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Braided Thompson groups with and without quasimorphisms
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MATTHEW C B ZAREMSKY

We study quasimorphisms and bounded cohomology of a variety of braided versions of Thompson groups.
Our first main result is that the Brin–Dehornoy braided Thompson group bV has an infinite-dimensional
space of quasimorphisms and thus infinite-dimensional second bounded cohomology. This implies that,
despite being perfect, bV is not uniformly perfect, in contrast to Thompson’s group V . We also prove that
relatives of bV like the ribbon braided Thompson group rV and the pure braided Thompson group bF
similarly have an infinite-dimensional space of quasimorphisms. Our second main result is that, in stark
contrast, the close relative of bV denoted by cbV , which was introduced concurrently by Brin, has trivial
second bounded cohomology. This makes cbV the first example of a left-orderable group of type F1 that
is not locally indicable and has trivial second bounded cohomology. This also makes cbV an interesting
example of a subgroup of the mapping class group of the plane minus a Cantor set that is nonamenable but
has trivial second bounded cohomology, behavior that cannot happen for finite-type mapping class groups.

20F65, 20J05; 20F36, 57K20

1 Introduction

The braided Thompson group bV was introduced independently by Brin [2007] and Dehornoy [2006]

as a braided version of the classical Thompson group V . This group and its relatives have proven to be

important objects in geometric group theory, in particular thanks to their connections to big mapping class

groups. Recall that a surface is said to be of infinite type if its fundamental group is not finitely generated,

and to such a surface one can associate a mapping class group in the same way as for finite-type surfaces;

such mapping class groups are called big. As an example of the connection, certain braided Thompson

groups are dense in the big mapping class group of a compact surface minus a Cantor set [Skipper and

Wu 2021, Corollary 3.20], and hence serve as finitely generated “approximations” of these big mapping

class groups. For more on connections between braided Thompson groups and big mapping class groups,

see eg [Aramayona et al. 2021; Aramayona and Funar 2021; Funar and Kapoudjian 2004; 2008; 2011;

Genevois et al. 2022].

Here we are concerned with the question of which braided Thompson groups have an infinite-dimensional

space of quasimorphisms, or second bounded cohomology, and which do not. A function q W � ! R is

called a quasimorphism if the quantity jq.g/Cq.h/�q.gh/j is uniformly bounded; its supremum is called
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the defect of q and is denoted by D.q/. We denote by Q.�/ the space of quasimorphisms of � , modulo

bounded functions (sometimes this notation is used to denote the space of homogeneous quasimorphisms,

which is canonically isomorphic [Calegari 2009b, 2.2.2]). We may sometimes colloquially refer to a

group as having “no quasimorphisms” if it only has bounded ones. The objects Q.�/ are of great interest

in dynamics, geometric group theory, geometric topology and symplectic geometry. For example, they are

intimately connected with bounded cohomology [Frigerio 2017] and stable commutator length [Calegari

2009b]. In this context, Thompson-like groups have played an important role: for instance, they have

repeatedly served as the first finitely presented examples achieving certain values of stable commutator

length [Ghys and Sergiescu 1987; Zhuang 2008; Fournier-Facio and Lodha 2023].

In addition to bV , we inspect the ribbon braided Thompson group rV , the pure braided Thompson

group bF , the kernel bP of the projection bV ! V , and most importantly the group cbV , which was

introduced by Brin [2007] along with bV . One can view cbV as a braided analogue of a Cantor set point

stabilizer in V . See Section 2 for the definitions of all these braided Thompson groups. The group cbV ,

despite its strong similarities to bV , has extremely different behavior when it comes to quasimorphisms

and bounded cohomology, as our two main results make clear:

Theorem 1.1 For � any of the braided Thompson groups bV , rV , bF or bP , the space Q.�/ is

infinite-dimensional , and thus also the second bounded cohomology H2
b
.�/ is infinite-dimensional.

Theorem 1.2 We have H2
b
.cbV /D 0.

Here H2
b
.�/ denotes the second bounded cohomology of a group � , with trivial real coefficients. This

invariant was introduced by Johnson [1972] and Trauber in the context of Banach algebras, and has since

become a fundamental tool in geometric topology [Gromov 1982], dynamics [Ghys 1987] and rigidity

theory [Burger and Monod 2002]. For every group � there is a map Q.�/! H2
b
.�/, whose kernel is the

space of real-valued homomorphisms (Proposition 3.1). Using this, Theorem 1.2, together with the fact

that the abelianization of cbV is isomorphic to Z (Corollary 2.14), implies:

Corollary 1.3 Q.cbV / is one-dimensional , spanned by the abelianization of cbV .

One consequence of Theorem 1.1 is that, despite being perfect [Zaremsky 2018a], bV is not uniformly

perfect (Corollary 4.4). Recall that a group � is uniformly perfect if there exists N 2 N such that every

element in � can be written as a product of at most N commutators. This is in contrast to the fact that

Thompson’s group V is uniformly perfect, and even uniformly simple [Gal and Gismatullin 2017] — in

fact, Hn
b
.V /D 0 for all n� 1 [Andritsch 2022]. Since bV is not uniformly perfect, the following natural

question emerges:

Question 1.4 Which elements of bV have nonzero stable commutator length?

A characterization of this phenomenon in (finite-type) mapping class groups was given in [Bestvina et al.

2016]; see [Field et al. 2022] for some related results for big mapping class groups.

Algebraic & Geometric Topology, Volume 24 (2024)
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Theorem 1.2 has interesting consequences for subgroups of big mapping class groups. Pioneering work

of Bestvina and Fujiwara [2002] showed that every subgroup of a (finite-type) mapping class group

is either virtually abelian or has infinite-dimensional Q.�/; see also [Bestvina et al. 2016]. This can

be viewed as a sort of Tits-like alternative, since every quasimorphism on an amenable group is at

a bounded distance from a homomorphism [Brooks 1981], whereas groups with hyperbolic features

typically have an infinite-dimensional space of quasimorphisms [Brooks 1981; Epstein and Fujiwara

1997; Hull and Osin 2013]. The question of whether something similar happens for the big mapping

class group MCG.R2 nK/ for K a Cantor set was listed in the AIM problem list on big mapping class

groups [AIM 2019, Question 4.7]. Namely, it is asked whether every subgroup � � MCG.R2 nK/ is

either amenable or has infinite-dimensional Q.�/. Theorem 1.2 provides a negative answer to this, since
cbV is nonamenable (by virtue of containing braid groups), and embeds in MCG.R2 nK/; see Section 4.

In fact, we should point out that a negative answer to this question was already “almost” available in

the literature. Indeed, by a result of Calegari and Chen [2021], every countable circularly orderable

group � embeds in MCG.R2 nK/, and there are plenty of countable circularly orderable groups that

are nonamenable and have a finite-dimensional space of quasimorphisms, or no quasimorphisms at all

[Calegari 2007; Zhuang 2008; Fournier-Facio and Lodha 2023]. The most straightforward example

is probably Thompson’s group T , which has no quasimorphisms by virtue of being uniformly perfect

(and even uniformly simple; see eg [Guelman and Liousse 2023]). In fact, when the groups are even

left-orderable, many of them have vanishing second bounded cohomology [Fournier-Facio and Lodha

2023], and sometimes even vanishing bounded cohomology in every positive degree [Monod 2022]. As a

remark, since the examples coming from the procedure in [Calegari and Chen 2021] act on the plane by

fixing a radial coordinate and acting by rotations, which is really a “one-dimensional” picture, one can

view cbV as providing the first truly “two-dimensional” example, ie one involving genuine braids.

In order to prove Theorem 1.1, we generally follow the approach used by Bavard [2016] to show that

MCG.R2 nK/ has an infinite-dimensional space of quasimorphisms. Her proof in turn makes use of the

approach of Bestvina and Fujiwara [2002] to finite-type mapping class groups, following suggestions of

Calegari [2009a] from a blog post. Bavard’s result prompted the study of analogues of curve graphs for

big mapping class groups, and arguably initiated the recent surge of interest in big mapping class groups;

see [Aramayona and Vlamis 2020] for more on the history of big mapping class groups.

In the course of proving Theorem 1.2, we also prove that cbV is of type F1, meaning it has a classifying

space with finitely many cells in each dimension (Corollary 2.15); this is a stronger property than finite

generation and finite presentability. It is known that bV and thus cbV are left-orderable [Ishida 2018], and

that cbV contains a copy of bV (see Definition 2.9), which is finitely generated and perfect [Zaremsky

2018a]. Therefore cbV serves as the first example of a group with the following properties:

Corollary 1.5 The group cbV is a left-orderable group of type F1 that is not locally indicable and has

vanishing second bounded cohomology.

Algebraic & Geometric Topology, Volume 24 (2024)
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A finitely generated group is indicable if it admits a homomorphism onto Z. A group is locally indicable

if each of its finitely generated subgroups is indicable. The combination of these properties is interesting

because it shows that in the celebrated Witte Morris theorem [2006] the hypothesis of amenability cannot

be weakened to the vanishing of second bounded cohomology. The first finitely generated examples

were found in [Fournier-Facio and Lodha 2023]; those examples have the additional property of being

nonindicable, answering a question of Navas [2018]. Since cbV is indicable, the existence of type-F1

examples with these stronger properties is still open.

We will always stick to the “nD 2 case” to avoid getting bogged down in notation, but the reader should

note that all of our results can be adapted to the braided Higman–Thompson groups bVn (as in [Aroca

and Cumplido 2022; Skipper and Wu 2023]) and their analogous subgroups cbVn, with appropriate small

modifications to the arguments. It would be interesting to try and adapt our arguments to other more

complicated Thompson-like groups related to asymptotically rigid mapping class groups, eg for positive

genus surfaces [Aramayona and Funar 2021] or for higher-dimensional manifolds [Aramayona et al. 2021].

Acknowledgements We wish to thank Javier Aramayona, Mladen Bestvina, Peter Feller, Marissa Loving

and Nick Vlamis for useful discussions, and the referee for helpful suggestions. Fournier-Facio was

supported by an ETH Zürich Doc.Mobility Fellowship. Lodha was supported by START-projekt grant

Y-1411 of the Austrian Science Fund, and the NSF Career Award 2240136. Zaremsky was supported by

grant #635763 from the Simons Foundation.

2 Braided Thompson groups

The first braided Thompson group, which we denote by bV and which has also been denoted by BV ,

Vbr and brV in the literature, was introduced independently by Brin [2007] and Dehornoy [2006], as a

braided version of Thompson’s group V . Other braided Thompson groups include the “F –like” pure

braided Thompson groups bF [Brady et al. 2008], various “T –like” braided Thompson groups [Funar

and Kapoudjian 2008; 2011; Witzel 2019], braided Higman–Thompson groups bVn [Aroca and Cumplido

2022; Skipper and Wu 2023], braided Brin–Thompson groups sVbr [Spahn 2021], the “ribbon braided”

Thompson group rV [Thumann 2017] and braided Röver–Nekrashevych groups brVd .G/ [Skipper and

Zaremsky 2023]. Most relevant to our purposes here is a close relative cbV of bV , which was also

introduced by Brin [2007] (there denoted by bBV ), and realized up to isomorphism as a concrete subgroup

of bV by Brady, Burillo, Cleary and Stein [Brady et al. 2008]; see also [Burillo and Cleary 2009].

Let us recall the definitions of bV and cbV using the standard braided tree pair model, as in [Brady et al.

2008; Zaremsky 2018a]. By a tree we will always mean a finite rooted planar binary tree. An element

of bV is represented by a representative triple .T�; ˇ; TC/, where T� is a tree, TC is a tree with the

same number of leaves as T�, say n, and ˇ is a braid in Bn. Elements of bV are equivalence classes

Algebraic & Geometric Topology, Volume 24 (2024)
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ŒT�; ˇ; TC� of representative triples, where the equivalence relation is given by the notion of expansion,

which we now describe.

First, denote by �n WBn ! Sn the usual map from the braid group to the symmetric group, recording how

the numbering of the strands at the bottom changes when the strands move to the top. (We may write � for

�n when we do not need to care about n.) Let .T�; ˇ; TC/ be a representative triple, say with TÛ having

n leaves and ˇ 2Bn, and let 1� k � n. Let T 0
C

be the tree obtained from TC by adding a caret to the kth

leaf, let T 0
� be the tree obtained from T� by adding a caret to the �n.ˇ/.k/

th leaf, and let ˇ0 2 BnC1 be

the braid obtained from ˇ by bifurcating the kth strand (counting at the bottom) into two parallel strands.

Definition 2.1 (expansion, equivalence) With the above setup, call .T 0
�; ˇ

0; T 0
C
/ the kth expansion of

.T�; ˇ; TC/. Declare that two representative triples are equivalent if one is an expansion of the other, and

extend this to generate an equivalence relation on the set of representative triples.

The elements of the group bV are the equivalence classes ŒT�; ˇ; TC�, and the group operation is

described as follows. Given two elements ŒT�; ˇ; TC� and ŒU�; 
; UC�, up to expansions we can assume

that TC D U�. Now we define

ŒT�; ˇ; TC�ŒTC; 
; UC� WD ŒT�; ˇ
; UC�:

Some immediate subgroups of bV include Thompson’s group F , which is the subgroup of elements of

the form ŒT�; 1; TC�, and the pure braided Thompson group bF , which is the subgroup of elements of

the form ŒT�; ˇ; TC� for ˇ a pure braid. We will also be especially interested in the following subgroup:

Definition 2.2 (the group cbV ) For each n 2 N, let yBn denote the standard copy of Bn�1 inside Bn

which only braids the first n�1 strands . Note that if .T 0
�; ˇ

0; T 0
C
/ is an expansion of .T�; ˇ; TC/, say with

ˇ 2 Bn and ˇ0 2 BnC1, then ˇ 2 yBn if and only if ˇ0 2 yBnC1. Thus the equivalence classes ŒT�; ˇ; TC�

for ˇ 2 yBn form a well-defined subgroup of bV , denoted by cbV .

There is a convenient way to picture elements of bV as (equivalence classes of) so-called strand diagrams.

For an element ŒT�; ˇ; TC�, we picture TC upside-down and below T�, with ˇ connecting the leaves

of TC up to the leaves of T�. See Figure 1 for an example of an element of bV , and an expansion.

To accurately model the equivalence relation coming from expansion, and the group operation, which

amounts to stacking strand diagrams, some equivalences between strand diagrams naturally emerge. The

three key equivalences are shown in Figure 2.

See [Brady et al. 2008; Zaremsky 2018a] for more details.

2.1 Using pure braids and ribbon braids

Some more subgroups of bV arise when we restrict to pure braids. As before, consider the standard

projection Bn ! Sn from the braid group Bn to the symmetric group Sn. The kernel of this map is the

pure braid group PBn. This leads us to the following definition of the pure braided Thompson group bF :

Algebraic & Geometric Topology, Volume 24 (2024)
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D

Figure 1: An element ŒT�; ˇ; TC� of bV . We draw TC upside down, with ˇ as a braid from the
leaves of TC up to the leaves of T�. We have �4.ˇ/D .1 2 3/, so �4.ˇ/.2/D 3. Thus to perform
the 2nd expansion, we add a caret to the 2nd leaf of TC, a caret to the 3rd leaf of T�, and bifurcate
the 2nd strand of ˇ (counting from the bottom) into two strands. Note that this element lies in the
subgroup cbV since the rightmost strand does not braid with any of the others.

Definition 2.3 (the group bF ) If .T 0
�; ˇ

0; T 0
C
/ is an expansion of .T�; ˇ; TC/ then ˇ0 is pure if and only

if ˇ0 is pure, so the equivalence classes ŒT�; ˇ; TC� for ˇ 2 PBn form a well-defined subgroup of bV ,

denoted by bF .

Note that bF is not normal in bV , but the following related subgroup is:

Definition 2.4 (the group bP ) Let bP denote the subgroup of bV consisting of all ŒT; ˇ; T � such that

ˇ is pure.

For reference, the group bP was denoted by PBV in [Brady et al. 2008] and by Pbr in [Zaremsky 2018a].

Note that the trees in ŒT; ˇ; T � must be the same, so bP is strictly smaller than bF . The quotient bV=bP

is isomorphic to Thompson’s group V , and the quotient bF=bP is isomorphic to Thompson’s group F

[Brady et al. 2008]. More precisely, upon passing to a quotient with kernel bP , the elements of bV change

from being represented by triples .T�; ˇ; TC/ for ˇ 2 Bn to being represented by triples .T�; �; TC/ for

� 2 Sn. The notion of expansion has an obvious analogue for permutations, and we get equivalence

classes ŒT�; �; TC�, which are the elements of V . The image of cbV under the projection bV ! V is a

group called yV , which was also considered in [Brin 2007]. The kernel cbV \bP of the projection cbV ! yV

has the following interesting property, which will be useful later:

D D D

Figure 2: The three key equivalences for strand diagrams, which can occur anywhere inside a
strand diagram representing an element of bV . Further equivalences are obtained by combining
these, and by rotating and reflecting the one on the right.

Algebraic & Geometric Topology, Volume 24 (2024)
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Lemma 2.5 There is an epimorphism cbV \ bP ! bP .

Proof An element of cbV \ bP is of the form ŒT; ˇ; T � for ˇ a pure braid in which the rightmost strand

does not braid with any of the others. Let T 0 be the subtree of T whose root is the left child of the root

of T (or if T is trivial, just take T 0 to also be trivial). Let ˇ0 be the (pure) braid obtained from ˇ by

deleting any strands corresponding to leaves of T that are closer to the right child of the root than the

left (so in particular, in the nontrivial case this includes the rightmost strand). Intuitively, ŒT 0; ˇ0; T 0� is

obtained by taking just the “left part” of ŒT; ˇ; T �, from the point of view of the root of T . This operation

is well defined up to expansions, and yields a well-defined homomorphism ŒT; ˇ; T �! ŒT 0; ˇ0; T 0� from
cbV \ bP to bP , which is clearly surjective.

Finally, let us discuss a “twisted” version of bV , called the ribbon braided Thompson group rV . This

arises by treating the strands in a strand diagram as ribbons, which are allowed to twist. This first appeared

officially in work of Thumann [2017, Section 3.5.3], where he proved that rV (there denoted by RV )

is of type F1. The idea of using ribbons to represent strands in bV was actually already present in

Brin’s original paper [2007], but without twisting. We will mostly follow the approach from [Zaremsky

2018b, Example 4.2], which uses the notion of cloning systems from [Witzel and Zaremsky 2018] to

provide a framework for elements of rV similar to the one we are using here for bV . An element

of rV is represented by a triple .T�; ˇ.m1; : : : ; mn/; TC/ where T� and TC are trees with n leaves and

ˇ.m1; : : : ; mn/2Bn oZ. More precisely, ˇ 2Bn, m1; : : : ; mn 2 Z and Bn oZ denotes the wreath product

Bn Ë Z
n with the action induced by the standard projection Bn ! Sn. (We write our wreath products

with the acting group on the left, for convenience. Also, we may sometimes write ˇ.0; : : : ; 0/ as ˇ and

1Bn
.m1; : : : ; mn/ as .m1; : : : ; mn/ for the sake of notational elegance.) An expansion of this triple is

another triple of the form

.T 0
�; ˇ

0s
mk

k
.m1; : : : ; mk�1; mk; mk; mkC1; : : : ; mn/; T

0
C/;

where T 0
C

is TC with a caret added to the kth leaf for some 1� k� n, ˇ0 is ˇ with its kth ribbon bifurcated

into two parallel ribbons, and T 0
� is T� with a caret added to the �.ˇ/.k/th leaf. Here sk is the kth standard

generator of Bn, in the standard presentation

Bn D hs1; : : : ; sn�1 j sisiC1si D siC1sisiC1 for all i; and sisj D sj si for all i and j with ji � j j> 1i:

Let us adopt the convention that sk crosses the kth ribbon (counting at the bottom) under the .kC1/st

ribbon, and a positive single twist of a ribbon involves the left side of the ribbon (looking at the bottom)

twisting under the right side. These conventions make the definition of expansion look somewhat natural;

see Figure 3.

By taking the equivalence relation generated by expansion, we get equivalence classes of the form

ŒT�; ˇ.m1; : : : ; mn/; TC�, which comprise the group rV . Just like in bV , the group operation is given,

roughly, by first expanding until the right tree of the left element equals the left tree of the right element

Algebraic & Geometric Topology, Volume 24 (2024)
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D

Figure 3: Expansion in rV . Here we see that Œ � ; 1B1
.1/; � �D Œ^; s1.1; 1/;^�, where � is the trivial

tree and ^ is a single caret.

and then canceling these trees. We could consider various subgroups of rV by restricting to pure braids

and/or full twists, but for our purposes we will just stick with all braids and all twists.

At this point we have
bP < bF < bV < rV;

where we view bV as the subgroup of rV consisting of elements ŒT�; ˇ.0; : : : ; 0/; TC�, that is, elements

with no twisting. As we have said, bP is normal in bF and bV , and in fact it is even normal in rV , as

we now show:

Lemma 2.6 The subgroup bP is normal in rV .

Proof Let ŒU; 
; U �2bP and ŒT�; ˇ.m1; : : : ; mn/; TC�2 rV , expanding so that without loss of generality

U D TC. Then

ŒT�; ˇ.m1; : : : ; mn/; TC�ŒTC; 
; TC�ŒT�; ˇ.m1; : : : ; mn/; TC�
�1

D ŒT�; ˇ.m1; : : : ; mn/; TC�ŒTC; 
; TC�ŒTC; .�m1; : : : ;�mn/ˇ
�1; T��

D ŒT�; ˇ.m1; : : : ; mn/
.�m1; : : : ;�mn/ˇ
�1; T��D ŒT�; ˇ
ˇ

�1; T�� 2 bP:

The last equals sign holds because 
 is pure, and hence .m1; : : : ; mn/
 D 
.m1; : : : ; mn/.

As we have said, the quotients bV=bP and bF=bP are isomorphic to V and F , respectively. The quotient

rV=bP is isomorphic to a Thompson-like group constructed analogously to rV but using Sn o Z instead

of Bn o Z; this could be made more precise by putting a cloning system, in the sense of [Witzel and

Zaremsky 2018], on the family of groups Sn o Z, but we will not need to worry about this here. Indeed,

all we will need to use rV=bP for later is to relate quasimorphisms of rV to quasimorphisms of bV , bF

and bP , and for this all we need to know about it is the following:

Lemma 2.7 The quotient rV=bP is uniformly perfect.

Algebraic & Geometric Topology, Volume 24 (2024)
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Proof Note that bV=bP Š V is uniformly perfect [Gal and Gismatullin 2017]. Choose N 2 N such

that every element of V is a product of at most N commutators. Set M D 3N C 2. We claim that every

element of rV=bP is a product of at most M commutators. Let ŒT�; ˇ.m1; : : : ; mn/; TC�2 rV , and write

it as a product of three elements:

ŒT�; ˇ; TC�ŒTC; .m1; 0; : : : ; 0/; TC�ŒTC; .0;m2; : : : ; mn/; TC�:

Modulo bP , we know that this first factor is a product of at most N commutators. The second factor

is conjugate to ŒTC; .0;m1; 0; : : : ; 0/; TC� via the conjugator ŒTC; s1; TC�, and this is of the same form

as the third factor. Thus it suffices to focus on the third factor, and show that any element of the form

g D ŒT; .0;m2; : : : ; mn/; T � is, modulo bP , a product of at most N C 1 commutators.

Let T 0 be T with n�1 new carets added, one after the other, always attaching each new caret to the leftmost

leaf. Thus gD ŒT 0; .0; : : : ; 0;m2; : : : ; mn/; T
0�, where the number of 0s is n. Let T 00 be T with n�1 new

carets, one on each leaf other than the leftmost. Thus g D ŒT 00; 
.0;m2; m2; m3; m3; : : : ; mn; mn/; T
00�

for 
 2B2n�1 the braid that arises from performing this expansion, namely 
 D s
m2

2 s
m3

4 � � � smn

2n�2. Setting

h D ŒT 00; 
; T 00� 2 bV we get h�1g D ŒT 00; .0;m2; m2; m3; m3; : : : ; mn; mn/; T
00�. Now let ˛ 2 B2n�1

be any braid satisfying ˛.0; : : : ; 0;m2; : : : ; mn/˛
�1 D .0;m2; 0;m3; : : : ; 0;mn; 0/ in B2n�1 o Z, and set

aD ŒT 00; ˛; T 0�. We get

aga�1 D ŒT 00; ˛; T 0�ŒT 0; .0; : : : ; 0;m2; : : : ; mn/; T
0�ŒT 0; ˛�1; T 00�

D ŒT 00; ˛.0; : : : ; 0;m2; : : : ; mn/˛
�1; T 00�D ŒT 00; .0;m2; 0;m3; : : : ; 0;mn; 0/; T

00�:

Hence h�1gag�1a�1 D ŒT 00; .0; 0;m2; 0;m3; : : : ; mn�1; 0;mn/; T
00�. Now using a similar trick as when

we conjugated by a, this is conjugate to ŒT 0; .0; : : : ; 0;m2; : : : ; mn/; T
0�, which equals g. Thus g is

conjugate to h�1gag�1a�1, and considered modulo bP this is an element of V times a commutator, so

we are done.

It is worth recording the following consequence:

Corollary 2.8 The group rV is perfect.

Proof We already know bV is perfect [Zaremsky 2018a], so the derived subgroup rV 0 contains bV . In

particular it contains bP , and so rV=rV 0 is a quotient of rV=bP . This is perfect by Lemma 2.7, so we

conclude that rV D rV 0.

2.2 Algebraic properties of bbV

Our proof of Theorem 1.2 will rely on some algebraic properties of bV and cbV , which are the focus of

this subsection.

Definition 2.9 (right depth, cbV .1/) Say that the right depth of a tree is the distance from its rightmost

leaf to its root. Denote by cbV .1/� cbV the subgroup of elements that admit a representative of the form

.T�; ˇ; TC/ such that T� and TC both have right depth 1.
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D

Figure 4: The proof of Lemma 2.11: conjugating an element of cbV .1/ by x0 yields another
element of cbV .1/.

Note that cbV .1/ is naturally isomorphic to bV . Indeed, we have an isomorphism bV ! cbV .1/ given by

ŒT�; ˇ; TC�! ŒU�; 
; UC�, where U� is obtained from T� by adding a new caret whose left leaf is the root

of T�, UC is obtained from TC by adding a new caret whose left leaf is the root of TC, and 
 is obtained

from ˇ by adding one new unbraided strand on the right. This is also discussed in [Brady et al. 2008].

Definition 2.10 (homomorphism �1, subgroup yD) Let �1 W cbV ! Z be the homomorphism sending

ŒT�; ˇ; TC� to the right depth of T� minus the right depth of TC. Since expansions preserve this

measurement, thanks to the rightmost strand of such a ˇ not braiding, this is well defined, and is clearly a

homomorphism. Denote by yD the kernel in cbV of �1.

We call this map �1 since its restriction to Thompson’s group F � cbV coincides with a map usually

denoted by �1. Note that yD consists of all ŒT�; ˇ; TC�2 cbV such that T� and TC have the same right depth.

In particular yD contains cbV .1/. We will see in Corollary 2.14 that yD equals the derived subgroup of cbV .

Recall the usual first generator x0 of Thompson’s group F . This is the element x0 D ŒT2; 1; T1�, where

Ti is the tree consisting of a caret with a caret attached to its i th leaf, and 1 is the identity in B3. Note

that �1.x0/D 1. Also note that x�1
0 D ŒT1; 1; T2�.

Lemma 2.11 We have x�1
0 � cbV .1/ � x0 � cbV .1/.

Proof This is clear using strand diagrams; see Figure 4. In the figure, we represent an element of cbV .1/
by drawing the first carets of each tree and the last (unbraided) strand of the braid, and then drawing a

gray box to represent the arbitrary remainder of the picture. Now conjugating by x0 and applying some of

the equivalence moves from Figure 2, we see that in the resulting strand diagram the trees again have right

depth 1 and the rightmost strand is unbraided (in fact the two rightmost strands are both unbraided).
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D

Figure 5: An example of the proof of Lemma 2.12 (for A having just one element): conjugating
an element of yD in which the trees have right depth 3 by x2

0 yields an element of cbV .1/.

Lemma 2.12 For any finite subset A of yD, there exists k � 0 such that x�k
0 �A � xk

0 � cbV .1/.

Proof Since A is finite, we can choose k � 0 such that every element of A can be represented by a triple

.T�; ˇ; TC/ in which the right depth of T� (and thus TC) is at most kC 1. For any such .T�; ˇ; TC/, it

is clear that x�k
0 � ŒT�; ˇ; TC� � x

k
0 2 cbV .1/. See Figure 5 for an example.

Corollary 2.13 The group cbV is isomorphic to an ascending HNN-extension of bV .

Proof To get our result, we will verify the conditions in [Geoghegan et al. 2001, Lemma 3.1] using
cbV .1/ (which is isomorphic to bV ) as the base and x0 as the stable letter. Clearly no nontrivial power

of x0 lies in cbV .1/. Lemma 2.11 shows that x�1
0 � cbV .1/ �x0 � cbV .1/. Finally, we need to show that cbV

is generated by cbV .1/ and x0. Given ŒT�; ˇ; TC� 2 cbV , up to right multiplication by a power of x0 we

can assume that ŒT�; ˇ; TC� 2 yD, ie T� and TC have the same right depth. Now Lemma 2.12 says we

can conjugate by some power of x0 so that our element lands in cbV .1/.

Corollary 2.14 The derived subgroup cbV 0 equals yD, so the abelianization of cbV is Z, given by the

map �1.

Proof Since yD is the kernel of a map to Z, it contains cbV 0. Conversely, since cbV .1/ is isomorphic

to bV , and bV is perfect [Zaremsky 2018a], Lemma 2.12 implies that any element of yD is conjugate

in cbV to an element of a perfect subgroup of cbV , which shows that every element of yD lies in cbV 0. This

shows cbV 0 D yD, and the second statement follows since yD is the kernel of �1 in cbV .
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D

Figure 6: An arbitrary conjugate of an element of cbV .1/ by g. We see that it will commute with
any element of cbV .1/.

Brin [2006] showed that bV and cbV are finitely presented. In fact, bV is even of type F1 [Bux et al.

2016]. The techniques in [loc. cit.] could likely be used to show that cbV is also of type F1, but now,

thanks to Corollary 2.13, we can prove this much more quickly:

Corollary 2.15 The group cbV is of type F1.

Proof It is a standard fact that an ascending HNN-extension of a group of type Fn is itself of type Fn;

see eg [Baumslag et al. 1980, end of Section 2]. Since bV is of type F1 [Bux et al. 2016], Corollary 2.13

implies that cbV is as well.

The key dynamical feature that will make bounded cohomology vanish is contained in the following lemma:

Lemma 2.16 There exists g 2 yD such that every element of cbV .1/ commutes with every element of

g�1 � cbV .1/ �g.

Proof We define g D ŒT2; s1; T2�, where as before T2 is a caret with a second caret hanging on the right,

and s1 is the first standard generator of B3, ie the element braiding the first two strands with a single twist.

Since ˇ does not braid the rightmost strand we have g 2 cbV , and since clearly �1.ŒT2; ˇ; T2�/D 0 we

have g 2 yD. We see in Figure 6 that, in any element of g�1 � cbV .1/ �g, the trees both have “left depth” 1

and the first strand does not braid with anything. Since elements of cbV .1/ and g�1 � cbV .1/ �g therefore

braid disjoint sets of strands, they commute.
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3 Second bounded cohomology

We will work only with bounded cohomology with trivial real coefficients, and use the definition in terms

of the bar resolution. We refer the reader to [Brown 1982; Frigerio 2017] for a general and complete

treatment of ordinary and bounded cohomology of discrete groups, respectively. For the more general

setting of locally compact groups, we refer the reader to [Monod 2001].

For every n�0, denote by Cn.�/ the set of real-valued functions on�n. By convention, �0 is a single point,

so C0.�/Š R consists only of constant functions. We define differential operators ı� W C�.�/! C�C1.�/

by ı0 D 0 and, for n� 1,

ın.f /.g1; : : : ; gnC1/

D f .g2; : : : ; gnC1/C

nX

iD1

.�1/if .g1; : : : ; gigiC1; : : : ; gnC1/C .�1/nC1f .g1; : : : ; gn/:

One can check that ı�C1ı� D 0, so .C�.�/; ı�/ is a cochain complex. We denote by Z�.�/ WD ker.ı�/ the

set of cocycles, and by B�.�/ WD im.ı��1/ the set of coboundaries. The quotient H�.�/ WD Z�.�/=B�.�/

is the cohomology of � with trivial real coefficients. We will also call this the ordinary cohomology to

make a clear distinction from the bounded one, which we proceed to define.

Restricting to functions f W �� ! R that are bounded, meaning that their supremum kf k1 is finite, leads

to a subcomplex .C�

b
.�/; ı�/. We denote by Z�

b
.�/ the bounded cocycles and by B�

b
.�/ the bounded

coboundaries. The vector space H�

b
.�/ WD Z�

b
.�/=B�

b
.�/ is the bounded cohomology of � with trivial

real coefficients.

The inclusion of the bounded cochain complex into the ordinary one induces a linear map at the level of

cohomology, called the comparison map:

c� W H�

b.�/! H�.�/:

This map is in general neither injective nor surjective. In degree 2, the kernel admits a description in

terms of quasimorphisms:

Proposition 3.1 [Calegari 2009b, Theorem 2.50] Let Q.�/ denote the space of quasimorphisms on �

up to bounded distance , and Z1.�/ the space of homomorphisms � ! R. Then the sequence

0! Z1.�/!Q.�/
Œı1.�/�
�����! H2

b.�/
c2

�! H2.�/

is exact. In particular , c2 is injective if and only if every quasimorphism on � is at a bounded distance

from a homomorphism.

While many applications of bounded cohomology in geometric group theory, eg the study of stable

commutator length, are only concerned with quasimorphisms, in different settings the full knowledge

of H2
b

is of interest. Notable instances include the classification of circle actions [Ghys 1987], and the

construction of manifolds with prescribed simplicial volume [Heuer and Löh 2021; 2023].
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In order to prove Theorem 1.2, that cbV has vanishing second bounded cohomology, it is enough to prove

this for the subgroup yD (from Definition 2.10), thanks to the following fact:

Proposition 3.2 ([Monod 2001, 8.6]; see also [Monod and Popa 2003]) Let n� 0. Let � be a group

and N a normal subgroup such that �=N is amenable. Then the inclusion N ! � induces an injection in

bounded cohomology Hn
b
.�/! Hn

b
.N /. In particular , if Hn

b
.N /D 0 then Hn

b
.�/D 0.

To prove vanishing of H2
b
. yD/, we will use the following notion:

Definition 3.3 Let � be a group. We say that � has commuting conjugates if for every finitely generated

subgroupH �� there exists g 2� such that every element ofH commutes with every element of g�1Hg.

Theorem 3.4 [Fournier-Facio and Lodha 2023] If � is a group with commuting conjugates , then

H2
b
.�/D 0.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 Since cbV = yD Š Z by definition, using Proposition 3.2 it suffices to show that

H2
b
. yD/ D 0. By Theorem 3.4 it suffices to show that yD has commuting conjugates. Let H � yD be a

finitely generated subgroup. By Lemma 2.12 there exists k � 0 such that x�k
0 �H � xk

0 � cbV .1/. Then by

Lemma 2.16 there exists g2 yD such that every element of g�1 �x�k
0 �H �xk

0 �g commutes with every element

of cbV .1/, and so in particular with every element of x�k
0 �H � xk

0 . Thus, every element of the conjugate

of H by xk
0 �g �x�k

0 commutes with every element of H . Finally, note that xk
0 �g �x�k

0 2 yD since g 2 yD,

x0 2 cbV and yD is normal in cbV . This shows that yD has commuting conjugates and concludes the proof.

4 Quasimorphisms on rV and bV

In this section we prove Theorem 1.1. We will first work with the ribbon braided Thompson group

rV and prove that Q.rV / is infinite-dimensional (Proposition 4.2), and then prove that unbounded

quasimorphisms of rV restrict to unbounded quasimorphisms of bV , bF and bP (and indeed, any �

satisfying bP � � � rV ).

First we need to make the connection between rV and MCG.R2 nK/. This was done implicitly in

[Aramayona and Funar 2021; Funar and Kapoudjian 2004], and more explicitly in [Skipper and Wu

2021, Theorem 3.24]. In short, rV is isomorphic to a certain subgroup of mapping classes of S2 nK,

namely those that are “asymptotically quasirigid” with respect to some “rigid structure” involving choices

of “admissible subsurfaces” and only act on half of S2 nK in some sense; see [Skipper and Wu 2021,

Definition 3.7] for all the details. We can view this as describing certain mapping classes of D2 nK that

do not require the boundary of D2 to be fixed, but rather allow it to be half-twisted. For an example

providing the intuition for how to view an element of bV as a mapping class, see Figure 7.
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Figure 7: A visualization of the element ŒT�; ˇ; TC� of bV from Figure 1 as a mapping class on
the disk. The bottom (domain) tree TC describes a decomposition of D2 into the pieces shown,
and the top (range) tree T� describes another such decomposition. The braid ˇ then treats the
four smallest subdisks in the domain as “holes”, with the range viewed similarly, and gives a
homeomorphism from the former to the latter, indicated by the dotted lines. This element does
not involve twists, but one could picture the holes twisting as well, yielding an element of rV .

Now we pass from this picture to MCG.R2 nK/ by viewing D2 nK inside R
2 nK at the expense of

modding out the cyclic subgroup generated by a full twist around the boundary of D2. This is represented

by the element Œ � ; 1B1
.2/; � � of rV , which generates the center Z.rV /, so at this point we have embedded

rV=Z.rV / inside MCG.R2nK/. In particular, we can work in MCG.R2nK/ to prove thatQ.rV=Z.rV //

is infinite-dimensional, from which it will immediately follow that Q.rV / is as well. It is also worth

mentioning that bV \Z.rV /D f1g, so this provides an explicit embedding of bV into MCG.R2 nK/.

4.1 Quasimorphisms on rV

The proof thatQ.rV=Z.rV // is infinite-dimensional closely follows Bavard’s proof [2016, Théorème 4.8]

that Q.MCG.R2 nK// is infinite-dimensional.1 We will especially use the constructions from [Bavard

2016, Section 4.1].

Bavard [2016] constructs the so-called ray graph Xr associated to the surface R
2 nK, and shows that

it is hyperbolic. She proceeds to show that the action of MCG.R2 nK/ on Xr satisfies the hypotheses

of Bestvina and Fujiwara’s main theorem [2002], which implies that Q.MCG.R2 n K// is infinite-

dimensional. To prove our Proposition 4.2, we will show that the action of rV=Z.rV / also satisfies these

properties, and make reference to [Bavard 2016, Section 4] throughout.

We start by reviewing Bavard’s proof for MCG.R2 nK/. By the main theorem of [Bestvina and Fujiwara

2002], it suffices to exhibit elements h1; h2 2 MCG.R2 nK/ with the following properties:

(1) h1 and h2 are hyperbolic elements for the action of MCG.R2 nK/ on Xr , acting by translation on

axes l1 and l2, which are equipped with the orientation of the action of the respective elements.

1This is Theorem 4.9 in the English translation.
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(2) h1 and h2 are independent, meaning that their fixed point sets in @Xr are disjoint.

(3) There exist constants B and C such that for every segment w of l2 longer than C , for every

g 2 MCG.R2 nK/, if the segment g �w is contained in the B–neighborhood of l1, then it is oriented

in the opposite direction.

Identify K with the set f0; 1gN of infinite words � in the alphabet f0; 1g, and for each finite word

w 2 f0; 1g� let K.w/ WD fw� j � 2Kg be the cone corresponding to w. Then define

K0 DK.00/; K1 DK.010/; K2 DK.0110/; : : : ; K1 D f0N1g;

K�1 DK.11/; K�2 DK.101/; K�3 DK.1001/; : : : ; K�1 D f1N0g:

This provides a partition of K into sets Ki for �1 � i � 1, where each Ki for i 2 Z is a clopen set and

each KÛ1 contains one point.

Let us now be more precise about how we would like K to live inside of R
2. Assume that K lies on the

horizontal axis R and is symmetric around 0…K, and thatKi �R<0 for all 0� i �1 andKi �R>0 for all

�1� i��1. Let I �R be a symmetric open neighborhood of 0 that is disjoint fromK. Finally, let C�R
2

be a homeomorphic copy of a circle, formed as the union of a segment in the horizontal axis R containing

all ofK and a semicircle in the upper half-plane. Let � denote the homeomorphism of R
2 that is a half-turn

rotation about the origin, so � stabilizes K, and denote by � the mapping class of � in MCG.R2 nK/.

Theorem 4.1 [Bavard 2016, Théorème 4.8] Let Qt1 be any homeomorphism of R
2 that stabilizes C,

restricts to the identity on I and sends Ki to KiC1 for each i 2 Z. Let t1 2 MCG.R2 nK/ be the class

of Qt1, let t2 WD �t1�
�1, let h1 WD t1t2t1 and let h2 WD �h�1

1 ��1. Then the elements h1 and h2 satisfy

the three properties above , and hence any subgroup of MCG.R2 nK/ containing h1 and h2 has an

infinite-dimensional space of quasimorphisms.

As we have seen, rV maps to MCG.R2nK/with kernelZ.rV /ŠZ. Note that the image in MCG.R2nK/

of the element Œ � ; 1B1
.1/; � � 2 rV , which is a single half-twist on one ribbon, is precisely the mapping

class �.

Proposition 4.2 The space Q.rV / is infinite-dimensional.

Proof We will prove thatQ.rV=Z.rV // is infinite-dimensional, which implies our result. By Theorem 4.1

it suffices to show that the elements h1 and h2 can be realized inside of rV=Z.rV /. Since each of h1

and h2 is obtained as a product of conjugates of t1 by � and since � 2 rV=Z.rV /, it suffices to show that

t1 can be realized inside rV=Z.rV /.

Recall that, in Theorem 4.1, the homeomorphism Qt1 representing t1 can be any homeomorphism of R
2

satisfying

(1) Qt1 stabilizes the topological circle C,

(2) Qt1jI is the identity, and

(3) Qt1.Ki /DKiC1 for each i 2 Z.
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Figure 8: The desired element. Left: a ribbon strand diagram representing this element. Right:
the corresponding mapping class, as in Figure 7. We indicate the circle C with rainbow colors and
labels a–f, to make it clear how the mapping class acts on it. The fixed interval I is red (e).

Note that Qt1 is defined on all of R
2, so the image Qt1.Ki / is well defined, even if what we are interested in

is a class t1 2 MCG.R2 nK/— this is the usual equivocation between punctures and marked points.

Consider the element ŒT1; s
�1
1 s�1

2 .0; 0;�2/; T2� of rV represented as in Figure 8.

With C and I as indicated in the picture, it is clear that up to isotopy C is stabilized (thanks to the third

strand twisting), and that I is fixed pointwise. One can also check that Ki is sent to KiC1 for each i 2 Z.

We conclude that all the criteria are satisfied, and so we are done.

4.2 Quasimorphisms on bV

The final step in the proof of Theorem 1.1 is to show that the quasimorphisms on rV constructed in the

previous subsection restrict to nontrivial quasimorphisms on bV , bF and bP . This will be a consequence

of the following general statement applied to rV and bP , which follows from left exactness of Q; see

[Calegari 2009b, Remark 2.90].

Lemma 4.3 Let � be a group and ƒ� � a normal subgroup , and suppose that Q.�=ƒ/D 0. Then the

restriction Q.�/!Q.ƒ/ is injective.

Proof of Theorem 1.1 Let � be any group such that bP � � � rV , for instance any of the groups

in the statement of the theorem. Note that the quotient rV=bP is uniformly perfect by Lemma 2.7, so

every quasimorphism on rV=bP is bounded [Calegari 2009b, Lemma 2.2.4], ie Q.rV=bP /D 0. Hence

Lemma 4.3 applies, and the restriction Q.rV / ! Q.bP / is injective. Since this map factors through

Q.rV /!Q.�/, this restriction is also injective. We conclude by Proposition 4.2.
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Since every quasimorphism on a uniformly perfect group is bounded [Calegari 2009b, Lemma 2.2.4], an

immediate corollary of Theorem 1.1 is the following:

Corollary 4.4 The group bV is not uniformly perfect.

Of course we also conclude that rV is not uniformly perfect, despite being perfect (Corollary 2.8). Note

that bF is not perfect (it has abelianization Z
4), but it follows from [Zaremsky 2018a] that bF 0 is perfect.

However, we can deduce in the same way:

Corollary 4.5 The group bF 0 is not uniformly perfect.

We should also mention another group fitting between bP and rV and thus having infinite-dimensional

space of quasimorphisms, namely the “braided T ” group from [Witzel 2019]. This is the subgroup of bV

consisting of elements ŒT�; ˇ; TC� such that �.ˇ/ 2 Sn is a cyclic permutation.

Let us discuss restricting quasimorphisms of bV to cbV . If � � MCG.R2 nK/ has a bounded orbit in Xr ,

then the quasimorphisms produced via this action are bounded on � . This is analogous to the behavior

of finite-type mapping class groups, in particular for the braid group [Feller 2022], and was already

noted by Calegari [2009a] for MCG.R2 nK/. We see that in fact this happens for cbV , since it fixes the

isotopy class of the ray going from the rightmost point of the Cantor set to infinity on the right. Thanks

to Theorem 1.2, we can actually prove a stronger version of this statement. Namely, not only are these

quasimorphisms bounded on cbV , but the same is true for every quasimorphism of bV .

Corollary 4.6 For every quasimorphism q of bV , the image of cbV under q is bounded.

Proof Let  D Œ � ; 1B1
.1/; � �. Then viewing rV=Z.rV / as a subgroup of MCG.R2 nK/, we have

 Z.rV /D �. Note that the conjugate  �1 cbV  equals the subgroup of bV consisting of all elements

where the leftmost strand does not braid with anything. Let �0 W  �1 cbV  ! Z be the map sending

 �1g to �1.g/. Since conjugation by  is an isomorphism, Corollary 2.14 implies that the kernel

of �0 equals the derived subgroup . �1 cbV  /0.

Let g 2 cbV , and choose h 2 cbV \ �1 cbV  such that �1.h/D �1.g/ and �0.h/D 0. In particular, h

lies in . �1 cbV  /0 and gh�1 lies in cbV 0. By Corollary 1.3, there exists a scalar � 2 R such that qjcbV
is

at a bounded distance r.q/ from � ��1, where �1 is the abelianization map of cbV (Corollary 2.14). It

follows that
jq.gh�1/j � j� ��1.gh

�1/j C r.q/D r.q/:

We also get jq.h/j � r.q/ by the same argument applied to  �1 cbV  (which is isomorphic to cbV ), up to

taking a larger r.q/. Thus

jq.g/j � jq.gh�1/j C jq.h/j CD.q/� 2r.q/CD.q/:

This shows that qjcbV
is bounded, which concludes the proof.
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Together with Theorem 1.1, this implies that, analogously to Corollary 4.4, there is no uniform-length

factorization for elements of bV in terms of conjugates of elements in cbV . Indeed, if such a factorization

did exist, we could run a similar argument as in the proof of Corollary 4.6, and obtain that every

quasimorphism of bV is bounded.

As one last indication of braided Thompson groups exhibiting unusual bounded cohomological behavior,

consider the short exact sequence 1! cbV \ bP ! cbV ! yV ! 1. By Theorem 1.2 H2
b
.cbV /D 0, and in

fact the proof works using permutations instead of braids, mutatis mutandis, to show that H2
b
. yV /D 0

(also, it is true in general that a quotient of a group with vanishing second bounded cohomology itself

has vanishing second bounded cohomology [Bouarich 1995]). However, by Theorem 1.1 Q.bP / is

infinite-dimensional, and thus so is Q.cbV \ bP / since cbV \ bP surjects onto bP (Lemma 2.5); in

particular, H2
b
.cbV \ bP / is infinite-dimensional.

This gives a concrete example of the failure of a 2-out-of-3 property for vanishing of second bounded

cohomology: if a group � has vanishing second bounded cohomology and a quotient �=N has the

same property, then the kernel N can still have infinite-dimensional second bounded cohomology. For

comparison, if H2
b
.N /D 0, then H2

b
.�/D 0 if and only if H2

b
.�=N/D 0 [Moraschini and Raptis 2023,

Corollary 4.2.2]. The failure of this 2-out-of-3 property was observed in [Fournier-Facio et al. 2023,

Theorem 4.5] for every degree, but this is to our knowledge the first “naturally occurring” example in

degree 2, as well as the first finitely generated one (and even type F1).
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