SOLVABILITY OF THE L? DIRICHLET PROBLEM FOR THE HEAT EQUATION IS
EQUIVALENT TO PARABOLIC UNIFORM RECTIFIABILITY IN THE CASE OF A
PARABOLIC LIPSCHITZ GRAPH.
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ABsTrRACT. We prove that if a parabolic Lipschitz (i.e., Lip(1,1/2)) graph domain has the property
that its caloric measure is parabolic A, with respect to surface measure (which property is in turn
equivalent to L” solvability of the Dirichlet problem for some finite p), then the function defining
the graph has a half-order time derivative in the space of (parabolic) bounded mean oscillation.
Equivalently, we prove that the A, property of caloric measure implies, in this case, that the boundary
is parabolic uniformly rectifiable. Consequently, by combining our result with the work of Lewis
and Murray we resolve a long standing open problem in the field by characterizing those parabolic
Lipschitz graph domains for which one has L? solvability (for some p < co) of the Dirichlet problem
for the heat equation. The key idea of our proof is to view the level sets of the Green function as
extensions of the original boundary graph for which we can prove (local) square function estimates
of Littlewood-Paley type.
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1. INTRODUCTION

In this paper we resolve a long standing open problem, in domains defined as regions above
graphs of parabolic Lipschitz functions (Lip(1,1/2) functions), concerning necessary and sufficient
conditions for L” solvability (for some p < o) of the Dirichlet problem for the heat equation. To
be precise, we prove that L? solvability is equivalent to the function defining the boundary having
a half-order time derivative in the space of (parabolic) bounded mean oscillation. In the setting of
parabolic Lipschitz graphs, the latter is equivalent to the boundary of the domain being parabolic
uniformly rectifiable. We emphasize that in general, parabolic Lipschitz graphs do not have this
property; we shall return to this point momentarily.

To put our result into context, we recall that in 1977, Dahlberg [Dah77] proved that, for a Lip-
schitz domain Q c R", harmonic measure w is mutually absolutely continuous with respect to the
surface measure o on 0Q), and more precisely that the Poisson kernel dw/do is an A, weight with
respect to surface measure. In fact, Dahlberg proved more, as he established that the Poisson kernel
satisfies a scale-invariant reverse Holder estimate in L?, and that the L” Dirichlet for the Laplace
equation in a bounded Lipschitz domain is solvable for all p € (2 — €, ). At the time, the problem
of finding the analogue of Dahlberg’s result for the heat equation, in domains whose boundaries
are given locally as graphs of functions which are Lipschitz in the space variable, was proposed.
It was conjectured by Hunt (see [KW80, p 2]), on the basis of natural homogeneity, that a suf-
ficient regularity condition in the time variable should be Lipschitz of order 1/2, and hence that
the appropriate geometric setting for the parabolic analogue of Dahlberg’s result should be that of
Lip(1,1/2) domains. However, subsequent counterexamples of Kaufman and Wu [KW80] showed
that the Lip(1,1/2) condition does not suffice even for (qualitative) mutual absolute continuity of
caloric measure and parabolic surface measure.

A major breakthrough in the field occurred in 1995, when Lewis and Murray [LM95] proved
that if the function defining the graph domain is Lip(1,1/2), and in addition has a half-order time
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derivative in the space of parabolic BMO, then the caloric measure is parabolic A (in a local, scale
invariant way) with respect to parabolic surface measure on the boundary. Consequently, Lewis
and Murray [LM95] obtained solvability of the Dirichlet problem for the heat equation with data
in L7, for p < co sufficiently large, but unspecified. Hence, Lewis and Murray [LM95] established
a sufficient condition, in the context of Lip(1,1/2) graph domains, for the L? solvability, for some
p < oo, of the Dirichlet problem for the heat equation (such solvability is equivalent to caloric
measure being parabolic A, with respect to surface measure, in an appropriate scale invariant local
sense). We will frequently refer to a Lip(1,1/2) function having this additional regularity as a regular
Lip(1,1/2) function.

Subsequently, in 1996 Hofmann and Lewis [HL96] were able to prove the solvability of the L.
Dirichlet problem (and of the L? Neumann and regularity problems) for the heat equation by the
way of layer potentials, in domains given by the region above a regular Lip(1,1/2) graph. They es-
tablished the L? results under the restriction that the half-order time derivative (measured in BMO)
of the function defining the graph is small. The smallness is sharp in the sense that in [HL.96] it is
proved that there are regular Lip(1,1/2) graph domains for which the L? Dirichlet problem is not
solvable.

The works of Lewis and Murray [LM95] and Hofmann and Lewis [HL96] jointly give the para-
bolic analogue of the result of [Dah77] by establishing sufficient conditions on the defining graph
for the conclusions. The main result of this paper is that we prove that the condition found by Lewis
and Murray [LM95], i.e., that the defining function for the domain is a regular Lip(1,1/2) function,
is not only sufficient for the conclusion that caloric measure is parabolic A, (locally) with respect
to surface measure, but also necessary. Equivalently, we characterize those parabolic Lipschitz
domains for which one has L? solvability of the Dirichlet problem, for some p < oo; thus a neces-
sary and sufficient criterion for solvability with singular data. In particular, we prove the following
theorem. We refer to the sequel for precise definitions, and explanations of notation; especially, as
regards the notions of parabolic uniform rectifiability, and of the A, property of caloric measure,
see Subsection 2.7 and Remark 2.23 for the former, and Definition 3.18 for the latter.

Theorem 1.1. Suppose n > 2, let y(x,1) : R"! x R — R be a Lip(1,1/2) function and let
Q:={X=(x0,x,0) e RXR" xR : xo > ¢(x, 1))}

Let w denote the caloric measure for Q and let o = 7’(;+l|ag be the parabolic surface measure
on 0Q. If w is parabolic A with respect to o, then  is regular Lip(1,1/2), i.e., it has a half-
order time derivative in BMO, with norm bounded by a constant depending only on the dimension,
the Lip(1,1/2) constant of ¥, and the A constants of w. In particular, 0€ is parabolic uniformly
rectifiable.

We note that Theorem 1.1 treats a version of a classical 1-phase caloric free boundary problem.
We shall return to this point in more detail momentarily.

The theorem has important implications which we summarize as follows.
Theorem 1.2. Suppose n > 2, let y(x,1) : R"! xR — R be a Lip(1,1/2) function and let
Q:={X=(x0,x,0) e RXR"! X R : xo > ¢(x, 1)}
Leto=H Z” laq denote the parabolic surface measure on 0S). The following are equivalent.

(1) The caloric measure for Q is a parabolic A, weight with respect to o.
(i1) The function y is regular Lip(1,1/2), i.e., it has a half-order time derivative in BMO.

(iii) The adjoint caloric measure for Q is a parabolic A, weight with respect to .
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(iv) The L? Dirichlet problem for the heat equation is solvable in Q, for some p < oo.
(v) The L? Dirichlet problem for the adjoint heat equation is solvable in Q, for some p < co.
(vi) 9Q is parabolic uniformly rectifiable.

We remark that our results in Theorems 1.1 and 1.2 continue to hold in the case n = 1, as the
interested reader may verify, making the natural adjustments.

Our work proves that the existence of a half-order time derivative in BMO for the graph function
is precisely the extra ingredient needed to obtain L estimates for solutions to the Dirichlet problem,
and (equivalently) quantitative absolute continuity for the caloric measure. As noted above, in the
context of Theorem 1.2, the fact that (ii) implies (i) (and hence also (iii), by the change of variable
t — —t), is due to Lewis and Murray [LM95]. Our new contribution is that (i) (or (iii)) implies (ii),
and hence also that (iii) < (ii). In the context of Lip(1,1/2) domains, the equivalences between
(i) and (iv), and between (iii) and (v), are standard and well-known, and may be derived as conse-
quences of the theory of Muckenhoupt weights and boundary estimates for non-negative solutions
and caloric measure, see, e.g., [LM95, Nys97] for details, and also [GH20, Theorem 2.10] for a
more general result. Concerning (vi), the notion of parabolic uniformly rectifiable sets was intro-
duced by Hofmann, Lewis, and Nystrom in [HLNO3], [HLNO4], and is the dynamic counterpart of
the notion of uniform rectifiability developed in the monumental works of G. David and S. Semmes
[DS91], [DS93]. The parabolic version of this theory concerns time-varying boundaries which are
locally not necessarily given by graphs, and which are minimally smooth from the point of view
of, e.g., parabolic singular integrals'. As in the classical (elliptic, or steady-state) case treated in
[DS91], [DS93], geometry is controlled by a local geometric square function (the parabolic ana-
logue of the “B-numbers” of P. Jones), from which key geometric information and structure can be
extracted. The notions of parabolic uniformly rectifiable sets and parabolic uniform rectifiability
extract the geometrical theoretical essence of the (time-dependent) (regular) parabolic Lipschitz
graphs introduced in [Hof95], [Hof97], [HL96], [LM95]2, [LS88]. In particular, in the context of
Lip(1,1/2) graphs, a graph being regular Lip(1,1/2) is equivalent to the graph being parabolic uni-
formly rectifiable, i.e., in the statement of Theorem 1.2, (ii) is equivalent to (vi). For recent progress
on equivalent formulations of parabolic uniform rectifiability, reminiscent of the ones concerning
uniform rectifiability in [DS91], [DS93], we refer to [BHH"b, BHH*21]. We remark that regu-
lar Lip(1,1/2) graphs may be characterized by L? boundedness of singular integral operators (see
Appendix B).

As noted above, Theorem 1.1 can be viewed in the context of a 1-phase caloric free boundary
problem. Indeed, consider a solution u of the heat equation (or adjoint heat equation), and a domain
Q such that

(1.3) Q={u>0}.

Then u vanishes on 9€ (the free boundary), hence

[Vu| = @ on 0Q,
ov

IThat all “sufficiently nice” parabolic SIOs are L? bounded on any parabolic uniformly rectifiable set is observed in
[BHH"Db, Corollary 4.9]. The converse to that result, in general, remains open for now, but in the present context (the
case of Lip(1,1/2) graphs), boundedness of parabolic SIOs implies parabolic uniform rectifiability, i.e., that the graph is
regular Lip(1,1/2). We include a proof of this observation in an appendix to the present paper (Appendix B).

2We remark that the regular Lip(1,1/2) condition in [LM95] appears slightly different to the one considered in the
present paper (which is the same as that in [Hof95], [Hof97], and [HL96]), owing to a different choice of half-order time
derivative, but in fact, the conditions are equivalent, as shown in [HL96].
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where 0u/dv is the inward normal derivative. Since u vanishes on 9Q, the problem will be overde-
termined if we are given information about du/dv; thus in principle, prescribing regularity of [Vuy|
on 0Q should imply some regularity of the free boundary. Theorem 1.1 is a particular case of the
adjoint caloric version of this free boundary problem, in which u is a Green function G(Xy, ty, —, —)
with some fixed pole (in this case, we interpret (1.3) locally, away from the pole), and the assumed
regularity of |Vu| is the A, hypothesis for the caloric measure. We observe that by the comparison
principle (aka boundary Harnack principle), valid in Lip(1,1/2) domains (see [FGS84]), there is no
loss of generality in taking u to be a Green function. The regularity that we deduce for the free
boundary is that it is a regular Lip(1,1/2) graph (i.e., in light of the preceeding remarks, that it is
parabolic uniformly rectifiable).

Some historical remarks are in order. A “small constant” version of the free boundary problem
described in the preceding paragraph, may be formulated either above the continuous threshold
(logk € C%, where k = dw/do), or just below that threshold (logk € VMO); in the presence of
suitable background hypotheses (e.g., Reifenberg flatness, and Ahlfors regularity of the boundary),
one seeks, in the former case, to show that 9Q € C®, and in the latter case, effectively that
0Q is uniformly rectifiable with “vanishing constant” (see [HLNO3, Remark, pp 383-384]). The
present paper, and the forthcoming work [BHMN], can be viewed as treating the “large constant”
version of this problem: indeed, our assumption that w € A, is “almost” the same as assuming that
log k € BMO, and we seek to establish (parabolic) uniform rectifiability of Q. In the elliptic (i.e.,
harmonic) setting, the small constant version of the problem has been treated above the continuous
threshold in [AC81] and [Jer90], and below the continuous threshold in the series of papers [KT97,
KT99, KTO3]. The large constant case appears in restricted form (i.e., assuming that £ ~ 1) in
[LVO7], and in full generality in [HLMN]; an alternative proof is given in [MT20]. In the parabolic
setting, small constant results were obtained as follows: in [HLN04] (a partial result, with an extra
hypothesis, below the continuous threshold); in [Nys12] (below the continuous threshold, in the
graph case); and in [Eng17] (in full generality, both above and below the continuous threshold). In
the large constant case, only a weak version of our Theorem 1.1, under the much more restrictive
hypothesis that k = 1, had hitherto been known [LNO7, Nys06]. It is worthwhile to emphasize that
the conclusion in the large constant case (namely that 0Q is uniformly rectifiable), is a hypothesis in
all the works treating the small constant case. This hypothesis is imposed implicitly in the elliptic
case (where uniform rectifiability is a consequence of the fact that a Reifenberg flat domain with
Ahlfors regular boundary is, in particular, a chord-arc domain, and thus has a uniformly rectifiable
boundary by the results of [DJ90]) and explicitly in the parabolic case in [HLNO4, Nys12, Eng17],
to rule out the case of a non-regular Lip(1,1/2) graph with vanishing constant (see the example in
[HLNO3, p 384]). Given our results here, and in our forthcoming paper [BHMN], one expects that
the hypothesis of parabolic uniform rectifiability in [HLNO4, Nys12, Eng17] can be removed.

As noted above, Theorem 1.1 and Theorem 1.2 resolve a long-standing problem in this subject,
and are thus of stand-alone interest, but in addition, Theorem 1.1 is an essential ingredient in ex-
tending this type of free boundary problem to more general (non-graph) settings. Indeed, the results
proved in the present work will play a key role in our forthcoming paper [BHMN], in which we
plan to treat similar problems in a space-time domain € satisfying an interior corkscrew condition,
whose boundary 9Q =: X is a closed subset of R"*! which is (only) Ahlfors-David regular in an
appropriate parabolic sense. In [BHMN] we shall prove the caloric version of [HLMN]; i.e., we
shall prove that if caloric measure has the weak-A., property (i.e., Ao minus doubling) with respect
to the surface measure on X, then X is parabolic uniformly rectifiable. The strategy of the proof in
[BHMN] is, first, to establish, via some elaborate geometric constructions exploiting the weak-Ao
property, a Corona approximation in terms of Lip(1,1/2) graph domains; then, second, to obtain par-
abolic uniform rectifiability of £ by showing that the constructed approximating Lip(1,1/2) graphs
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are in fact regular Lip(1,1/2) graphs, as in Theorem 1.1 (ii). This is achieved by pushing the A
property of the caloric measure to these graph domains, at which point Theorem 1.1 applies, thus
establishing the desired regularity of the graphs.

In the present work, the key idea of our proof, and the main novelty, is to view the level sets of
a (normalized) Green function (which we show are graphs, locally), as extensions of the original
graph, for which we can prove (local) estimates of Littlewood-Paley type. Using implicit differenti-
ation, we derive the latter from local square function estimates for the Green function, which are in
turn a consequence of the A, property of caloric measure, by a refinement (due to [LNO7]) of the
standard integration by parts argument. Of course, consideration of the level sets of a solution, per
se, is not new in free boundary theory (see, e.g., [KIN77, Jer90, Eng17] for some similar ideas) but
our work seems to be the first to exploit Littlewood-Paley theory for the level sets. Finally, we use
the Littlewood-Paley estimates for the level sets to establish the regularity of the function ¢ whose
graph defines the boundary (i.e., to show that ¢ has half a time derivative in parabolic BMO).

The rest of the paper is organized as follows. Section 2 is of a preliminary nature and we here
introduce notation and some of the basic terminology, in the context of Lip(1,1/2) domains, to be
used in the forthcoming sections. We here also define precisely regular Lip(1,1/2) graph domains.
In Section 3 we outline and state the results/estimates concerning non-negative solutions to the
heat/adjoint heat equation that we will use. All estimates stated are essentially known and can
be extracted from the literature, although for the reader’s convenience, in Appendix A we shall
provide a proof, which simplifies existing arguments in the case considered here, of Lemma 3.15.
In Section 4 we take some initial steps towards the proof of Theorem 1.1 by exploring the A
condition, by introducing sawtooths, by studying the level sets for the normalized Green function,
and by introducing a regularized distance function 4 which will be an important tool for us. The
Littlewood-Paley estimates for the level sets, mentioned above, are proved in Section 5. In Section
6 all ingredients developed are combined and the proof of Theorem 1.1 is completed.

Acknowledgements. The authors thank the referees for helpful suggestions to improve the exposi-
tion, and to clarify prior history of related work.

2. PRELIMINARIES

2.1. Notation. Throughout the paper, n > 2 is a natural number and we let d := n + 1 denote

the natural parabolic homogeneous dimension of space-time R". The ambient space we work in is
R :=RxR"! xR,

R™ = {X =X, ) = (x0,x,/) e RXxR"' xR}.

Here we have distinguished the last coordinate as the time coordinate and the first spatial coordinate
as the graph coordinate. We also work with

R"={x=(x,) eR"' xR},

To help the reader identify the nature of points used in the paper, we use the notation employed
above, which we here describe in detail. We use lower case letters (e.g. x, y, z) to denote spatial
points in R*! and capital letters (e.g X = (xp,x), ¥ = (v0,¥), Z = (20,2)), to denote points in
R" = R x R"™!. We also use boldface capital letters (e.g. X = (X,1), Y = (Y,s),Z = (Z,1)), to
denote points in R"*! and boldface lowercase letters (e.g. X = (x,1),y = (1, 5), Z = (z, 7)) to denote
points in n-dimensional space-time. In accordance with this notation, given X = (X, ?) € R1 (resp.
X = (x,f) € R") we use the notation #(X) (resp. t = #(x)) to denote its time component, that is, if
X = (X, 1) then t = t(X) (resp. if x = (x, ) then t = #(x)).
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We denote the parabolic length by

IXII = GOl = IXT+ 17, X = (X, e R™! = R" xR,

Il = lCe Dl = 1l + 112, x = (v, € R" = R"™' xR.
All distances will be measured with respect to the parabolic metric

distX,Y) :=|X-Y|| ;=X -Y]|+|t - S|%, X=X, Y=(seR",
and
distx,y) =[x =yl =[x =y + e = sl%,  x=(x0, y=(ns) R

It is sometimes convenient to use a different (smooth) parabolic distance. Given x = (x, ) € R"\{0},
we let ||x|| be defined as the unique positive solution of the equation

2 2
t
2.1 'x—|2 + =1
= il

that is,

1
(2.2) Il = 272 (VI + 42 + 62, x=(x,1) eR".

Then ||x|| =~ ||x|| with implicit constants depending only on n.
Given x = (x,¢) € R" and R > 0, we introduce the parabolic cube, centered at x and of size R, as

Orx):={y=0,9)eR lyi—x|<R 1<i<n-1, |t—s| <R*}.
Given x = (x,1) € R” and R > 0, we denote a closed parabolic cube in R"*! by

(2.3) JrRX) = Jr(x0, x,1) := [x0 — R, xo + R] X Qr(X).
For 9 = Jr(X), we let £(F) := €(Jr(X)) = 2R denote the parabolic side length of .

2.2. Parabolic Hausdorff measure. Givenn > 0, we let H" denote standard n-dimensional Haus-
dorff measure. We also define a parabolic Hausdorff measure of homogeneous dimension 7, denoted
H,, in the same way that one defines standard Hausdorff measure, but instead using coverings by
parabolic cubes. Le., for § > 0, and for E ¢ R""!, we set

HS(E) = inf Y _ diam(E)",
k

where the infimum runs over all countable such coverings of E, {Ey}x, with diam(Ey) < ¢ for all k.
Of course, the diameter is measured in the parabolic metric. We then define

H(E) := lim Hy 5(E).

As is the case for classical Hausdorff measure, 7{3 is a Borel regular measure. We refer the reader
to [EG15, Chapter 2] for a discussion of the basic properties of standard Hausdorff measure. The
arguments in [EG15] adapt readily to treat H; . In particular, one obtains a measure equivalent to
H, if one defines ‘Hg s In terms of coverings by arbitrary sets of parabolic diameter at most 6, rather
than cubes.
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2.3. Lip(1,1/2) graph domains, and surface measure on the boundary. A function ¢ : R"~! x
R — Ris called Lip(1,1/2) with constant C, if

(2.4) W(x, 1) = gy, ) < Cllx =yl + 1t = 51 = Clle. ) = 3 )l Y(x,0), (v, 5) € R,

We define [|/l|Lip(1,1/2) to be the infimum of all constants C as in (2.4). If we set

25 T={Wxnxn:(x)eR"} ={Wx),x):xeR"} = {¥(x):xeR"},

then we say that X is a Lip(1,1/2) graph. The set  is the boundary of the domain

(2.6) Q= {X = (x,x, 1) e R" : xg > y(x, 1)},

We refer to Q ¢ R™**! as an (unbounded) Lip(1,1/2) graph domain with constant I ILip(1,1/2)- Given
the closed set = c R™! of homogeneous dimension Hj, 4im(X) = n+ 1, we define a surface measure
on X as the restriction of WSH to X, i.e.,

2.7) oc=0s:=H""x.

We remark that for Lip(1,1/2) graphs, o as defined in (2.7) is equivalent to do® := dodt,
where do; is standard (n — 1)-dimensional Hausdorff measure 9" ~!, restricted to the cross section
%= {x: (x,1) € X}. We refer the reader to [BHH*21, Remark 2.8 and Appendix B] for details.

2.4. Surface cubes and reference points. We let

(2.8) Mo =1+ |[¥llLip1.1/2)-

For every X = (xg,X) = (x0, x,7) € R™! and R > 0, we introduce vertically elongated open “cubes”
(2.9) Ir(X) := (xo = 3Mo ViR, xo + 3Mo VnR) x Or(X)

and set

Ar(X) := Ir(X) N X.

We will refer to Ag(X) as a surface box or cube of size R > 0 and centered at X. Unless otherwise
specified, we implicitly assume that the center X = (xg, X) = (xg, x, 1), of any surface box Agr(X), is
in X, that is, xo = ¥(x, 1).

Note the crude estimate

(2.10) Y e IxiX) = ||Y - X|| < 5M) VnR,
and that by construction,
(2.11) ARX) = {¥(¥) : y € Or(¥)}, VX = (x0,X) €,

where we recall thaty — Y(y) := (¥(y),y) is the graph parametrization of X (see (2.5)). Indeed, if
Yy € Qr(x), then |Ix — y|| < (vnR + R) and hence

[y (x) — Y(y)| < Mo(VnR + R) < 2vnMoR.
We also note, by the same reasoning, that if R > 0, X = (xp,x) € X and y € Qg(x), then
W(y) +a,y) € IrX) Va € (~MyVnR, My VnR).
Given 7 > 0, we define the parabolic dilation TAg(X) := Ar(X).
We introduce time forward and time backwards corkscrew points relative to Ag(X),

(2.12) AFX) := (x0 + 2MoR, x,t £ 2R*), X = (x0, X, 1) = (x0,X) = (Y(X),X) € %,
and we let
(2.13) ARX) 1= (xg + 2MpR, x,1), X = (x9,x,1) = (x9,X) = (Y(x),Xx) € Z.
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Note that for X € X,
(2.14) ARX), Ar(X) € Qog = Qr(X) 1= Lr(X) N Q,
and that

dist (AR(X), 0r) ~ dist (Ax(X), 0Q3r) ~ R,
where the implicit constants depend only on 7 and ||| ip(1,1/2). Furthermore,

W(x0, x, 7+ 2R%) = y(xo, %, D < V2WlILipc1,1/2) R,
and hence
(2.15) diSt(ﬂi(X), 0Q) > 2MyR — ‘/§||‘1/||Lip(1,1/2) R > 2R.
The same argument and conclusions apply to Ag(X).
We frequently use (sometimes without mention) the following elementary consequence of our
definitions.
Lemma 2.16. Assume that X = (xg, x,1) € Q. Then
(x0 — ¥(x, DMy < dist(X, Z) < xo — W(x, 7).

Proof. Let L = |[¥/llLip(1,1/2)- We assume, without loss of generality, that (x, ) = 0 and ¢(0,0) = 0 so
that xo = (xg — ¥(x,1)). Let Y = (yo,y) € X be such that dist(X, %) = |[Y — X||. If |ly]| > xo(1 + L)™!
then [[Y — X|| > |lyll = (xo — ¥(x,0))(1 + L)™' and we are done. So we may assume that |y|| <

(1 + L) 'xy. Since v is Lip(1,1/2) it holds [yg| < ﬁxo. Thus,

L Xo X0 —y(x,0)
Y - X]| = |xo — yol = 1- = =
I =X b= y°|—x°< 1+L) I+L  1+L
As My = 1 + L this proves the lemma as the inequality dist(X, X) < xo — ¥(x, 1) is trivial. O

2.5. (Parabolic) BMO and fractional integral operators. Given a function f : R” — R, which s
locally integrable with respect to the n-dimensional Lebesgue measure, we say that f € BMOp(R"),
the parabolic BMO-space, if

I fllBMOp(r") 1= sup ]5[ |f(x,1) = fol dxdt < oo,
OcR" W Q

where the supremum runs over all parabolic cubes Q = Qg(x), with x € R" and R > 0. Here fp
denotes the average of f on Q.

We introduce Ip, the fractional integral operator of parabolic order 1 on R", by means of the
Fourier transform,

(2.17) (Ipy) (£,7) = & DIT @&, (1) eRM
Then
(2.18) Ty (x) = //R V-pumdy,  xeR,

for a kernel V satisfying 0 < V(y) < ||Y||l_d

parabolic R”.

, where d = n + 1 is the homogeneous dimension of

Using Ip we introduce a (parabolic) half-order time derivative as

D(x) = 3, 0 Tos(x) = //R G(Va-D)Um by, x= (D ER!

This operator should be viewed as a principal value operator, or one should consider d; in the weak
sense. Note that the Fourier symbol for D is 27it/||(€, ).
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Another half-order time derivative, D] /2> can be introduced through the Fourier multiplier |7|!/2
or by

Y(x, s) = Y(x,1)

s—pr 9

(2.19) Dijpb(x) = D)= c |

for properly chosen c.

2.6. Regular Lip(1,1/2) graph domains. Let ¢ : R”"! x R — R be a Lip(1,1/2) function with
norm [[¥/||Lip(1,1/2) in the sense of (2.4). Such a function is said to be a regular Lip(1,1/2) function
if, in addition,

(2.20) Dy € BMOp(R").

If  is a regular Lip(1,1/2) function, and if we define ¥ and Q as in (2.5) and (2.6), then we say
that ¥ is a regular Lip(1,1/2) graph, and that Q ¢ R**! is an (unbounded) regular Lip(1,1/2) graph
domain. In both cases the regularity is determined by |[/||Lip(1,1/2) and [|DllBMoprr). In [HLI6] it
is proved that

(2.21) [¥lIR-Lip := 1D WlIBMOpEn) + IVl = 1D} j2¢lIBMOpE") + Vit lco »

where D) /» Was introduced in (2.19). In particular, that a function is a regular Lip(1,1/2) function
can be equivalently formulated using D] /, instead of D, but the latter will be considerably more
convenient for us to work with in this paper.

Remark 2.22. One can prove that in general, the class of regular Lip(1,1/2) functions is strictly
contained in Lip(1,1/2), i.e., there are examples of functions ¢ which are Lip(1,1/2) but not regular
Lip(1,1/2), see [LS88], [KW80]. Moreover, it follows from the arguments of Strichartz [Stz] that for
a regular Lip(1,1/2) function i, the assumption that y is Lip(1/2) in the time variable is redundant:
it follows from the finiteness of the R-Lip norm in (2.21).

2.7. Parabolic uniform rectifiability. Let © ¢ R™*! be a closed set, and define surface measure
o on X as in (2.7). Assume that X is parabolic Ahlfors-David regular, i.e., for all X € X, and for
0 < r < diam(X) (with diameter measured in the parabolic metric), o (D,(X)) ~ r**!, with uniform
implicit constants, where D,(X) :={Y € £ : |[Y — X]| < r}. For X, r as above, set

. 2 1/2
BX,r) := inf < ]5[ (dlSt(Y’P)) do-(Y)> ,
PeP D,(X) r

where P is the set of all n-dimensional hyperplanes P containing a line parallel to the ¢ axis (that is,
t-independent planes). Define

(X, r) := XX, r) do(X) r ' dr.
We then say that X is parabolic uniformly rectifiable if v is a (parabolic) Carleson measure on
¥ x (0, diam(%)), i.e., if

Vllc := sup  r"*DY(D,(X) % (0,7)) < o0
XeZ, O<r<diam(X)
Remark 2.23. One can prove, in the context of Lip(1,1/2) graphs, that the graph being regular
Lip(1,1/2) is equivalent to the graph being parabolic uniform rectifiable, see [HLLNO4] for a proof.
In particular, let X be the graph of a function ¥(x, t), and set

2 1/2
B = it [];[ (H0 =0 da(y,s>]  aperr
Or(x.1)

r
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where the infimum is taken over all affine functions L of y only. If we let
dr dx dt
dv:= dvy ::ﬁz(r, X, I)i,
r
and assume that y/(x, ¢) is Lipschitz in the space variable x, uniformly in ¢, then the condition that
Dy € BMOp(R") is equivalent to saying that dv is a Carleson measure on R"*!, i.e.,

R
(2.24) IVl :=  sup / Z§[ B0 xp 9T 44
0 Or(z,7) r

(z,7)eR™, R>0
Moreover, since ¥ is Lipschitz in x, uniformly in ¢, it is not hard to see that (suitably interpreted)
B = ,E and v ~ v on such graphs. Since the further property that Dy € BMOp(R") implies in
particular that ¥(x, ) is Lip(1/2) in ¢, uniformly in x, we see that in the context of Lip(1,1/2) graphs,
(2.24) with ||v|| finite, is the very definition of X being parabolic uniform rectifiable.

2.8. Convention concerning constants. We refer to n, the Lip(1, 1/2) constant of the function
defining the boundary of our domain, and the constants C, and ¢ > 1 appearing in Definition 3.18
below, as the structural constants. For all constants A, B € R, the notation A < B means, unless
otherwise stated, that A/B is bounded from above by a positive constant depending at most on the
structural constants; A > B of course means B < A. We write A ~ Bif A < Band B < A, while
for a given constant 77, A <, B means, unless otherwise stated, that A/B is bounded from above by
a positive constant depending at most on the structural constants and 7.

3. BoUNDARY ESTIMATES IN Lip(1, 1/2) poMAINS

The Dirichlet problem, parabolic measure, and the boundary behaviour of non-negative solu-
tions, for the heat equation but also for more general linear uniformly parabolic equations with
space and time dependent coeflicients, have been studied intensively in Lipschitz cylinders and in
Lip(1,1/2) domains over the years, see [FGS84, FS97, FSY99, LM95, Nys97]. Results include Car-
leson type estimates, the relation between the associate parabolic measure and the Green function,
the backward in time Harnack inequality, the doubling of parabolic measure, boundary Harnack
principles (local and global) and Holder continuity up to the boundary of quotients of non-negative
solutions vanishing on the lateral boundary. We here only state the results/estimates for the heat
equation that we will use. All estimates stated are known and also apply for solutions to the adjoint
heat equation subject to the appropriate changes (typically just exchanging A}, with Ay) induced
by the change of variables t — —t.

In the following we consider a Lip(1,1/2) domain € as in (2.6) with boundary X. It is well known
that the bounded continuous Dirichlet problem for the heat equation always has a unique solution
in Q. Given Y € Q we let G(-) = G(-, Y) denote Green’s function for the heat equation in Q with
pole at Y, i.e.

3.1) 0, -NGX,Y)=6yX)inQand G =0on X.

Here 6y is the Dirac delta function at Y and A is the Laplacian in X. Furthermore, we note that
G(Y, ) is the Green’s function for the adjoint heat equation with pole at Y € Q, i.e.

(3.2) (-0, — ANG(Y,X)=6y(X)inQand G =0on X.

We let wY(-) and @Y (-) be the caloric and adjoint caloric measures, at Y € Q, associated to the heat

and adjoint heat equation in Q. Given Y € Q we let G(X,Y) = 0 whenever X € (R" X (s,00)) \ Q
and G(Y, X) = 0 whenever Y € (R” X (—o0, 5)) \ Q. Then,

/// G(Y,X)(A - 8)¢ dX = // ¢ dw?,
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(3.3) /// GX,Y)(A + 8,)¢ dX = / ¢ oY,

for all ¢ € CFR™!\ {Y}).

For the proofs of Lemmas 3.4, 3.5, 3.9, 3.10, and 3.11 below we refer to [FGS84, FS97, FSY99,
LMO5, Nys97]. In [Nys97] all relevant estimates are stated and proved in the general setting of
second order parabolic equations in divergence form in Lip(1,1/2) domains. We also note that all of
these lemmas remain valid in more general settings, see e.g., [HLNO04]. To give specific references
in the case of the heat/adjoint heat equation, we refer the reader to [LM95, Chapter 3, Section 6]
for Lemmas 3.4 and 3.5, and to [FGS84] for Lemmas 3.9, 3.10, and 3.11.

In this section all implicit constants depend only on n and [[¥llLip1,1/2)- Given Y € Q we let
oY) := infzes [|Y = Z]|.

Lemma 3.4. Let X € X and R > 0. Assume that 0 < u € C(I,p(X) N Q) satisfies d,u — Au = 0
in LrX) N Q, with u = 0 in Ar(X). Then there exists @ € (0,1/2), depending only on n and
WAlLip(1,1/2), Such that

sup  u(Z),
ZeLr(X)NQ

u(Y) < (‘5(RY)>

whenever Y € Ix(X) N Q.

Lemma 3.5. Let X, R, u, and a be as in the statement of Lemma 3.4. Then

(3.6) u(Y) S u(ARX)),
whenever Y € Ig(X) N Q. In particular,

S(Y)\*
(3.7) u(Y) < ((R)> U(ALX)),

whenever Y € Ig>(X) N Q.

For X = (xp,x,) € X, r > 0, and x = «(n, Mp), a sufficiently large constant to be fixed, we
introduce the space-time parabolas

T (X) = (70,7, 8) € Q2 [(x0, 1) = 00, Y| < klt = |2, £(s = 1) > 16r°).

Recall that My = 1 + Y| ip(1,1/2)- The parabola T,:f » 1s the forward in time parabola and T, is the
backward in time parabola. Note thatif Y € T,:—’,r(X), thenY € T;—'J, (X) for all ¥ € (0, r). Concerning
k, we may take this constant as large as we like but we will choose

(3.8) Kk := 40M Vn.

Hence « only depends on n and [|y]|Lip(1,1/2)-

Lemma 3.9 below states the strong Harnack inequality, or backwards in time Harnack inequality,
for the Green function. Lemma 3.10 gives the relation between the Green function and caloric/ad-
joint caloric measure, and Lemma 3.11 formulates the doubling property of the latter measures.

Lemma 3.9 ([FGS84]). If X € £ and Y € T} x(X), then

G(Y, Ar(X)) = G(Y, Ar(X)) ~ G(Y, Ap(X)).
Similarly, if X € T and Y € T p(X), then

G(ARX),Y) = G(ArX),Y) = G(AX),Y).
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Lemma 3.10 ([FGS84]). If X € Zand Y € T, x(X), then
R'G(Y, AR(X)) ~ 0¥ (Ar(X)) ~ R'G(Y, A(X)).
Similarly, if X e Xand Y € T,;R(X), then
R'G(AX),Y) ~ &Y (Ar(X)) ~ R'G(AR(X), Y).
Lemma 3.11 ([FGS84]). If X € Zand Y € T, x(X), then
@Y (ARX)) ~ 0" (Ag/2(X)).
Similarly, if X e X and Y € T;R(X), then
Y (ARX)) ~ @Y (Ag/2(X)).
We will use the following variation of Lemma 3.11.
Lemma 3.12. Let « be as in (3.8) and consider X € X and r > 0. Then,
A, (X) € T2,
forall Z € X and p > 0 such that Ay,(Z) C A.(X). In particular,
WM (8g(2) » ™D (8(2)),
forall Z. € X and p > 0 such that Ay,(Z) € A(X).

Proof. We only prove that A (X) € T,: ) p(Z), as once this is done the statement
W™ ®(Ag(2)) ~ N (A,(2)),
follows from Lemma 3.11. Write X = (X,f) and Z = (Z, 7). Then the inclusion Ay,(Z) € A.(X)
ensures that
T+Q2p)P<t+r’, and 20<r.
Therefore it holds that
(3.13) T<T+64p> <t+60p% + 1 <1+ 16
Noting that the 7-coordinate of A} ,.(X), call it s, is equal to ¢ + 2(4r)? we have from (3.13)
(3.14) (s—7)=1+32r* —7> 167 > 16p°.

Then the time coordinate of Aj,(X) satisfies the condition in the definition of T,: 2p(Z). Since
Z C A (X) writing X = (xp, x), it holds that

[(xo + 2Mo(4r), x) — Z| < |(x0, X) — Z| + 2My(4r) < 10Mo \/n(4r).
Thus, from (3.14) we conclude
|(xo + 2Mo(4r), x) — Z| < 2Mo(4r) < 10Mq Vn(4r)
< 2Mo(4r) < 10Mo Vn(4r)(s — )/,
As (xo + 2My(4r), x) is the spatial coordinate of A} (X), the previous inequality shows that for
k = 40Mo \/n we have A} (X) € T} 20(L). O

We will also need the following quantitative non-degeneracy result for d,)G. The following
lemma is essentially Lemma 2.12 in [Nys06]. On the other hand, the proof given in [Nys06], based
on the arguments in [ACS], [CS05], is not complete, so for the reader’s convenience, we give the
complete argument in an appendix to this paper.
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Lemma 3.15. Let X € X and R > 0. Then there exists n € (0,1/2), depending only on n and
WAILip(1,1/2), Such that the following holds. If Y* € T+’R(X), and uw(Y) := G(Y*,Y), then

K.

Y

(3.16) Vyu(Y)] ~ (Vyu(Y), eo) ~ ;‘EY;

Jor every Y € Ig/a(X) N Q with 6(Y) < nR. If Y" € T, x(X), and u(Y) := G(Y, Y"), then
Y

(3.17) Vyu(Y)| ~ (Vyu(Y), e} ~ ;‘EY;

foreveryY € Ig;4(X) N Q with 5(Y) < nR.

Next we give our definition of the A, property for caloric measure.

Definition 3.18. We say w is in A, or that its density dw/do is a parabolic A, weight, if there
exist C, and g > 1 such that the following holds. If X € ¥, r > 0,and Y € Ter(X), then wY < o

K
on A,(X) and ky := dwY/ do satisfies the reverse-Holder inequality

(3.19) // K do < Co(AX)) (Y (ALX)))?.
A(X)

Remark 3.20. Consider X° € ¥ and R, > 0, Using Lemma 3.12 we have that
Alg, (X0) € T, (2,

for all Z € X and p > O such that Ay,(Z) C AR*(XO). As a consequence, (3.19) is valid with
Y = A X0, ie,

_ + 0
I K o < ooy 1we X sy
ALZ) TR
for all Z € Ag_;»(X%) and r < R, /2.

4. PRELIMINARY ARGUMENTS FOR THE PROOF OF THEOREM 1.1

In this section we develop a number of preliminary arguments for the proof of Theorem 1.1.
Throughout the section we will assume the hypotheses of Theorem 1.1 and the constants appearing
are allowed to depend (implicitly) on n, |[{/||Lip(1,1/2) and the constants C, and g in Definition 3.18,
i.e., on the what we have coined the structural constants. We will sometimes stress this dependence,
but otherwise it can be assumed by the reader. To prove Theorem 1.1, our strategy is to show that
there exists a constant N,., depending only on the structural constants, such that for each parabolic
cube Qg € R™! we have

@.1) inf | {y € Or : IDW(¥) - CI > N }| < (1/4)1Qxl
Indeed, if this is true then the parabolic version of the John-Stromberg lemma implies

1D lBMOpRr) < CNyk .
Thus, we will be focused on establishing (4.1) with N, depending only on the structural constants.
To this end, we fix x° = (%, %) € R” and we let Qg := Qr(x"). We define

X0 = (x0,x%) := wx%,x% ez,

and set Iy = Ix(X?), A := Ap(X?) = Ix(X?) N X. With X" fixed, we will often simply write Az
instead of Ax(X%). We also introduce

4.2) Ay = MA, where M = 32000M877_1n,
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and where 7 is the constant appearing in Lemma 3.15. Using this notation, we set X, := ﬂIMl R(XO),
a time forward reference point defined relative to the surface box 4A,. We let

(4.3) w() == o(A) W™ ()
denote normalized caloric measure, and we let
4.4) u(-) = o(Ay) GXy, ).

This normalized Green function, with pole at X, is a solution to the adjoint heat equation outside
of its pole. On any set where w < o, we let k = dw/do. Applying Lemma 3.4 to the function
X—>1- wx(iA*), which is a non-negative solution to the heat equation which vanishes on %A*,
and subsequently using the Harnack inequality, we deduce that

WA _ oAy
oAy T oAy

We will refer to (4.5) frequently. For future reference, we note that, in fact, we have more generally
that

(4.5) 1~ X (3A) = 0 Ay ra(X0)) = WX (A < 1.

w(ANR(X)
o(Avr(X?) "~
This fact is standard for Lip(1,1/2) graph domains, but see, e.g., [GH20, Lemma 2.2] for a more
general result (which yields (4.6) in our setting by the use of Harnack’s inequality).

(4.6) 1, I<N<M.

4.1. Constructing the base for a sawtooth from the A, assumption. That w is in A (see Defi-
nition 3.18) implies that there exists p > 1, depending only on n, My, and the constants C, and g in
Definition 3.18, such that

p-1
4.7 ﬁ[ k do ]5[ K7 do < 1,
A, ri4(X0) Aty rya(X0)

which further implies that

(4.8)

o (E) < < W(E) )””
(A ria(X2) ~7 \ (A r/a(X0)) ’

whenever E C Ay, /4(X°). Indeed, given (4.7),

o(E) p ﬁ[ 1o_1 p
7 ) = lgkr k » do
(o-(AMlR/A,(XO))) ( Ay aX0) >
, -1
< (]5[ 15k do) (ﬁ[ K do)”
A, r1a(X0) Ay ria(X0)

w(E) j[ ‘d - w(E)
s <a<AM1R/4<X0»)( vt 14 7) (a4 (X0)

Lemma 4.9. Given € > 0, there exists a constant M > 1, depending only on the structural constants
and €, and a closed set F,, such that
~ 1 w(A(X))
4.10 Fy CFoi=3XeAsorX): — < =2 <M, Vre(0,MR/8);,
(4.10) « S Fy { s0r(X") M e A X)) S r € (0, M,R/8)
and such that

(4.11) T (Asor(X°) \ Fy) < €0 (Asor(X°)).
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Proof. Fix € > 0, and let M be a degree of freedom eventually to be chosen depending only on the
structural constants and e. We introduce the truncated maximal operators

w(A(X)) 0

Mow(X) = WBAR) X e Agor(XO),
)= D s T(AX)) € AsorX0)
Moo (X) = TAX) ¥ e Asr(X0).

ocron ks WAX))’
Note that if X € Asor(X?) and 0 < r < M;R/8, then
AX) € Ay rsX) € Apgyrja(X0).

Since o and w are both doubling measures, by the weak-type (1,1) bound for the maximal function
(or directly, by a standard covering argument), we have

)

o ({X € Asor(X%) : Mew(X) > N}) < = w(Ap,r/a(X%),

N

4.12) b
w({X € Aspr(X") : M,o(X) > N}) < W” (A, rja(X),

for all N > 0, and where C, depends only on dimension (and in the second inequality also on the
doubling constant for w, which in turn depends only on n and Mj). We introduce

Al = (X € Asor(X?) : Mow(X) > M}, A2 := (X € Asor(X?) : M,o(X) > M}.

Using (4.5), we have w(Ay, R/4(XO)) ~ o(Apy, R/4(XO)), so from the first inequality in (4.12) we
deduce

1 1
(4.13) T(AL) $ 3B ra(X0) ~ oo (Asor(X?)
(with harmless implicit dependence on the fixed constant M;). Similarly
(4.14) (A !

(A ra(X0) ~ M’
and using (4.8) we obtain

oA} o)
T (Asor(X?) ~ o (Aw,r/a(X0))
where 8 = 1/p < 1. Observe that

(4.15) s (1/M)’,

Asor(X") \ Fy C AL UAL .
Choosing M such that (1/M )Y <« €, we deduce from (4.13) and (4.15) that

o(Asor(X%) \ F) < g o (Asor(XY).

so using the regularity of o we can find a closed set F C F, with
o(AsorX") \ Fy) < €0 (Asor(X").
]
We define the projection operator IT from (n+ 1)-dimensional space-time to n-dimensional space-
time according to
(4.16) I(Y) := (0,,5), Y = (yo,, 5) € R"™*1,
Observe that

4.17) F:=TI(F«) C Osor-
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Thus, if we let | - | denote Lebesgue measure on n-dimensional space-time,

(4.18) |0k \ F| <1050z \ Fl < [TI(Asor \ Fx)l < 0(Asor \ Fy) < €0(Asor) < €|Qrl ~ €R?,

where the implicit constant depends only on 7 and ||| ip(1,1/2), and we recall thatd := n + 1. In
our use of Lemma 4.9, € will in the end be fixed, depending only on the structural constants. In
particular, we will always insist that € is small enough that

(4.19) |Or \ F| < |Qs0r \ F| < (1/8)|Qrl -

4.2. Level sets of the normalized Green function. Recall that u is the normalized Green function
(see (4.4)). For future reference, we collect several important observations in the following.

Remark 4.20. By Lemma 3.9, the Green function satisfies a strong Harnack inequality, suitably
interpreted. Consequently, the strong Harnack inequality holds for « in the sense that

@.21) WAL (L)) ~ u(A; (Z)),
forall Z € Apr /Z(XO) and r < M;R/4. Indeed, from Lemma 3.9 we have
(4.22) G Xy, AL (L)) = GXy, A (L))

provided X, = ﬂj{Ml R(XO) € T!.(Z). The latter fact can be seen from Lemma 3.12, upon noting

that A,(Z) C Ay, (X% so that r can play the role of 2p in Lemma 3.12. Clearly, (4.22) implies
4.21).
We may therefore apply Lemma 3.15 to obtain that
u(Y)
Oy, u(Y) = %, forevery Y = (y9,y) € IMIR/g(XO) NQ, 6(Y) <nMR/2.

Recalling the definition of M, (see (4.2)), we have M|R/8 > 4000R and nMR/2 = 16000M8Rn.
Hence

Y -
(4.23) Oyou(Y) = ZEY; for every Y = (y0,¥) € I100r(X?) N Q.

Here we have used (2.10) to conclude that Y € I400r(X?) implies
8(Y) < |[Y = X°|| < 2000MoR vn < 16000M3Rn = nMR/2 .
Next we use the estimate (4.23), and the implicit function theorem, to show, for » small, that

the level sets {u = r} are locally given by the graph of a Lip(1,1/2) function y,(x). Given X, =
Aim, #(X9), the pole of the Green function, we introduce, for r > 0 small and fixed, the level set

LX) ={YeQ: u(Y) =r}.

Lemma 4.24. For some Ag > 1 depending only on the structural constants, if 0 < r < R/ Ay, then
there is a function y, € C Y(0100r(x°)) such that

2,(Xo) N ToorX?) = { (¥,(y),¥) ¥ € Qroor(x) }.

Moreover, for everyy € Qioor(x%) and 0 < r < R/ g, the mapping r — ,(y) is strictly increasing
and differentiable,

(4.25) Y(y) < YY) < x0 +300Mo ViR,
and

rli%g Y (y) = (y).
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Proof. We start by observing that by (4.6) with N = 100, Lemma 3.10, and Harnack’s inequality,
u(Y) ~ R forevery Y = (y0,y) € L1ioor(X%) N Q with yy = x8 + 300M, \/nR (these are the points
at the “top” of the box). This means that for every y € Qjoo r(x%), we have u(y(y),y) = 0 and
u(xg +300M VnR,y) ~ R. In particular, there exists Ag such that

u(x +300My ViR, y) > R/Ag Yy € Qioor(x"),

and we fix Ag accordingly. Moreover, by (4.23) we have that dy u(yo, y) > 0 for every yy satisfying
Y(y) <yg < x8 +300My v/nR, hence u(yo,y), viewed as a function of yy, is strictly increasing in the
interval Y(y) < yp < x8 + 300M, VnR. By the intermediate value theorem, for every 0 < r < R/Ao,
one can find a unique value ,(y) such that Y(y) < ¢, (y) < x8 + 300M, VnR (depending implicitly
on X, ) so that u(¥,(y),y) = r. Furthermore, if we invoke the implicit function theorem and the
local smoothness of adjoint caloric functions we conclude that ¢, € C*(Q100 z(x")). Furthermore,
¥, 1s (infinitely) differentiable as a function of the variable r.

Fix y € Qi00r(x°). Note that if 7 < s < Ag R, then u(,(y),y) = r < s = u(¥,(y),y), and since
u(-,y) is strictly increasing in the interval (¥(y), xg + 300 My R +/n) it follows that /,(y) < y(y).
Next, using that for fixed y € Qoor(x") we have ,(y) > ¥(y), and that y,(y) is increasing in
r € (0, Ag R), it follows that lim,_,o+ Y,(y) exists and we call the limit yo(y). Note that ¢o(y) > ¥(y).
By the continuity of « up to the boundary

0= lim r= lim u@(y),y) = u@o(y),y),
r—0* r—0*
and this implies that (Y (y), y) € X, i.e. ¥o(y) = ¥(y). This completes the proof. O
4.3. A regularized distance function. Recall the projection operator I1 introduced in (4.16). Re-
call also the small parameter € > 0 (see Lemma 4.9), and the set F introduced (see (4.17)-(4.19)).
By the triangle inequality the function R” > x — dist(x, F) is Lip(1, 1/2) with constant at most 1.

Thus, by [BHH"a, Lemma 3.24] there exists a non-negative Lip(1, 1/2) function # : R"” — R* (a
regularized distance function) with properties as stated in the following lemma.

Lemma 4.26. The function h satisfies

4.27) h(x) ~ dist(x, F), lallLipct,12) S 1, 1D:hllBmop®r) < 1,
and
(4.28) dist(x, F)*51 10 h(x)| + dist(x, F)N1 |VER(x) < 1, Vx @ F keN,

where the implicit constants depend on dimension (and on k for the last estimate). By construction
h=0inF.

Remark 4.29. Note that (4.27) states that & is a non-negative regular Lip(1, 1/2) function with
constants of the order 1. In particular, the surface

{(h(x,0),x,1) : (x,1) € R"}
is parabolic uniformly rectifiable, see Remark 2.23.

In the sequel, we will often employ the notation

(4.30) W(rs-) =), Y(0;-) == y(),

since we will often plug the function A(-) in place of r and hence this notation is more convenient.
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Lemma 4.31. Suppose A > 2Ag, where Ag > 1 is as in Lemma 4.24. If the parameter € in Lemma
4.9 is chosen small enough, depending only on the structural constants, we then have

(4.32) sup  A(y) < R/(80A).
y€Qs0r(x)

Moreover, if A is sufficiently large, then for every y € Qsor(x’) we have

(4.33) 0 < Y(h(y);y) — ¢(y) = h(y) = dist(y, F),
where the implicit constants depend on A, €, and the structural constants, and
(4.34) W(h(y);y) < x3 + 300My VnR.

Proof. Recall that d = n + 1 is the homogeneous dimension of parabolic R". Since 4 = 0 on F, and
F c Qs0r(x°), we deduce from the definition of 4 and (4.18) that

h(x) ~ dist(x, F) < €/9R, VYx € Qs50r(x"),

which yields (4.32) by choice of € small enough, depending on A. We will henceforth assume that
€ is at least small enough to ensure that (4.32) holds with A = 2A, but with the freedom to take A
larger (thus, € smaller, depending on A, but with each ultimately fixed).

We next prove (4.33) and (4.34). Lety € Qs50r(x"). Observe that the case y € F is trivial since
h(y) = dist(y, F) = 0 and ¢(0;y) = ¥(y). We may then assume thaty ¢ F, hence A(y) > 0. Pick
y € Fso that [y —yll = dist(y, F) ~, h(y). SetY := ((y),y) € X, Y := (¥(¥),y) € Fx, and
Y := (W(h(y);y),y) € Q. By Lemma 4.9,
w(Ap(Y)

(4.35) o
a(Ap(Y))

1, 0<p<M1R/8,

since Y € F,. Here the implicit constant depends on the constant M of Lemma 4.9, and hence on
€.

In particular, note that A,y (Y) C ACh(y)(SA() C Ac2y)(Y) for some harmless constant C > 1
depending on dimension. Thus, if A is sufficiently large we can use (4.32) to obtain h(y) < C~2R,
and then use (4.10) and the local doubling of w (see Lemma 3.12) to conclude that
(A (Y) _ o(Acny) () -

T(Ary(Y))  o(Achy)(Y))

Let N be a large constant to be chosen momentarily. If Z € Iy, n(Y) N Q, we can then invoke
Lemma 3.5, Lemma 3.10, and (4.36), to deduce that

5(2) WD) (Y))
h(y) o (Any)(Y))
for N = N(n, M, My) large enough. Consequentl~y, using that u(?) = u(Y(h(y);y)y) = h(y) by
construction (see Lemma 4.24), we conclude that Y ¢ Ij,y)/n(Y). Hence,

Y(h(y);y) > ¥(y) + 3Mo Vnh(y)/N,

(4.36)

@ 1
u(@) < (5) uAHiy) (V) < N7 h(y) ~ N h(y) < 5 h(y),

that is, since M depends on €,
(4.37) SY) =y W(h(Y);y) = W(y) = cih(y) > 0, c1 = c(n, €, My) .

To obtain the converse inequality we observe that what we have just obtained implies that

(4.38) Y = Y|l < W(h(y);y) =y + w(y) =yl + lly = 31l < 6Y) + (1 + Mo)lly - ¥l



20 SIMON BORTZ, STEVE HOFMANN, J OSE MARIA MARTELL, AND KAJ NYSTROM
= 6(Y) + (1 + M) dist(y, F) ~, 6(Y) + (1 + Mo)h(y) <n.m, 6(Y).
Recall that, as before, xg = 1//(x°). Note that by Lemma 4.24 and (4.32) we have

Y(y) < Y(h(y);y) < x +300M, VnR,
so that (4.34) holds. In particular, Y = W(h(y);y),y) € IlooR(XO), and therefore
(4.39) 0 < 8(Y) = 6 (h(y); y).y) < IY = X°|| < 500M VnR < MR/8,

by (2.10), with a possibly smaller choice of 1, depending on n and My (see (4.2)). We now claim
that

M e _uwheiyy  ©Be®)
Yh(y):;y) —o(y)  SWh(Y):y).y)  SWh:YLY) o (Ayg (V)

which yields (4.33). Indeed, in the string of inequalities above we first used that ¥ is a Lip(1,1/2)
graph so that Y(h(y);y) — ¥(y) = 6(¥(h(y);y),y), then that u(y,(y),y) = r (with r = h(y)), and then
(4.38), Lemma 3.10, and the strong Harnack inequality applied to u. The last estimate is (4.35) and
(4.39). |

We let A; := A, where A from now on is fixed so that Lemma 4.31 holds. This imposes a
condition on €, and with this condition met, along with (4.19), we have fixed €. Next, we introduce
the region

(4.40) S := {(ry) € Isor(0,x°) : h(y) < r < R/A,},

which can be understood as a local sawtooth relative to F since h(y) ~ dist(y, ). By Lemma 4.31
we have that A(y) < R/(80A1), hence the top of S (at height R/A) is above h(y). Moreover, there
exists ¢; € (0, 1) so that y(h(y);y) — ¥(y) > c1h(y) for every y € Qsor(x’) (see (4.37)). Here ¢,
depends on €, which is now fixed. We set

(4.41) Q= {00, y) € LoorX®) : yo > Y}, Wu := ¥ +cih.
We define
(4.42) Qs ={W(r;y),y) : (r,y) € S}.

Lemma 4.43. If (r,y) € S then (Yy(r;y),y) € Q, that is, Qg C Q,.

Proof. Let (r,y) € S, thatis, y € Qso(x’) and A(y) < r < R/A;. Lemma 4.24 yields that r — ¥,(y)
is strictly increasing fory € Q100r(x%) and 0 < r < R/A. Hence, (4.37) gives

Y(ryy) > Y(h(y);y) = (y) + c1h(y) = Y« (y).

It remains to show that (y(r;y),y) € I10or(X?). To this end, note that since ¥(r;y) is increasing in
r, and since x8 = y(x%) by definition, it holds

(s y) = (") < Y(R/A1Y) = x5 < W(R/Aory) = x5 < 300Mo ViR,
where we used Lemma 4.24, specifically (4.25). On the other hand, since also y¥/(r;y) > ¥(y), and

b (y) — w(x)] < Molly — x°|| < 100M, VnR,
we find that Y/(r;y) — w(XO) > —100M, VnR, and hence that (y(r;y),y) € Q4. O
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5. SQUARE FUNCTION ESTIMATES

Recall the region S introduced in (4.40). The purpose of this section is to prove the following
square function estimate. Recall that d := n + 1 is the homogeneous dimension of parabolic R".

Proposition 5.1. We have
dr
(5:2) /[/S (Ir 900 F +1r V3 00 9 + 172 V0 (v, $)) — dy ds < R,

To prove Proposition 5.1 we will use several auxiliary domains which we next introduce. Recall
that the domain

Q= {00.Y) € LoorX®) 1 yo > UM}, Yu =¥+ h.

was introduced in (4.41). Q, is a pseudo-sawtooth relative to F, whose boundary agrees with X
above F, that is, on F,. In the following we will also use the domains

Qux = {00.Y) € 25k (X") 130 > Usx W)} aw =Y +C1h/2,
Queex 1= {(yOaY) € IlSOR(XO) Yo > '70***(37)}’ Usnn =Y + c1h/4,
Qurn = {(YO,Y) € 1175R(XO) Yo > ',b****(Y)}, Uinnn =Y + c1h/8.

By construction

Qu €Ty CQser T Qseren
We first prove the following lemma which shows that by the construction u behaves like the distance
to X 1N Qe yonn-

Lemma 5.3. It holds that

5.4) uX) = 6(X), VX € Quunx-
Furthermore,
(5.5) h(x) < 6(X), VX = (x0,X) € Qeek-

Proof. Since X is a Lip(1,1/2) graph, 6(X) ~ xg —¥(X) > c1h(x)/8, by the very definition of Qy x4,
which gives (5.5).

To prove (5.4), consider X = (xp,X) = (xg,X,1) € Quxxx- Using that dist(x, F) =~ h(x), we
deduce from (5.5) that
(5.6) dist(x, F) < C6(X)
for a uniform constant C > 1. We introduce ¢ := C~.

Assume first that 6(X) = d(xp, X) < cR, and let X = (¥(x),x) € Z be the point on the graph below
X. Lety € F be such that ||x — y|| = dist(x, F), and let Y = (¢(y), y) be the corresponding point on
the graph. Since My = |[¥/llLip1,1/2) + 1, by Lemma 2.16 we have

IX - Y < [IX - Y[ + X - X|
< Mollx = yll + Mod(X) < 2CMpo(X) < 2MoR,
provided 6(X) < cR. Now using Lemma 3.10, Harnack’s inequality, and doubling, we have
uX) _ w(AX, 6(X))) _ w(AY.6X))
6X) o (AX,6(X)) o (AY,6(X))
In the last step, we used that Y € F, and that 6(X) < M{R/8, hence (4.10) holds.
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Next, assume that 6(X) = d(xg,Xx) > cR. In this case we don’t need to use the set F. Since
X € I175r(X?), we have ||X — X?|| < 875 /nMyR and hence

cR < 6(xp,X) < 875VnMyR < M R/4.

Let again X = (¥(x),x) € X be the point on the graph below X. In this case we have, using Lemma
3.10, the strong Harnack inequality and the doubling property of w and o, that

uX) o(AX.0X)) o(AuraX’)
§X) o (AX,5(X))) o (Amra(X0))

Here we have used (4.5) in the final step. We can justify the use of doubling up to the scale here,
see Remark 3.20 and Lemma 3.12. O

We will make use of the following lemma. Recall that the closed, standard parabolic cube 7 ,(X)
(note to be confused with the vertically elongated open cube /,) was introduced in (2.3).

Lemma 5.7. There is a uniform positive constant 8 < 1, such that if = J,(L) C Q, with
diam(J) < 6dist(T,X), and J N Q, # @, then

100T = J100p(Z) C Qs
Furthermore, the same statement is true if the pair of domains (Qu, Qxy) is replaced by either

(Qxr Liren) OF (Lo s Qs )-

Proof. We prove the statement only for the pair (Q,, Q.4 ), as the arguments for the other pairs
are entirely analogous. First note that diam(J) < 66(X) for all X € J. Fix X € J N Q.. Then
X € I100r(X?), hence 6(X) < MyR, so that for § < M;!,

100p < 200 diam(.J) < 20065(X) < R,

whence it follows that 1007 C I;25r(X?).

It remains only to show that 1007 stays above the function defining the lower boundary of Q.
To this end, for future reference, we note that for X € J N Q,,

(5.8) IX = Y[ < 100 diam(J) < 1006 dist(T, X) < 10006(X), VY e€1009.
We consider two cases.

With X = (xg, x, 1) € J N Q, fixed as above, we first suppose that §(X) > h(x, ). We then have
(5.9 X0 — Yax(x, 1) = x0 —¥(x, 1) — c1h(x,1)/2 > 6(X) — c1h(x,1)/2 > 6§(X)/2,

since ¢; < 1. Using Lemma 2.16 (applied in Q,, so My is replaced by ||« |lLip(1,1/2)+ 1 < Mo +1),
along with (5.9), we deduce that

(5.10) dist(X,Y) < 6(X) s (Mp + 1) dist(X, %),

where ' 1= 0Qux = {(Y(x, 1) + (c1/2) h(x, 1), x,1) : (x,1) € R"}. Here, dist(X,X’) < §(X) trivially,
since Y’ lies at or above X.

We now claim that ¢’(Y) := dist(Y,X’) > 0, for all Y € 100 . Indeed, since ¢’ is parabolically
Lipschitz with norm 1, for Y € 1007, by (5.8), we find that

§'(X) - &'(Y)| < 10065(X) < 65'(X),
where we used (5.10) and the definition of ¢’ in the last step. Consequently,
§(Y)=6X) - ((5’(X) - (5’(Y)) >(1-CH8'X)>0,

provided that 6 is chosen small enough. Since 1007 is convex and contains a point X in Q,, it
then follows that 100 C Q.
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Now suppose that 6(X) < h(x, f). In this case, we first note that
xo — ((x, 1) + (c1/2)h(x, 1) > (¢1/2)h(x, 1),
as X € Q,. ForY = (y9,y, 5) € 1007, write

Yo — (l//(y’ S) + Clh(y’ S)/2)
= (%0 — W(x, 1) + c1h(x,0)/2)) + (W(x, 1) + c1h(x,1)/2) = W(y, 5) + c1h(y, 5)/2)) + (Yo — X0),

so that, using (5.8), we have

Yo = (v, 8) + c1h(y, $)/2) = (c1/2)h(x, 1) = CIY = X]|
> (c1/2h(x,1) — COSX) > (c1/2)h(x, 1) — COh(x, 1) > 0,

provided 6 is sufficiently small; i.e., we conclude that Y lies above the graph defining Q. 4. O

5.1. Whitney decompositions. We here introduce Whitney decompositions. Let 6 be as in Lemma
5.7, chosen small enough that the conclusion of the Lemma holds for each pair of sub-domains
(e, Qs )y (s> Qi) AN (e, Liesenen ). We let W = { T} be a (parabolic) Whitney decom-
position of Q in parabolic dyadic cubes (see e.g. [Ste70, Chapter 6] for the classical construction,
which adapts readily to the parabolic setting) with the additional property that

(5.11) 0~! diam(7) < dist(2.T, Q°) < dist(J, Q) < C,0~" diam(J).

This means that each J € ‘W is a (closed) parabolic dyadic cube and whenever J and ' are
distinct they have disjoint interiors. Moreover, taking 6 smaller if need be, we can insist that when
109 N 109" # @ then £(F) ~ £(J), and that the collection {107} have bounded overlap.

Note that by Lemma 5.7, if € ‘W and J meets Q,, then 10 € Q. Similarly, if J meets
Qux, then 10T € Q, 4y and finally, if I meets QO xx, then 10T € Quyspx-

5.2. Pointwise estimates. We now present some preliminary estimates for the Green function and
to be used in the proof of Proposition 5.1.

Lemma 5.12. It holds that
wY)

(5.13) ayou(Y) ~ m ~1, VY€ Q,ux,
and
(5.14) SO VS u(Y)] + SOV VEOu(Y) < 1, VY € Qs

and for every k > 0. Moreover, if § € W, and J meets Qy«, then

ay
o(Y)

< //] (|65M|2 + |V%M|2) (S(Y) dY = /ﬂ (lasulz + |V%/M|2)u dy.
49 4

Proof. The estimate in (5.13) is just a combination of (4.23) and (5.4). The proof of the remaining
estimates stated in the lemma follows from standard interior estimates for the heat/adjoint heat
equation, Lemma 5.3 and Lemma 5.7. We omit the routine details. ]

(5.15) ///j (16 O5ul® +16 Vyul® + 16 Vydsul® + 16 d,u Viul*)
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To proceed we introduce
¥,(¥) = Wr(y).Y), 1€ (O,R/Ao), ¥ € Qroor(x").
Then for any fixed r € (0, R/A), ¥,(y) is the point on the r-level set of u above y € Q0or(x"), i.e.,
(5.16) r=u(¥A(y) = u@,(y),y) Vre(0,R/Ao), y € Qioor(x").

Furthermore, as the set S is contained in the domain of ¥, (y), Lemma 4.43 and Lemma 5.3 imply
that

(5.17) r=u(¥.(y) = (¥ (y) = ¢ (y) —¥(y), Yy €S,
where the last equivalence comes from Lemma 2.16 and we have used that Q, C Q4.

The following lemma allows us to relate our estimates on the normalized Green function u to
corresponding estimates on .

Lemma 5.18. Let (r,y, s) € S. Then,
(5.19) 104 (y, I < Ost)(¥r (v, DI, [Vy b (v, )l S 1, IVirlﬁr(y, ) < [(V3u) (¥, (0, ),

(5.20) V3 05, (v, | S [(Vydgu)(P oy, I + [Ost) (¥, (v, DI I(VF)(E(, 9))]
(5.21) POy, )| + 1V 0 ) + P2 IV 0, )| + 12 |V, 0, 9] < 1.
Proof. For (r,y,s) € S, we have ¥,(y, s) € Q,, by Lemma 4.43. Thus, by (5.13),
(5.22) @y (B, (v, ) ~ 1,  V(nys)€ES.

Differentiating (5.16) with respect to s, we obtain

0 =20, (”(‘/’r(ye 5), Y S)) = (Osu)(¥r(y, ) + (ayo”)(‘llr(y, $)) O (y, 5).

Le.,
Osu) (¥ (y, 5))

29 O = = (W 9)
Similarly, if we differentiate (5.16) with respect either to r, or to y; with 1 <i < n — 1, we obtain
L =200
Oy ) (¥, (v, 9)) Oy ) (¥, (y, 5))
We readily obtain the first two estimates in (5.19) from (5.22) and (5.14). The last estimate in
(5.19), and also (5.20), follow by differentiating the formulas (5.23) and (5.24), and by invoking
again (5.22) and (5.14). Finally (5.21) follows using the previous estimates, the same kind of
arguments, and (5.17). Details are left to the interested reader. |

(5.24) Or(y, s) =

5.3. Proof of Proposition 5.1. With the preceeding preliminaries in hand, we are now ready to
prove Proposition 5.1. By Lemma 5.18, (5.13), and (5.17), we derive

(5.25) /ﬂ (Ir 05 (v, I + 11 V3 ey, )P + 117 V05t (y, s)ﬂ%dy ds
S

drdyd
< ///S (16 05l + 16 V3uP) (W, (y, 5)) 5(\;*&5)
dr dy ds

+ ///S (16% Vydsul* + 16% du Vyul®) (¥, (v, 5)) S (r.5) = I+1L

Next, we use the definition of Qg, see (4.42), and the change of variable Y = ¥,(y, s), which
amounts to the 1-dimensional change of variable yo = ¢,(y, s), with (y, s) fixed. By (5.22) and
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(5.24), the Jacobian of this change of variable is uniformly bounded above and below. Hence, by
Lemma 4.43,

dy
(526)  I+1Is /// (16 Osul® + 16 Viul* + 16% Vydsul* + 6% dsu Viul*) (Y) s =
Q,

Let W, ={J € W: T NQ, # D). As {10} gy, have bounded overlap, we can use (5.15)
and then Lemma 5.7 (along with the definition of W, specifically (5.11)) to deduce that
dY

2 2 12 2 2 2 2 12
(5.27) HI < j;y ///3— (16 sul® + 16 Viul* +16* Vydul® + 16 dsu Viul )(Y)ﬁ

< Z /// (u|asu|2 + MlV%/I/lP)(Y) dyY < /ﬂ (ulasulz + M|V§'M|2)(Y) dy.
JeW, 49 Quen

Combining (5.25), (5.26) and (5.27), we have reduced the proof of Proposition 5.1 to proving
that

(5.28) /// (uldsul® + ulVul*)(Y) dY < R?.
Q**
To this end, for N € N, with N > A /R, we set
(5.29) Quunv = {00, y) € Iosg(X") 1 yo > Yn (W)}, Uy =¥ +c1h/2+1/N,

that is, Q44 v is the domain formed by pushing the lower boundary of Q, , up by a distance of 1/N.
By the monotone convergence theorem we see that to prove (5.28), it is enough to prove that

(5.30) /// (uldsul® + ulViul*)(Y) dY < RY,
QuxN

uniformly in N.

Using the collection of Whitney-type cubes ‘W = {J}, we form a partition of unity. That is,
using the fact that

(5.31) sX)~ 07 '), VXe2J,JeW,

we construct 7y € Cy’(29), with the properties

(5.32) (DIVngl + €I 1omgl < 1,

such that

(5.33) d ngX)=1, VXeQ.
Jew

The well known construction in [Ste70, Chapter 6] adapts routinely to the parabolic setting. We
omit the details.

Now we set
(5.34) WaisN ={T € W 129 N Quyn # O}
and
(5.35) ni=ayi= ) g

jE(W**.N

Since suppng € 29, and 1 = ZJ ng on Q, we have n = 1 on Q. . Moreover, by Lemma 5.7
and (5.11), we see that if J € W, v, then 109 € Q.. Hence

(5.36) la,,y <1< 1q,,,-
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In particular,

(5.37) /// (uldsul® + ulVyul*)(Y) dY <A+ B < A +2B,
Qs N
where
A= Z /// u(uy,.yj)zn dy, B:= /// wln dY .
0<i,j<n—1

The following square function estimate is adapted from [LLNO7], and is crucial to our ability to
impose an assumption only on the caloric measure, or only on the adjoint caloric measure, but not
on both simultaneously. For the convenience of the reader we include a proof in the next subsection.

Lemma 5.38 (essentially, [LNO7]). Let A and B be defined as above. Then
A+2B< /// (IVy10Y)] + 501V dY.

We take the lemma for granted momentarily, and defer the proof to Subsection 5.4.
We claim that

(5.39) /// (IVyn(Y)| + S(V)I@sn(Y)]) dY < R

Taking (5.39) for granted momentarily, we observe that (5.39), Lemma 5.38 and (5.37) combine to
give (5.30). Therefore we have, modulo Lemma 5.38, reduced matters to verifying (5.39).

To start the proof of (5.39), recall the definition of 7 (5.35) and W,y (5.34). Note that by
(5.36), if D is any partial derivative operator (in X or ¢), then Dn(X) = 0 if X € Q,, . Hence

Dl < > \Dn.gl.
JE(W**,N
2T N(Qua ) #D

By definition 2 N Q. n # O for all T € W, n, and for such 7,
29N (Q**,N)C 0 = 29N aQ**,N +0.

Thus, if we define
By ={T € Wien 129N 69**,N + 0},
then it holds that

IDnl < > IDngl.
JeBy
Therefore, to prove (5.39) it is enough to show

(5.40) 3 /// (IVyng (V)| +8Iam7 (V) dY s RY.
JE€Bn
Let Xy = {(Wn(x, 1), (x,0)) : (x,1) € R"}, where y is defined in (5.29). Then
Ik N = (Oexv N EN) U (0Quxy N 01125r(X")),
and we can further decompose By = Bg\}) U Bﬁ), where
BY =T € Wian : 2T 0 (0Qusn N Zy) £ B},

and
BY =T € Waan : 29 N (3Qusy N 31125r(X) # B).
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We will handle contributions to (5.40) coming from each of these families similarly, but with a
1)

small difference which we point out later. Let us start with B;V . For each J € Bg\p we have that
on(Eq) ~ ((T)? where Eq := 47 NIy and oy = 7{;’|2N, The sets {Eg} g0 have bounded
N
overlap, since the fattened cubes in {10} ey have bounded overlap. Moreover,
U 49 c1crX”).
J EB%)

where C can be taken to depend only on n and M. Thus, since o is a parabolic ADR measure,
with constants also depending only on n and M,, we have

gy~ > O'N(Ej)zO'N< U Ej) <R

JeBY JeB JeB)
Now using (5.31) and (5.32), we have
(5.41) > /// (IVyng (Dl +6(V)ldng(Y)I) dY s > 69" s R
jeg%) jeB;})

This controls the contribution of Bg\}) to (5.40).

For each cube J € Bg\?), we have that 2.7 meets a face of 91125zr(X°). We can handle the ‘space-
time’ faces (the ones not perpendicular to the time direction) in the same way as we handled the
cubes in Bg\}). In the case that 27 meets a face perpendicular to the time direction, we need to do
something a little different.

Let us sketch the argument. Recall that X0 .= (xO, 29, to). Consider, e.g., the time-forward face,
call it F*, where t = 7, := 1 + (125R)?, and let _‘§N be the collection of cubes in BE\%) such that
29 meets this face. In a similar manner as above, we set Eq := 49 N F*, which is simply the
time-slice cross-section of a parabolic cube, i.e., an n-dimensional standard cube. Consequently,
the n-dimensional Lebesgue measure of E g satisfies [Eg|, = €(J)" = 6T y4=1. Note that for
X = (xp,x,t) € Eq, it holds that £(J) =~ 66(X), and furthermore, for all J € By, we have
49 c Icr(X9), and therefore £(J) < R. Then by (5.32), since d = n + 1 by definition,

> /// (IVyng (VI + )0z (V)]) dY s > 6D = > UD\Egl
JeBy JeBy JE€By
SRY |Egl s R™' =R’
JeBy
where in the last inequality, we have used that the sets {E ¢} have bounded overlap, and are all
contained in F*, which is an n-dimensional standard cube of side length £(F*) ~ R.

The time backwards face, where ¢ = 1° — (125R)?, can be handled by essentially the same argu-
ment. This proves (5.40) and concludes the proof of Proposition 5.1 modulo Lemma 5.38.

5.4. Proof of Lemma 5.38. We follow [LNO7]. Recall that u and its derivatives solve the adjoint
equation (we will just say ‘the equation’ below), that is, dsu + Au = 0 = duy; + Auy;. Here and
below we use fy; to denote the partial derivative of a function f with respect to y; and we will f; to
denote the s-derivative of f. We shall use the standard summation convention for repeated indices.
Integrating by parts and using the equation, we have

A=- /// Uyly; Uiy AY = /// utty; Auy,n dY — /// ity Uy;y 1y, Y
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1 d 1 d
=3 /// %|Vyu|2uyjf] dy + /// ua|Vyu|277 dy - /// Uity Uy, 1y, AY.

Using integration by parts once more, as well as the equation,

1 1 1
A= /[/ \Vyul?Aun dY + 3 /// \VyulPuyny, dY + 3 /// AulVyul*n dY
1 2
) ulVyu|'n, dY — Ully Uyy,y; dy
= /// \Vyul?Aun dY + E,

(5.42) |E| < /// (IVyulPIVynl + ulVyulPlngl + ulVyul [V3ul[Vynl) dY.

where E represents a sum of error terms satisfying

We similarly manipulate the term B:

B = ///uu?n dyY = ///M(AM)ZT] dy
= —// \Vyul*Aun dY - ///uuyl.Auyin dy - ///uuyiAunyi dY.

By further manipulations, integration by parts and using the equation satisfied by u,

1 0
B=- // |VYM|2AM77 dY + 3 ///ualVyulzn dyY - ///uuyl.Aunyi dyY
S
1
- - // Wy Auy aY + 5 /// AuVyuly dY + E
1 2
= ) |Vyul“Aun dY + E,

where E is a sum of two error terms, again controlled by (5.42). Adding, we conclude that
A+2B=E.
Hence, using (5.13), (5.14), and (5.36), we deduce from the nature of the error terms that

(5.43) A+2B< /// (IVyn(Y)l + 6(Y)I0,n(Y)|) dY.

6. ProoF oF THEOREM 1.1

As mentioned at the beginning of Section 4, to prove Theorem 1.1 it suffices to prove, for the
fixed cube Qr = Qr(x), that there exists Ny, depending only on the structural constants, such that

(6.1) inf [{y € Qr : 1DW(y) = CI > Ny }| < (1/4)|Qxl

With this goal in mind, recall that [1(y) := (0, y, s) for each 'y = (y9,, 5) € R™*!, and that the closed
set F = II(F,) C Osor(x") was introduced in (4.17). By (4.19) and Chebyshev’s inequality,

1
[{y € Qe s IDWm) ~Cl> N} < 1 // DY) - €| dy + (1/8)|Qxl.

FNQOgr
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We claim that

1
62) L // D) - €| dy < C,
|QR| FﬂQR

where C| depends only on the structural constants. We then choose N, = 1/(8Cy) to deduce (6.1)
from (6.2). Our goal is therefore to obtain (6.2). We divide the proof into steps.

6.1. Step 1: Localization. Let ¢ € CZ(R) be an even function with 199y < ¢ < 1 10,10
and set O(x, 1) = @(x)e(x2)...0(x,—1)e(t/10) for x = (x,1) = (x1,...Xx,-1,1) € R". We set
Or(x) := O(x/R,1/R?) for x = (x,1) € R Recalling the definition of Ip in (2.18), we write
Vg = O®rV for the locally truncated kernel, and we consider the localized parabolic fractional
integral

(6.3) ISh(x) := // ) Vr(x —y) h(y) dy = // ) Or(x —y) V(x —y) A(y) dy.

We can then define the localized half-order time derivative
(6.4) DFy(x) := 9, 0 Iy (x) = // K*(x - y)u(y) dy := // 0 (Vr(x—y)) u(y) dy
R~ R~

= //R" at(V(X - Y) Op(x — y)) w(y) dy’ X = (x,1) € R”.

This operator should be viewed as a principal value operator, or 9, should be considered in the weak
sense. Let &R := D, — Z)ﬁe and set K := 9,V — K. Thus

& u(x) = //R 81 (V(x - y) (1 - Dg(x— y))) wAy) dy = //R Ke(x - ) (y) dy
for all x = (x,¢) € R". Recalling that d = n + 1, we observe that
IKr)| < X174 1 9opc0)e (%),

|Kr(x) — Kr(x')| < if Ix - x| S R,

65) (Il + Ry

// Kz(x) dx = 0, (ie., EF1 = 0).
These estimates imply that if ||x — x’|| < R, then

ERy(x) - Er ) = | //R (Kn(x = ¥) = Ke(X' =) () = 9(0) |
R

R
< ——|ly - dy < ———dy < 1.
s / oo U=yl + Ry ¥ ~Xldy s / TR
Thus, if we pick C = ERy(x°), then
1
— D -C|ld
o //F D)~ Cldy
1 1
= — // | DRy (y) + Efu(y) - ERy(x")| dy s —— // |DRy(y)| dy + 1.
|Orl JJFrog |Orl JJFrog

As aresult, (6.2) follows once we can prove its localized version

1
6.6) . // DRy dy < Ca,
|Orl JJFrox
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for a constant C, depending only on the structural constants. Having reduced matters to proving
(6.6), we make a further reduction in the next step.

6.2. Step 2: Replacing ¢ by v along a contour. To begin, for x € Q50r(x’) we define

(6.7) Y x) = Y(h(x); ),
where h(x) ~ dist(x, F) is as introduced in Lemma 4.26 and ¢(r; x) is defined in (4.30). Note that
the function " (x) is well defined. Indeed, by Lemma 4.31 it holds A(x) < R/(80A;) < R/A for
x € Os0r(x?), so that Lemma 4.24 allows us to plug-in r = A(x) into ¥, (x).

Recalling that KR(x) = 0, (VR(X)) = 0, (V(x) (DR(X)) is the kernel of Z)f ,that 2 = 0in F, and that
KR(z) < |1zlI797" 19,00(0)(2), we see thatif x € Qr N F = Qr(x") N F, then

(6.8) [DRy(x) — DRy (x)|

— h :
- ‘ / 5 Kfx-y) (wy) - ¢"(y) dy‘ < // () = w(h(y)y)| 4

Furthermore, using (4.33) we can estimate the last term and deduce that forx € QrNF = Or(x)NF,

dist(y, F ) dist(y, F)
69  |DFy(x) - DF // // dy,
69 IDiu69 - DIl 5 orx\F X = [T Qoo IX=¥IFFT

which is a parabolic Marcinkiewicz integral; thus, since dist(y, F) < ||x — y|| forx € F,

dist(y, F)
| ot - o< ] !ﬂ SOy < 10kl
OrNF 020k (x) S Ix-ylizdist(y,F) [IX = Vi

Having previously reduced matters to proving (6.6), and using Cauchy-Schwarz, we can now
conclude that it suffices to prove that
1

(6.10) — || DRy dy < G,
10&1 /) o,

for a constant C3 depending only on the structural constants.

010R(\F lIx — ylld+!

6.3. Step 3: Proof of (6.10). We let { € Cy°([-1,1]) be an even function with 1j_1/21/2] < { <
11,17 and set

(6.11) p(x, 1) = cal(X1){(x2) . .. {(n-1)5 (D), VX = (X, 1) = (x1, ..., X1, 1) ERY,
where ¢, is chosen so that [[;, p(x,7) dx dr = 1. We define, for (x,7) € R”,
(6.12) Prf(x,1) := (pr * f)(x, 1),
where p,(x,t) := rp(x/r,t/r?), Thus, P, is a nice parabolic approximation to the identity on R”.
Since h is Lip(1,1/2) with [|AllLip (1,1/2) <n 1, there exists y <, 1/100 such that
|h(X) — Py h(x)| < r/4, Vr>0,xeR",

and therefore

(6.13) r+ Py h(x) > 3r/4 + h(x) > h(x), Vr>0,xeR"
Moreover, by (4.32), recalling that A in Lemma 4.31 has been fixed equal to A, we have
(6.14) h(x) < R/(80A1), Vx € Qsor(x’).

Consequently, for r < R/(10A ),
(6.15) r+ Py h(x) < 5r/4 + h(x) < R/(8A1) + R/(80A1) < R/A; .
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In particular, if we set

(6.16) S = {(r.x), r € (0.R/(10A))), X € Qaor(x")},
then (6.13)-(6.15) imply that

(6.17) (nx) €S = (r+P,h(x),x) €S,
where S is defined in (4.40). Hence, by Lemma 4.43,

(6.18) (nx) €S = (Y(r + P, h(x);X),X) € Q4.
We now define

(6.19) J(r1X) 1= Y(r + Pyyh(x):X)
creating a map (7, X) — (J(r; x), x) from Sto Q,. We also introduce
(6.20) A :=1/(1000A1)

Thus, if r € (0, 1004R), then r < R/(10A), which is the condition appearing in S.

Based on Lemma 4.26, see also Remark 4.29, we refer to [HL96, Lemma 2.8] for the proof of
the following lemma.

Lemma 6.21. Define P, as in (6.11)-(6.12). We have
1 . .
\;(P, — Dhx)| + |8,P,h(x)| + |71V 0] Ph(x)| < 1,

where the implicit constant depends at most on (n, m, j). Furthermore, the following estimates holds

forall Q c R,
o) 1
(1) / // ‘(Pr — Dh(x)
0 olr

) dr
(i) / / 0.2,h0R dx Y <10,
0 0 r

ite) . , 2 dr
(i) / // Lol | dx T s 10
0 0 ’ :

where in (iii) we require that j,m > 0, and that either j > 1, or that m > 2. Again the implicit
constants depend at most on (n, m, j).

2
d
dx = <10,
;

The following lemma is really the heart of the matter and it is a consequence of Proposition 5.1
and Lemma 6.21. The proof of the lemma is postponed to the next subsection.

Lemma 6.22. Let s be defined as in (6.19), and A as in (6.20). Then
(6.23) rd7(ry X)| + [ro(r; X)| + 8,00 (r; )| < 1, Vr € (0,10AR), x € Qar,

and
10AR B B . dr
(6.24) / // [rO20(r; X) + [rd(r; X) + 11200, (r; X dx— < |Qxl
0 Q20r

Here the implicit constants depend only on the structural constants.



32 SIMON BORTZ, STEVE HOFMANN, JOSE MARIA MARTELL, AND KAJ NYSTROM

Recall (see (6.3)-(6.4)) that Z)f =00 I§, where I§ is the localized parabolic fractional integral.
Armed with Lemma 6.22, we shall prove (6.10) by showing, for f € C5’(Qg) with ||f|l;> < 1, that

(6.25) ‘ / DRy (%) f(x) dx
Or

=: ‘ // By"(x) 8, f(x) dx| < 1Q&I'">.

To this end, let f € C;°(Qr) be as stated. Note that U(0;X) = Y(h(x);X) = wh(x), by definition of i,
since P, is an approximate identity. Integrating by parts twice vertically, and once in ¢, we have

(6.26) - // IRy (x) 0, f(x)dx = — // TRJ(0; %) 8, f(x) dx
AR
= - / // 3, [ DR (r; x)Py, f(x)] dx dr + by
0 Osr

AR
= / // 8%[@?&(1*; X)Py, f(x)] dxrdr + by —by =: I+ by — b,
0 Osg

where we may justify integration by parts in ¢ in the second line using (6.23) to make sense of
DR (r;x) for r > 0, and where the boundary terms b; and b, are defined by

(6.27) by := / DRI(AR; )Py f(x) dx,
Osg
and
(6.28) by := // O DRI X)Py f(X)]|,_ AR dx.
Osr

Note that in (6.26), we used that supp P,, f(-) C Osg, whenever r < AR, since f is supported in Qg
and the kernel of P,, is supported in Qr(0) whenever r < AR (recall y <, 1/100). We claim, and
will prove in subsection 6.5 below, that

(6.29) |b1| + 2] < 1QrIY2.

This leaves the contribution of the main term I, in which we distribute the r-derivatives:
AR y AR }
(6.30) I= / / DROZY(r; )P, f(x)dx rdr + 2 / / DRO(r; x)0, Py f(X) dx r dr
0 Osr 0 Osr

AR
+ / / Z)f&(r; x)@%Pyrf(x) dxrdr =2 1 + I + I5.
0 Osr
By parabolic Littlewood Paley theory® we have
© d
(6.31) / // QY P +1QP FP +1Q° fx)I dx TF < A < 1,
0 JJRr

where Q(rj ) = Qﬁj ®) are defined by

Qb = rofp,, Q2 =1%s,p,, QY =rEdpr,,

and where the implicit constant in (6.31) is independent of R. Here we recall that I is the smoothly
truncated fractional integral operator of order 1 (see (6.3)), and is self-adjoint, and that Df =0, 011;.
Note that the cancellation for le) comes from this 7-derivative.

Now we estimate /1. Using Lemma 6.22 and (6.31), and the fact that Z)f is localized, we have

3Estimate (6.31) may be proved via Plancherel’s theorem. We omit the standard argument.
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|| =

ro*0(r; QWD f(x) dx dr ‘
O20r r
1/2

AR 1/2 AR
( / // 250 dx ) ( / // QW P dx ) < 1041,
O20r O20r
Similarly, using Lemma 6.22 and (6.31), we find that
L)+ |1] < 1QRIY2.

Combing our estimates for I, I5, I3, by, by, we can conclude that (6.25) holds. This proves (6.10)
and hence Theorem 1.1 modulo, Lemma 6.22, and the claimed bounds for by, b, in (6.29). The
proof of these claims are given in the next two subsections.

6.4. Proof of Lemma 6.22. We note that by the definition of 4 (see (6.20)), we are always working
with (r,x) € S (see (6.16)). We start by proving (6.23). We will only handle the first term to the left
in (6.23) as the rest of the terms can be handled analogously. We have

Oy X) = 0y [W(r + Pyrh(X);X)] = (00)(r + Py,h(X);X)(1 + 0,Pyrh(X)),
and hence
(6.32) ro2(r;x) = r(@)(r+ Py h(x);%) (14 8,Py,h(x))” + D)+ Pyrh(x); X) 1 (62 Py h(x)) .

The bound for |r6%&(r; x)| now follows from Lemma 5.18, specifically (5.19) and (5.21), and
Lemma 6.21. In particular, to apply Lemma 5.18, we use (6.17), and make the observation that
r < r + Py,h(x), since h is non-negative.

Next we turn our attention to (6.24), which is a little more delicate. Again, we will only handle
the first term (in the integral) as the others terms can be handled analogously. First, we control a
closely related expression. We observe, using Proposition 5.1, that

10AR dr 10AR
/ // [r?y(r + h(x); x)|> dx— = / // 1020 (r + h(x); X)* rdx dr
0 Q20r r 0 Q20r
h(x)+10AR
= / // 07w (r;x)* (r = h(x)) dxdr
h(x) O20r

h(x)+10AR
/ // 0%y (r; x)1* rdx dr
h(x) O20r
< // 0%y (r;x)*rdxdr < R,
S

where in the last step we used (5.2), and in the next-to-last inequality, we used (6.14) and (6.20)
to see that A(x) + 10AR < R/(80A1) + R/(10A1) < R/Aq, so that we may change the domain of
integration to the region S. With the preceeding estimate in hand, we see that to obtain the bound

10AR ) - 5 dr
/ // 23R dx L < |0kl,
0 O20r r

10AR - ) dr
(6.33) /0 // rOREX) = 0 + B OIF dx <" < 10xl
O20r

To do this, we first note that by (6.32), Lemma 5.18, and Lemma 6.21,
rOR(r;X) = r(0)(r + Py, h(x);X) + O (|0,Pyh(X)| + 1|07 Pyrh(x)|)

it is enough to prove
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and observe further that the “big-O” term may be handled via Lemma 6.21. To treat the contribution
to (6.33) of the remaining term, we use the mean value theorem: for (7, x) € (0, 10AR) X Or, there
exists 7 between r + h(x) and r + P,h(x), such that

(6.34) |(02)(r + Pyrh(x);X) — 02 (r + h(X); X)| = [(Py, — DhGON(@2y)(F; )| < 72I(Py, — Dh(X).

The use of (5.21) to derive the last inequality in this display may be justified by the fact that 7 is
between r + h(x) and r + P, h(x); in particular, (7,x) lies in S. Multiplying (6.34) by r, and using
Lemma 6.21 (i), we obtain (6.33), thus completing the proof of the lemma.

6.5. Proof of the bounds for b}, b,. Recall that ||f]|;> < 1, and that, for r > 0, the operator P, is
bounded on L2, uniformly in r. Hence, by the definition of by in (6.27),

1/2 1/2
(6.35) |by| < ( //Q |DRF(AR; x)* dx) ( //Q 1Py fX) dx)
1/2
S < //Q |DRG(AR; x)? dx) < |IDRFAR; %)l |01 .

Next, recall that Df is a convolution operator with kernel KR = §,Vg, where Vg is the truncated
version of the kernel of Ip, localized at scale R (see subsection 6.1). Hence, passing the r-derivative
onto Y(AR;x), and then using (6.23), we have

- - 1 _
IDRIAR; X)| = |V * OJ(AR; X)| < % / Ix -yl dy<1.
Q1or(X)

Plugging the latter bound into (6.35) gives |b;| < |Or|'/2, as desired. The proof in the case of b)
proceeds analogously and we omit the details.

APPENDIX A. ProoF oF LEMMA 3.15

Here we give the proof of Lemma 3.15. For the most part, we follow the ideas of [CS05, Chapter
13] (see also [ACS]), but with some simplifications: see Remark A.11 below.

Before proceeding, we recall that the “vertically elongated” box I is defined in (2.9), and that
for X € X, the time forward corkscrew point A(X) and the subdomain Q,z(X) are defined in
(2.12) and (2.14). We fix X = (xg, x,1) € X, set Qg = Qop(X), and let dp Qg denote the parabolic
boundary of Qypg, i.e.,

(A.1) Ip Qog := 0 \ {5 =1+ (2R)*}.
We split the parabolic boundary of Q;z into
(A.2) OpQpr=BUS,

where B := Qor N {(¥o,y, s) : s = — (2R)?} is the bottom boundary of Qg, and S := dp Qy \ Bis
the lateral boundary.

With Q3r = Q3x(X), we also set
(A.3) Q. 1= Qar N {Y = (yo.y, 8) : yo < xo + 6Mo VnR}
(i.e., Q. is a “shortened” version of Qsg, for which the “ceiling”, with yo = 6 M v/nR, overlaps that

of Q). Thus
Op Q. =0Q.\ {s =1+ (3R?*},

and
(A4) a13' Q* = B* U S* )
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where B, := Q. N {(yo,, ) : s = —(3R)?} is the bottom boundary of Q,, and S, := dp Q.. \ B, is
the lateral boundary. We further define

(A.5) S = 8. N {0, 8) : Yo = xo + 6My VR, —8R* < s —t < =5R*}
Let w, denote caloric measure for Q..
We then have the Bourgain-type estimate
(A.6) Wl (S)>co, YY€ES :=Qrn {(0.y5): Yo =X +5MyVnR} .
for some uniform constant ¢y = co(n, My) > 0. Estimate (A.6) is well known; see e.g., [GH20,
Lemma 2.2] for a more general result.
Let us recall the boundary Harnack principle.
Lemma A.7 (Boundary Harnack inequality [LM95, Chapter 3, Lemma 6.5]). Let u and v satisfy

the hypothesis of the previous Lemma (3.5) . Then there exists a constant C > 1 depending only on
dimension and the Lip(1, 1/2) constant of the graph function a such that

u(Y) < Cu(ﬂ}(x)),
v(Y) v ARX))

whenever Y € Ig;2(X) N Q.

An alternative, streamlined proof of Lemma A.7 can be found in [DSS21].

Next, we prove a backwards Harnack inequality for certain solutions vanishing on a surface box
on X. Let B, S be as in (A.2).

Lemma A.8. Fix X € X. Let u be a positive, bounded caloric function in Qog = Qor(X), vanishing
continuously on TN S, with u = 1 on B, and ||hllo < 1. Then for all r < R/2, and for every
Z € Ag(X), we have the strong Harnack inequality

(A9) u (A(Z) s u(ALD) su(A(D) ,
where the implicit constants depend only upon n and M.

Remark A.10. For solutions vanishing on all of S, i.e., on the entire lateral boundary of g,
the result appeared previously as [FGS84, Theorem 4]. The point here is that we do not require
vanishing on S \ L.

Remark A.11. A similar result appears as [CSO5, Theorem 13.7] (see also [ACS]), without the
restrictions that ||/]|c < 1, and that 2 = 1 on B (or even that 7 = 1 on B, which would work just as
well), but without those restrictions one obtains worse dependence for the implicit constant in the
right hand inequality in (A.9). Specialized to our setting, the result in [CSOS5, Theorem 13.7] yields
ours, but the proof that we present is rather different to that of [CS05, Theorem 13.7], and is shorter
and a bit simpler.

Proof of Lemma A.8. The left hand inequality is simply the standard parabolic Harnack inequality.
To prove the right hand inequality, we proceed as follows.

Fix X € X. Define Q,, B.,S. and & as in (A.3), (A.4) and (A.5). We define two positive
auxiliary solutions: let v be caloric in Qy, withv =1 0on B, v =0 on S, and set

w(Y) := }(S),
Then by the maximum principle,

(A.12) w<v<u in Qyp,
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and by (A.6), we have
viY)>2w(Y)>¢cy, YYeS”.

Consequently, by the maximum principle,
u(Y) Sw(Y), YYeQ”:=Qprn{(o,y 5 : Yo <xo+5MoVnR}.

where the implicit constants depend only on n and M. Combining the latter bound with (A.12),
and using that by [FGS84, Theorem 4], the estimate (A.9) applies to v (since the latter vanishes on
all of S), we obtain

u (AL@D)) sv(AND)) s v (A (D) <u(A(Z))
for all r < R/2, and for every Z € Ag(X), since in that case AX(Z) € Q. O

We continue to define 8, S as in (A.2). As a consequence of Lemma A.8, we have the following.

Lemma A.13. Fix X € X. Let u, v be a positive, bounded caloric functions in Qop = Qpr(X), each
vanishing continuously on £ N S, satisfying the strong Harnack inequality (A.9) for all r < R/2,
and for every 1 € Agr(X). We then have

uY) _ u(AxX)
vY) v (ARX))
and for all r < R/2, and for every Z € Ag/2(X),
wY) _u(Y)| _ (5) u (ARX))
wWY) wY)|~ v (ARX))

where the implicit constants and « depend only upon n, My, and the implicit constants in (A.9).

(A.14) VY € Qppn(X),

(A.15) VY,Y € Q.(Z),

Estimate (A.14) follows from Lemma A.7 and the strong Harnack inequality. The estimates
(A.14) and (A.15) are both stated without proof (and more generally, in parabolic NTA domains) in
[HLNO4] as Lemma 3.18 and Lemma 3.19, respectively. As observed in [HLN04], the strong Har-
nack inequality (A.9) allows one to repeat the proof given in the elliptic case in [JK82, Theorem 5.1
and Theorem 7.9], mutatis mutandis; in particular, (A.15) follows from (A.14) and a standard iter-
ation argument. For solutions vanishing continuously on all of S, these results appeared previously
in [FGS84] (see also [FSY99])).

From this point onward, we follow very closely the proofs in [CS05] (or [ACS] or [Nys06]). We
include the remaining arguments for the reader’s convenience.

Lemma A.16. Let X € X and R > 0. Assume that 0 < u € W'2(Lr(X) N Q) N C(Lr(X) N Q)
satisfies Ou—Lu = 0in L gr(X)NQ with u = 0 in Ay g(X). Suppose further that u satisfies the strong
Harnack inequality (A.9) for all r < R/2, and for every Z. € AR(X). If Oyyu > 0 in I g(X) N, then

u(Y)
5(Y)’
Proof. Let X = (Y(x),x) € Zand Y = (yo,y) € Irp(X) N Q where y = (y,1). Choose r > 0 so that

yo = Y(y) + 10Mg +/nr, i.e., r := (yo — ¥(y))/(10My /n). Note that 5(Y) ~ r. Since Y € Iz(X), we
see that 0 < r < R/2. Indeed:

10Mo Vnr = yo = y(y) = yo — ¥(X) + Y (xX) — ¥(y) < 3Mo VnR + My |Ix — yll < 5Mo VnR.

Sety™ = (y,t7) = (y,t — ), and given 0 < u < Mo, let Y- (u) = (Y(y~) + ur,y") so that
0(Y~ (1)) = ur. Note that since Y € Izx(X) we have

vi—xil <R, 1<i<n,

(A.17) Oy, u(Y) ~

forevery Y € Ip(X) N Q.
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and
=12 =]t = —tX)|2 <r+]t—1X)|2 <r+R<3R/2,
so that in particular, y~ € Q3g/2(x), and |y~ — x|| < vnR + 3R/2. Hence for 0 < u < My, we have

lp(y™) + pr — gl < pr + Molly™ = xI| < ur +3Mo VnR < 4Mo VnR,
and therefore Y~ (u) € I3g/2(X) N Q for every 0 < u < M.

Applying (3.7) (which combines Holder continuity at the boundary with Carleson’s estimate),
with center Y™ (0) in place of X and at scale /16 instead of R, and using Harnack’s inequality and
the backward Harnack inequality in (A.9), we obtain

o(Y™ a 1
a0 ) < () wy) +r,y) < O UV (M) < 3 WY (M)

provided we fix n = n(n, My) < 1 sufficiently small. Thus, by the backward Harnack inequality,

1 Mo
u(Y) < iu(Y‘(Mo)) <u(Y (Mp)) —u(Y () =r / Oyou(Y ™ (w)) du.
n

Using next that (8; — £)(d,,u) = 0in I g(X) N, since dy,u > 0, we may apply Harnack’s inequality
to conclude that

u(Y) < rdyu(Y) = o(Y) 0y,u(Y).

To prove the opposite inequality in (A.17), sety* = (y,z+72) and let Y* := (W(y*) +r,y*). Then
by a standard interior estimate for derivatives of caloric functions, combined with the backward
Harnack inequality in (A.9), we have

By,u(Y) 5 6(Y) " u(Y") 5 6(Y) " u(Y).
]
Lemma A.18. Ler X € X and R > 0. Assume that 0 < u € WH2(Lr(X) N Q) N C(Lr(X) N Q)
satisfies O — Lu = 0 in Lr(X) N Q, with u = 0 in Ap(X). Suppose further that u satisfies the

strong Harnack inequality (A.9) for all r < R/2, and for every Z € Ar(X). Then, there exists
n = n(n, My) € (0, 1/16) such that

(A.19) 0y, u(Y) > 0, for every Y € Ig/2(X) N Q with 6(Y) < nR.

Proof. We follow very closely the proof of [CS05, Lemma 11.12]. The strong Harnack inequality
(A.9) allows one to follow the elliptic argument.

Write X = (xg, x,1) = (W(x,1),x,t) € . As above, we set Qpr = hHr(X) N Q, and let dp Qg
denote the parabolic boundary of Q) (see (A.1)). Asin (A.2), we make the splitting dp Qpg = BUS.
We set F' = dp Qpr \ Z, and let & be the solution of the initial-Dirichlet problem for the heat equation
in Qyg, withdata s = 1 on F, and & = 0 on dp Qo N X = Apr(X). Thus, Lemma A.8 applies to A.
We note that

(A.20) Oy m(Y) 20, VY€,
as may be seen by the fact that for 0 < p < 1,
hp(y()a y) = h()’O _Py)’) < h(y()a y) s if ()’0, y)a Q}O 2 y) € Q2R B

by the maximum principle.

Set v := ch, where c is a positive constant chosen so that u (ﬂ;g(X)) =y (ﬂ;g(X)). Of course,
Lemma A.8 and (A.20) apply also to v. Since both u and v satisfy the strong Harnack inequality
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(A.9), we may apply Lemma A.13 to the ratio u/v. In particular, for any fixed Y € Qg/2(X), with
0(Y) =: r < R/2, and for ||Z — Y|| < r/2, we have

u(Y) @ -
(A21) W)~ S B (%) v@) < F IR o,vZ).

where in the last inequality we have used Lemma A.16 applied to v. Set ® = O(Y) = u(Y)/v(Y).
Then by (A.14), and our normalization, ® ~ 1. Combining (A.21) with standard interior estimates
for spatial derivatives of the caloric function u(-) — ®@v(-), we see that for ||Z - Y|| < /2 and r < nR,

0,,u(Z) — ® 0, W(Z)| < 70, W(Z).
In particular, the latter bound holds with Z =Y, so that
Ayu(Y) = (0 — Cn®) 8y, w(Y).
Choosing 7 small enough, we obtain (A.19). O

r

Lemmas A.16 and A.18 can be combined to give a version of the former on which the non-
negativity of d,u needs not be assumed:

Lemma A.22. Let X € X and R > 0. Assume that 0 < u € WH2(LrX) N Q) N C(LrX) N Q)
satisfies O — Lu = 0 in LHg(X) N Q with u = 0 in Ayp(X). Suppose further that u satisfies the
strong Harnack inequality (A.9) for all r < R/2, and for every Z. € Ar(X). Then, there exists
n = n(n, Mo) > 0 such that

Y
(A.23) Oy, u(Y) = ZEY;’ forevery Y € Ig;4(X) N Q with 6(Y) <nR.
Remark A.24. Estimate (A.23) holds also for solutions of the adjoint caloric equation, that is for u
as above, but satisfying d,u + Lu = 0. This follows immediately from Lemma 3.15 and the change

of variable t — —t.

Proof of Lemma A.22. Let 19 denote the constant 77 in Lemma A.18. Observe that the current hy-
potheses are identical to those of Lemma A.18, so dyu > 0 in Igp(X) N{Y € Q : 6(Y) <
noR}. Hence, for each X’ € Ag/4(X), we may apply Lemma A.16 in L r(X") N Q, with AR =
1n0(Mo vn)~ 'R, to obtain (A.23) with n ~ 1. O

Proof of Lemma 3.15. The proof follows immediately from Lemma A.22 (and its adjoint caloric
version). O

AprpPENDIX B. ParaBoLic SIO Bounps oN Lip(1,1/2) GRAPHS IMPLY PARABOLIC UNIFORM RECTIFIABILITY.

As noted in the introduction, all sufficiently nice parabolic singular integral operators (SIOs)
are L? bounded on any parabolic uniformly rectifiable set [BHH*b, Corollary 4.9]. The converse
remains open, in general, but in this appendix, we obtain a restricted version of the converse in the
setting of the present paper; i.e., we observe that L? boundedness of SIOs on a Lip(1,1/2) graph,
implies that the graph is regular Lip(1,1/2). We remark that we actually require only L? bounds for
parabolic SIOs with homogeneous kernels.

Definition B.1. We shall say that K = K(X, ) is a “nice” (homogeneous) parabolic C-Z kernel (of
homogeneous dimension d = n + 1) if it satisfies the following properties:
(i) Parabolic Homogeneity: K(4X, 221 = 79K (X, 1), for all A > 0.
(ii) Smoothness: K € C* (R™1\ {0}).
(iii)) Oddness in spatial variables: K(X,f) = —K(—X, ), for each (X, ¢) € R" X R.
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Corresponding to any such “nice” kernel, and given a Lip(1,1/2) graph X with surface measure
o, we define for each & > 0 the corresponding truncated SIO on X in the usual way:

Tef(x,0) = Te(K) f(x,0) := /”( " K(x =y, t =) f(y,s) do(y, s).
x=y,t=s)|[>&

Proposition B.2. Suppose that ¥ ¢ R™ ! is a Lip(1,1/2) graph, on which, for every “nice” kernel
K as in Definition B.1, the corresponding truncated SIOs To(K) are bounded on L*(T), uniformly
ine>0,ie,

(B.3) sup |ITe(K) flir2zy < Ckllfliz) -

&>0

Then X is a regular Lip(1,1/2) graph.

To prove the proposition, we shall make use of the following fact, established in [Hof95].

Theorem B.4 ([Hof95]). Let T, denote the parabolic Calderén commutator

. Y(x, 1) — Y(y, s) —|x = yI?
(B.5) Tyf(x,1):= pv. /Rn T ex < 2 —s)

Then T : L*(R") — L*(R") if and only if ¥ is a regular Lip(1,1/2) function.

> Lissy S, 8) dyds.

Remark. Up to a multiplicative constant, T, = [H 172, Y], where H = J; — A is the usual heat
operator in R" (see [Hof95] for details).

It will be convenient to let RY, denote spatial R".

Proof of Proposition B.2. Let ® € Cy’(R), with0 < ® < I, O(r) = 1 if [r| < 1, and O(r) = 0, if
r > 2. Given a positive number M < oo, set @y := ®(-/M). Given a unit vector v C s ¢ R’;p,
and a point X € R”, set

X=Xy, xpi=X-x,.

For each such v and M, we define the kernels

X —|xt? Xy
KM = YUY g Dy [ —2— )
X0 = v P\ 7y ) Heo (e

Note that KM is a “nice” kernel in the sense of Definition B.1, for each v and M, with quantitative
bounds that are uniform in v, but of course depend upon M. Thus, by hypothesis, (B.3) holds for
every v, M, for the truncated SIO T»M := T (K*M), with a quantitative bound Ck that is uniform in
v, and depends quantitatively on M.

After a possible rotation of the spatial co-ordinates, we may suppose that X = {((x, 1), x, 1)},
where ¢ is a Lip(1,1/2) function defined on R". Thus, for some positive constant M, < co, we have

|¢’(xa t) - l//(y’ S)| < Ml// ||(X - r— S)” D V(X, t)e ()’, S) € Rn .

Let vy := (1,0,...,0) denote the unit basis vector in the xy direction in R?p. Choosing v = vy,
and M = My, and merging the surface area element /1 + [Vy¥(y, $)I> into f(y, s), we find that
T;O’Mw, defined on L?(X) and written in the graph co-ordinates, is merely the truncated version

of the parabolic Calder6n commutator 7, defined in (B.5). By hypothesis, these truncations are
uniformly bounded on L*(R"), and thus by Theorem B.4, we obtain that v is a regular Lip(1,1/2)
function, equivalently, that X is a regular Lip(1,1/2) graph. O
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