher for each model. The single kernel cases of M5
and M6 were also tested with kRQ as these models had a low,
but not the lowest, validation error. Again, these cases showed
that the kernel complexity could not be increased beyond the
single kernel. The decision to not use this kernel came from
the fact that for each of the models tested, the final result us-
ing a kernel that was able to become more complex was better
than the kRQ case by 1% to 1.5% in all cases. This is not a
large difference from the reported final answer and after the
full analysis it is clear that one could use this kernel to make
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N Optimal Kernel Optimal Kernel Test Error

2 kEXP + kEXP 11.64%

3 k52 × k12 × kEXP + k12 7.78%

4 k52 × kEXP + kEXP ∗ k32 3.49%

5 k52 × kEXP + k32 2.04%

6 k32 × kEXP + kRBF + k12 1.57%

TABLE III. Optimal kernels used to make predictions for the results
in Figure 3 for all MN . The first kernel for each N is the kernel
reported in Table I. These kernels were all determined using an RM-
SProp optimizer with a learning rate of η = 1 determined via grid
search to be the ideal optimizer.

predictions if this decrease in accuracy is acceptable.
Table IV gives a quantitative summary of the number of in-

dividual state-to-state transitions that were used to validate the
models as well as the number of transitions predicted by the
model. Also shown is the number of individual state-to-state
transitions, for both the single and optimal kernel results, that
exceed the maximum accuracy target of 10% and those transi-
tions that had a better accuracy than the target of 5%. Table IV
shows that in order to achieve an overall prediction accuracy
of under 10%, 5% and 3% only about a quarter, a third, and a
half of the total number of transitions in the test set are needed
to train the models, respectively. To validate the models, only
between 15% and 18% of the predicted number of transitions
were needed for the models which achieved the desired ac-
curacy targets. The reason for the slightly larger increase in
validation set size for N = 4 is that j = 9 was used in the
training so j = 10 was reserved for the validation. Addition-
ally, we observe that increasing the kernel complexity from
ksingle
N to kopt

N decreases the number of individual state-to-state
transitions with test errors larger than 10%, while increasing
the number of transitions with errors smaller than 5%. This
is the case for all MN except M2 that shows a slight de-
crease in some transitions below 5%. It is clear that the kernel
complexity does improve the overall performance by increas-
ing the number of transitions below 5%. The models with a
single optimal kernel, however, already perform well, partic-
ularly for N ≥ 3.

For N ≥ 4, all of the transitions with errors above 10% are
due to (v,20) → (v′,0) transitions because ∆ j = −20 transi-
tions are outside the scope of the input parameter space. This
is evident from Figure 4 for j = 20 in which the highest in-
dividual error is roughly 14% which occurs for a ∆ j = −20
transition. Neglecting these transitions, the highest error for
an individual prediction for j = 20 is 6.16%. This shows that
these transitions clearly do not have an effect on this data pre-
diction scheme other than contributing some additional errors
but should be taken into consideration in future work.

Table V gives an overview of the time required, in hours,
to generate the data in the test set using this data generation
scheme versus the time required to produce the same data
using only explicit calculations. Since this data generation
scheme requires some explicit calculations to be performed,
the time required to produce the data used to train and vali-

date the models is reported separately from the time to pro-
duce the data in the test set. The time required to explicitly
generate all of the approximate data used in this analysis is
383 hours. This includes the data used in the training, vali-
dation and test sets. Since the data generated from the calcu-
lations is completed sequentially it is unknown exactly when
the calculation changes from one value of j to the next. To
get a rational estimate of the time required to generate the
transitions for a particular j, each calculation time of j4 is
normalized to the total time. The reported 5DCS computation
times in Table V are from this normalization and are the sum
of the times required to explicitly generate data for the indi-
vidual values of j for the respective sets. The time required to
run the GP algorithm is reported as the times needed to com-
plete the analysis for a single kernel and the time to complete
the optimal models through the entire kernel construction al-
gorithm. Table V clearly shows that the present approach gen-
erates the test set data in a fraction of the time of the explicit
calculations of rate coefficients. To illustrate this further, we
introduce a “Time Saved Metric”, reported as a percentage,
which quantifies computation time saved by using the present
ML approach. This metric is the ratio of the time required
to explicitly generate the data used to train and validate the
models plus the time required to complete the kernel building
algorithm to the total time to produce the data using the 5DCS
method.

Table V additionally shows that the model is able to achieve
an accuracy with less than 10% error overall in approximately
fifteen minutes, under 5% in about thirty minutes and under,
3% in roughly an hour with only a single kernel for N = 3,
N = 4, and N = 5, respectively. While the actual time will
fluctuate based on the unique input data and corresponding in-
put features, using the parameters of this method as a guide
should not result in any significant escalation in time. In-
creasing the kernel complexity increases the total computa-
tion time, while resulting in improved model accuracy. How-
ever, this increase is insignificant compared to the total time of
the quantum scattering calculations required for building the
models.

IV. CONCLUSION

We have developed an approach that can be used to gener-
ate a large amount of rate coefficients for state-to-state transi-
tions in molecular collisions within acceptable accuracy tar-
gets. The present adaptive strategy is demonstrated to ac-
curately predict rate coefficients for state-to-state transitions
that are not included in the training set. Thus, the models
are shown to generalize the temperature dependence of rate
coefficients to different state-to-state transitions. Overall, we
show that high accuracy of rate coefficients can be achieved
with a strategy that employs ML predictions for more inelas-
tic transitions than the number of transitions computed with a
quantum scattering method.

The present approach is based on the interplay of quantum
scattering calculations and ML using GP regression. To max-
imize the efficiency of ML models, we have employed GP
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0 N = 2 N = 3 N = 4 N = 5 N = 6

Transitions for Training 195 309 393 498 600

Transitions for Validation 171 171 179 171 171

Predicted Transitions 1242 1128 1041 939 837

0 0 0 0 0 0

ksingle
N , Over 10% 449 220 15 19 12

ksingle
N , Below 5% 404 606 865 888 790

0 0 0 0 0 0

kopt
N , Over 10% 447 100 6 6 4

kopt
N , Below 5% 400 615 972 922 829

TABLE IV. Quantitative synopsis of the number of individual state-to-state transitions that are used to validation the models and that are
predicted by the models. Also shown is the number of predicted individual state-to-state transitions, for both the single and optimal kernel
results, that exceed the maximum accuracy target of 10% and those transitions that had a better accuracy than 5%. For N ≥ 4, all single
transitions with an error above 10% are accounted for by (v,20)→ (v′,0) transitions.

Time Required N = 2 N = 3 N = 4 N = 5 N = 6

5DCS, Input/Validation 52.8 95.4 87.4 115.5 130.6

5DCS, Predicted 285.2 242.6 250.6 222.5 207.4

GP, Single Kernel .17 .29 .53 1.08 1.73

GP, Optimal Kernel .52 3.18 4.34 6.90 10.66

Time Saved Metric 86.08% 74.26% 76.05% 68.04% 63.12%

TABLE V. The time, in hours, required to generate the data using this data generation scheme versus the time required to produce the same
data using only explicit calculations. The time to produce the results using a single kernel and the optimal kernel are given as well as the
time required to produce these results explicitly via quantum dynamics. Also shown is the time required to produce the data that was used
for training and validation. In total, all of the data used in this analysis was completed in 383 hours. The “Time Saved Metric”, reported as a
percent, gives a quantification of how much time is saved by generating data in our method as compared to the explicit calculations.

models with optimized functional forms of the model kernels,
using validation error as a kernel selection metric. We ob-
serve that increasing kernel complexity improves most mod-
els, though not by a significant factor. For most applications,
it may be sufficient to employ GP models with simple, but
optimally chosen, kernels, i.e. one of the functions in Eqs.
(3) – (7) chosen to minimize a validation error for a particular
training/validation set of rate coefficients. We have examined
the effect of distributions of rate coefficients in the space of
quantum numbers on the accuracy of the resulting models and
observe that the training data with large gaps between the rota-
tional angular momentum j of the initial state produce optimal
results. The large gaps between j are filled by the ML predic-
tions, which results in significant saving of the computation
time.

The current work used the rate coefficients from the cross
sections computed with the coupled-states approximation
since a large number of rate coefficients was required to train,
validate, and test the present approach. The 5DCS approxi-
mation itself was developed to reduce the computational time
compared to the rigorous 6DCC approach. The present ap-
proach can be combined directly with the 6DCC calculations.
Since each of the 6DCC calculations is much more computa-
tionally demanding, the present strategy would result in an en-
hancement of the time-saved metric as compared to the value

estimated for the 5DCS data in Table V, by approximately a
factor of 25.
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