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Braided Thompson groups with and without quasimorphisms

FRANCESCO FOURNIER-FACIO
YASH LODHA
MATTHEW C B ZAREMSKY

We study quasimorphisms and bounded cohomology of a variety of braided versions of Thompson groups.
Our first main result is that the Brin—Dehornoy braided Thompson group bV has an infinite-dimensional
space of quasimorphisms and thus infinite-dimensional second bounded cohomology. This implies that,
despite being perfect, bV is not uniformly perfect, in contrast to Thompson’s group V. We also prove that
relatives of bV like the ribbon braided Thompson group rV and the pure braided Thompson group b F
similarly have an infinite-dimensional space of quasimorphisms. Our second main result is that, in stark
contrast, the close relative of b/ denoted by ¢ bV , which was introduced concurrently by Brin, has trivial
second bounded cohomology. This makes bV the first example of a left-orderable group of type Fo that
is not locally indicable and has trivial second bounded cohomology. This also makes bV an interesting
example of a subgroup of the mapping class group of the plane minus a Cantor set that is nonamenable but
has trivial second bounded cohomology, behavior that cannot happen for finite-type mapping class groups.

20F65, 20J05; 20F36, 57K20

1 Introduction

The braided Thompson group bV was introduced independently by Brin [2007] and Dehornoy [2006]
as a braided version of the classical Thompson group V. This group and its relatives have proven to be
important objects in geometric group theory, in particular thanks to their connections to big mapping class
groups. Recall that a surface is said to be of infinite type if its fundamental group is not finitely generated,
and to such a surface one can associate a mapping class group in the same way as for finite-type surfaces;
such mapping class groups are called big. As an example of the connection, certain braided Thompson
groups are dense in the big mapping class group of a compact surface minus a Cantor set [Skipper and
Wu 2021, Corollary 3.20], and hence serve as finitely generated “approximations” of these big mapping
class groups. For more on connections between braided Thompson groups and big mapping class groups,
see eg [Aramayona et al. 2021; Aramayona and Funar 2021; Funar and Kapoudjian 2004; 2008; 2011;
Genevois et al. 2022].

Here we are concerned with the question of which braided Thompson groups have an infinite-dimensional
space of quasimorphisms, or second bounded cohomology, and which do not. A functiong: I' — R is
called a quasimorphism if the quantity |q(g) +¢q(h)—q(gh)| is uniformly bounded; its supremum is called
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the defect of g and is denoted by D(g). We denote by Q(I") the space of quasimorphisms of I", modulo
bounded functions (sometimes this notation is used to denote the space of homogeneous quasimorphisms,
which is canonically isomorphic [Calegari 2009b, 2.2.2]). We may sometimes colloquially refer to a
group as having “no quasimorphisms” if it only has bounded ones. The objects Q(I") are of great interest
in dynamics, geometric group theory, geometric topology and symplectic geometry. For example, they are
intimately connected with bounded cohomology [Frigerio 2017] and stable commutator length [Calegari
2009b]. In this context, Thompson-like groups have played an important role: for instance, they have
repeatedly served as the first finitely presented examples achieving certain values of stable commutator
length [Ghys and Sergiescu 1987; Zhuang 2008; Fournier-Facio and Lodha 2023].

In addition to bV, we inspect the ribbon braided Thompson group rV, the pure braided Thompson
group bF, the kernel bP of the projection bV — V', and most importantly the group bV , which was
introduced by Brin [2007] along with bV'. One can view bV as a braided analogue of a Cantor set point
stabilizer in V. See Section 2 for the definitions of all these braided Thompson groups. The group 3% ,
despite its strong similarities to bV, has extremely different behavior when it comes to quasimorphisms
and bounded cohomology, as our two main results make clear:

Theorem 1.1 For I' any of the braided Thompson groups bV, rV, bF or bP, the space Q(I) is
infinite-dimensional, and thus also the second bounded cohomology Hi (") is infinite-dimensional.

Theorem 1.2 We have H} (bV) = 0.

Here Hi (I") denotes the second bounded cohomology of a group I', with trivial real coefficients. This
invariant was introduced by Johnson [1972] and Trauber in the context of Banach algebras, and has since
become a fundamental tool in geometric topology [Gromov 1982], dynamics [Ghys 1987] and rigidity
theory [Burger and Monod 2002]. For every group I' there is a map Q(I') — HZZ) (I'"), whose kernel is the
space of real-valued homomorphisms (Proposition 3.1). Using this, Theorem 1.2, together with the fact
that the abelianization of bV is isomorphic to Z (Corollary 2.14), implies:

Corollary 1.3 Q(b/I\/ ) is one-dimensional, spanned by the abelianization of V.

One consequence of Theorem 1.1 is that, despite being perfect [Zaremsky 2018a], bV is not uniformly
perfect (Corollary 4.4). Recall that a group I' is uniformly perfect if there exists N € N such that every
element in [" can be written as a product of at most N commutators. This is in contrast to the fact that
Thompson’s group V is uniformly perfect, and even uniformly simple [Gal and Gismatullin 2017] —in
fact, Hy (V) = 0 for all n > 1 [Andritsch 2022]. Since bV is not uniformly perfect, the following natural
question emerges:

Question 1.4 Which elements of b have nonzero stable commutator length?

A characterization of this phenomenon in (finite-type) mapping class groups was given in [Bestvina et al.
2016]; see [Field et al. 2022] for some related results for big mapping class groups.
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Theorem 1.2 has interesting consequences for subgroups of big mapping class groups. Pioneering work
of Bestvina and Fujiwara [2002] showed that every subgroup of a (finite-type) mapping class group
is either virtually abelian or has infinite-dimensional Q(I"); see also [Bestvina et al. 2016]. This can
be viewed as a sort of Tits-like alternative, since every quasimorphism on an amenable group is at
a bounded distance from a homomorphism [Brooks 1981], whereas groups with hyperbolic features
typically have an infinite-dimensional space of quasimorphisms [Brooks 1981; Epstein and Fujiwara
1997; Hull and Osin 2013]. The question of whether something similar happens for the big mapping
class group MCG(R? \ K) for K a Cantor set was listed in the AIM problem list on big mapping class
groups [AIM 2019, Question 4.7]. Namely, it is asked whether every subgroup I' < MCG(R? \ K) is
either amenable or has infinite-dimensional Q(I"). Theorem 1.2 provides a negative answer to this, since
bV is nonamenable (by virtue of containing braid groups), and embeds in MCG(R? \ K); see Section 4.

In fact, we should point out that a negative answer to this question was already “almost” available in
the literature. Indeed, by a result of Calegari and Chen [2021], every countable circularly orderable
group I embeds in MCG(R? \ K), and there are plenty of countable circularly orderable groups that
are nonamenable and have a finite-dimensional space of quasimorphisms, or no quasimorphisms at all
[Calegari 2007; Zhuang 2008; Fournier-Facio and Lodha 2023]. The most straightforward example
is probably Thompson’s group 7', which has no quasimorphisms by virtue of being uniformly perfect
(and even uniformly simple; see eg [Guelman and Liousse 2023]). In fact, when the groups are even
left-orderable, many of them have vanishing second bounded cohomology [Fournier-Facio and Lodha
2023], and sometimes even vanishing bounded cohomology in every positive degree [Monod 2022]. As a
remark, since the examples coming from the procedure in [Calegari and Chen 2021] act on the plane by
fixing a radial coordinate and acting by rotations, which is really a “one-dimensional” picture, one can
view bV as providing the first truly “two-dimensional” example, ie one involving genuine braids.

In order to prove Theorem 1.1, we generally follow the approach used by Bavard [2016] to show that
MCG(R? \ K) has an infinite-dimensional space of quasimorphisms. Her proof in turn makes use of the
approach of Bestvina and Fujiwara [2002] to finite-type mapping class groups, following suggestions of
Calegari [2009a] from a blog post. Bavard’s result prompted the study of analogues of curve graphs for
big mapping class groups, and arguably initiated the recent surge of interest in big mapping class groups;
see [Aramayona and Vlamis 2020] for more on the history of big mapping class groups.

In the course of proving Theorem 1.2, we also prove that bV is of type Foo, meaning it has a classifying
space with finitely many cells in each dimension (Corollary 2.15); this is a stronger property than finite
generation and finite presentability. It is known that bV and thus bV are left-orderable [Ishida 2018], and
that bV contains a copy of bV (see Definition 2.9), which is finitely generated and perfect [Zaremsky
2018a]. Therefore bV serves as the first example of a group with the following properties:

Corollary 1.5 The group bV is a left-orderable group of type Foo that is not locally indicable and has
vanishing second bounded cohomology. |
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A finitely generated group is indicable if it admits a homomorphism onto Z. A group is locally indicable
if each of its finitely generated subgroups is indicable. The combination of these properties is interesting
because it shows that in the celebrated Witte Morris theorem [2006] the hypothesis of amenability cannot
be weakened to the vanishing of second bounded cohomology. The first finitely generated examples
were found in [Fournier-Facio and Lodha 2023]; those examples have the additional property of being
nonindicable, answering a question of Navas [2018]. Since bV is indicable, the existence of type-Foo
examples with these stronger properties is still open.

We will always stick to the “n = 2 case” to avoid getting bogged down in notation, but the reader should
note that all of our results can be adapted to the braided Higman—Thompson groups bV}, (as in [Aroca
and Cumplido 2022; Skipper and Wu 2023]) and their analogous subgroups b/I\/n, with appropriate small
modifications to the arguments. It would be interesting to try and adapt our arguments to other more
complicated Thompson-like groups related to asymptotically rigid mapping class groups, eg for positive
genus surfaces [Aramayona and Funar 2021] or for higher-dimensional manifolds [Aramayona et al. 2021].

Acknowledgements We wish to thank Javier Aramayona, Mladen Bestvina, Peter Feller, Marissa Loving
and Nick Vlamis for useful discussions, and the referee for helpful suggestions. Fournier-Facio was
supported by an ETH Ziirich Doc.Mobility Fellowship. Lodha was supported by START-projekt grant
Y-1411 of the Austrian Science Fund, and the NSF Career Award 2240136. Zaremsky was supported by
grant #635763 from the Simons Foundation.

2 Braided Thompson groups

The first braided Thompson group, which we denote by bV and which has also been denoted by BV,
Vir and br V' in the literature, was introduced independently by Brin [2007] and Dehornoy [2006], as a
braided version of Thompson’s group V. Other braided Thompson groups include the ““F-like” pure
braided Thompson groups bF [Brady et al. 2008], various “T-like” braided Thompson groups [Funar
and Kapoudjian 2008; 2011; Witzel 2019], braided Higman-Thompson groups bV, [Aroca and Cumplido
2022; Skipper and Wu 2023], braided Brin—Thompson groups s V4, [Spahn 2021], the “ribbon braided”
Thompson group »V [Thumann 2017] and braided Rover—Nekrashevych groups br V;(G) [Skipper and
Zaremsky 2023]. Most relevant to our purposes here is a close relative bV of bV, which was also
introduced by Brin [2007] (there denoted by BV ), and realized up to isomorphism as a concrete subgroup
of bV by Brady, Burillo, Cleary and Stein [Brady et al. 2008]; see also [Burillo and Cleary 2009].

Let us recall the definitions of bV and 5V using the standard braided tree pair model, as in [Brady et al.
2008; Zaremsky 2018a]. By a tree we will always mean a finite rooted planar binary tree. An element
of bV is represented by a representative triple (T—, B, T+), where T_ is a tree, Ty is a tree with the
same number of leaves as T—, say n, and § is a braid in B,. Elements of bV are equivalence classes
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[T—, B, T+] of representative triples, where the equivalence relation is given by the notion of expansion,
which we now describe.

First, denote by p, : B, — S, the usual map from the braid group to the symmetric group, recording how
the numbering of the strands at the bottom changes when the strands move to the top. (We may write p for
pn when we do not need to care about n.) Let (7—, 8, T+) be a representative triple, say with 71+ having
n leaves and € By, and let 1 <k <n. Let T/, be the tree obtained from T’} by adding a caret to the k™
leaf, let 7’ be the tree obtained from 7 by adding a caret to the p,,(8) (k)™ leaf, and let B’ € B,+1 be
the braid obtained from S by bifurcating the k™ strand (counting at the bottom) into two parallel strands.

Definition 2.1 (expansion, equivalence) With the above setup, call (T”, f’, T} ) the k™ expansion of
(T—, B, T+). Declare that two representative triples are equivalent if one is an expansion of the other, and
extend this to generate an equivalence relation on the set of representative triples.

The elements of the group bV are the equivalence classes [T, B, T+], and the group operation is
described as follows. Given two elements [7—, 8, T+] and [U—, y, U4], up to expansions we can assume
that 7+ = U—_. Now we define

[T—’ IB’ T+][T+’ Vs U+] = [T—’ :8)/7 U+]

Some immediate subgroups of bV include Thompson’s group F, which is the subgroup of elements of
the form [7_, 1, T], and the pure braided Thompson group b F, which is the subgroup of elements of
the form [T—, B, T+] for B a pure braid. We will also be especially interested in the following subgroup:

Definition 2.2 (the group 3% ) For each n € N, let B, denote the standard copy of B,_; inside By
which only braids the first 7 —1 strands . Note that if (T, ', T, ) is an expansion of (7, B, T+.), say with
B € B, and B’ € By, 41, then B € By, if and only if B’ € B, +1. Thus the equivalence classes [T—, 8, T+]
for B € B, form a well-defined subgroup of bV, denoted by bV.

There is a convenient way to picture elements of bV as (equivalence classes of) so-called strand diagrams.
For an element [T_, 8, T4+], we picture T upside-down and below 7_, with 8 connecting the leaves
of T+ up to the leaves of 7_. See Figure 1 for an example of an element of bV, and an expansion.

To accurately model the equivalence relation coming from expansion, and the group operation, which
amounts to stacking strand diagrams, some equivalences between strand diagrams naturally emerge. The
three key equivalences are shown in Figure 2.

See [Brady et al. 2008; Zaremsky 2018a] for more details.
2.1 Using pure braids and ribbon braids

Some more subgroups of bV arise when we restrict to pure braids. As before, consider the standard
projection B; — S, from the braid group B, to the symmetric group S,. The kernel of this map is the
pure braid group PB,. This leads us to the following definition of the pure braided Thompson group b F :
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Figure 1: Anelement [T_, 8, T4+] of bV. We draw T upside down, with § as a braid from the
leaves of T4 up to the leaves of 7. We have p4(8) = (1 2 3), so p4(B)(2) = 3. Thus to perform
the 2nd expansion, we add a caret to the 20d Jeaf of T, acaret to the 31 Jeaf of 7_, and bifurcate
the 2™ strand of B (counting from the bottom) into two strands. Note that this element lies in the
subgroup bV since the rightmost strand does not braid with any of the others.

Definition 2.3 (the group bF) If (T, B’, T} ) is an expansion of (T—, B, Ty ) then B is pure if and only
if B’ is pure, so the equivalence classes [T—, B, T+] for B € PBy, form a well-defined subgroup of bV,
denoted by bF.

Note that bF is not normal in bV, but the following related subgroup is:

Definition 2.4 (the group bP) Let bP denote the subgroup of bV consisting of all [T, 8, T'] such that
B is pure.

For reference, the group bP was denoted by PBV in [Brady et al. 2008] and by Py, in [Zaremsky 2018a].
Note that the trees in [T, 8, T] must be the same, so bP is strictly smaller than bF. The quotient bV /bP
is isomorphic to Thompson’s group V, and the quotient bF /b P is isomorphic to Thompson’s group F
[Brady et al. 2008]. More precisely, upon passing to a quotient with kernel P, the elements of bV change
from being represented by triples (7—, 8, T+) for § € B, to being represented by triples (7—, o, T+) for
o € S,. The notion of expansion has an obvious analogue for permutations, and we get equivalence
classes [T, o, T+], which are the elements of V. The image of bV under the projection bV — V is a
group called V, which was also considered in [Brin 2007]. The kernel bV NbP of the projection bV >V
has the following interesting property, which will be useful later:

Figure 2: The three key equivalences for strand diagrams, which can occur anywhere inside a
strand diagram representing an element of V. Further equivalences are obtained by combining
these, and by rotating and reflecting the one on the right.
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Lemma 2.5 There is an epimorphism bV NbP — bP.

Proof An element of 5V NHP is of the form [T, B, T] for B a pure braid in which the rightmost strand
does not braid with any of the others. Let T be the subtree of 7" whose root is the left child of the root
of T (or if T is trivial, just take T’ to also be trivial). Let B’ be the (pure) braid obtained from f by
deleting any strands corresponding to leaves of 7' that are closer to the right child of the root than the
left (so in particular, in the nontrivial case this includes the rightmost strand). Intuitively, [T”, 8/, T'] is
obtained by taking just the “left part” of [T, B, T'], from the point of view of the root of 7. This operation
is well defined up to expansions, and yields a well-defined homomorphism [T, 8, T] — [T, B/, T'] from
bV NbP to bP, which is clearly surjective. a

Finally, let us discuss a “twisted” version of bV, called the ribbon braided Thompson group rV . This
arises by treating the strands in a strand diagram as ribbons, which are allowed to twist. This first appeared
officially in work of Thumann [2017, Section 3.5.3], where he proved that V' (there denoted by RV)
is of type Foo. The idea of using ribbons to represent strands in bV was actually already present in
Brin’s original paper [2007], but without twisting. We will mostly follow the approach from [Zaremsky
2018b, Example 4.2], which uses the notion of cloning systems from [Witzel and Zaremsky 2018] to
provide a framework for elements of rV similar to the one we are using here for bV. An element
of rV is represented by a triple (7—, B(m1,...,my), T+) where T_ and T4 are trees with n leaves and
B(my,...,my) € By Z. More precisely, 8 € By, my,...,my, € Z and By, Z denotes the wreath product
B, x 7" with the action induced by the standard projection B, — S,. (We write our wreath products
with the acting group on the left, for convenience. Also, we may sometimes write 8(0,...,0) as § and
1g,(m1,...,my) as (m1,...,my) for the sake of notational elegance.) An expansion of this triple is
another triple of the form

(TLB'si (my, ... mp_y mpe,mg, mygpq,....mp), TY),

where T_’,_ is T4 with a caret added to the k" leaf for some 1 <k <n, B’ is B with its k' ribbon bifurcated
into two parallel ribbons, and 7" is T_ with a caret added to the p(8) (k)™ leaf. Here s is the k™ standard
generator of By, in the standard presentation

By =(s1,....5n—1|8iSi+185 = si+15;8;+1 forall i, and s;5; = s;5; forall i and j with [i — j| > 1).

Let us adopt the convention that s crosses the k™ ribbon (counting at the bottom) under the (k+1)™
ribbon, and a positive single twist of a ribbon involves the left side of the ribbon (looking at the bottom)
twisting under the right side. These conventions make the definition of expansion look somewhat natural;
see Figure 3.

By taking the equivalence relation generated by expansion, we get equivalence classes of the form
[T—,B(my,...,my), T+], which comprise the group rV. Just like in bV, the group operation is given,
roughly, by first expanding until the right tree of the left element equals the left tree of the right element
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S

Figure 3: Expansion in rV. Here we see that [ -, 15, (1), -] = [A, s1(1, 1), A], where - is the trivial
tree and A is a single caret.

and then canceling these trees. We could consider various subgroups of rV by restricting to pure braids
and/or full twists, but for our purposes we will just stick with all braids and all twists.

At this point we have
bP <bF <bV <rV,

where we view bV as the subgroup of rV consisting of elements [7—, B(0,...,0), T4], that is, elements
with no twisting. As we have said, bP is normal in bF and bV, and in fact it is even normal in rV/, as
we now show:

Lemma 2.6 The subgroup bP is normal inrV .

Proof Let[U,y,U]ebP and[T—,B(my,...,my), T+]€rV,expanding so that without loss of generality

U =T4+. Then
[T—’ lg(mlv s ,I’l’ln), T+][T+’ Vs T+][T—? ﬁ(ml’ s ’ml’l)’ T+]_1
= [T, By, omp), T )Ty, T[T, (=, .., —mp) B0, T
=[T_,B(m1,....mp)y(—my,...,—mp)B~ L, T_1=[T_,ByB~ L, T_] € bP.
The last equals sign holds because y is pure, and hence (my,...,mp,)y = y(my, ..., my). |

As we have said, the quotients bV /bP and bF/bP are isomorphic to V' and F, respectively. The quotient
rV/bP is isomorphic to a Thompson-like group constructed analogously to V' but using S, ¢ Z instead
of By ¢ Z; this could be made more precise by putting a cloning system, in the sense of [Witzel and
Zaremsky 2018], on the family of groups S, ¢ Z, but we will not need to worry about this here. Indeed,
all we will need to use rV/bP for later is to relate quasimorphisms of rV to quasimorphisms of bV, bF
and P, and for this all we need to know about it is the following:

Lemma 2.7 The quotient rV/bP is uniformly perfect.

Algebraic & Geometric Topology, Volume 24 (2024)
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Proof Note that bV /bP =~ V is uniformly perfect [Gal and Gismatullin 2017]. Choose N € N such
that every element of V' is a product of at most N commutators. Set M = 3N + 2. We claim that every
element of rV/bP is a product of at most M commutators. Let [T—, B(m1,...,my), T+] € rV, and write
it as a product of three elements:

(T-, B. T[T+, (m1,0,...,0), T4 [T+, (0,m2, ... ,my), T4].
Modulo bP, we know that this first factor is a product of at most N commutators. The second factor
is conjugate to [Ty, (0,m1,0,...,0), T4] via the conjugator [T+, s1, T+], and this is of the same form
as the third factor. Thus it suffices to focus on the third factor, and show that any element of the form

g=I[T,(0,ma,...,my), T]is, modulo hP, a product of at most N 4+ 1 commutators.

Let 77 be T with n—1 new carets added, one after the other, always attaching each new caret to the leftmost
leaf. Thus g =[T’,(0,...,0,ma,...,my), T'], where the number of Os is n. Let T” be T with n— 1 new

carets, one on each leaf other than the leftmost. Thus g = [T”,y(0,my,my,m3,m3,...,my,my), T"]
for y € By, the braid that arises from performing this expansion, namely y = s;1 2s4m3 e s;"n”_z. Setting

h=[T",y,T"| €bV we get h"lg = [T",(0,mp,ma,m3,m3, ... ,my,my), T"]. Now let & € Byy—1
be any braid satisfying (0, ...,0,ma, ..., mp)a~t = (0,m2,0,ms,...,0,my,,0) in Br,_127Z, and set
a=[T",a,T. We get
aga™' = [T",a, T'N[T",(0,...,0,m2,....mp), T'[T" &~ 1, T"]
=[T",a0,...,0,ma,....mp)a"V,T"=[T",(0,m3,0,ms,...,0,my,0),T"].

Hence h~lgag='a™! =[T",(0,0,m2,0,ms3,...,mu—1,0,my), T"]. Now using a similar trick as when
we conjugated by a, this is conjugate to [T7,(0,...,0,m>,...,my), T'], which equals g. Thus g is

1

conjugate to ' gag~'a~!, and considered modulo bP this is an element of V' times a commutator, so

we are done. |
It is worth recording the following consequence:
Corollary 2.8 The group rV is perfect.

Proof We already know bV is perfect [Zaremsky 2018a], so the derived subgroup V' contains bV . In
particular it contains bP, and so rV/rV' is a quotient of rV/bP. This is perfect by Lemma 2.7, so we
conclude that rV = rV’. O

2.2 Algebraic properties of bV

Our proof of Theorem 1.2 will rely on some algebraic properties of bV and 3% , which are the focus of
this subsection.

Definition 2.9 (right depth, 3% (1)) Say that the right depth of a tree is the distance from its rightmost

leaf to its root. Denote by bV (1) < bV the subgroup of elements that admit a representative of the form
(T-, B, T+) such that T_ and T4 both have right depth 1.

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 4: The proof of Lemma 2.11: conjugating an element of bV (1) by x¢ yields another
element of bV (1).

Note that bV (1) is naturally isomorphic to V. Indeed, we have an isomorphism bV — 3% (1) given by
[T-, B, T+] — [U=, y, U+], where U_ is obtained from 7_ by adding a new caret whose left leaf is the root
of T_, Uy is obtained from 7 by adding a new caret whose left leaf is the root of 7., and y is obtained
from B by adding one new unbraided strand on the right. This is also discussed in [Brady et al. 2008].

Definition 2.10 (homomorphism y;, subgroup 13) Let y1: bV — 7 be the homomorphism sending
[T, B, T+] to the right depth of 7_ minus the right depth of 7. Since expansions preserve this
measurement, thanks to the rightmost strand of such a 8 not braiding, this is well defined, and is clearly a
homomorphism. Denote by D the kernel in 5V of X1-

We call this map y; since its restriction to Thompson’s group F < bV coincides with a map usually
denoted by y1. Note that D consists of all [T—, B, T+] €bV suchthat T_ and T4 have the same right depth.
In particular D contains bV (1). We will see in Corollary 2.14 that D equals the derived subgroup of bV'.

Recall the usual first generator x¢ of Thompson’s group F. This is the element xg = [T%, 1, T1], where
T; is the tree consisting of a caret with a caret attached to its i leaf, and 1 is the identity in B3. Note
that y1(xo) = 1. Also note that xgl =[T1,1, T3].

Lemma 2.11 We have xO_1 -I;I\/(l) -xo < 1;1\/(1).

Proof This is clear using strand diagrams; see Figure 4. In the figure, we represent an element of 3% ()
by drawing the first carets of each tree and the last (unbraided) strand of the braid, and then drawing a
gray box to represent the arbitrary remainder of the picture. Now conjugating by x¢ and applying some of
the equivalence moves from Figure 2, we see that in the resulting strand diagram the trees again have right
depth 1 and the rightmost strand is unbraided (in fact the two rightmost strands are both unbraided). O
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Figure 5: An example of the proof of Lemma 2.12 (for A4 havmg just one element): conjugatmg
an element of D in which the trees have right depth 3 by xO yields an element of bV(l)

Lemma 2.12 For any finite subset A of D, there exists k > 0 such that Xq kA x’g < bV(l)

Proof Since A is finite, we can choose k > 0 such that every element of A can be represented by a triple
(T-, B, T+) in which the right depth of 7_ (and thus 77 ) is at most k + 1. For any such (7_, 8, T4), it
is clear that x, k. T_,B.Ty]- xo € bV(l) See Figure 5 for an example. |

Corollary 2.13 The group bV is isomorphic to an ascending HNN-extension of bV .

Proof To get our result, we will verify the conditions in [Geoghegan et al. 2001, Lemma 3.1] using
bV (1) (which is isomorphic to bV') as the base and d xg as the stable letter. Clearly no nontrivial power
of xg lies in 3% (1) Lemma 2.11 shows that x, bV(l) X0 < bV(l) Finally, we need to show that 3%
is generated by bV(l) and x¢. Given [T_, 8, T+] € bV, up to right multiplication by a power of x¢ we
can assume that [T_, B8, T4+] € D, ie T_ and T+ have the same right depth. Now Lemma 2.12 says we
can conjugate by some power of xq so that our element lands in 3% (1). O

Corollary 2.14 The derived subgroup bV’ equals D, so the abelianization of bV is Z, given by the
map x1.

Proof Since D is the kernel of a map to Z, it contains bV Conversely, since 3% (1) is isomorphic
to bV, and bV is perfect [Zaremsky 2018a], Lemma 2.12 implies that any element of D is conjugate
in bV to an element of a perfect subgroup of bV , which shows that every element of D lies in HV". This
shows bV’ = D, and the second statement follows since D is the kernel of X1 1in bV . |
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Figure 6: An arbitrary conjugate of an element of 3% (1) by g. We see that it will commute with
any element of bV (1).

Brin [2006] showed that b} and bV are finitely presented. In fact, bV is even of type Foo [Bux et al.
2016]. The techniques in [loc. cit.] could likely be used to show that bV is also of type Fso, but now,
thanks to Corollary 2.13, we can prove this much more quickly:

Corollary 2.15 The group bV is of type Fo.

Proof It is a standard fact that an ascending HNN-extension of a group of type F,, is itself of type Fy;
see eg [Baumslag et al. 1980, end of Section 2]. Since bV is of type Foo [Bux et al. 2016], Corollary 2.13
implies that bV is as well. |

The key dynamical feature that will make bounded cohomology vanish is contained in the following lemma:

Lemma 2.16 There exists g € D such that every element of 3% (1) commutes with every element of
1 iy
g bvV(l)-g.

Proof We define g = [T, 51, T2], where as before 75 is a caret with a second caret hanging on the right,
and s is the first standard generator of B3z, ie the element braiding the first two strands with a single twist.
Since f does not braid the rightmost strand we have g € bV, and since clearly y1([T2, B, Tz]) = 0 we
have g € D. We see in Figure 6 that, in any element of g—! bV (1) - g, the trees both have “left depth” 1
and the first strand does not braid with anything. Since elements of 3% (1) and g1 bV (1) - g therefore
braid disjoint sets of strands, they commute. |
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3 Second bounded cohomology

We will work only with bounded cohomology with trivial real coefficients, and use the definition in terms
of the bar resolution. We refer the reader to [Brown 1982; Frigerio 2017] for a general and complete
treatment of ordinary and bounded cohomology of discrete groups, respectively. For the more general
setting of locally compact groups, we refer the reader to [Monod 2001].

For every n >0, denote by C” (I") the set of real-valued functions on I'”. By convention, I'? is a single point,
s0 CO(T") 2 R consists only of constant functions. We define differential operators §°: C*(I') — C*T1(T")
by 89 =0 and, forn > 1,

Sn(f)(gl’---’gn-i-l) n
= f(g2o - gns) + ) (=D g1, gigirts - gna) + (D" (g ).

i=1
One can check that §*+18° = 0, so (C*(I"), §*) is a cochain complex. We denote by Z*(T") := ker(§*) the
set of cocycles, and by B*(T") := im(§*~!) the set of coboundaries. The quotient H*(I") := Z*(I")/B*(T")
is the cohomology of T" with trivial real coefficients. We will also call this the ordinary cohomology to
make a clear distinction from the bounded one, which we proceed to define.

Restricting to functions f: I'* — R that are bounded, meaning that their supremum || f || co is finite, leads
to a subcomplex (Cj ('), 8°). We denote by Z; (I') the bounded cocycles and by Bj (I') the bounded
coboundaries. The vector space Hj (I') := Z; (I') /B; () is the bounded cohomology of T' with trivial
real coefficients.

The inclusion of the bounded cochain complex into the ordinary one induces a linear map at the level of
cohomology, called the comparison map:

c*:Hy (I') — H*(T).

This map is in general neither injective nor surjective. In degree 2, the kernel admits a description in
terms of quasimorphisms:

Proposition 3.1 [Calegari 2009b, Theorem 2.50] Let Q(I") denote the space of quasimorphisms on I"
up to bounded distance, and Z'(T") the space of homomorphisms I' — R. Then the sequence

0—2z'() — o) T 121y < w2(r)

2

is exact. In particular, ¢ is injective if and only if every quasimorphism on I' is at a bounded distance

from a homomorphism.

While many applications of bounded cohomology in geometric group theory, eg the study of stable
commutator length, are only concerned with quasimorphisms, in different settings the full knowledge
of Hi is of interest. Notable instances include the classification of circle actions [Ghys 1987], and the
construction of manifolds with prescribed simplicial volume [Heuer and Léh 2021; 2023].
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In order to prove Theorem 1.2, that bV has vanishing second bounded cohomology, it is enough to prove
this for the subgroup D (from Definition 2.10), thanks to the following fact:

Proposition 3.2 ([Monod 2001, 8.6]; see also [Monod and Popa 2003]) Let n > 0. Let I" be a group
and N a normal subgroup such that '/ N is amenable. Then the inclusion N — I' induces an injection in
bounded cohomology Hy (I') — Hy (N). In particular, if Hy (N) = 0 then Hy (T') =

To prove vanishing of le) (ﬁ), we will use the following notion:

Definition 3.3 Let I" be a group. We say that I' has commuting conjugates if for every finitely generated
subgroup H <T there exists g € I' such that every element of H commutes with every element of g~ ! Hg.

Theorem 3.4 [Fournier-Facio and Lodha 2023] If T" is a group with commuting conjugates, then
HZ () =
b

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 Since bV / D=7 by definition, using Proposition 3.2 it suffices to show that
Hi(ﬁ) = 0. By Theorem 3.4 it suffices to show that D has commuting conjugates. Let H < D bea
finitely generated subgroup. By Lemma 2.12 there exists kK > 0 such that x k.H. xg < bV (1). Then by

1~x_k H. xlg -g commutes with every element

Lemma 2.16 there exists g € D such that every element of g_
of bV (1), and so in particular with every element of xo -H- xo Thus, every element of the conjugate
of H by xO g xo commutes with every element of H. Finally, note that xO g- xo e D since g€ D,

X0 € bV and D is normal in 5. This shows that D has commuting conjugates and concludes the proof. O

4 Quasimorphisms on rV and bV

In this section we prove Theorem 1.1. We will first work with the ribbon braided Thompson group
rV and prove that Q(rV') is infinite-dimensional (Proposition 4.2), and then prove that unbounded
quasimorphisms of rV restrict to unbounded quasimorphisms of bV, bF and bP (and indeed, any I'
satisfying bP < T <rV).

First we need to make the connection between rV and MCG(R? \ K). This was done implicitly in
[Aramayona and Funar 2021; Funar and Kapoudjian 2004], and more explicitly in [Skipper and Wu
2021, Theorem 3.24]. In short, rV is isomorphic to a certain subgroup of mapping classes of S\ K,
namely those that are “asymptotically quasirigid” with respect to some “rigid structure” involving choices
of “admissible subsurfaces” and only act on half of S?\ K in some sense; see [Skipper and Wu 2021,
Definition 3.7] for all the details. We can view this as describing certain mapping classes of D2\ K that
do not require the boundary of D? to be fixed, but rather allow it to be half-twisted. For an example
providing the intuition for how to view an element of bV as a mapping class, see Figure 7.

Algebraic & Geometric Topology, Volume 24 (2024)



Braided Thompson groups with and without quasimorphisms 1615

Figure 7: A visualization of the element [7_, 8, T+] of bV from Figure 1 as a mapping class on
the disk. The bottom (domain) tree 7y describes a decomposition of D? into the pieces shown,
and the top (range) tree 7_ describes another such decomposition. The braid 8 then treats the
four smallest subdisks in the domain as “holes”, with the range viewed similarly, and gives a
homeomorphism from the former to the latter, indicated by the dotted lines. This element does
not involve twists, but one could picture the holes twisting as well, yielding an element of V.

Now we pass from this picture to MCG(R? \ K) by viewing D2\ K inside R? \ K at the expense of
modding out the cyclic subgroup generated by a full twist around the boundary of D?. This is represented
by the element [-, 15, (2), -] of V', which generates the center Z(r}’), so at this point we have embedded
rV/Z(rV) inside MCG(R?\ K). In particular, we can work in MCG(R?\ K) to prove that Q (rV/Z(rV))
is infinite-dimensional, from which it will immediately follow that Q(rV) is as well. It is also worth
mentioning that bV N Z(rV) = {1}, so this provides an explicit embedding of bV into MCG(R? \ K).

4.1 Quasimorphisms on rV

The proof that Q (rV/Z(rV')) is infinite-dimensional closely follows Bavard’s proof [2016, Théoréme 4.8]
that Q(MCG(R? \ K)) is infinite-dimensional.! We will especially use the constructions from [Bavard
2016, Section 4.1].

Bavard [2016] constructs the so-called ray graph X, associated to the surface R? \ K, and shows that
it is hyperbolic. She proceeds to show that the action of MCG(R? \ K) on X, satisfies the hypotheses
of Bestvina and Fujiwara’s main theorem [2002], which implies that Q(MCG(R? \ K)) is infinite-
dimensional. To prove our Proposition 4.2, we will show that the action of V' /Z(rV') also satisfies these
properties, and make reference to [Bavard 2016, Section 4] throughout.

We start by reviewing Bavard’s proof for MCG(R? \ K). By the main theorem of [Bestvina and Fujiwara
2002], it suffices to exhibit elements /11, hy € MCG(R? \ K) with the following properties:

(1) hy and hy are hyperbolic elements for the action of MCG(R? \ K) on X, acting by translation on
axes /1 and [, which are equipped with the orientation of the action of the respective elements.

IThis is Theorem 4.9 in the English translation.
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(2) hj and h; are independent, meaning that their fixed point sets in 0X; are disjoint.

(3) There exist constants B and C such that for every segment w of /; longer than C, for every
g € MCG(R?\ K), if the segment g-w is contained in the B—neighborhood of [y, then it is oriented
in the opposite direction.

Identify K with the set {0, 1} of infinite words « in the alphabet {0, 1}, and for each finite word
w € {0, 1}* let K(w) := {wk | k € K} be the cone corresponding to w. Then define
Ko=K(00), K;=K(010), K,=K(0110), ..., Ko ={01},
K_1=K(11), K_,=K(101), K_3=K(1001), ..., K_o ={10}.
This provides a partition of K into sets K; for —oo <i < oo, where each K; fori € Z is a clopen set and
each K4 contains one point.

Let us now be more precise about how we would like K to live inside of R2. Assume that K lies on the
horizontal axis R and is symmetric around 0 ¢ K, and that K; C R forall 0 <i <oo and K; C R~ forall
—o0<i <—1. Let I CR be asymmetric open neighborhood of 0 that is disjoint from K. Finally, let C € R?
be a homeomorphic copy of a circle, formed as the union of a segment in the horizontal axis R containing
all of K and a semicircle in the upper half-plane. Let ¢ denote the homeomorphism of R? that is a half-turn
rotation about the origin, so ¢ stabilizes K, and denote by ¢ the mapping class of ¢ in MCG(R? \ K).

Theorem 4.1 [Bavard 2016, Théoréme 4.8] Let f; be any homeomorphism of R2 that stabilizes C,
restricts to the identity on I and sends K; to K; 1 foreach i € Z. Let t1 € MCG(R2 \ K) be the class
of i1, let ty := ¢pt1¢™ 1, let hy := t1t2t1 and let hy 1= ¢h1_1¢_1. Then the elements hy and hy satisfy
the three properties above, and hence any subgroup of MCG(R? \ K) containing hy and h, has an
infinite-dimensional space of quasimorphisms.

As we have seen, 7V maps to MCG(R?\ K) with kernel Z(rV') 2 Z. Note that the image in MCG(R?\ K)
of the element [-, 15,(1),-] € rV, which is a single half-twist on one ribbon, is precisely the mapping
class ¢.

Proposition 4.2 The space Q(rV') is infinite-dimensional.

Proof We will prove that Q (rV/Z(rV')) is infinite-dimensional, which implies our result. By Theorem 4.1
it suffices to show that the elements /; and /5 can be realized inside of rV/Z(rV'). Since each of &
and /i, is obtained as a product of conjugates of ¢1 by ¢ and since ¢ € rV/Z(rV), it suffices to show that
t1 can be realized inside rV/Z(rV).

Recall that, in Theorem 4.1, the homeomorphism 7; representing ¢ can be any homeomorphism of R?
satisfying

(1) 17 stabilizes the topological circle C,

(2) f1|7 is the identity, and

(3) f1(K;) = K; 41 foreachi € Z.
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Figure 8: The desired element. Left: a ribbon strand diagram representing this element. Right:
the corresponding mapping class, as in Figure 7. We indicate the circle C with rainbow colors and
labels a—f, to make it clear how the mapping class acts on it. The fixed interval [ is red (e).

Note that 7; is defined on all of R2, so the image 71 (K;) is well defined, even if what we are interested in
is a class 1; € MCG(R? \ K)—this is the usual equivocation between punctures and marked points.

Consider the element [77, sl_lsz_ 1(0,0,—2), T»] of rV represented as in Figure 8.

With C and [ as indicated in the picture, it is clear that up to isotopy C is stabilized (thanks to the third
strand twisting), and that [ is fixed pointwise. One can also check that K; is sent to K;; for each i € Z.
We conclude that all the criteria are satisfied, and so we are done. O

4.2 Quasimorphisms on bV

The final step in the proof of Theorem 1.1 is to show that the quasimorphisms on V' constructed in the
previous subsection restrict to nontrivial quasimorphisms on bV, bF and bP. This will be a consequence
of the following general statement applied to V' and b P, which follows from left exactness of Q; see
[Calegari 2009b, Remark 2.90].

Lemma 4.3 Let I' be a group and A <T' a normal subgroup, and suppose that Q(I"'/A) = 0. Then the
restriction Q(I") — Q(A) is injective.

Proof of Theorem 1.1 Let I' be any group such that bP < T" < rV, for instance any of the groups
in the statement of the theorem. Note that the quotient rV/bP is uniformly perfect by Lemma 2.7, so
every quasimorphism on 7V /bP is bounded [Calegari 2009b, Lemma 2.2.4], ie Q(rV/bP) = 0. Hence
Lemma 4.3 applies, and the restriction Q(rV) — Q(bP) is injective. Since this map factors through
Q(rV) — Q(I), this restriction is also injective. We conclude by Proposition 4.2. O
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Since every quasimorphism on a uniformly perfect group is bounded [Calegari 2009b, Lemma 2.2.4], an
immediate corollary of Theorem 1.1 is the following:

Corollary 4.4 The group bV is not uniformly perfect. |

Of course we also conclude that rV' is not uniformly perfect, despite being perfect (Corollary 2.8). Note
that bF is not perfect (it has abelianization Z4), but it follows from [Zaremsky 2018a] that bF" is perfect.
However, we can deduce in the same way:

Corollary 4.5 The group bF’ is not uniformly perfect. O

We should also mention another group fitting between bP and rV and thus having infinite-dimensional
space of quasimorphisms, namely the “braided 7 group from [Witzel 2019]. This is the subgroup of bV
consisting of elements [7—, B, T+] such that p(B) € Sy is a cyclic permutation.

Let us discuss restricting quasimorphisms of bV to hV.IfT <MCG(R?\ K) has a bounded orbit in X,
then the quasimorphisms produced via this action are bounded on I'. This is analogous to the behavior
of finite-type mapping class groups, in particular for the braid group [Feller 2022], and was already
noted by Calegari [2009a] for MCG(R? \ K). We see that in fact this happens for 3% , since it fixes the
isotopy class of the ray going from the rightmost point of the Cantor set to infinity on the right. Thanks
to Theorem 1.2, we can actually prove a stronger version of this statement. Namely, not only are these
quasimorphisms bounded on 3% , but the same is true for every quasimorphism of b V.

Corollary 4.6 For every quasimorphism g of bV, the image of bV under ¢ is bounded.

Proof Lety = [-,1p,(1),-]. Then viewing rV/Z(rV) as a subgroup of MCG(R? \ K), we have
WwZ(rV) = ¢. Note that the conjugate Iﬁ_lbfl\/ Y equals the subgroup of bV consisting of all elements
where the leftmost strand does not braid with anything. Let yo: w_lb/l\/ ¥ — Z be the map sending
v~ lgy to x1(g). Since conjugation by v is an isomorphism, Corollary 2.14 implies that the kernel
of yo equals the derived subgroup (1//‘119/1\/ V).

Letg e b/I\/ and choose h € bV N lﬁ_lb/l\/w such that y1(h) = x1(g) and yo(h) = 0. In particular, &
lies in (Y~ 1bV1/f)/ and gh™! lies in bV’ By Corollary 1.3, there exists a scalar A € R such that q|A is
at a bounded distance r(g) from A - y1, where y; is the abelianization map of bV (Corollary 2. 14) It
follows that

lg(gh™ )| <A+ x1(gh™ )|+ r(q) =r(q).

We also get |¢(h)| < r(q) by the same argument applied to 1//_119/1\/ ¥ (which is isomorphic to 3% ), up to
taking a larger r(g). Thus

l9(9)l < lg(gh™")|+ lq(h)| + D(g) <2r(q) + D(q).

This shows that q'ﬁ is bounded, which concludes the proof. |
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Together with Theorem 1.1, this implies that, analogously to Corollary 4.4, there is no uniform-length
factorization for elements of oV in terms of conjugates of elements in bV. Indeed, if such a factorization
did exist, we could run a similar argument as in the proof of Corollary 4.6, and obtain that every
quasimorphism of AV is bounded.

As one last indication of braided Thompson groups exhlbltmg unusual bounded cohomologlcal behavior,
consider the short exact sequence 1 — BV NbP bV —V — 1. By Theorem 1.2 H2 (b V) =0, and in
fact the proof works using permutations instead of braids, mutatis mutandis, to show that HZ(V) =0
(also, it is true in general that a quotient of a group with vanishing second bounded cohomology itself
has vanishing second bounded cohomology [Bouarich 1995]). However, by Theorem 1.1 Q(bP) is
infinite-dimensional, and thus so is Q(b/l\/ N bP) since bV NbP surjects onto hP (Lemma 2.5); in
particular, Hi (b/I\/ N bP) is infinite-dimensional.

This gives a concrete example of the failure of a 2-out-of-3 property for vanishing of second bounded
cohomology: if a group T" has vanishing second bounded cohomology and a quotient I'/ N has the
same property, then the kernel N can still have infinite-dimensional second bounded cohomology. For
comparison, if le7 (N) =0, then Hi (I') = 0 if and only if H%(F /N) = 0 [Moraschini and Raptis 2023,
Corollary 4.2.2]. The failure of this 2-out-of-3 property was observed in [Fournier-Facio et al. 2023,
Theorem 4.5] for every degree, but this is to our knowledge the first “naturally occurring” example in
degree 2, as well as the first finitely generated one (and even type Fo).
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