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Phase estimation plays a central role in com-
munications, sensing, and information pro-
cessing. Quantum correlated states, such as
squeezed states, enable phase estimation be-
yond the shot-noise limit, and in principle
approach the ultimate quantum limit in pre-
cision, when paired with optimal quantum
measurements. However, physical realizations
of optimal quantum measurements for opti-
cal phase estimation with quantum-correlated
states are still unknown. Here we address this
problem by introducing an adaptive Gaussian
measurement strategy for optical phase esti-
mation with squeezed vacuum states that, by
construction, approaches the quantum limit in
precision. This strategy builds from a compre-
hensive set of locally optimal POVMs through
rotations and homodyne measurements and
uses the Adaptive Quantum State Estimation
framework for optimizing the adaptive mea-
surement process, which, under certain reg-
ularity conditions, guarantees asymptotic op-
timality for this quantum parameter estima-
tion problem. As a result, the adaptive phase
estimation strategy based on locally-optimal
homodyne measurements achieves the quan-
tum limit within the phase interval of [0, π/2).
Furthermore, we generalize this strategy by
including heterodyne measurements, enabling
phase estimation across the full range of phases
from [0, π), where squeezed vacuum allows for
unambiguous phase encoding. Remarkably,
for this phase interval, which is the maxi-
mum range of phases that can be encoded
in squeezed vacuum, this estimation strat-
egy maintains an asymptotic quantum-optimal
performance, representing a significant ad-
vancement in quantum metrology.

1 Introduction
Quantum metrology uses the quantum properties of
physical systems to enhance the measurement preci-
sion of physical quantities beyond the classical limits
[1, 2]. Quantum mechanics states that all physical ob-
servables are represented by self-adjoint operators on

a Hilbert space. As such, the measurement of a physi-
cal quantity of a system involves projecting the quan-
tum state of such system onto one of the eigenspaces
of the corresponding self-adjoint operator. However,
certain physical quantities, such as time, phase, or
temperature, lack an associated self-adjoint operator
[3, 4]. Consequently, to determine the values of these
physical quantities, it is necessary to measure some
observables of the system and estimate their values
from the observed results. This process is referred to
as quantum parameter estimation [3, 4].

Among different parameter estimation problems,
the problem of phase estimation is ubiquitous in many
areas of physics and engineering including, but not
limited to, gravitational wave detection [5], quantum
imaging [6], atomic clocks [7], magnetometry [8], and
quantum information processing [9]. However, the
performance of traditional phase estimation meth-
ods is limited by the fundamental properties of the
physical states carrying the phase information. The
maximum achievable precision for phase estimation
for probe states that lack quantum correlations, typ-
ically used for phase estimation, is defined as shot-
noise limit (SNL) [1, 10].

Numerous methods have been developed for achiev-
ing phase estimation beyond the SNL by exploit-
ing probe states with inherent quantum correlations.
Among different types of quantum correlations, en-
tanglement holds a significant potential for improving
precision in phase estimation. Nevertheless, highly
entangled states used for phase estimation, such as
NOON states, are delicate and can be readily dis-
rupted by loss, environmental noise, and decoherence,
thereby limiting their practicality for real world appli-
cations [11–14]. In this regard, squeezed state probes
offer a more viable alternative for robust phase esti-
mation [15, 16]. Squeezed states allow for reducing
the quantum noise in one observable below the SNL
at the expense of an increased noise in another non-
commuting observable. This reduction in quantum
noise can significantly enhance the precision of phase
measurements [5, 7, 16, 17], and is a valuable resource
for enabling robust optical quantum metrology and
phase estimation.

Advances in photonic quantum technologies for
phase estimation and quantum metrology have
yielded squeezed light sources with a high degree of
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squeezing [18–21]. Moreover, experimental demon-
strations of quantum metrology and sensing utiliz-
ing squeezed optical probes have achieved sensitivi-
ties surpassing the SNL [5, 22–24]. However, there
remain significant challenges in devising optimal es-
timation strategies, including optimal measurements
and estimators, that can efficiently attain the ulti-
mate quantum limit of precision for any optical phase
estimation problem.

A noteworthy measurement approach for optical
phase estimation with squeezed states is the homo-
dyne measurement. This measurement has the poten-
tial for reaching the quantum limit for a specific, op-
timized phase when a predetermined level of squeez-
ing is present in the probe state [25]. However, this
optimal phase must be known beforehand in order
to reach the quantum limit, making this approach
impractical. To overcome this limitation, two-step
adaptive methods for phase estimation allow for in-
creasing the range of phases within [0, π/2) for which
estimation below the SNL is possible [25, 26]. These
methods can approximate the quantum limit in preci-
sion in the asymptotic limit of many input states for
phases around this optimal phase. However, as the
input phase deviates from the predetermined optimal
phase of homodyne, these estimation strategies show
a considerable discrepancy with the quantum limit.

In this work, we theoretically demonstrate a multi-
step adaptive Gaussian measurement strategy for op-
tical phase estimation with squeezed vacuum states
that, by construction, approaches the quantum limit
in precision with a fast convergence rate for any phase
encoded in squeezed vacuum. This estimation strat-
egy uses homodyne measurements to implement a
comprehensive set of locally optimal POVMs (Posi-
tive Operator Value Measures). Then the strategy
performs adaptive optimization based on the Adap-
tive Quantum State Estimation (AQSE) framework
to ensure the asymptotic consistency and efficiency of
the estimator of the optical phase [27]. Based on rig-
orous mathematical analysis, we prove that this adap-
tive strategy approaches the quantum limit for phases
within [0, π/2) in the asymptotic limit of many adap-
tive steps. Furthermore, we generalize this strategy
to incorporate heterodyne sampling making it possi-
ble to extend the parametric range to [0, π), which is
the maximum range of phases that can be encoded
in squeezed vacuum. We show that this combined
homodyne-heterodyne strategy maintains an asymp-
totic quantum optimal performance.

The paper is organized as follows: In Sec. 2 we
provide a concise overview of the theory of single pa-
rameter estimation. Then, we discuss the problem
of optical phase estimation in the context of quan-
tum systems, followed by an overview of phase esti-
mation with squeezed states. In Sec. 3, we describe
the proposed optimal phase estimation strategy based
on adaptive Gaussian measurements with squeezed

vacuum states. By leveraging homodyne measure-
ments and rotations, we construct a collection of lo-
cally optimal POVMs, which allows us to apply the
mathematical framework of AQSE to Gaussian mea-
surements and feedback [27, 28]. Through formal
mathematical analysis, we show that this adaptive
measurement process allows for extracting the maxi-
mum possible information pertaining to the phase en-
coded in squeezed vacuum states in the asymptotic
regime. Appendix 8.2 gives a mathematical proof
of the asymptotic optimality of the adaptive strat-
egy, showing its convergence to the quantum Cramér-
Rao lower bound (QCRB). In Sec. 4, we use nu-
merical simulations to evaluate the performance of
this strategy, and investigate its performance under
losses and system imperfections in Sec. 5. We observe
that this strategy approaches the quantum limit for
phases within [0, π/2), outperforming previous phase
estimation strategies. Sec. 6, describes the combined
homodyne-heterodyne strategy for phase estimation
in the full range for squeezed vacuum of [0, π), and
the proof of its asymptotic optimality in Appendix
8.4. Finally, Sec. 7 contains the discussion and con-
cluding remarks.

2 Background
2.1 Single parameter estimation in quantum
systems
A fundamental problem in quantum parameter esti-
mation is the design of precise estimators of an un-
known parameter θ ∈ Θ characterizing a quantum
state based on measurements of the system. In this
context, a quantum system is modeled as a Hilbert
space H, and its state is described by a density oper-
ator ρ, which is a self-adjoint positive operator with
unit trace on H. The process of encoding the un-
known parameters into a probe state ρ is accom-
plished by a dynamical process, which, when it can be
represented as a unitary transformation U(θ), yields
the state

ρ(θ) = U(θ)ρU †(θ), θ ∈ Θ. (1)

Estimation of θ can be achieved through an estima-
tor that is a function that takes a sample of size N
from a measurement of the quantum system as an in-
put and produces an estimate of the unknown param-
eter. The most general description of a measurement
process is a POVM [4]. Given a quantum system H
and an outcome space X ⊆ Rk for a measurement, a
POVM is a map M : B(X ) → B(H) from the set of
events of our random experiment B(X ) to the space
of bounded operators on H, denoted by B(H), that
satisfies the following conditions [4, 29, 30]:

i. M(∅) = 0, M(X ) = I

ii. M(B) ≥ 0, ∀B ∈ B(X )
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iii. For every family of mutually disjoint events
{Bn}∞

n=1 ⊂ B(X ), so that Bi ∩ Bj = ∅ ∀i ̸= j,
that satisfies ∪∞

j=1Bj = B ∈ B(X ), then M(B) =∑∞
j=1 M(Bj).

In particular, when the state of the system is ρ(θ),
the observed data x ∈ X of a measurement M is an
outcome of a random variable X ∈ X distributed ac-
cording to the density function f(x | θ; M) (or prob-

ability mass function in the case of discrete random
variables) given by the Born’s rule

f(x | θ; M) = Tr [M(x)ρ(θ)] . (2)

Thus, any sample from the application of a se-
quence of N POVMs M1, . . . , MN in a quantum sys-
tem is represented as a sequence of N random vari-
ables X⃗N = X1, . . . , XN . It follows that any estimator
θ̂ (X1, . . . , XN ) based on this sample is also a random
variable with expected value

Eθ

[
θ̂(X⃗N )

]
=
∫

X N

θ̂(x1, . . . , xN )f(x1, . . . , xN | θ; M1, . . . , MN )dx1 · · · dxN . (3)

To find optimal estimators for all θ ∈ Θ ⊂ R, the
concept of unbiased estimator plays a crucial role. An
estimator θ̂(X⃗N ) is unbiased if Eθ

[
θ̂(X⃗N )

]
= θ for all

θ ∈ Θ [31]. The performance of unbiased estimators is
characterized by their variance, which is bounded by
the Cramér-Rao bound [31]. This bound corresponds
to the classical limit of precision for all unbiased es-
timators, and is given by the inverse of the Fisher
information denoted by FX(θ). Given a sample X
produced by a POVM M , the Fisher information

FX(θ) =
∫

X
f(x | θ; M)

[
∂

∂θ
log (f(x | θ; M))

]2
dx

(4)
quantifies the amount of information about the pa-
rameter θ that can be extracted from the sample X
[28, 32]. The ultimate limit of precision, dictated by
quantum mechanics, is achieved by optimizing FX(θ)
over all possible POVMs, resulting in the quantum
Fisher information (QFI). Consequently, the variance
of any unbiased estimator is lower bounded by the in-
verse of the QFI, referred to as the quantum Cramér-
Rao bound (QCRB) [28, 32, 33]. The objective in
quantum parameter estimation is to devise estima-
tors and quantum measurement schemes that attain
the QCRB for any value of the parameter θ ∈ Θ.

2.2 Optical phase estimation based on dyne-
detection
A central task in optical quantum metrology is the
estimation of an unknown phase θ ∈ [0, 2π) encoded
in a photonic quantum state by the unitary process
U(θ) = e−in̂θ, where n̂ is the photon number operator.
The standard quantum state probe for optical phase
estimation is the coherent state |α⟩ ⟨α| , α ∈ C, in
which photons exhibit classical correlations [13, 34].
For this quantum state, the QCRB for any unbiased
estimator θ̂ and N independent copies of the system
is [4]

Var[θ̂] ≥ 1
4NE [n̂] , (5)

This limit in precision defines the SNL (or the coher-
ent state limit).

To surpass the SNL for optical phase estimation, it
is necessary to employ states with quantum correla-
tions, such as squeezed vacuum states. These states
are defined by the density operator [13]:

ρr = |0, r⟩ ⟨0, r| = Ŝ(r) |0⟩ ⟨0| Ŝ†(r), (6)

where Ŝ(r) = e
1
2 (re−iγ â2−reiγ â†) is the squeezing op-

erator, r ∈ R, γ ∈ [0, 2π), and â and â† are the
annihilation and creation bosonic operators, respec-
tively. Through the unitary transformation U(θ),
the squeezed vacuum state in Eq. (6) results in the
parameter-dependent state ρ(θ) = U†(θ)ρU(θ). The
corresponding QCRB for this state for any unbiased
estimator θ̂ and N independent copies of the system
is given by [26]:

Var[θ̂] ≥ 1
2N sinh2(2r)

= 1
8N
(

E [n̂]2 + E [n̂]
) , (7)

where r represents the squeezing strength of Ŝ(r) [35,
36]. This bound exhibits a superior scaling with E [n̂]
compared to the coherent state in Eq. (5). However, it
is worth noting that due to the π-inversion symmetry
inherent to squeezed vacuum states [37] (see Fig. 1-
i), any estimation strategy based on these states is
constrained to phases within the range of [0, π).

The standard measurement approach for optical
phase estimation is the heterodyne measurement [38,
39]. This measurement involves simultaneous sam-
pling of two orthogonal components of the electromag-
netic field within the complex plane, namely X̂ϕ and
X̂ϕ+π/2, by utilizing the quadrature decomposition of
the input field [10]. Here, the quadrature operator X̂ϕ

is defined as:

X̂ϕ = â†eiϕ + âe−iϕ

2 . (8)

The POVM associated with the heterodyne measure-
ment is described by coherent state projectors MHet =
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Figure 1: Adaptive estimation strategy for optical phase estimation with squeezed vacuum probe states |0, r⟩⟨0, r|. The
strategy employs locally optimal POVMs, Mθ̌ in Eq. (16) with θ̌ ∈ [0, π/2), to produce a maximum likelihood estimate of θ,
and updates the value θ̌ for subsequent adaptive steps. The measurement process is iteratively repeated during the adaptive
strategy. Inset (i) shows the Husimi Q representation for the initial squeezed vacuum state. Note that due to the internet
symmetry properties of squeezed vacuum, these quantum probes can only encode the phase modulo π.

{
π−1 |z⟩ ⟨z| : z ∈ C

}
, with outcomes corresponding to

complex numbers, and with the corresponding Fisher
information:

FZ(θ) = 4 sinh2 (r) . (9)

The inverse of Eq. (9) is known as the heterodyne
limit for the precision of any unbiased estimator θ̂ for
all θ ∈ [0, π) with squeezed vacuum states.

Going beyond estimation strategies based on het-
erodyne detection, homodyne detection can surpass
the heterodyne limit for a suitable set of values of θ.
Homodyne provides information about the quadra-
ture X̂ϕ of the input signal using a local oscilla-
tor (LO) phase reference field and interference [10].
Specifically, in the limit of strong LO, Eq. (8) repre-
sents a self-adjoint operator with a spectral measure
given by [38]:

X̂ϕ =
∫ ∞

−∞
xΠ(dx), (10)

where Π(B) = 1B(x) (or symbolically in Dirac nota-
tion, Π(dx) = |x⟩ ⟨x| dx), for any B ∈ B (R). Conse-
quently, the homodyne measurement can be described
by the POVM MHom = {Π(dx)}, with the outcome
space being the real numbers [40].

For squeezed vacuum state probes in Eq. (6), the
outcomes x ∈ R of the homodyne measurement are
distributed according to a normal random variable
with probability density function

f(x | θ) = 1√
2πσ2(θ)

exp
[
− x2

2σ2(θ)

]
, (11)

where θ denotes the unknown phase and

σ2(θ) =
[
e−2r cos2(θ) + e2r sin2(θ)

]
(12)

denotes the variance. The Fisher information FX(θ)

for the homodyne measurement is then

FX(θ) = 2 sinh2(2r) sin2(2θ)
(σ2(θ))2 . (13)

Notably, the classical Fisher information of the homo-
dyne measurement coincides with the QFI when the
squeezing strength r satisfies:

r = −1
2 log(tan(θ)), (14)

or equivalently, when the parameter θ corresponds to
the optimal value θopt given by

θopt = arccos (tanh(2r))
2 (15)

which tends to zero as r increases. Consequently, the
homodyne measurement can surpass the heterodyne
limit in the neighborhood of θopt. However, outside
this neighborhood, estimators based on a sample X⃗N

obtained from N independent and identical homo-
dyne measurements cannot achieve this optimal level
of precision (see Fig. 9).

To overcome this limitation, adaptive estimation
protocols have been proposed. One such protocol
[22, 25, 26], that we refer to as the two-step protocol,
considers a reduced parameter space [0, π/2), and uti-
lizes homodyne detection and one subsequent adapta-
tion of the probe state to surpass the heterodyne limit
within this phase range. This strategy approaches the
QCRB in the asymptotic limit for phases around the
optimal phase θopt [22, 25]. However, far from this
optimal phase, its performance significantly deviates
from the QCRB. Moreover, when considering the full
range of phases that can be encoded in squeezed vac-
uum probes [0, π), this two-step estimation strategy
is not expected to produce satisfactory results, due to
the periodicity of the likelihood function from homo-
dyne outcomes.
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In a more general measurement setting, Gaussian
[38, 41] and generalized dyne measurements [42, 43],
which extend the concepts of homodyne and hetero-
dyne, have a large potential for quantum metrology
[41], sensing [44], and communications [45], and for
studying the dynamical evolution of quantum sys-
tems under continuous measurements [42, 46]. More-
over, the combination of optimal control, quantum
feedback, and Gaussian measurements allows for im-
plementations of optimal phase measurements for
single qubits, even across the full range of phases
[47, 48]. However, optimal phase measurements based
on quantum feedback and optimal control for quan-
tum correlated states, such as squeezed states, are still
unknown, but are expected to be highly complex in
practice.

In this work, we propose an adaptive estimation
strategy based on homodyne detection, that leverages
the framework of AQSE, which, under certain regu-
larity conditions (see Appendix: 8.1), yields a consis-
tent and efficient estimator for any phase θ ∈ [0, π/2).
A key element of this approach is to use samples that
lead concave likelihood functions, ensuring the asymp-
totic normality of the Maximum Likelihood Estima-
tor (MLE) [27, 28]. This property guarantees the
asymptotic saturation of the QCRB in Eq. (7) for
any θ ∈ [0, π/2). We further generalize this adaptive
strategy to incorporate heterodyne measurements en-
abling phase estimation within [0, π), while maintain-
ing a quantum-optimal performance in the asymptotic
limit.

3 Optimal adaptive homodyne phase
estimation
In practice, it is generally impossible to find a POVM
and an unbiased estimator capable of saturating the
QCRB for all θ ∈ Θ. However, it is often possible
to find a POVM and an unbiased estimator that can
achieve this bound for a specific value of the param-
eter within a neighborhood around a point θ0 ∈ Θ.
These types of POVMs are referred to as locally opti-
mal at θ0. Moreover, if it is possible to construct a col-
lection of such locally optimal POVMs for any θ ∈ Θ
while satisfying a set of regularity conditions pertain-
ing to the probability distributions of their outcomes
(see Appendix: 8.1), then it is possible to use an adap-
tive estimation method, known as AQSE [27], capable
of saturating the QCRB in the asymptotic limit for
the MLE ∀θ ∈ Θ.

Building upon this understanding, the proposed
adaptive phase estimation strategy with squeezed vac-
uum states is constructed based on two elements.
The first element involves the construction of a set
of POVMs through homodyne measurements that are
locally optimal for any value of the parameter, that is
the optical phase θ within the range θ ∈ [0, π/2) = Θ.

The second element is the construction of an estima-
tor that achieves the QCRB for any given value of the
phase θ, while also being locally unbiased at the true
phase θ0 ∈ Θ [4, 27].

To construct the set of locally optimal POVMs, we
refer to Eq. (15), which shows that the homodyne
POVM MHom = {Π(dx)}x∈R in Eq. (10) is locally
optimal at θopt. This is because the samples obtained
from MHom have a Fisher information equal to the
QFI at this specific phase. Furthermore, given the
asymptotic unbiasedness of the MLE, and its sub-
sequent local unbiasedness, the estimator effectively
saturates the QCRB (Eq. (7)) in the asymptotic limit
at θopt. Consequently, by appropriately incorporating
a phase shift into the elements of MHom, it is possible
to construct a set of locally optimal POVMs for any
phase θ ∈ [0, π/2).

To this end, we introduce a phase shift
U
(

θ̌ − θopt

)
, which allows us to define a new set of

POVMs for each θ̌ ∈ [0, π/2) as follows:

Mθ̌(dx) =
{

U
(

θ̌ − θopt

)
Π(dx)U †

(
θ̌ − θopt

)}
.

(16)
Here Mθ̌(dx) denotes the POVM elements obtained

by applying the phase shift to the original POVM el-
ements Π(dx) of MHom. Note that the phase distri-
bution of Mθ̌(dx) over the state ρ(θ) becomes:

f(x | θ; Mθ̌)= Tr
[
U
(

θ̌ − θopt

)
|x⟩ ⟨x| U†

(
θ̌ − θopt

)
ρ(θ)

]
= f(x | θ + θopt − θ̌; MHom). (17)

Evaluated at θ̌ = θ, this distribution is the same as
the distribution for the outcomes of the POVM MHom
at θopt, which shows that the POVM Mθ̌(dx) is locally
optimal at θ. From this observation and based on the
AQSE framework, then it is possible to construct a
multi-step estimation strategy based on adaptive ho-
modyne measurements, which provide a set of locally
optimal measurements, for which the distribution of
the sequence of estimators converges to a normal dis-
tribution with variance equal to the inverse of the QFI
(see Appendix 8.2).

Figure 1 shows the concept of the proposed phase
estimation strategy based on adaptive homodyne
measurements. For a set of N input squeezed
probe states {|0, r⟩ ⟨0, r|}, a phaseshift U(θ) en-
codes the parameter θ in the probes. The adap-
tive strategy then implements the POVM Mθ̌1

with
an initial (random) guess θ̌1 ∈ [0, π/2) over ν =
N/m of these states, yielding a measurement sam-
ple X⃗ν(θ̌1) = X1(θ̌1), . . . , Xν(θ̌1). The MLE ap-
plied to X⃗ν(θ̌1), θ̂MLE

(
X⃗ν(θ̌1)

)
, results in an esti-

mate θ̌2 = θ̂MLE

(
x⃗ν(θ̌1),

)
of θ for the firt adaptive

step. This estimate θ̌2 then becomes the best guess
for the subsequent adaptive step, and the process is
repeated m times iteratively during the strategy.
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3.1 Estimator
A key aspect of the parameter estimation strategy is
the selection of an estimator that allows for the sat-
uration of the QCRB. We identify the necessary con-
ditions to ensure the asymptotic consistency and nor-
mality of the MLE and the saturation of the QCRB
through the adaptive strategy for any θ ∈ [0, π/2).
Assuming that the Fisher information is different from
zero for any θ 1, the MLE saturates the QCRB given
that:

(a) the MLE is a single-valued function;

(b) the MLE is obtained as a stationary point of the
likelihood function; and

(c) the derivatives of the likelihood function at θ ex-
ist up to a high-enough order so that they can
be effectively approximated using a Taylor series
[27, 49].

We observe that (a) is automatically satisfied, since
the measurement outcomes from the proposed strat-
egy follow a normal distribution, as shown Eq. (11).

This condition ensures the sufficient smoothness of
the likelihood function for any θ ∈ [0, π/2) in each
adaptive step. Moreover, by restricting the parameter
space to the interval [0, π/2), this condition guaran-
tees the uniqueness of the MLE for any θ ∈ [0, π/2).
Thus, the remaining task is to determine the con-
ditions under which the MLE corresponds to a sta-
tionary point of the likelihood function, leading to its
asymptotic normality. To this end, we first analyze
the MLE for a sample from the first adaptive step.

Given a sample X⃗ν(θ̌1) = (X1, X2, . . . , Xν) of size
ν from the POVM Mθ̌1

at the first adaptive step,
and evaluating the likelihood from Eq. (11) at θ∗ =(

θ + θopt − θ̌1

)
modulo π/2, we obtain the MLE for

θ as:

θ̂MLE(X⃗ν) = arccos
[

er
√

e2r− 1
ν

∑ν

i=1
X2

i√
e4r−1

]
− θopt + θ̌1.

(18)
The set of homodyne outcomes for which e2r −
1
ν

∑ν
i=1 X2

i > 0 in Eq. (18), which results in a real-
valued θ̂MLE(X⃗ν), yields a MLE corresponding to
a stationary point of the likelihood within [0, π/2).
Therefore, the probability of obtaining a non-real so-
lution of Eq. (18) at θ̌1 = θopt is:

P

(
e2r <

1
ν

ν∑
i=1

X2
i | θ̌1 = θopt

)
= P

(
ν∑

i=1

X2
i

σ2(θ) > e2r

(
ν

σ2(θ)

))

= 1 − P

(
ν∑

i=1

X2
i

σ2(θ) ≤ e2r

(
ν

σ2(θ)

))
= 1 − PSP (θ).

(19)

Here, PSP (θ) is the probability that the likelihood
function has its global maximum at a stationary point
at θ. We note that Q =

∑ν
i=1

X2
i

σ2(θ) is the sum of
squares of ν independent standard normal random
variables and follows a chi-squared distribution with
ν degrees of freedom (Q ∼ χ2(ν)) [31].

Figure 2 shows the probability of obtaining a non-
real solution of Eq. (18) as a function of θ for dif-
ferent values of the squeezing strength r and sample
size ν. We observe that as θ deviates from the op-
timal value θopt in Eq. (15), the probability that the
estimates were not obtained from a stationary point
in the likelihood function within the interval [0, π/2)
becomes different than zero. We also note that the
region in which the global maximum of the likelihood
is not reached at a stationary point decreases as we
increase the degrees of freedom ν (sample size in the
adaptive step) or the squeezing strength r. More-
over, when e2r − 1/ν

∑ν
i=1 X2

i < 0 (regions where the

global maximum does not correspond to a station-
ary point) the MLE in Eq. (18) corresponds to the
boundary point π/2. This event introduces a bias in
the estimate for subsequent adaptive steps, leading to
a decrease in the precision of the final estimate. This
effect in the estimate becomes more detrimental when
the phase to be estimated θ0 is close to the boundary
point π/2 (see Figure 2) as can be observed in the pre-
vious two-steps protocols [22]. We can attribute this
issue to the Fisher information being zero at θ = π/2
(or θ = 0). As a result, the information that can be
obtained about the phase at these boundary points
vanishes.

The proposed strategy address this problem by first
making a random guess θ̌1 ∈ [0, π/2) in the first adap-
tive step. This initial random guess reduces in average
the probability that the MLE does not arise from a
stationary point within [0, π/2) in Eq. (19). Accord-
ing to the law of total probability

1This assumption holds except in the first adaptive step if
θ̌1 = θ+θopt. However, in our adaptive strategy, θ̌1 is chosen at
random within [0, π/2). Therefore the probability of observing
this event is zero.
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P

(
e2r <

1
ν

ν∑
i=1

X2
i

)
= Eθ̂0

[
P

(
e2r <

1
ν

ν∑
i=1

X2
i | θ̌1

)]

=
∫ π/2

0
dθ̌1P

(
ν∑

i=1

X2
i

σ2 (θ∗) > e2r

(
ν

σ2 (θ∗)

))

=
∫ π/2

0
dθ̌1PSP (θ∗).

(20)

Moreover, this probability decreases as the sample size
ν increases, as shown in Fig. 3. As a final step, to
guarantee that the MLE always arises from stationary
points, we introduce a modified estimator

θ̂U
MLE(X⃗ν) =

{
θ̂MLE(X⃗ν) if e2r − 1/ν

∑ν
i=1 X2

i ≥ 0,

θ̂MLE(X⃗s) otherwise,

(21)
where X⃗s is a subsequence of X⃗ν constructed by itera-
tively removing the highest values of X⃗ν in descending
order until the condition e2r −1/s

∑s
i=1 X2

i ≥ 0 is sat-
isfied. We note that while the estimator ignores a few
measurement outcomes from the sample, the proba-
bility of this event happening is low, and this modified
estimator greatly improves the final variance of the es-
timates. Moreover, it is worth noting that the modi-
fied estimator in Eq. (21) is only necessary in the first
adaptive step. Once an estimate θ̌ sufficiently close
to the true value θ is obtained, the subsequent adap-
tive steps will result in samples close to θopt. There-
fore, for sufficiently large values of r, and moderate ν,
this procedure makes the probability in Eq. (19) tend
to zero, guaranteeing the asymptotic efficiency of the
MLE from the adaptive strategy.
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Figure 3: Conditional probability (Eq. (20)) that the likeli-
hood function does not have its global maximum at a sta-
tionary point within [0, π/2), given θ̌1 uniformly distributed
from 0 to π/2. The black points show numerical evaluations
of (Eq. (20)) for several ν, and the blue line is a guide for the
eye showing the trend as a function of ν. This probability is
upper bounded for ν = 1, and decreases as ν increases. The
parameter ν corresponds to the degrees of freedom (DoF)
for Q =

∑ν

i=1
X2

i
σ2(θ) , which follows a chi-square distribution.
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3.2 Proof of optimality of the adaptive esti-
mation strategy

Appendix 8.2 gives a mathematical proof of the opti-
mality of the proposed estimation strategy based on
adaptive homodyne detection. The proof first estab-
lishes that by satisfying the regularity conditions out-
lined in Appendix 8.1, the probability of obtaining an
estimate far from the true value θ0 decreases expo-
nentially to zero as the number of adaptive steps in-
creases. This result demonstrates the almost sure con-
vergence of the MLE to θ0 (asymptotic consistency)
[31]. Subsequently, using the asymptotic consistency
of the estimator, we prove that the limiting distri-
bution of the MLE, as the number of adaptive steps
tends to infinity, is a normal distribution with mean θ0
and variance equal to the inverse of the QFI (asymp-
totic normality). This demonstrates the convergence

of the proposed adaptive strategy to the QCRB.

4 Performance of the adaptive strat-
egy
We evaluate the performance of the adaptive esti-
mation strategy based on locally optimal POVMs,
Eq. (16), with the modified estimator in Eq. (21). We
conduct Monte Carlo simulations varying the sam-
ple size ν, number of adaptive steps m, and squeezing
strength r. We investigate the precision and efficiency
of the estimation strategy and its convergence towards
the QCRB in Eq. (7) for θ ∈ [0, π/2). Considering
that the estimator θ̂

(
X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)

)
has a pe-

riodic distribution with period π/2, we evaluate the
precision of θ̂

(
X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)

)
by using the cor-

responding Holevo variance [4, 50]:

Varθ

[
θ̂
(

X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)
)]

=

[
E
[
cos
(

2π
P

(
θ̂
(

X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)
)

− θ
))]]−2

− 1( 2π
P

)2 , (22)

where the factor P represents the period of the esti-
mator’s distribution, in our case P = π/2.

Figure 4 shows the results for the Holevo variance
for θ̂

(
X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)

)
within θ ∈ [0, π/2) for

adaptive estimation strategies based on homodyne de-
tection and squeezed vacuum for different numbers
of adaptive steps m from 3 to 15. For all these
cases, we consider a strategy with a total number of
copies of the probe state N = 3705 with squeezing
strength r = 1.01, so that each adaptive step contains
ν = N/m probe states (These parameters were chosen
for easy comparison with previous works). The results
shown in Figure 4 are obtained from the average of
five Monte Carlo simulations, each with 1 × 104 runs
of the strategy. The homodyne measurement without
feedback and the two-step adaptive homodyne strat-
egy from Ref. [22] are shown for comparison. All the
results have been normalized to the QCRB = QFI−1.
For these simulations, sampling process employed the
method of rejection sampling [51], while the optimiza-
tion employed the method of generalized simulated
annealing over the interval [0, π/2] [52].

We observe that the proposed multi-step adap-
tive estimation strategy based on homodyne detec-
tion consistently outperforms the non-adaptive and
the two-step homodyne strategies [22]. Moreover, as
can be observed in Figure 4 (a) and the zoom in Fig-
ure 4 (b), this adaptive homodyne strategy progres-
sively approaches the QCRB (dashed horizontal line),
and is expected to saturate this bound for all values
of θ ∈ [0, π/2) in the limit of many adaptive steps.
For instance, the proposed adaptive estimation strat-

egy with m = 15 adaptive steps achieves a precision
of just 7% above the QCRB for phases θ ∈ [0, π/2)
on average, compared to 42% with two steps [22]. We
further note that while the two-step strategy in [22]
shows a smaller variance for θ ≈ θopt compared to
the proposed strategy with small m = 3, 5, its per-
formance far from θopt deviates significantly from the
QCRB, as can be seen in Figure 4 (b) (see also Ap-
pendix 8.3). Moreover, as discussed in the proof in
Appendix 8.2, by construction the proposed strategy
ensures an asymptotic quantum-limited performance.
These results highlight the fundamental advantage of
this multi-step adaptive strategy for parameter esti-
mation, and underscore its potential for optical phase
estimation and quantum metrology.

5 Loss and Noise Effects
5.1 Losses
The performance of the adaptive estimation strategy
for optical phase estimation becomes sub-optimal in
the presence of channel noise and loss, and when the
detectors have reduced quantum efficiency. Most of
these effects can be modeled as a mixing of the input
probe with the vacuum state in a beam splitter. This
mixing process adds thermal photons to the probe in-
cident into the homodyne detector, depending on the
transmission T of the beam splitter [35, 53]. More-
over, imperfect quantum efficiency of the detectors
can be modeled as a lossy channel, which further con-
tributes with additional thermal photons proportional
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Figure 4: (a) Holevo variance of the adaptive estimation
strategy based on the AQSE formalism as a function of θ,
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to T [35, 38, 54]. Specifically, the lossy channel mod-
eled as a beam splitter with transmittance 0 < T < 1
maps the squeezed vacuum state ρr = |r, 0⟩⟨0, r| into
a squeezed thermal state

ρβ,rl
= S(rl)

[
(1 − e−β)

∞∑
n=0

e−βn|n⟩⟨n⟩|

]
S†(rl),

(23)
where rl < r. This transformation reduces the QFI
compared to that squeezed vacuum states ρrl

[35, 53,
55] as:

F Lossy
Q =

[
T 2

1 + 2T (1 − T ) sinh2(r)

]
FQ. (24)

where FQ = 2 sinh2(2r) is the QFI about θ for
squeezed vacuum states with strength r. Therefore,

the effect of linear losses on the QCRB can be effec-
tively accounted for by an appropriate rescaling [35].

The squeezed thermal states resulting from losses
further reduce the maximum classical Fisher informa-
tion for the homodyne measurement [35]:

F Lossy
X (θopt) =

[
T 2

1 + 4T (1 − T ) sinh2(r)

]
FQ. (25)

Here, we have used the fact that the maximum of
the Fisher information F Lossy

X (θ) is achieved at the
optimal phase θopt in Eq (15), now for rl.
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function of T for squeezing strength r of 0.5, 1.0 and 1.5.

Figure 5 shows the ratios F Lossy
Q /FQ (dots) and

F Lossy
X (θopt)/FQ (crosses) as a function of the losses

(1 − T ) and different values of r. We observe that
probe states with larger r, are more sensitive to losses,
showing a faster reduction in Fisher information with
channel loss. Figure 5 also shows that the Fisher in-
formation F Lossy

Q and F Lossy
X (θopt) approach FQ only

at T ≈ 1. We note that losses (T < 1) reduce the ho-
modyne maximum Fisher information F Lossy

X (θopt) <

F Lossy
Q , as seen in Eq. (25), which prevents the satu-

ration of the QCRB solely with homodyne. Moreover,
we note that in general the saturation of the QCRB
for squeezed thermal states requires the implementa-
tion of non-Gaussian measurements [41]. However,
devising non-Gaussian measurements that approach
the QFI for this problem are highly complex, and their
implementation is still an open problem [41].

In a more general setting, the problem of quantum
channel estimation involves finding the optimal probe
states and measurements to maximize information in
a lossy and noisy channel [56, 57]. Recent advances
in quantum channel estimation have found optimal
probes for: Gaussian unitary channels (which con-
sist of rotated squeezed states) [58], bosonic dephas-
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ing channels [59], and complete positive trace pre-
serving (CPTP) maps for qubits [57]. Moreover, in
principle, it is possible to find the optimal quantum
probe states for a general channel estimation prob-
lem using techniques of convex optimization includ-
ing semidefinite and linear programming, and conic
programming [57, 60, 61]. Here, we focus our dis-
cussion on squeezed probe states, and adaptive ho-
modyne/heterodyne measurements, which are readily
available in laboratory settings, and consider common
sources of noise and imperfections, including linear
losses.

5.2 Imperfect state preparation
The processes of state preparation in realistic imple-
mentations is often affected by small random errors
yielding state preparation errors. Due to the Central
Limit Theorem, the cumulative effect of small, inde-
pendent errors in many probe states will tend to a
normal distribution. Therefore, it is reasonable to as-
sume that, under some state preparation errors, the
squeezing strength r of the probe state ρr = |r, 0⟩⟨0, r|
is the output of a random variable R with a normal
distribution N

(
r0, σ2

r

)
, where σ2

r ≥ 0 is a small num-
ber relative to r0.

To take into account state preparation errors of this
kind in the adaptive strategy, we consider that the
samples at every adaptive step are drawn from the
conditional random variable X | R, where X is a sam-
ple from a homodyne measurement. We then analyze
the strategy as described in Section 3 but considering
state preparation errors. In this case, and without
loss of generality by taking X as a sample of MHom,
the Fisher information about θ contained in the con-
ditional random variable X | R is calculated with re-
spect to the conditional density of X given R, that
is,

FX|R(θ) = E
[
FX|R=r(θ)

]
, (26)

where FX|R=r(θ) corresponds to Eq. (13) at a spe-
cific value R = r. Therefore, in the asymptotic limit,
the adaptive homodyne strategy samples around the
phase that maximizes Eq. (26). In experimental set-
tings, typically the range for σr lies between 0.01
and 0.02 [22, 62]. For state preparation errors with
small variances σ2

r , the optimal phase θnoise
opt deviates

slightly from the noiseless case θopt, and modifies the
Fisher information.

Figure 6 shows FX|R(θ) for standard deviations of
r in state preparation σr = 0.01 and σr = 0.02 as
a function of θ ∈ [0, π/2). We observe that errors
in state preparation with σr of 0.01 and 0.02 have a
negligible effect in the performance of the adaptive
strategy, which shows a Fisher information around
the QFI at the optimal phase θopt. We also note that
since the QFI for squeezed vacuum is a nonlinear func-
tion of the squeezing strength r, the contribution of
positive deviations of r from the mean r0 to the ex-

pected value of FX|R(θ) in Eq. (26) increases with r.
This nonlinear effect causes the maximum of FX|R(θ)
to slightly surpass FX|R=r(θopt) corresponding to the
QFI (dashed red line), as can be observed in the inset
(i) of Figure 6.
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Figure 6: Expected Fisher information as function of θ
with state preparation errors with normally varying squeezing
strength for r0 = 1 with σr of 0.01 and 0.02. The dashed red
line corresponds to the QFI for squeezed vacuum states at
r = 1. Inset (i) shows a zoom in the maximum of the curve
showing the overshot effect due to the nonlinear dependence
of FX|R(θ) with r.

5.3 Phase errors in the homodyne local oscil-
lator (LO)
As a case of study for measurement errors, we con-
sider that the LO in the homodyne measurement is
subject to small phase errors. Thus, the parameter
θ̌, describing the phase estimate and the setting for
the POVM Mθ̌ in the adaptive measurement protocol,
can be considered as the output of a random variable
Θ̌lo with a normal distribution N

(
θ̌lo, σ2(θ̌lo)

)
, cen-

tered at the ideal measurement setting θ̌lo and with
a variance σ2(θ̌lo). Assuming that θ̌lo ≈ θ, we can
evaluate the loss of information caused by these kinds
of measurement errors by calculating the conditional
Fisher information with respect to the random vari-
able X | Θ̌lo,

FX|Θ̌lo
= E

[
FX|Θ̌lo=θ̌

]
, (27)

where X is a sample from the POVM Mθ̌ applied to
the state ρr = |r, 0⟩⟨0, r|.

Figure 7 shows Eq (27) as a function of the stan-
dard deviations σ(θ̌lo) in measurement implementa-
tion, ranging from 0.01 to 0.1 radians. We observe
that errors in the phase reference for the homodyne
detection has a moderate detrimental effect in the
Fisher information, which decreases approximately to
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half of the QFI for large LO phase noise of σ(θ̌lo) ≈
0.15 rad. However, we note that this technical prob-
lem can be overcome by standard phase stabilization
techniques [63, 64].
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Figure 7: Expected Fisher information of the homodyne
measurement as a function of σ(θ̌lo) quantifying the phase
errors in the LO for input states with a squeezing strength of
r = 1 and measurement errors normally distributed around
θ̌lo = θ. The dashed red line corresponds to the QFI for
squeezed vacuum states at r = 1.

6 Combined homodyne-heterodyne
(CHH) measurement strategy
In general, the problem of phase estimation involves
estimation over the complete range of possible phases
from 0 to 2π. However, when using squeezed vacuum
states for phase estimation beyond the SNL, there is a
physical limitation on the range of phases that can be
estimated. Squeezed vacuum states are invariant un-
der phase shifts of π, restricting the estimable phases
to the interval [0, π), which is half of the complete
range in the general problem of phase estimation.
This symmetry can be seen in the Husimi Q represen-
tation of the state ρr, Q(α) = 1

π ⟨α| ρr |α⟩ (see inset (i)
Fig. 1), which shows that the squeezed vacuum probe
can only encode the phase modulo π. Moreover, the
measurement employed for decoding the phase can
impose severe constraints on the range of phases that
can be estimated. For instance, homodyne measure-
ments further reduce the range of phases within which
phase estimation is possible to [0, π/2). This is be-
cause the probability distributions of outcomes from
homodyne measurements in Eq. (11), associated with
POVMs in Eq. (16), are π/2 periodic. Consequently,
any strategy based on adaptive homodyne is restricted
to estimating phases within the range [0, π/2). To go
beyond this limited range and enable phase estima-
tion with squeezed vacuum over the entire range of

phases [0, π), it is necessary to include measurements
beyond homodyne.
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Figure 8: Combined homodyne-heterodyne (CHH) mea-
surement strategy for phase estimation based on squeezed
vacuum probes for phases θ ∈ [0, π). This strategy takes
advantage of the capability of heterodyne measurements to
unambiguously estimate phases within the whole paramet-
ric space [0, π) for squeezed vacuum, overcoming the non-
identifiability problem in the likelihoods from homodyne mea-
surements. By employing a small sample of heterodyne mea-
surements, the unknown phase θ is localized within a neigh-
borhood within [0, π). Then, the strategy employs adaptive
homodyne for phase estimation within this neighborhood.

We propose a combined homodyne-heterodyne
(CHH) measurement strategy that uses heterodyine
to identify the neighborhood of the unknown phase
within [0, π), and subsequently, adaptive homodyne
to implement an asymptotically optimal measurement
strategy. This CHH measurement uses time sharing
between heterodyne and homodyne, which is a spe-
cial case of the generalized dyne measurement [41],
and enables optimal phase estimation within [0, π) in
the asymptotic limit.

Figure 8 shows the schematic of the proposed CHH
strategy. The strategy implements a heterodyne mea-
surement on a small sample of N1 probe states, de-
noted as X⃗Het

N1
, to determine the neighborhood in the

parametric space [0, π) to which the unknown phase
belongs. This makes the parameter identifiable within
[0, π) solving the non-identifiability problem of homo-
dyne [3], and produces a likelihood peaked around
the true value. After the heterodyne sampling X⃗Het

N1
,

the CHH strategy implements the adaptive homodyne
strategy described in Section 3, with N2 copies of the
probe state and m adaptive measurements. By con-
struction, when N2, m → ∞ (in the asymptotic limit),
and N1 is large enough such that the MLE from the
heterodyne sampling θ̂

(
X⃗Het

N1

)
∈ [0, π/2) with high

probability, this strategy saturates the QCRB Eq. (7)
[3, 65] (see Appendix 8.4 for discussion of the proof).
Thus, in the asymptotic limit this strategy is expected
to be able to extract all the information about the
phase encoded in the quantum probe and approach
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the QCRB for any phase within [0, π).
Figure 9 (a) shows the performance of the CHH

phase estimation strategy enabling near quantum-
optimal phase estimation for phases within [0, π) with
a finite number of samples. These results are ob-
tained from the average of five Monte Carlo simu-
lations considering N = 3705 copies of the squeezed
vacuum probes with m = 15 adaptive steps, each with
a sample of size ν = 247. In this combined strategy,
the first step consists of a heterodyne measurement
with a sample of size N1 = ν1 = 247. This sam-
ple is large enough to produce estimates with high
probability in [0, π/2), and it is significantly smaller
than the total of subsequent (homodyne) samples
N2 =

∑14
i=2 νi = 3458. We note that within the

statistical noise of our simulations, the CHH strat-
egy enables phase estimation approaching the QCRB
within the full interval θ ∈ [0, π), as seen in the zoom
in Figure 9 (b). For a more rigorous analysis of the
convergence of the CHH strategy Appendix 8.4 dis-
cusses the proof of the asymptotic convergence of the
CHH strategy to the QCRB over the full range [0, π).

As a final step, we investigate the CHH measure-
ment strategy under channel losses. Fig. 10 shows the
normalized Holevo variance of the estimator obtained
through the CHH estimation strategy with m = 15
adaptive steps each with ν = 247 probe states with
a squeezing strength r = 1.01. The loss is charac-
terized by the channel transmission T for T = 1 in
brown (lossless), T = 0.99 in light blue, and T = 0.95
in purple. The shaded regions represent one standard
deviation. The dotted-dashed lines represent the min-
imum Cramér-Rao bound (CRB) for the homodyne
measurement for different channel transmissions T ,
obtained as the inverse of the classical Fisher informa-
tion in Eq. (25), and normalized to the QCRB. The
dashed lines represent the QCRB for different channel
transmissions T , which is obtained as the inverse of
Eq. (24). We note that for a lossless channel T = 1,
the CRB equals the QCRB due to the local optimal-
ity of homodyne measurements. We observe that the
performance of the CHH strategy is close to the ho-
modyne CRB (dotted-dashed) for the channel trans-
missions considered, and it is expected to approach
this bound for all cases. Moreover, the performance
of the CHH strategy is maintained for all the phases
within the full range [0, π) for squeezed vacuum.

7 Discussion & Conclusions
Our analysis and numerical simulations show that the
proposed adaptive estimation strategy efficiently ex-
tracts the maximum attainable information about the
unknown phase encoded in squeezed vacuum states in
the asymptotic limit. However, we note that while the
proposed strategy allows for phase estimation at the
quantum limit for the full range of phases [0, π) for
squeezed vacuum states, this range is limited due to
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Figure 9: (a) Performance of the CHH phase estima-
tion strategy with m = 15 adaptive steps (orange), using
N = 3705 probes with r = 1.01. The performance of ho-
modyne detection without feedback (blue) is shown for ref-
erence. In the CHH strategy, the initial adaptive step in-
volves heterodyne sampling, while the subsequent adaptive
steps utilize locally optimal homodyne POVMs in Eq. (16).
Throughout the simulation, the sample size remains constant
at ν = 247 (number of probe states per adaptive step). The
dashed blue line shows the heterodyne limit, while the dashed
black line corresponds to the QCRB. The shaded regions in-
dicate a one standard deviation. (b) Zoom in the region
close to the QCRB.

the π phase-shift symmetry inherent to these states.
We also note that other quantum states used for phase
estimation at the quantum limit such as NOON states
face the same limitation due to their inherent phase-
shift symmetries [12]. On the other hand, there may
be other optical probes capable of solving the non-
identifiability problem in the phase encoding due to
state symmetries, albeit with lower QFI. Coherent
states, for example, have a significantly lower QFI
compared to squeezed vacuum states, but allow for
unambiguously identifying the quadrants of the phase
within [0, 2π) [66–69].

As an alternative quantum probe for phase estima-
tion, displaced squeezed states D(α)|0, r⟩ can offer the
ability to unambiguously encode phases within [0, 2π)
with a higher QFI compared to coherent states. We
note, however, that there will be a trade-off between
the achievable QFI compared to that of squeezed vac-
uum states and the ability to identify the quadrants
of the phase. Finding the best trade off requires op-
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Figure 10: Performance of the CHH strategy under losses,
with m = 15 adaptive steps and N = 3705 probes with
r = 1.01. Losses are characterized by the channel transmis-
sion T for T = 1 in brown (lossless), T = 0.99 in light blue,
and T = 0.95 in purple. The dotted-dashed lines represent
the minimum CRB for the homodyne measurement normal-
ized to the QCRB, i.e. F Lossy

Q /F Lossy
X (θopt). The dashed lines

represent the QCRB for different channel transmissions T .
For T = 1, the homodyne CRB equals the QCRB due to the
local optimality of the homodyne measurement.

timization of both the squeezing strength r and the
displacement parameter α, given a fixed resource bud-
get in terms of the number of photons. Moreover,
this trade-off will critically depend on the available
resources and experimental constraints. Further re-
search will focus on exploring and identifying the op-
timal quantum probe states capable of overcoming the
non-identifiability problem while maintaining a high
QFI for phase estimation.

In summary, we propose a Gaussian estimation
strategy for optical phase estimation with squeezed
vacuum states that approaches the quantum limit in
precision. This strategy leverages homodyne mea-
surements and rotations to implement a complete
set of locally optimal POVMs. This set of POVMs
are used to construct an adaptive estimation method
based on the Adaptive Quantum State Estimation
(AQSE) formalism, which ensures consistency and ef-
ficiency of the estimator in the asymptotic limit, with
variance equal to the inverse of the QFI for phases
θ ∈ [0, π/2). To extend the parameter range for
phase estimation to [0, π), which is the maximum
range of phases that can be encoded in squeezed vac-
uum states, we generalize the estimation strategy to
incorporate a small number of heterodyne measure-
ments. This heterodyne sampling allows for identify-
ing the neighborhood of the phase within [0, π), solv-
ing the non-identifiability problem in the likelihoods
from homodyne measurements, while maintaining a
quantum-optimal performance in the limit of many
adaptive steps. This result represents a significant ad-

vancement in high-precision quantum metrology and
optical phase estimation based on quantum correlated
states.

8 Appendix
8.1 Efficiency and consistency of MLE in
quantum systems
This appendix describes the conditions under which
the MLE used in AQSE is consistent and efficient over
the complete parameter space Θ. Let us consider the
problem of estimating an unknown parameter θ ∈ Θ
associated with a set of quantum states {ρ(θ) : θ ∈ Θ}
from measurements of the system. When independent
measurements are performed over the system, a set of
independent random variables X⃗N = X1, . . . , XN ∈
X N , N ≥ 1 carry the information about θ. In this
case, the total Fisher information about θ is the sum
of the individual Fisher information values for each
measurement. This property can be exploited to reach
the QCRB in the asymptotic limit (N → ∞). When
the outcomes of a POVM M have a Fisher informa-
tion that coincides with the QFI, and their probability
distribution satisfies a set of mild regularity conditions
described below, it can be shown that, in the asymp-
totic limit, the MLE applied to the outcomes of M
can achieve the QCRB [27].

To saturate the QCRB, the MLE requires to be
asymptotically consistent, which means that as the
sample size increases, the MLE converges to the true
value of the parameter θ in probability (weak sense)
or almost surly (strong sense) [31]. For a MLE to
be asymptotically consistent, the following conditions
over the parametric set Θ and the set of density func-
tions {f(Xi | θ; Mi)}θ∈Θ for each POVM Mi must be
satisfied [27, 31, 65]:

• Compactness: The parameter space Θ and the
space of POVMs must be compact, which means
that it is closed and bounded. This property en-
sures that the MLE exists for any sample size.

• Identifiability: The true value of the parameter
must be uniquely determined by the probability
distribution. In other words, different values of
the parameter must produce different probability
distributions.

• Measurability: The probability density function
f(Xi | θ; Mi) must be measurable for all Xi = xi

and for each POVM Mi. Thus the MLE is well-
defined as a random variable.

• Continuity: The probability density function
f(Xi | θ; Mi) must be continuous in the parame-
ter space Θ for all Xi = xi and for each POVM
Mi. This guarantees that small changes in the
value of the parameter result in small changes in
the probability.
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• Dominance: The log likelihood log [f(Xi | θ; Mi)]
is uniformly Lipschitz in θ with respect to some
dominating measure on X . This provide the con-
vergence of the MLE.

Under this set of regularity conditions, the MLE
exhibits asymptotic consistency. As a result, assum-
ing sufficiently smooth likelihoods, the distribution of
the MLE in the limit N → ∞ follows a normal distri-
bution:

θ̂(X⃗N ) ∼ N

(
θ,

1
FX⃗N

(θ)

)
. (28)

Here θ̂(X⃗N ) denotes the MLE based on the sample
X⃗N , and FX⃗N

(θ) represents the Fisher information as-
sociated with the sample. Consequently, the variance
of θ̂(X⃗N ) is given by 1

FX⃗N
(θ) , and θ̂(X⃗N ) achieves the

classical Cramér-Rao bound for all θ ∈ Θ. Notably,
when the Fisher information of the random variables
X⃗N equals the QFI, the MLE attains the QCRB,
which corresponds to the ultimate limit in precision
for parameter estimation. Based on this observation,
the AQSE framework can be exploited to construct
an asymptotically optimal strategy using homodyne
detection. By satisfying the regularity conditions out-
lined above, the MLE is guaranteed to converge to the
true value, and AQSE can be used to adapt the ho-
modyne measurements to sample around the optimal
point θopt, attaining the QCRB.

8.2 Proof of Convergence of the phase esti-
mator variance to the QCRB
8.2.1 Asymptotic consistency of the MLE for the adap-
tive homodyne strategy

This appendix details the proof of the strong asymp-
totic consistency of the MLE obtained from the pro-
posed adaptive homodyne strategy based on AQSE.
As a first step, the adaptive strategy defines an
initial estimate θ̌1 ∼ U

(
Θ̃
)

for the parameter θ,
where Θ̃ is a compact subset of (0, π/2). Then,
the homodyne measurement with POVM Mθ̌1

in
Eq. (17) yields a sample of measurement outcomes
of size ν, x⃗ν(θ̌1) = x1(θ̌1), . . . xν(θ̌1). The MLE
is then applied to this sample of measurement out-
comes x⃗ν(θ̌1) resulting in an updated estimate θ̌1 :=
θ̂MLE

(
x⃗ν(θ̌1)

)
. This new estimate serves as the

subsequent guess of the parameter θ for the next
adaptive step. Then, for a given subsequent adap-
tive step m, m ≥ 2, the adaptive strategy performs
the POVM Mθ̌m

yielding the sample of outcomes
x⃗ν(θ̌m) = x1(θ̌m), . . . xν(θ̌m), from which the MLE
produces an estimate θ̂MLE

(
x⃗ν(θ̌1), . . . , x⃗ν(θ̌m)

)
=

θ̌m+1. This procedure is repeated iteratively in subse-
quent adaptive measurements. By satisfying the reg-
ularity conditions described in Appendix: 8.1 for the
statistical model for each homodyne measurement, we
prove the almost sure convergence of the sequence of
MLEs θ̂MLE

(
X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)

)
to the true param-

eter θ as the number of adaptive steps m → ∞.
First, we note that the set of homodyne mea-

surements
{

Mθ̌(dx)
}

forms a set of locally optimal
POVMs parameterized by Θ̃. Without loss of gener-
ality, we assume that the true phase to be estimated
is θ0 ∈ Θ̃. For this proof, we assume that the regu-
larity conditions described in Appendix 8.1 are satis-
fied. We first present a series of auxiliary Lemmas 1
to 4. Then we present the main result of this proof in
Theorem 5, which shows the asymptotic consistency
and convergence of the MLE. The method employed
in this proof is analogous to the technique used to
bound the probability of rejecting the null hypothesis
in binary hypothesis testing based on the likelihood
ratio test [31]. This technique has been applied to
prove the asymptotic consistency to the MLE in the
context of Optimal Design of Experiments [70] and in
the context of quantum parameter estimation [27].

Let ϕ(θ, θ̌) = θ + θopt − θ̌ be the argument of the
homodyne POVM in Eq. (17) for any θ, with θ̌ ∈ Θ̃
and θopt defined in Eq. (15). For any ϵ > 0, let the
open neighborhood centered at θ and radius ϵ be:

Nϵ(θ) = {θ′ : |θ′ − θ| < ϵ} = (θ − ϵ, θ + ϵ).

Let the log of the ratio of likelihoods be:

R(θ, θ0, θ̌) = log
(

f(X⃗ν(θ̌) | ϕ(θ, θ̌))
f(X⃗ν(θ̌) | ϕ(θ0, θ̌))

)
,

and
R(ϵ, θ, θ0, θ̌) = sup

θ′∈Nϵ(θ)
R(θ′, θ0, θ̌),

where f(x | θ) is defined in Eq. (11) for any θ ∈ Θ̃.

Lemma 1. For any θ, θ0 ∈ Θ̃ with θ ̸= θ0, it follows
that: 2σ

(
ϕ(θ, θ̌)

)
σ
(

ϕ(θ0, θ̌)
)

σ2
(

ϕ(θ, θ̌)
)

+ σ2
(

ϕ(θ0, θ̌)
)
1/2

< 1, (29)

where σ(θ) is defined in Eq. (12) for the probability
density function in Eq. (11) of the outcomes of
homodyne measurements.
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Proof.  2σ
(

ϕ(θ, θ̌)
)

σ
(

ϕ(θ0, θ̌)
)

σ2
(

ϕ(θ, θ̌)
)

+ σ2
(

ϕ(θ0, θ̌)
)
1/2

< 1

⇐⇒ 2σ
(

m(θ, θ̌)
)

σ
(

m(θ0, θ̌)
)

< σ2
(

m(θ, θ̌)
)

+ σ2
(

m(θ0, θ̌)
)

⇐⇒
(

σ
(

ϕ(θ, θ̌)
)

− σ
(

ϕ(θ0, θ̌)
))2

> 0,

which holds from the identifiability condition.

Lemma 2. For any θ ∈ Θ̃ with θ ̸= θ0, it follows

that:

g(θ) = sup
θ̌∈Θ̃

Eθ0

[
e(R(θ,θ0,θ̌))1/2]

< 1. (30)

Proof.

g(θ) = sup
θ̌∈Θ̃

∫
Rν

√
f
(

x⃗ν(θ̌) | ϕ(θ, θ̌)
)

f
(

x⃗ν(θ̌) | ϕ(θ0, θ̌)
)

dx⃗ν(θ̌)

= sup
θ̌∈Θ̃

∫
Rν

e
−
∑ν

j=1

x2
j

4
σ2(ϕ(θ,θ̌))+σ2(ϕ(θ0,θ̌))
σ2(ϕ(θ,θ̌))σ2(ϕ(θ0,θ̌))[

2πσ
(

ϕ(θ, θ̌)
)

σ
(

ϕ(θ0, θ̌)
)]ν/2 dx⃗ν(θ̌)

= sup
θ̌∈Θ̃

 2σ
(

ϕ(θ0, θ̌)
)

σ
(

ϕ(θ, θ̌)
)

σ2
(

ϕ(θ, θ̌)
)

+ σ2
(

ϕ(θ0, θ̌)
)
ν/2

.

Since Θ̃ is compact, the set Θ̃ contains its supremum. Then there exits a point θ̌sup ∈ Θ̃ such that

sup
θ̌∈Θ̃

 2σ
(

ϕ(θ, θ̌)
)

σ
(

ϕ(θ0, θ̌)
)

σ2
(

ϕ(θ, θ̌)
)

+ σ2
(

ϕ(θ0, θ̌)
)
ν/2

=

 2σ
(

ϕ(θ, θ̌sup)
)

σ
(

ϕ(θ0, θ̌sup)
)

σ2
(

ϕ(θ, θ̌sup)
)

+ σ2
(

ϕ(θ0, θ̌sup)
)
ν/2

,

with θ̃sup = θ +θopt − θ̌sup and θ̃sup
0 = θ0 +θopt − θ̌sup.

Therefore the proof of Eq. (30) follows from Eq. (29)
in Lemma 1.

Lemma 3. Let S̄ϵ(θ̌) = Eθ0

[
eR(ϵ,θ,θ0,θ̌)1/2

]
and

S̄(θ̌) = Eθ0

[
eR(θ,θ0,θ̌)1/2

]
for any θ ∈ Θ̃ with θ ̸= θ0.

Then limϵ↓0 S̄ϵ(θ̌) = S̄(θ̌), and the following inequal-
ity holds:

lim
ϵ↓0

sup
θ̌∈Θ̃

S̄ϵ(θ̌) < 1. (31)

Proof. Given that

S̄ϵ(θ̌) =
∫
Rν

sup
θ′∈Nϵ(θ)

√
f
(

x⃗ν(θ̌) | ϕ(θ′, θ̌)
)

f
(

x⃗ν(θ̌) | ϕ(θ0, θ̌)
)

dx⃗ν(θ̌),

by the continuity of the density function, it follows
that limϵ↓0 S̄ϵ(θ̌) = S̄(θ̌) for any θ ∈ Θ̃. Moreover,

the closure of Nϵ(θ), Nϵ(θ) ⊂ Θ̃ is compact, because
Θ̃ itself is a compact set. Consequently,

S̄ϵ(θ̌) =
∫
Rν

max
θ′∈Nϵ(θ)

√
f
(

x⃗ν(θ̌) | ϕ(θ′, θ̌)
)

f
(

x⃗ν(θ̌) | ϕ(θ0, θ̌)
)

dx⃗ν(θ̌).

We note that the function√
f
(

x⃗ν(θ̌) | ϕ(θ′, θ̌)
)

f
(

x⃗ν(θ̌) | ϕ(θ0, θ̌)
)

is continuous over the Cartesian product of the com-
pact sets Nϵ(θ) × Θ̃, which is also compact. Then the
integrand in S̄ϵ(θ̌) is a continuous function at θ̌ [27,
71]. Therefore, the sequence of functions

(
S̄ϵ(θ̌)

)
ϵ↓0

forms a monotonically decreasing sequence of contin-
uous functions defined on the compact set Θ̃.
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By Dini’s theorem [71], the convergence from
S̄ϵ(θ̌) → S̄(θ̌) as ϵ ↓ 0 is uniform in θ. As a con-
sequence,

lim
ϵ↓0

sup
θ∈Θ̃

S̄ϵ(θ̌) = sup
θ∈Θ̃

lim
ϵ↓0

S̄ϵ(θ̌) = sup
θ∈Θ̃

S̄(θ̌) = g(θ),

which, according to Eq. (30) in Lemma 2, is less than
1.

Lemma 4. For any θ ∈ Θ̃ with θ ̸= θ0, there ex-
ist ϵ > 0 and b > 0 such that for any m ∈ N, and
any set of homodyne measurements parameterized by{

θ̌i

}
1≤i≤m

⊂ Θ̃, the following inequality holds

Pθ0

(
m∑

i=1
R(ϵ, θ, θ0, θ̌i) > 0

)
≤ e−bm, m ≥ 1. (32)

Proof. We start by observing that

Pθ0

[
m∑

i=1
R(ϵ, θ, θ0, θ̌i) > 0

]
= Pθ0

[
e
∑m

i=1
R(ϵ,θ,θ0,θ̌i) > 1

]
= Pθ0

[
e

1
2

∑m

i=1
R(ϵ,θ,θ0,θ̌i) > 1

]
= Pθ0

[
m∏

i=1
eR(ϵ,θ,θ0,θ̌i)/2 > 1

]
.

Applying the Markov’s inequality, we obtain

Pθ0

[
m∏

i=1
eR(ϵ,θ,θ0,θ̌i)/2 > 1

]
≤ Eθ0

[
m∏

i=1
eR(ϵ,θ,θ0,θ̌i)/2

]
.

(33)
We note that Eq. (31) implies that there exist suffi-
ciently small ϵ > 0 and b > 0 such that

sup
θ̌∈Θ̃

S̄ϵ(θ̌) = e−b < 1. (34)

Let Zi = eR(ϵ,θ,θ0,θ̌i)/2 for 1 ≤ i ≤ m, and Z0 = 1.
We can define a stochastic process

Ym =
m∏

i=0
Zm, m ≥ 0.

This sequence of independent and non-negative ran-
dom variables {Ym}m≥0 forms an adapted stochastic
process relative to the filtered space (Ω, F , {Fm} , P ),
where {Fm; m ≥ 0} is the natural filtration, F0 :=
(∅, Ω), and Fm := σ

(
X⃗ν(θ̌1), X⃗ν(θ̌2), . . . , X⃗ν(θ̌m)

)
[72]. Furthermore, according to Eq. (29), this stochas-
tic process decreases on average, almost surely (a.s.),
as indicated by

Eθ0 [Zm | Fm−1] ≤ Zm−1, m ≥ 1,

where the conditional expectation is well defined,
since Ym is a Fm-measurable function. Consequently,

the sequence {Ym}m≥0 consists of non-negative in-
dependent random variables that satisfies the super-
martingale condition [72]. Hence by the tower prop-
erty of supermartingales, together with Eq. (34), for
m ≥ 1 and for a sufficiently small ϵ > 0, we have

Eθ0 [Ym | Fm−1] = Eθ0 [Ym−1Zm | Fm−1]
= Ym−1Eθ0 [Zm | Fm−1]
≤ Ym−1e−b.

The iteration of this expectation through the filtration
levels yields:

Eθ0 [Ym] = Eθ0 [Ym | Fm−1 | Fm−2 | · · · | F0] ≤ e−bm.

Finally, incorporating this inequality into Eq. (33), we
conclude the proof.

Theorem 5 (Asymptotic strong consistency).
Let θ0 ∈ Θ̃ be the true value of the phase,
and be an interior point of Θ̃. Consider{

θ̂(X⃗ν

(
θ̌1), . . . , X⃗ν(θ̌m)

)}
1≤i≤m

a sequence of MLEs
over m adaptive steps, defined by AQSE over the set
of homodyne measurements

{
Mθ̌i

(dx)
}

1≤1≤m
. Then,

θ̂
(

X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)
)

a.s.−−→ θ0 as m → ∞. (35)

Proof. Let

Sm(θ0, θ) =
m∑

i=1
R(θ, θ0, θ̌i)

and

Sϵ
m(θ0, θ) =

m∑
i=1

R(ϵ, θ, θ0, θ̌i).

For any a ≥ 0, let

Na(θ0)c =
{

θ ∈ Θ̃ : |θ − θ0| ≥ a
}

.

Given that Θ̃ is compact, then Na(θ0)c is also com-
pact. Then, for every arbitrary collection K of open
intervals of Θ̃, such that

Na(θ0)c ⊆ ∪K∈KK,

there exits a finite subcollection J ⊆ K such that

Na(θ0)c ⊆ ∪J∈J J.

Each J ∈ J can be represented as a neighborhood
Nϵi

(θi) for some θi ∈ Θ̃ and ϵi > 0. Therefore, for
some finite set {θ1, . . . , θj},

Na(θ0)c ⊆ ∪θ∈{θ1,...,θj}Nϵi
(θi) ,

where the ϵi’s are chosen such that Eq. (32) in
Lemma 4 holds for every θi and its corresponding
bi, with i = 1, . . . , j.
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The next step in this proof consists of bounding
the probability that the estimator θ̂ after m adaptive
measurements is at a distance larger than or equal to
a from the true value θ0, i.e.,∣∣∣θ̂ (X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)

)
− θ0

∣∣∣ ≥ a.

This occurs when the maximum of the likelihood func-

tion Lm(θ) =
∏m

i=1 f(X⃗ν(θ̌i) | ϕ(θ, θ̌i)) belongs to
Na(θ0)c. This would imply that Lm(θ̂) > L(θ0) and
hence

sup
θ∈Na(θ0)c

m∏
i=1

f
(

X⃗ν(θ̌i) | ϕ(θ, θ̌i)
)

f
(

X⃗ν(θ̌i) | ϕ(θ0, θ̌i)
) > 1.

Thus

Pθ0

(∣∣∣θ̂ (X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)
)

− θ0

∣∣∣ ≥ a
)

= Pθ0

 sup
θ∈Na(θ0)c

m∏
i=1

 f
(

X⃗ν(θ̌i) | ϕ(θ, θ̌i)
)

f
(

X⃗ν(θ̌i) | ϕ(θ0, θ̌i)
)
 > 1


= Pθ0

 sup
θ∈Na(θ0)c

m∑
i=1

log

 f
(

X⃗ν(θ̌i) | ϕ(θ, θ̌i)
)

f
(

X⃗ν(θ̌i) | ϕ(θ0, θ̌i)
)
 > 0


= Pθ0

(
sup

θ∈Na(θ0)c

Sm(θ0, θ) > 0
)

≤ Pθ0

(
max

1≤i≤j
Sϵi

m(θ0, θi) > 0
)

≤ j exp
[
− min

1≤i≤j
[bi] m

]
, m ≥ 1.

In the third step of the previous sequence of equations,
we have used the fact that the logarithm is a strictly
increasing function, and that Θ̃ is compact, to com-
mute the supremum with the logarithm. To bound
the probability Pθ0 in the last step of the sequence of
equations, we have used Eq. (32) in Lemma 4.

Finally, by the Borell Cantelli lemma [73], we con-
clude that

Pθ0

(∣∣∣θ̂ (X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)
)

− θ0

∣∣∣ ≥ a i.o.
)

= 0,

were i.o. stands for infinitely often. Therefore,
θ̂
(

X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)
)

a.s.−−→ θ0 as m → ∞.

Corollary 5.1. θ̂
(

X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)
)

= θ0 +
oP (1).

Proof. Let (Wm)m≥1 be a sequence of random vari-
ables. If Wm = op(1), then the stochastic sequence
(Wm)m≥1 converges in probability to 0 [74]. It implies
that with arbitrary high probability, |Wm| = o(1).
Specifically, for any ϵ, δ > 0, there exists N0(ϵ, δ),
such that for any m > N0(ϵ, δ),

P (|Wm| < ϵ) ≥ 1 − δ. (36)

On the other hand, Eq. (35) in Theorem 5 guar-
antees the almost sure convergence for the sequence

of MLEs
(

θ̂
(

X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)
))

m≥1
to θ0. Al-

most sure convergence implies convergence in prob-
ability [31]. Therefore, we can conclude that
θ̂
(

X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)
)

− θ0 = oP (1) as the number
of adaptive steps m increases.

This means that the sequence of MLEs(
θ̂(X⃗ν(θ̌1), . . . , X⃗ν(θ̌m))

)
m≥1

gets arbitrarily close

to θ0 with increasing probability as m becomes very
large [74].

8.2.2 Saturation of the QCRB

A consequence of the almost sure convergence of the
MLE described in Appendix 8.2.1 is that the distri-
bution of the sequence of MLEs converges to a nor-
mal distribution (asymptotic normality) with variance
equal to the inverse of the QFI as the number of adap-
tive steps tends to infinity. To prove this statement
we follow a similar methodology as in the case of i.i.d.
random variables [31]. However, in our case, the mea-
surement samples X⃗ν(θ̌1), . . . , X⃗ν(θ̌m) are not identi-
cally distributed. Moreover, this proof requires the
additional assumption that the likelihood functions
f(X⃗ν(θ̌) | ϕ(θ, θ̌)) are sufficiently smooth and contin-
uous on Rν × Θ̃ × Θ̃. This assumption ensures that
the existence of the Fisher information at every point
in Rν × Θ̃ × Θ̃.
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Under the regularity conditions described in Ap-
pendix 8.1 and with the additional assumption of suf-
ficient smoothness of the likelihood functions, we ex-
pand the derivative of the logarithm of the likelihood
lm(θ) =

∑m
i=1 log

[
f(X⃗ν(θ̌i) | ϕ(θ, θ̌i))

]
about θ0 up

to second order, yielding

l′
m(θ) = l′

m(θ0) + l′′
m(θ0)(θ − θ0) + 1

2 l′′′
m(θ∗)(θ − θ0)2,

(37)
where θ∗ ∈ Θ̃ such that |θ∗ − θ0| < |θ − θ0|. Here, the
regularity conditions in Appendix: 8.1 ensure that the
estimates from θ̂(X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)) are stationary
points of the likelihood function. Then, when eval-
uating Eq. (37) at θ = θ̂(X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)), the
left-hand side of this equation vanishes, yielding

√
m
(

θ̂(X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)) − θ0

)
=

l′
m(θ0)√

m

− l′′
m(θ0)

m − l′′′
m (θ∗)

2m

(
θ̂(X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)) − θ0

) . (38)

Moreover, given that the MLE is asymptotically con-
sistent, i.e., θ̂

(
X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)

)
a.s.−−→ θ0, and the

smoothness of the likelihood, it can be shown that
[27]:

(a) l′
m(θ0)/

√
m → N (0, 1/νFX(θopt)) in distribu-

tion,

(b) (b) l′′
m(θ0)/m → −νFX(θopt) in probability, and

(c) l′′′
m(θ∗)/m is bounded in probability.

This results in the asymptotic normality of the es-
timator:

√
m
(

θ̂
(

X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)
))

d−→ N
(

θ0,
1

νFQ

)
,

(39)
where the d above the arrow denotes convergence in
distribution. Therefore, the distribution of the esti-
mator follows a normal distribution with mean equal
to θ0 and a variance equal to the inverse of the QFI,
and therefore saturates the QCRB [NFX(θopt)]−1 in
the asymptotic limit of m → ∞, with N = ν × m.

We can give the bound for the rate of convergence
using asymptotic normality. Similar to how the def-
inition of op states the convergence in probability, if
a sequence of random variables Wm = Op(am), then
with high probability, |Wm| = O(am) (i.e. for suffi-
ciently large m, the sequence Wm is bounded above
by a constant multiple of the sequence am in proba-
bility) [74]. Specifically, for every ϵ > 0 there exists
a constant K(ϵ) and an integer N0(ϵ) such that if
m > N0(ϵ), then

P

(∣∣∣∣Wm

am

∣∣∣∣ ≤ K(ϵ)
)

≥ 1 − ϵ. (40)

Since Eq. (39) holds for Wm = θ̂ − θ0, we can apply
the Chebyshev inequality [31]. This inequality states
that for any ϵ > 0, we can choose a constant K(ϵ) =
1/

√
ϵ > 0 such that for a sufficiently large m,

Pθ

(∣∣∣√m
(

θ̂
(

X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)
)

− θ0

)∣∣∣ < K(ϵ)
)

≥ 1 − ϵ.

(41)

Therefore, we find that θ̂
(

X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)
)

−
θ0 = Op(1/

√
m).

8.3 Phase estimation around θopt

The estimator in Eq. (21) of the proposed adaptive
homodyne strategy minimizes the variance over all
the phases within the parametric space from [0, π/2).
This estimator yields a variance above the QCRB for
phases close to θopt for a small number of adaptive
steps m. On the other hand, we note that the two-
step protocol from Ref. [22] is closer to the QCRB
for θ ≈ θopt than our strategy for small m = 3, 5.
However, our proposed strategy is more general, and
encompasses the one from Ref. [22]. By taking an un-
even splitting ratio between the first and second step
and θ̌1 = θopt, our strategy with m = 2 reduces to the
strategy from Ref. [22]. Nevertheless, by construction
our strategy is guaranteed to achieve the QCRB for
any phase in the asymptotic limit.

8.4 Convergence of the CHH strategy over the
full range [0, π)
The asymptotic consistency of
θ̂
(

X⃗ν(θ̌1), . . . , X⃗ν(θ̌m)
)

can be extended to a

compact parameter space Θ̃ ⊂ [0, π) by replacing
the initial step of sampling X⃗ν(θ̌1) with a sample
X⃗

(1)
ν ∈ Cν of size ν obtained from a series of het-

erodyne measurements. This preliminary heterodyne
sampling provides sufficient information about θ0 to
overcome the non-identifiability problem inherent
to homodyne measurements, thereby allowing for
extending the parameter space.

The proof of asymptotic consistency of the MLE
and convergence of the estimator variance to the
QCRB in Appendix 8.2 remains valid for the full range
[0, π) if we can show a new version of Lemma 2. This
new Lemma incorporates the likelihood function from
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the heterodyne measurement as a multiplicative fac-
tor in the likelihood function for the subsequent ho-
modyne measurements. From this result, the remain-
ing Lemmas 3, 4 and Theorem 5 in Appendix 8.2 for
proving almost sure convergence of the MLE follow
analogously.

Lemma 6. For any θ ∈ Θ̃ with θ ̸= θ0, it follows
that:

gCHH(θ) = sup
θ̌∈Θ̃

Eθ0

[
e(RCHH(θ,θ0,θ̌))1/2]

< 1, (42)

where

RCHH(θ, θ0, θ̌) = log

 f
(

X⃗Het
ν | θ

)
f(X⃗ν(θ̌) | ϕ(θ, θ̌))

f
(

X⃗Het
ν | θ

)
f(X⃗ν(θ̌) | ϕ(θ0, θ̌))

 ,

Proof. Let x⃗Het
ν = α1, . . . , αν be an observed sample

from X⃗Het
ν ∈ Cν and assume θ ̸= θ0 for θ, θ0 ∈ Θ̃. In

this case,

gCHH(θ) = sup
θ̌∈Θ̃

∫
Cν

√
f (x⃗Het

ν | θ) f (x⃗Het
ν | θ0)dx⃗Het

ν

∫
Rν

√
f
(

x⃗ν(θ̌) | ϕ(θ, θ̌)
)

f
(

x⃗ν(θ̌) | ϕ(θ0, θ̌)
)

dx⃗ν(θ̌)

=
∫
Cν

√
f (x⃗Het

ν | θ) f (x⃗Het
ν | θ0)dx⃗Het

ν × g(θ),
(43)

where g(θ) is defined in Eq. (30).
Since g(θ) < 1 according to Lemma 2 in Appendix

8.2, then it suffices to show that:∫
Cν

√
f (x⃗Het

ν | θ) f (x⃗Het
ν | θ0)dx⃗Het

ν < 1, (44)

For a heterodyne measurement outcomes x⃗Het
ν , the

likelihood function is expressed as

f(x⃗Het
ν | θ) = [π cosh(r)]−ν

ν∏
j=1

e−|αj |2−tanh(r)Re[α2
j ei2θ].

(45)
Then, the integral of the square root of the product
of the likelihoods for θ and θ0 becomes

∫
Cν

√
f (x⃗Het

ν | θ) f (x⃗Het
ν | θ0)dx⃗Het

ν = [π cosh(r)]−ν
ν∏

j=1

∫
C

e−|αj |2− tanh(r)
2 (Re[α2

j ei2θ]−Re[α2
j ei2θ0 ])dαj

= [π cosh(r)]−ν
ν∏

j=1

∫
R2

e−(a2
j +b2

j)−tanh(r) cos(θ−θ0)[cos(θ+θ0)(a2
j −b2

j )−2ab(sin(2θ)+sin(2θ0))]dajdbj

=
[
cosh(r)

√
1 − cos2(θ − θ0) tanh2(r)

]−ν

.

(46)

Since the term
[
cosh(r)

√
1 − cos2(θ − θ0) tanh2(r)

]−1

<1 for r > 0, the assertion follows.

Since Lemma 6 holds, the proof of the asymptotic
consistency of the MLE and convergence to the QCRB
proceeds analogously to the proof in Appendix 8.2.

8.4.1 Numerical tests of estimator normality for the
CHH strategy over [0, π).

Analogous to the case of adaptive homodyne
in Section 3, the MLE from the CHH strat-
egy is expected to show asymptotic normality,
defined in Eq. (39). We tested the normal-
ity of the MLE over [0, π). To this end,
we conducted five independent Anderson–Darling
goodness-of-fit tests on N = 1000 samples of
√

m
(

θ̂
(

X⃗Het
ν , X⃗ν(θ̌2), . . . , X⃗ν(θ̌m)

)
− θ0

)
, with m =

20, and ν = 50 for 5 randomly selected values of θ0

within [0, π). The null hypothesis for each test posited
that the samples from the MLE follow a normal dis-
tribution N

(
θ0, 1

1000FX (θopt)

)
with r = 1. Using the

DescTools package in R, these tests produced a set of
five p-values. Subsequently, the Fisher method, im-
plemented in the package of R poolr, calculated a
combined p-value of 0.9150486. Given this very high
combined p-value, we fail to reject the null hypothesis
that the samples follow the specified normal distribu-
tion. This study provides statistical evidence that the
MLE reaches the asymptotic normality with a mod-
erate number of adaptive steps, in this test m = 20
steps.

8.4.2 Degree of non-Gaussianity of the MLE for small
m.

In general, the distribution of MLEs obtained from
the CHH strategy is a non-Gaussian distribution for
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small m, and is expected to approach a normal dis-
tribution as m increases. We investigate the degree
of non-Gaussianity of the MLE for small m by study-
ing the first four central moments of the estimator
distribution from the CHH strategy as a function of
m. Figure 11 shows (a) the first moment (bias), (b)
the second moment (normalized Holevo variance), the
third moment (skewness), and the fourth moment (ex-
cess of kurtosis), for the CHH strategy with N = 3000
and r. We observe that the bias quickly converges to
zero, the variance approaches the QCRB, and both
the skewness and excess kurtosis tend to zero as m
increases. These results show that while for a small
m the MLE shows non-Gaussian characteristics, such
as a small asymmetry (skewness) and the presence
of outliers (excess of kurtosis), the MLE tends to
a normal distribution as m increases. These results
highlight the importance of having a sufficiently large
number of probe states N , and enough m, to ensure
the convergence to the QCRB for any θ ∈ [0, π).
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Figure 11: Degree of non-Gaussianity of the MLE for the
CHH strategy with N = 3000 and r = 1. Each panel rep-
resents the evolution of one of the central moments of the
estimator distribution as a function of the number of adap-
tive steps m. (a) First moment (Bias), (b) Second moment
(normalized Holevo variance), (c) Third moment (Skewness),
and (d) Fourth moment (excess of kurtosis). Black dots rep-
resent the average of 5 Monte Carlo simulations, each with
1×104 samples. The blue lines represent the tendencies pro-
vided by the localized regression method with span of 0.9,
and the light-gray shadows represent the 95 percent confi-
dence interval. Note that the bias rapidly converges to zero
and the variance approaches the QCRB. The skewness and
excess of kurtosis tend to zero as m increases.
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