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Abstract

Federated Learning (FL) has pioneered the idea of ”share
wisdom not raw data” to enable collaborative learning over
decentralized data. FL achieves this goal by averaging model
parameters instead of centralizing data. However, representing
”wisdom” in the form of model parameters has its own limi-
tations including the requirement for uniform model architec-
tures across clients and communication overhead proportional
to model size.
In this work we introduce Co-Dream a framework for repre-
senting ”wisdom” in data space instead of model parameters.
Here, clients collaboratively optimize random inputs based on
their locally trained models and aggregate gradients of their
inputs. Our proposed approach overcomes the aforementioned
limitations and comes with additional benefits such as adaptive
optimization and interpretable representation of knowledge.
We empirically demonstrate the effectiveness of Co-Dream
and compare its performance with existing techniques.

Code — https://mitmedialab.github.io/codream.github.io/

Introduction
Machine learning (ML) model training is often hindered by
the fragmented nature of data ownership. Federated Learn-
ing (FL) (McMahan et al. 2023) addresses this problem by
aggregating clients’ models centrally instead of their data.
While FL does not give any privacy guarantee, it reduces pri-
vacy concerns by (1) sharing clients’ models instead of their
raw data and (2) using a linear operation (weighted average)
to aggregate models that is amenable to secure aggregation
techniques.

However, FL requires all clients to agree on the same
model architecture. If the model has a large number of pa-
rameters, it may not be supported by all participating de-
vice hence reducing the number of participants. Some recent
knowledge-distillation (KD) (Mora et al. 2022) techniques
allow clients to share knowledge while allowing heteroge-
neous models. However, these KD algorithms depart from
the model averaging paradigm, and hence incompatible with
secure aggregation.

*These authors contributed equally.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We propose a novel framework to solve this problem by
aggregating collaboratively optimized representations of data
(which we call dreams) instead of parameters. We show that
dreams capture the knowledge embedded within local models
and also facilitate the aggregation of local knowledge. Our
key idea is to apply federated optimization on randomly ini-
tialized samples to extract knowledge from the client’s local
models trained on their original dataset. The goal of optimiz-
ing dreams is to enable KD, rather than generate realistic
synthetic data.

The key benefits of our approach are: (1) Flexibility: Our
proposed technique, Co-Dream, collaboratively optimizes
dreams to aggregate knowledge from the client’s local mod-
els. By sharing dreams in the data space rather than model
parameters, our method is model-agnostic. (2) Scalability:
Furthermore, communication does not depend on the model
parameter size, alleviating scalability concerns. (3) Privacy:
Just like FedAvg (McMahan et al. 2017), Co-Dream does
not come with privacy guarantee but enhances privacy in two
ways: Firstly, clients share dreams’ updates, never raw data.
Secondly, the linearity of the aggregation algorithm allows
clients to securely aggregate their dreams without revealing
their individual updates to the server.

Our framework comprises three stages: knowledge ex-
traction , knowledge aggregation , and knowledge acquisi-
tion . We test Co-Dream by establishing the feasibility of
Co-Dream as a way for clients to synthesize samples collab-
oratively and learn predictive models, validating Co-Dream
as an alternative to FL. We empirically validate our frame-
work by benchmarking with existing algorithms and conduct-
ing ablation studies across various design choices.

Preliminaries
Federated Learning (FL) minimizes the expected risk
minθ ED∼p(D)ℓ(D, θ) where θ is the model parameters, D
is a tuple of samples (X ∈ X , Y ∈ Y) of labeled data in su-
pervised learning in the data space X ⊂ Rd and Y ⊂ R,
and ℓ is some risk function such as mean square error or
cross-entropy (Konečnỳ et al. 2016; McMahan et al. 2023).
Without directly accessing the true distribution, FL optimizes
the empirical risk instead given by:

min
θ

∑
k∈K

1

|Dk|
ℓ(Dk, θ), (1)
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Figure 1: Overview of the Co-Dream pipeline comprising three stages: (1) Knowledge Extraction— each client generates
dreams, representing the extracted knowledge from their local models (teacher). Starting with random noise images and frozen
teacher models, clients optimize to reduce entropy on the output distribution while regularizing the batch norm and adaptive loss.
The clients share their local updates of dreams and logits with the server. (2) Knowledge Aggregation—server aggregates dreams
and soft labels from clients to construct a Co-Dream dataset. (3) Knowledge Acquisition—clients update their local models
through two-stage training (i) on jointly optimized co-dreams with knowledge distillation (where clients act as students) and (ii)
local dataset with cross-entropy loss.

The dataset D is distributed among K clients, with each
client k holding a portion Dk, such that D = ∪k∈KDk. The
server broadcasts the global model θr to all clients, who
then locally optimize it for M rounds to obtain θr+1

k =
argminθ ℓ(Dk, θ

r). Each client sends its updated model
θr+1
k or the difference θr+1

k − θrk (the pseudo-gradient) back
to the server, which aggregates these updates and sends the
new global model back to the clients.
Knowledge Distillation facilitates the transfer of knowledge
from a teacher model (f(θT )) to a student model (f(θS)) by
incorporating an additional regularization term into the stu-
dent’s training objective (Buciluǎ, Caruana, and Niculescu-
Mizil 2006; Hinton et al. 2015). This regularization term
(usually computed with Kullback-Leibler (KL) divergence
KL(f(θT ,D)||f(θS ,D))) encourages the student’s output
distribution to match the teacher’s outputs.
DeepDream for Knowledge Extraction (Mordvintsev,
Olah, and Tyka 2015) first showed that features learned
in deep learning models could be extracted using gradient-
based optimization in the feature space. Randomly initialized
features are optimized to identify patterns that maximize a
given activation layer. Regularization such as TV-norm and
ℓ1-norm has been shown to improve the quality of the re-
sulting images. Starting with a randomly initialized input
x̂ ∼ N (0, I), label y, and pre-trained model fθ, the opti-
mization objective is

min
x̂

CE (fθ(x̂), y) + R(x̂), (2)

where CE is cross-entropy and R is some regularization.
DeepInversion (Yin et al. 2020) showed that the knowledge
distillation could be further improved by matching batch
normalization statistics with the training data at every layer.

Related Work

Generative modeling techniques either pool locally gener-
ated data on the server (Song et al. 2022; Goetz and Tewari
2020) or use FedAvg with generative models (Rasouli, Sun,
and Rajagopal 2020; Xin et al. 2020). Like FL, FedAvg
over generative models is also not model agnostic. While we
share the idea of generative data modeling, we do not expose
individual clients’ updates or models directly to the server.

Knowledge Distillation in FL is an alternative to FedAvg
that aims to facilitate knowledge sharing among clients that
cannot acquire this knowledge individually (Chang et al.
2019; Lin et al. 2020; Afonin and Karimireddy 2022; Chen
and Chao 2021). However, applying KD in FL is challenging
because the student and teacher models need to access the
same data, which is difficult in FL settings.

Data-free Knowledge Distillation algorithms address this
challenge by employing a generative model to generate syn-
thetic samples as substitutes for the original data (Zhang
et al. 2022a,b; Zhu, Hong, and Zhou 2021). These data-free
KD approaches are not amenable to secure aggregation and
must use the same architecture for the generative model.

Overall, these existing approaches lack active client collab-
oration in the knowledge synthesis process. Clients share their
local models or locally generated data with the server without
contributing to knowledge synthesis. We believe that collabo-
rative synthesis is crucial for secure aggregation and bridg-
ing the gap between KD and FL. Our approach Co-Dream
enables clients to synthesize dreams collaboratively while
remaining compatible with secure aggregation techniques
and being model agnostic.
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Figure 2: Comparing aggregation framework in FL and
Co-Dream. In FL, the server aggregates the gradients of
model parameters, whereas, in Co-Dream, aggregation hap-
pens in the gradients of the data space, called dreams (x̂),
allowing for different model architectures. Here K is the
number of clients and l, l̃ are loss functions given in Eq 1 and
Eq 3.

Our approach Co-Dream consists of three key stages.
In the knowledge extraction stage, each client extracts

useful data representations, referred to as “dreams”, from
their locally trained models. Starting with random noise im-
ages x̂, clients k ∈ K optimize these images using objective
ℓ̃ to facilitate knowledge sharing from their local models
with parameters θk (Section ). Since this is a gradient-based
optimization of the input dreams, we exploit the linearity
of gradients to enable knowledge aggregation from all the
clients:

∇x̂

(
Ek∼K [ℓ̃(x̂, θk)]

)
= Ek∼K

[
∇x̂(ℓ̃(x̂, θk))

]
In the knowledge aggregation stage, the clients now

jointly optimize these random noised images by aggregating
the gradients from the local optimizations (Section ). Un-
like FedAvg, our aggregation occurs in the input data space
over these dreams, making our approach compatible with
heterogeneous client models.

Finally, in the knowledge acquisition stage, these col-
laboratively optimized images, or dreams, are then used for
updating the server and clients without ever sharing the raw
data or models. Specifically, clients act as students and train
their models on the global dreams (Section ). Figure 1 gives
an overview of the Co-Dream pipeline for each round. We
now discuss these stages in more detail.

Local dreaming for knowledge extraction
First, clients perform local dreaming, a model-inversion ap-
proach to extract information from their trained models. We
use DeepDream (Mordvintsev, Olah, and Tyka 2015) and
DeepInversion (Yin et al. 2020) approaches that enable data-
free knowledge extraction from the pre-trained models. How-
ever, these are not directly applicable to a federated setting
because the client models are continuously evolving, as they

learn from their own data as well as other clients. A given
client should synthesize only those dreams over which they
are highly confident. As the client models evolve, their confi-
dence in model predictions also changes over time. A direct
consequence of this non-stationarity is that it is unclear how
the label y should be chosen in Eq 2. In DeepInversion, the
teacher uniformly samples y from its own label distribution
because the teacher has the full dataset. However, in the fed-
erated setting, data is distributed across multiple clients with
heterogeneous data distributions.

To keep track of a given client’s confidence, we take a sim-
ple approach of treating the entropy of the output distribution
as a proxy for the teachers’ confidence. We adjust Eq 2 so
that the teacher synthesizes dreams without any classification
loss by instead minimizing the entropy (denoted by H) on
the output distribution. Each client (teacher) starts with a
batch of representations sampled from a standard Gaussian
(x̂ = N (0, 1)), and optimizes dreams using Eq 3. Formally,
we optimize the following objective for synthesizing dreams:

min
x̂

{
ℓ̃(x̂, θ) = H (fθ(x̂)) +Rbn(x̂) +Radv(x̂)

}
(3)

where H is the entropy for the output predictions, Rbn

is the feature regularization loss and Radv is a student-
teacher adversarial loss. To improve the dreams image
quality, we enforce feature similarities at all levels by
minimizing the distance between the feature map statis-
tics for dreams and training distribution, which is stored
in the batch normalization layers. Hence, Rbn(x̂) =∑

l ||µl
feat − µl

bn||+ ||σl
feat − σl

bn||. Further, to increase
the diversity in generated dreams, we add an adversarial
loss to encourage the synthesized images to cause student-
teacher disagreement. Radv penalizes similarities in im-
age generation based on the Jensen-Shannon divergence
between the teacher and student distribution, Radv(x̂) =
−JSD(ft(x̂)||fs(x̂)), where the client model is the teacher
and the server model is the student model. To do this adaptive
teaching in a federated setting, the server shares the gradi-
ent ∇x̂fs(x̂) with the clients for local adaptive extraction.
The clients then locally calculate∇x̂ℓ̃(x̂, θk) which is then
aggregated at the server for knowledge aggregation in Eq 4.
Thus,Radv helps extract knowledge from the clients that the
clients know and the server does not know.

Unlike generative models that generate data with objective
to resemble the real data, the goal of optimizing dreams is
to perform knowledge distillation. Therefore, as shown in
Figure 6, dreams do not resemble real images.

Collaborative dreaming for knowledge aggregation
Since the data is siloed and lies across multiple clients, we
want to extract the collective knowledge from the distributed
system. While FedAvg aggregates gradients of the model
updates from clients, it assumes the same model architecture
across clients and thus is not model-agnostic.

We propose a novel mechanism for aggregating the knowl-
edge by collaboratively optimizing dreams across different
clients. Instead of each client independently synthesizing
dreams using Eq 3, they now collaboratively optimize them
by taking the expectation over each client’s local loss w.r.t.
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the same x̂: minx̂ Ek∈K

[
ℓ̃(x̂, θk)

]
. This empirical risk can

be minimized by computing the local loss at each client.
Therefore, the update rule for x̂ can be written as:

x̂← x̂−∇x̂

∑
k∈K

1

|Dk|
ℓ̃(x̂, θk)

Using the linearity of gradients, we can write it as

x̂← x̂−
∑
k∈K

1

|Dk|
∇x̂ℓ̃(x̂, θk) (4)

Clients compute gradients locally on a shared input and send
them to the server, which aggregates the gradients and re-
turns the updated input. This approach, like distributed-SGD,
optimizes in the data space rather than the model parameter
space. As a result, Co-Dream is model-agnostic (Fig 2) and
compatible with existing cryptographic aggregation methods,
since only the aggregated output is revealed, not individual
gradients.

We experimentally demonstrate that collaborative opti-
mization indeed embeds the knowledge from multiple client
models in the same dream dataset.

Knowledge acquisition
Finally, the local clients and the server act as students and
update their models using the collaboratively trained dreams
obtained from Eq 4. The clients share soft logits for each
dream, which are then aggregated by the server to perform
knowledge distillation on the following objective:

min
θ

∑
x̂∈D̂

KL

(∑
k

1

|Dk|
fθk(x̂)

∥∥∥∥ fθ(x̂)

)
(5)

We provide the complete algorithm of Co-Dream in Algo-
rithm 1. Note that the choice of parameters such as local
updates M , global updates R, local learning rate ηl, global
rate ηg , and the number of clients K typically guide the trade-
off between communication efficiency and convergence.

Analysis of Co-Dream
The benefits of Co-Dream are inherited from using KD,
along with additional advantages arising from our specific
optimization technique. Co-Dream extracts the knowledge
from clients in dreams and shares the updates of these dreams
instead of model gradients (∇θ) as done in FL.

Communication Analysis: We use the following nota-
tion: d is the dimension of the inputs or dreams, n is the
batch size of dreams generated, and R is the number of
aggregation rounds. In FedAvg and its variants, the commu-
nication is |θ| × R. Since Co-Dream communicates input
gradients (∇x̂) instead of model gradients (∇θ), the total
communication is d × n × R. For heavily parameterized
models, d× n≪ |θ|. In a single batch, the communication
complexity of Co-Dream does not scale with larger models.
Table 3 provides a comprehensive communication analysis
for different model architectures in FedAvg vs Co-Dream.

Privacy Analysis: Various model inversion and recon-
struction attacks (Haim et al. 2022; Hitaj, Ateniese, and Perez-
Cruz 2017) have shown private sensitive information can be

Algorithm 1: Co-Dream Algorithm
Input: Number of client K, local models and data

θk and Dk, k ∈ K, local learning rate ηk, global
learning rate ηg , local training rounds M , global
training epochs R, total number of epochs N .

for t = 1 to N do
Server initializes a batch of dreams x̂ ∼ N (0, 1);
for r = 1 to R do

Server broadcasts x̂r to all clients
for each client k ∈ K in parallel do

x̂r
k,0 := x̂r;

for m = 1 to M do
// Local knowledge extraction (Eq 3)
x̂r
k,m ← x̂r

k,m−1 − ηk · ∇x(ℓ̃(x̂
r
k,m−1, θk))

end
each client shares pseudo-gradient ∇x̂r

k =
x̂r
k,M − x̂r with the server;

end
// Collaborative knowledge aggregation (Eq 4)

x̂r+1
S ← x̂r + ηg

∑
k∈K

1
|Dk|∇x̂

r
k;

// Server aggregates model predictions
D̂ := {x̂r+1, ŷr+1

S :=
∑

k
1

|Dk|fθk({x̂
r+1)};

// Local knowledge acquisition (Eq 5)
for each client k ∈ K in parallel do

LocalUpdate(D̂, θk); LocalUpdate(Dk, θk);
end
LocalUpdate(D̂, θs);

end
end

reconstructed from just the model weights. While several
reconstruction attacks perform model inversion, Co-Dream
is optimized for improving performance on knowledge dis-
tillation. However, in Co-Dream, the clients collaborate
by sharing the gradients of dreams’ without even sharing
their model parameters. A simple application of data pro-
cessing inequality shows that sharing dreams is at least as
private as sharing model parameters. Similar to FedAvg,
the synchronization step between the clients is a linear op-
eration (weighted average) and hence offers an additional
layer of privacy by using secure aggregation (Bonawitz et al.
2017). Finally, table 4 shows that our approach empirically
outperforms benchmarks against the state-of-the-art LiRA
membership inference attack (Carlini et al. 2022).

Flexibility of models: Since the knowledge aggregation
in Co-Dream is done by sharing the updates of dreams in
data space, Co-Dream is model agnostic and allows for col-
laboration among clients with different model architectures.
We empirically observe no performance drop in collaborative
learning with clients of different model architectures.

Customization in sharing knowledge: Additionally, shar-
ing knowledge in the data space enables adaptive optimiza-
tion, such as synthesizing adversarially robust samples or
class-conditional samples for personalized learning.
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Heterogeneous Clients (Independent clients 1-4) Method
Model WRN-16-1 VGG-11 WRN-40-1 ResNet-34 Independent Centralized AvgKD Co-Dream (ours)

iid(α = inf) 52.2 55.1 43.5 54.2 51.6(4.5) 68.8 52.9(1.4) 69.6(1.0)
α = 10 19.1 23.6 27.6 16.2 19.7(1.7) 58.5 50.4(1.3) 62.2(2.6)
α = 1 41.3 38.2 37.1 50.1 41.7(5.1) 64.8 42.4(2.9) 60.0(1.7)
α = 0.1 29.1 22.3 33.1 21.5 27.2(4.9) 43.0 30.2(3.3) 40.6(0.9)

Table 1: Performance comparison with heterogeneous client models: on CIFAR10 dataset. Left: Accuracy for independent
heterogeneous clients with different models; Right: Average client model performance comparison of Co-Dream with other
baselines

MNIST SVHN CIFAR10
Method iid(α = inf) α = 1 α = 0.1 iid(α = inf) α = 1 α = 0.1 iid(α = inf) α = 1 α = 0.1

Centralized 85.0(0.9) 61.4(7.1) 36.9(7.6) 80.8(1.3) 75.6(1.4) 54.6(13.6) 65.7(2.9) 65.3(0.4) 45.5(6.8)
Independent 52.4(7.0) 36.3(6.2) 22.0(4.2) 51.3(9.2) 42.3(6.4) 19.6(9.2) 46.4(2.0) 39.7(3.4) 23.5(5.2)

FedAvg 84.7(1.6) 60.3(3.4) 40.0(6.9) 82.9(0.4) 79.1(0.9) 47.1(23.7) 67.2(0.4) 62.3(0.9) 34.8(8.3)
FedProx 78.6(3.5) 62.6(3.6) 38.1(11.0) 86.9(0.1) 84.3(0.6) 48.7(26.7) 70.8(1.8) 62.3(2.9) 27.1(9.8)
Moon 85.1(2.6) 66.2(4.4) 42.3(11.8) 80.1(0.1) 76.5(1.2) 41.7(21.8) 66.6(1.4) 64.8(0.8) 35.5(10.8)

AvgKD 61.3(2.3) 44.3(4.8) 21.4(4.3) 75.4(0.7) 61.2(4.6) 20.7(10.9) 54.2(0.9) 46.4(3.3) 25.9(6.2)
SCAFFOLD 87.5(0.6) 70.2(3.6) 38.8(13.7) 86.0(0.1) 84.5(0.7) 13.5(4.4) 73.9(1.5) 67.5(4.6) 22.8(7.8)

FedGen 64.5(1.9) 51.0(4.3) 31.4(7.4) 49.7(1.6) 44.2(4.1) 34.9(19.7) 66.2(0.4) 62.8(1.8) 40.2(9.0)
Co-Dream (ours) 80.6(0.5) 57.7(3.6) 35.7(9.2) 81.4(0.1) 80.1(0.8) 44.5(17.7) 69.5(0.3) 64.8(0.3) 36.6(8.4)

Table 2: Performance overview of different techniques with different data settings. A smaller α indicates higher heterogeneity.

Experiments
We systematically experiment and evaluate multiple aspects
of Co-Dream. Unless stated otherwise, we used ResNet-
18 (He et al. 2015) for training the client and server models
and set the total number of clients K = 4. We conduct our
experiments on 3 real-world datasets, including MNIST (Le-
Cun et al. 1998), SVHN (Netzer et al. 2011), and CIFAR10
(Krizhevsky, Hinton et al. 2009). To validate the effect of
collaboration, we train clients with 50 samples per client
for MNIST and 1000 samples per client for CIFAR10 and
SVHN datasets. For reference, we include two unrealistic
baselines — Independent and Centralized. In the
Centralized baseline, all the client data are aggregated
in a single place. In the Independent baseline, clients
only learn from their local data.

To simulate real-world conditions, we perform experi-
ments on both IID and non-IID data. We use Dirichlet dis-
tribution Dir(α) to generate non-IID data partition among
labels for a fixed number of total samples at each client. The
parameter α guides the degree of imbalance in the training
data distribution. A small α generates more skewed data.

Fast dreaming for knowledge extraction
Despite the impressive results of the original DreamInver-
sion (Yin et al. 2020), we find 2000 local iterations to be
too slow for a single batch of image generation when per-
formed collaboratively in Co-Dream. Therefore, we use the
Fast-datafree (Fang et al. 2022) approach that learns a prior
for initializing dreams rather than initializing with random
noise every time, to speed up image generation by a factor
of 10 to 100 while preserving the performance. However, in
each aggregation round, the client now shares both the local
generator model and the dreams for aggregation by the server.
Instead of 2000 global aggregation rounds (R) in Co-Dream,
CoDream-fast performs only a single global aggregation

round with 5 local rounds. We perform several subsequent
experiments using CoDream-fast. More details on the
implementation can be found in the Supplement material.

Model-agnostic collaborative learning

Since Co-Dream shares updates in the data space instead
of the model space, our approach is model agnostic. We
evaluate our approach across heterogeneous client models
including ResNet-34 (He et al. 2016), VGG-11 (Simonyan
and Zisserman 2014), and Wide-ResNets (Zagoruyko and Ko-
modakis 2016) (WRN-16-1 and WRN-40-1). Table 1 shows
the performance of Co-Dream against Centralized,
Independent, and model agnostic FL baselines such as
Avg-KD (Afonin and Karimireddy 2022). Note that FedGen
is not completely model agnostic as it requires the client
models to have a shared feature extractor and thus cannot
be applied to our setting. We exclude FedAvg as it doesn’t
support heterogeneous models. Performing FL under both
heterogeneous models and non-IID data distribution is a chal-
lenging task, yet Co-Dream outperforms the baselines.

Communication efficiency

We compare the client communication cost of Co-Dream
and FedAvg per round for different model architectures in
Table 3. In FedAvg, the clients share the model with the
server, whereas, in Co-Dream, they share the dreams(size
of data). However, in Co-Dream, each batch of dreams is
refined for 400 rounds, whereas in CoDream-fast there is
only a single round of aggregation along with the sharing of
a lightweight generator model (as explained in Section . The
communication of both Co-Dream and CoDream-fast
is model agnostic and does not scale with large models.
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Model FedAvg Co-Dream CoDream-fast
Resnet34 166.6 MB 600 MB 23.5MB
Resnet18 89.4 MB 600 MB 23.5MB
VGG-11 1013.6 MB 600 MB 23.5MB

WRN-16-1 1.4 MB 600 MB 23.5MB
WRN-40-1 4.5 MB 600 MB 23.5MB

Table 3: Communication analysis of FedAvg vs Co-Dream
and CoDream-fast per round

Varying number of clients
We test whether Co-Dream actually encapsulates knowl-
edge from multiple clients. We test this hypothesis by ag-
gregating knowledge by varying the number of clients K =
[2, 4, 8, 12, 24], while keeping the total dataset size constant.
Thus, as K increases, each client has fewer local samples.
As expected, performance declines with more clients, since
each client’s knowledge is less representative of the overall
distribution. However, this drop is sublinear (Figure 3), mak-
ing Co-Dream viable for cross-device federated learning.
The gap between Co-Dream and FedAvg remains similar
across different K.

In summary, Co-Dream sees a graceful decline in accu-
racy as data gets more decentralized. The framework effec-
tively distills collective knowledge, even when local datasets
are small. We conclude that averaging gradients in data space
can combine the knowledge in the similar way as averaging
gradients in the space of model parameters.
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Figure 3: Comparison by varying the number of clients.
The performance gap widens between Co-Dream and inde-
pendent optimization as we increase the number of clients.

Non-IID datasets benchmarking
We evaluate the feasibility of Co-Dream for both IID and
non-IID settings by varying α = 0.1, 0.5 and report the
performances of different methods in Table 2. We include
popular non-IID specific algorithms such as FedProx (Li et al.
2020), Moon(Li, He, and Song 2021), and Scaffold (Karim-
ireddy et al. 2020). We also include other model-agnostic
federated baselines such as FedGen(Zhu, Hong, and Zhou
2021) and AvgKD (Afonin and Karimireddy 2022). The re-
sults show that Co-Dream is competitive with other non-iid

techniques across all datasets and data partitions. Even as
α becomes smaller (i.e., data become more imbalanced),
Co-Dream still performs well. Note that Co-Dream does
not beat other state-of-the-art non-iid techniques since it is
not designed for the non-iid data challenges. It is analogous
to FedAvg in the data space, and thus, existing non-iid tricks
can also be applied to Co-Dream to improve its accuracy
further.

Analysis of sample complexity of dreams
We plot the accuracy of the server model trained from scratch
against the number of batches of dreams it is trained on as
shown in Fig 4. Note that the quality of generated dreams for
training increases as training progresses in each round. We
observe that 5 batches per round is a good enough size, after
which the marginal gain is very small.
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Figure 4: Sample complexity of dreams in reaching target
accuracy. The performance improvement saturates as we add
more batches.

Validating knowledge-extraction based on Eq 3
We evaluate whether the knowledge-extraction approach
(Sec ) allows for the effective transfer of knowledge from
teacher to student. We first train a teacher model from scratch
on different datasets, synthesize samples with our knowledge-
extraction approach, and then train a student on the extracted
dreams. To validate its compatibility within an FL setting
where clients have a small local dataset, we reduce the size
of the training set of the teacher to reduce its local accuracy
and measure corresponding student performance. Results in
Fig 5 show that the teacher-student performance gap does not
degrade consistently even when the teacher’s accuracy is low.
This result is interesting because the extracted features get
worse in quality as we decrease the teacher accuracy, but the
performance gap is unaffected.

Collaborative vs Independent optimization
We evaluate the effectiveness of collaborative optimization
of dreams over multiple clients in aggregating the knowledge
by comparing the performance of collaboratively optimized
dreams in Co-Dream (using Eq 3) with independently op-
timized dreams. We show the aggregation step in Eq 3 not
only helps in secure averaging, leading to more privacy but
also improves the performance (Table 5, last row).
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Metric CIFAR10 CIFAR100

Single Model FedAvg CoDream-fast (ours) Single Model FedAVG CoDream-fast (ours)

Balanced Accuracy 57.39% 54.12% 50.77% 79.86% 51.84% 50.42%
AUROC 65.58% 63.17% 59.72% 77.01% 58.24% 57.53%

TPR @ 0.1% FPR 72.39% 53.71% 39.36% 39.63% 34.37% 31.40%
TPR @ 0.001% FPR 11.34% 5.00% 2.66% 30.41% 1.98% 0.66%

Table 4: Evaluation of privacy leakage by performing Membership Inference Attack
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Figure 5: Validating the effectiveness of knowledge trans-
fer from teacher to student: We vary the size of the training
dataset (on the x-axis) for the teacher and compare its accu-
racy with the student trained on dreams generated using Eq 3

Data partition iid α = 1 α = 0.1
Co-Dream 69.2(0.1) 61.6(0.5) 45.6(1.5)
w/oRadv 65.7(0.2) 58.4(1.3) 42.0(1.4)
w/oRbn 51.2(6.1) 33.1(7.1) 24.1(5.2)

w/o collab 64.4(0.5) 58.4(1.4) 30.8(3.2)

Table 5: Ablation of components in Co-Dream on CIFAR10

Contribution of loss componentsRbn andRadv in
knowledge extraction
We further explore the impacts of various components of loss
function in data generation in Eq. 3. Through leave-one-out
testing, we present results by excludingRbn (w/oRbn) and
excludingRadv (w/oRadv). Table 5 shows removing either
component influences the accuracy of the overall model, il-
lustrating the impact of each part of the loss function plays
an important role in generating good quality dreams.

Membership Inference Attack Evaluation
We evaluate whether models trained over dreams leak less or
more information than their federated or centralized counter-
part. We evaluate information leakage in the trained models
using the LiRA membership inference attack (Carlini et al.
2022). We train all models to achieve a similar classifica-
tion accuracy to ensure a fair comparison of their privacy-
preserving capabilities. To simulate the LiRA attack, we
perform a single query per datapoint to calculate the ϕ scores,
utilizing one target model and ten shadow models. Since the
attack objective is binary classification, we measure attack
success with balanced accuracy, AUROC, and true-positive
rates at the 0.1% and 0.001% false positive rates, with lower

scores indicating lesser privacy leakage. We plot the results in
Table 4. CoDream-fast achieves a better performance on
all the metrics for the LiRA attack. While not a worst-case the-
oretical improvement, the results hint that CoDream-fast
can be a more viable alternate for sharing knowledge.

Visual representation of dreams
Figure 6 visualizes the dreams generated by
CoDream-fast on CIFAR10. While not visually
similar to the original training data, these dreams effectively
encapsulate collaborative knowledge. Unlike traditional
model inversion algorithms, the objective for these dreams is
to enable decentralized knowledge transfer and not recon-
struct the raw data. Thus, models trained on dreams perform
well despite their visual differences from the underlying
distribution. We visualize more images of Co-Dream across
different data distributions in the Supplementary.

Figure 6: Visualization of dreams generated on CIFAR10

Conclusion
We introduce Co-Dream, a model-agnostic learning frame-
work that leverages a knowledge extraction algorithm by
performing gradient descent in the input space. We view this
approach as a complementary technique to FedAvg, which
performs gradient descent over model parameters. Through
comprehensive evaluations and ablation studies, we validate
the effectiveness of our proposed method.

While we restrict the scope of our work on collaborative
learning applications, we believe Co-Dream can serve as
a building block for several other interesting problems such
as identifying similarity between models without relying on
proxy datasets. We believe further research is warranted in
client dropouts, stragglers, formal privacy guarantees, bias
to explore the effectiveness of Co-Dream under those con-
straints.
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