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Soil Carbon Estimation From Hyperspectral Imagery
With Wavelet Decomposition And Frame Theory
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Abstract—Assessing soil organic carbon (SOC) stocks is crucial
for understanding the carbon sequestration potential of
agroecosystems and mitigating climate change. This study
presents a novel method for assessing SOC and mineral content
at various soil depths in sorghum crops using hyperspectral
remote sensing. Conducted at Planthaven Farms, MO, the
research encompassed 10 genotypes across 30 plots, yielding 180
soil samples from six depth intervals (0-150 c¢cm) for bare soil.
Chemical analyses determined the SOC and mineral levels, which
were then compared with spectral data from HySpex indoor
sensors. We utilized time-frequency analysis methods, including
Discrete Wavelet Transformation (DWT), Continuous Wavelet
Transformation (CWT), and Frame transformation along with
traditional spectral transformations, specifically Fractional
Derivatives and Continuum Removal. Analysis revealed the
shortwave infrared (SWIR) region, particularly the 1800-2000
nm range, as exhibiting the strongest correlations with SOC
content (exceeding 0.8). The visible near-infrared (VNIR) region
also provided valuable insights. Models incorporating CWT
achieved high accuracy (Test R2 exceeding 0.9), while Frame
transformation achieved strong accuracy (Test R2 between 0.7-
0.8) with fewer features. The Random Forest Regressor proved
most robust, demonstrating superior accuracy and reduced
overfitting compared to Support Vector Regression, Partial Least
Squares Regression, and Deep Neural Network models. The
models demonstrated the efficacy of hyperspectral data for SOC
estimation, suggesting potential for future applications that
merge this data with above-ground biomass to improve SOC
mapping across larger scales. This research offers a promising
spectral transformation approach for effective carbon
management and sustainable agriculture in a changing climate.

Index Terms—Hyperspectral remote sensing; Soil organic
carbon; Wavelet decomposition; Frame theory; Signal processing
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[. INTRODUCTION

GROECOSYSTEMS, which account for one-third of
the global arable land, are vital in the global carbon
cycle, serving as significant carbon sinks by
sequestering large amounts of organic carbon in the
soil [1]. This process is critical for mitigating climate change
by reducing atmospheric carbon dioxide levels [2]. Soil
Organic Carbon (SOC) is a key component of soil health,
enhancing water retention, nutrient availability, soil
biodiversity, and erosion resistance, thereby supporting
optimal crop productivity. SOC is comprised of carbon found
in living, dead, and decomposing organic materials within the
soil, including plant material, soil organisms, and animal
remains [3]. The role of SOC in improving the physical,
chemical, and biological properties of soil is well documented,
making it essential for fostering optimal crop productivity [4].
Accurate  Accurately quantifying SOC is inherently
challenging due to soil's high spatial variability and the
complexities introduced by differing sampling techniques,
such as variations in depth and analysis increments [5].
Traditional field methods are labor-intensive and primarily
focus on topsoil layers, often overlooking the substantial
carbon stocks in deeper soils, which account for nearly half of
the global SOC reserves [6].
The advent of hyperspectral imaging has significantly
advanced soil analysis by capturing continuous spectra for
each pixel, allowing for the identification of distinct spectral
signatures associated with SOC [7]. In its developmental
stages, hyperspectral imaging was utilized primarily for
identifying minerals, rocks, and soils through handheld
reflectance spectroscopy, with its applications expanding
significantly over time [8]. Despite these advancements, the
application of hyperspectral imaging in depth-sensitive SOC
estimation remains limited. Recent developments in
preprocessing methods, such as Savitzky-Golay derivatives
and wavelet decomposition, have improved SOC prediction
accuracy by enhancing the signal-to-noise ratio and extracting
valuable spectral information [9]. However, these
improvements have not fully addressed the complexities of
SOC distribution across different soil layers.
Recent advancements in Al techniques, such as Spectral GPT,
have rapidly developed and are increasingly applied in
hyperspectral remote sensing for SOC estimation [10].
However, hyperspectral data often suffer from degradation
and variability, necessitating robust models [11]. Integrating
multi-feature fusion approaches, like combining Graph Neural
Networks with CNNs, enhances hyperspectral image
classification [12]. Methods like CNNs with Bandwise-
Independent Convolution and Graph Attention Networks show
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promise for band selection and classification [12]. While these
methods offer future potential, this study utilizes traditional
machine learning to identify key spectral regions for SOC
detection through signal transformation methods. These
foundational insights can be utilized in future studies on a
larger scale, with more diverse soil types and geographical
coverage, potentially integrating advanced Al models for
enhanced prediction accuracy. Furthermore, research
underscores the critical role of precise variable selection in
enhancing the accuracy of SOC estimation models, as variable
selection directly influences model performance by filtering
out irrelevant data [13]. The challenges associated with
transferring Vis-NIR models across different environmental
contexts further emphasize the need for adapting models to the
specific spectral and soil conditions of diverse study areas [14,
15].

Wavelet decomposition and frame theory offer innovative
approaches to address these challenges. Wavelet
decomposition excels in capturing both low and high-
frequency components of hyperspectral signals, facilitating
tasks like feature extraction and denoising, while frame theory
provides a robust framework for processing complex, high-
dimensional datasets [16]. Frame theory, with its foundation in
linear algebra and signal processing, provides a
comprehensive framework for analyzing complex, high-
dimensional datasets, ensuring perfect reconstruction,
stability, redundancy, and efficient, signal-independent linear
inversion procedures [17]. The theoretical principles of frame
theory, which are essential for processing and interpreting
high-dimensional datasets in hyperspectral imagery analysis,
are well articulated and supported by the foundational work of
Kovacevi¢c & Chebira [18]. This attribute is crucial for
analyzing intricate or non-stationary characteristics of
hyperspectral data, thereby enhancing the precision of SOC
estimations [19].

Enhanced SOC quantification methods can improve carbon
management strategies, aiding climate change mitigation
through accurate monitoring of carbon sequestration in
agroecosystems [20]. The study’s findings could influence soil
health and climate change policies, emphasizing the need for
advanced remote sensing technologies for environmental
monitoring [21]. Additionally, the scalability of these
techniques for airborne and spaceborne applications offers
new opportunities for large-scale SOC quantification, critical
for global carbon cycle studies. The versatility of these
methods in various environmental contexts, such as water
management and land use planning, highlights their broad
relevance. By providing detailed SOC assessments across
different soil depths, this research supports innovative soil
management approaches, contributing to the resilience and
sustainability of agricultural systems worldwide [22]. The
objectives of the work presented in this article are to: (1)
Identify spectral regions most sensitive to SOC changes and
the influence of soil depth; (2) Quantify the improvement of
wavelet decomposition and frame theory over traditional
hyperspectral analysis methods; and (3) Develop an optimized
SOC estimation model incorporating wavelet decomposition
and frame theory.
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Fig. 1: Location of the study area and experimental setup. (a) Geographic
location of the study area; (b) Location of the seven test fields; (c¢) Indoor
Hyperspectral Scanner; (d) LECO 832 Analyzer; (¢) Processed soil samples in
tray; (f) GeoProbe machine.

II. DATA

A. Field Data Collection

The field experiment was conducted at Planthaven Farms,
MO, encompassing seven fields strategically positioned near
the Missouri River watershed (Fig. la, b). These fields,
totaling 2.2 hectares, were arranged in a randomized complete
block design. We planted 308 sorghum plots, including 10
select genotypes replicated three times for comprehensive
analysis. Plot dimensions were standardized at 20 ft x 20 ft,
with 8 rows of sorghum per plot. Planting occurred in late
June, and baseline soil samples were collected prior to
planting. Soil samples were collected using a GeoProbe
machine (Fig. 1f) to extract cylindrical cores of 150 cm depth
and 7.6 cm diameter. These cores were stored at temperatures
between 0-4 degrees Celsius to preserve their integrity until
further processing.

B. Laboratory Analysis

Soil core processing involved several steps (Fig. 2). The
PVC-encased cores were sectioned using a bandsaw into six
distinct depth intervals: 0-15 cm, 15-30 cm, 30-60 cm, 60-90
cm, 90-120 cm, and 120-150 cm. Two cups of soil were
reserved from each depth in a plastic bag, then dried at 40-45
degrees Celsius until completely devoid of moisture and
subsequently stored for analysis. We selected Ward
Laboratories Inc. (Kearney, NE) for our carbon analysis needs.
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Fig. 2: Soil Sample Processing workflow.
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C. Hyperspectral Imagery

To complement soil carbon analysis, we utilized advanced
indoor hyperspectral scanning of dried soil samples using the
HySpex sensor system, which captures both visible and near-
infrared (VNIR) and short-wave infrared (SWIR) regions. The
VNIR sensor covers 400-1000 nm across 300 bands with 0.03
mm/pixel resolution, while the SWIR sensor spans 960-2500
nm across 362 bands at 0.15 mm/pixel. Custom close-up
lenses were used to maintain a 30 cm working distance, and
the setup included vertical sensor mounting with halogen
lamps at 45-degree angles to minimize noise. A 50% zenith
white reflectance panel corrected the raw data, and the
HySpex RAD module facilitated radiometric calibration,
converting raw values into absolute radiance(W/sr-nm-m?)
[23]. Pre-processed samples were organized in 24-cell assay
plates, with each row representing six soil depths from a plot
for systematic scanning. Figures 3a and 3b illustrate the mean
and variability of the samples and the spectra's relationship
with SOC content, while Figure 4 shows the decline in SOC
with increasing depth. Table 1 details the dataset's central
tendency and spread.
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Fig. 3: Exploratory results, (a) Mean, 1 and 2 standard deviations of the
sample spectra (n=180); (b) Reflectance spectra for soils with varying SOC
content.
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Fig. 5: Overall workflow of the data preparation to modelling pipeline.

Table 1: Descriptive statistics of SOC Samples (in %)

Depth Sample

. Min Max Mean SD CV (%)

(cm) Size
0-15 0.582 1.273 0.866 0.152 17.53
15-30 0.368 0.680 0.551 0.089 16.16
30-60 30 0.330 0.458 0.394 0.034 8.786
60-90 0.283 0.453 0.346 0.038 11.14
90-120 0.214 0.480 0.275 0.055 20.32
120-150 0.166 0.443 0.257 0.057 22.32

III. METHODS
A. Workflow

The workflow is visualized in Figure 5.

B. Spectral Transformation

1) Wavelet Transformation

In our study, we employed both discrete and continuous
wavelet transformations to analyze the spectral data. Although
wavelet transform has limitations in characterizing local time-
domain features, it is effective for decomposing signals into
frequency components, which is essential for analyzing
spectral features related to SOC. Despite the complexities of
hyperspectral data, the wavelet transform's balance of time and
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frequency resolution made it a suitable and practical tool for
our objectives. Discrete Wavelet Transformation (DWT)
decomposes signals into wavelet coefficients at various scales
and positions, providing insights into the signal's frequency
composition by recursively filtering the spectrum with high-
pass and low-pass filters derived from the selected wavelet
function [24]. This process yields detail coefficients
representing high-frequency details and approximation
coefficients representing the low-frequency trend within the
spectrum [25]. On the other hand, Continuous Wavelet
Transformation (CWT) offers a comprehensive analysis of
hyperspectral data, capturing both broad and localized spectral
features that indicate variations in soil organic carbon content.
CWT is favored for its ability to provide a continuous
spectrum of scales for feature extraction, enhancing estimation
capabilities in soil properties an [26]. To address the
sensitivity of wavelet packet transformation to noise,
hyperspectral imaging was conducted in a controlled indoor
environment using a specialized sensor, minimizing
atmospheric noise and ensuring clean, accurate data. Basic
denoising techniques were also applied during pre-processing
to further enhance data quality. A Python package named
“PyWavelets” was used to transform the spectral data [27].
We selected wavelet basis functions by testing several
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common types and referencing previous studies to ensure they
effectively captured the spectral characteristics of soil. In our
study, we employ the following mother wavelets:

Biorthogonal Wavelet (bior 1.3): The Biorthogonal 1.3
wavelet ("biorl.3") is chosen for its precise symmetry and
additional vanishing moments, which are critical for accurate
feature extraction in hyperspectral data analysis [28]. Its
robust edge-preserving capability ensures the integrity of
nuanced spectral variations, enhancing the accuracy of SOC
estimation by effectively isolating both approximation and
detail coefficients. The transformation can be expressed as
equations 1 and 2.

Aln] = X by - x[2n — k] (D
D[n] = Xk g - x[2n — k] 2

Where, A[n] are the approximation coefficients, D[n] are
the detail coefficients, h;, are the low-pass decomposition
filter coefficients, g, are the high-pass decomposition filter
coefficients, x[n] is the input signal.

Daubechies Wavelet (db2): Daubechies wavelets,
particularly "db2," are valued for their compact support and
significant vanishing moments, which are essential for
processing complex signals like hyperspectral data [29]. The
"db2"  wavelet effectively captures sharp  spectral
discontinuities, making it ideal for SOC estimation by
decomposing signals into approximation and detail
components, thereby enhancing the detection of key spectral
signatures related to soil organic carbon [30]. The
transformation can be expressed as equations 3 and 4.

An] = Xi hf®? - x[2n — k] (€))
D[n] = X gi** - x[2n — k] “

Where, A[n] are the approximation coefficients; D[n] are
the detail coefficients; h¥’? are the low-pass decomposition
filter coefficients; g@P? are the high-pass decomposition filter

coefficients; x[n] is the input signal.

Morlet Wavelet (morl): The Morlet wavelet, characterized
by a cosine wave modulated by a Gaussian envelope [31], is
especially effective for identifying spectral features that vary
gradually across different frequencies [32]. This wavelet is
well-suited for hyperspectral data analysis due to its ability to
balance time and frequency resolution, making it ideal for
detecting subtle changes in soil properties reflected in the
spectral signatures. This decomposition can be expressed as
equation 5.

Y(t) = exp_g cos (5t) &)

Where, Y (t) represents the wavelet function, t is the time
or position parameter, exp represents the base of the natural
logarithm.

Complex Morlet Wavelets (cmor 1.5-0.5): The Complex
Morlet wavelet, defined by its adjustable bandwidth and center
frequency, is crucial for spectral analysis in soil carbon
estimation [33]. The bandwidth controls frequency resolution
and feature localization, while the center frequency targets
specific soil-related frequencies, optimizing spectral feature
detection [34]. The center frequency parameter allows for
tuning the wavelet to target frequencies associated with soil
characteristics, enhancing the detection of relevant spectral
features [35]. Proper tuning of these parameters balances
spectral detail with spatial precision, making the Complex
Morlet wavelet a powerful tool for accurately extracting and

analyzing soil carbon spectral information.  This
decomposition can be expressed as equation 6.
__ Y zinfit,—t?/fp
t) = e“tcte 6

Where, Y (t) represents the wavelet function; f;, denotes the
bandwidth parameter.; f_ is the center frequency.; t is the time
parameter.

Mexican Hat Wavelet (mexh): The Mexican Hat wavelet,
or the Ricker wavelet, is a second derivative of a Gaussian
function [36], producing a waveform that is adept at
highlighting rapid changes in the signal [37]. Its shape makes
it particularly useful for detecting inflection points and
boundaries within the spectral data [38], which can signify
transitions between different soil constituents or layers. This
decomposition can be expressed as equation 7.

t2
Y(©) = rzexp 7 (1 - 19 @)
Where, Y (t) represents the wavelet function, t is a non-
dimensional time parameter, exp represents the base of the
natural logarithm.
We used the standard settings of PyWavelets for signal
decomposition, which effectively handled energy distribution
during wavelet packet transformation.

2) Fractional Derivatives

Fractional derivatives, extending differentiation to non-
integer orders, offer a powerful tool for enhancing feature
extraction in hyperspectral imagery analysis for soil carbon
estimation [39]. By emphasizing subtle spectral changes,
fractional derivatives highlight variations in soil properties
across spectral bands, improving SOC estimation accuracy.
The derivative order controls signal smoothness, allowing
adjustment of sensitivity to specific spectral features [40]. In
this study, we employ the Grunwald-Letnikov (G-L) definition
due to its straightforward coefficients [41]. The G-L definition
is expressed as equation 8.

.1 (t-a)/h T(a+1)
d*f () =lim 2 ¥o" D" e/ —mh) (®)
Where, «a is the order; h is the step size; t is the upper limit

of fractional derivatives; a is the lower limit of fractional
derivatives; I" is the gamma function.
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3) Continuum Removal

Continuum removal in spectral analysis normalizes the
spectrum against a convex hull-based continuum curve,
isolating absorption features critical for identifying soil
properties linked to organic carbon [42]. By interpolating
between reflectance maxima, the technique emphasizes the
depth and shape of absorption features, enhancing the
accuracy and comparability of spectral data across different
samples by mitigating effects like lighting variations [43].
This transformation can be expressed as equation 9.

R(A
R =530 ©)

Where, R..(4) is the continuum-removed reflectance at
wavelength A; R(A) is the original reflectance at wavelength
A; C(A) is the continuum curve at wavelength 1 obtained by
interpolating the reflectance values at the local maxima.

4) Frame Theory Applications

Frame theory offers a mathematically rich and flexible
framework for signal analysis, extending the capabilities of
traditional basis-oriented approaches [44]. A frame for a
Hilbert space is a collection of vectors that satisfy a specific
frame condition, allowing for redundancy and enhanced
representational power [45]. For our study, we employ Gabor
frames due to their suitability for pinpointing localized
changes within signals [46]. A Gabor system in L2(R) has the
form {e2™MP* g(x — na)}ynez for some parameters a, b > 0
and for some function g € L?(R). Using the translation
operators and the modulation operators we can denote a Gabor
system by {gm,n} = {Mp,pThag} [47]. This construction
results in frame elements that are well-localized in both the
time and frequency domains. The core of a Gabor function is
defined as equation 10 [48].

g(t) = e ™’ cos 2nwt) (10)

Where, t represents a time point, w is the frequency of the
oscillation within the Gabor function, and § is the bandwidth
of the Gabor function, determining its width. To further
enhance the ability to capture subtle spectral nuances, we
adopt an adaptive bandwidth strategy [49]. The bandwidth of
each Gabor function is dynamically adjusted based on its
frequency, as expressed in equation 11.

B(®, Wiy Wmax) = LO+x x In (1425280 ) (1)

max~®min

Where, w denotes the frequency, K is the scaling factor and
B is the bandwidth parameter. Compositional variations in
soil, reflective of differing SOC content, manifest as localized
features across the spectrum [50]. The adaptive Gabor frame
enables the extraction of these features with the precision
necessary for accurate SOC estimation. Higher frequencies
often necessitate a broader bandwidth to accurately represent
rapid oscillations within the signal. In contrast, lower
frequencies can be effectively analyzed with a narrower
bandwidth [51]. Our simplified Gabor frame construction

focuses on this frequency-dependent modulation as expressed
in equation 12.

Go(£) = e @ o5 (2nwt) (12)
Where, w denotes the frequency, g,,(t) represents a single
frame element indexed by frequency, and B(w) is the
bandwidth of a Gabor element, calculated based on its
frequency using the adaptive bandwidth function. By tailoring
the analysis to the spectral characteristics in this manner, we
achieve a representation exceptionally sensitive to the subtle
shifts in the soil spectra, directly correlated with SOC
variations. Frame theoretic analysis was performed to extract
the spectral characteristics encoded within the adaptive Gabor
frame. For a fixed vector g € L*(R) and a, b > 0, the
associated Gabor frame or Weyl-Heisenberg frame G(a, b, g)
is a sequence {gy, ,} for which there exist two constants 0 < 4
< B < o such that the frame inequality is satisfied [52]. This is
expressed om equation 13,
AN S nez f) Gmn) <BIAI? forall FELYR)  (13)
An analysis operator for a Gabor frame is a linear map
defined as Ty which takes £ to {{f, gm_n)}mn and a synthesis

operator T; which is the adjoint of the analysis operator, takes
elements {cp,n} € ((Z) t0 Ymnez Cmn Gmn- The Gabor
frame operator S; = Ty T, is defined by equation 14,

ng: Zm,nEZ (fx gm,n)gm,n (14)
This process mathematically decomposes the soil spectrum

f into a combination of the frame elements ¢; as expressed in
equation 15 [53],

Sf = Yier ([P0 (15)
Where the S is the frame operator, and frame coefficient
f,¢; quantify how strongly the spectrum aligns with each
frame element. In Python, we defined custom functions to
construct individual Gabor functions and assemble the
complete Gabor frame. To dynamically adjust the bandwidth
of each Gabor function based on its frequency, the adaptive
bandwidth strategy was incorporated. Frame analysis is
performed using NumPy’s [54] matrix-vector multiplication
capabilities, projecting the spectral data onto the adaptive
Gabor frame.

C. Modelling

In this study an automated modeling pipeline (visualized in
Figure 5) was deployed to apply machine learning regression
techniques across spectrally transformed datasets for the
assessment of SOC. These models are: Random Forest
Regressor (RFR), Support Vector Regression (SVR), Partial
Least Squares Regression (PLSR), and Deep Neural Network
Regression (DNN), for their application in SOC estimation
from spectral data. The implementation of these models was
facilitated by the Scikit-learn package in python [55]. All
spectral features were included in the model inputs, and
Pearson Correlation Coefficient (PCC) analysis was
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Fig. 6: Transformation of soil reflectance spectra with increasing fractional
derivative orders (0.2 to 2.0 at 0.2 intervals).

2500
0.8
2250
0.7
2000
O’GE
£ 1750 As
= 05%
z Ko
‘é, 1500 g
Q 040
g c
§ 1250 g
0.3 g
1000
0.2
750
0.1
500

1500 1750
Wavelength (nm)

500 750 1000 1250 2000 2250 2500

Fig. 7: Heat map of absolute value of Pearson’s correlation coefficient (PCC)
between NDSI and SOC values. The green ‘+’ symbols indicate the NDSI
with highest PCC in each region. The black contour lines indicate PCC from
0.75 to 0.8 while the white contour lines indicate PCC above 0.8.

performed to identify the most relevant spectral regions
related to SOC, which provided a basis for understanding the
spectral regions affecting SOC rather than refining the models'
inputs. Hyperparameter tuning for the models, including RFR,
SVR, and PLSR was conducted using Scikit-learn [55] and
grid search functionality, while DNN tuning was facilitated by
the Hyperband package [56]. A 10-fold cross-validation
process was integrated within the hyperparameter tuning phase
for all models.
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Soil Organic Carbon (SOC). Correlations outside dashed lines are significant
(p<0.01).

IV. RESULTS

A. Spectral Sensitivity and Feature Importance

Fractional derivative analysis significantly transformed soil
reflectance spectra, revealing subtle variations indicative of
soil carbon content (Fig. 6). As derivative orders increased,
more pronounced spectral peaks and troughs emerged, with
orders 0.4 and 1.6 (Fig. 6¢, 61) showing significant differences
in maximum and minimum derivative values, suggesting
increased sensitivity to spectral features linked to soil carbon.
Normalized Difference Spectral Indices (NDSI) analysis
highlighted strong correlations between soil organic carbon
(SOC) and specific spectral regions within the SWIR and
VNIR bands (Fig. 7). The SWIR region showed the highest
correlations, particularly around 1900-2100 nm and 2200-
2400 nm, while the VNIR region exhibited a significant
correlation band around 800-900 nm.

Feature importance analysis (Fig. 8 and Fig. 9) further
underscored the significance of these spectral ranges. PCC
Scores (Fig. 8) indicated that certain transformations,
especially CWT-mexh, emphasized critical regions in both
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Fig. 10: Scatter plot showing the actual vs predicted SOC for each of the pipelines. The first character (A-J) indicates the spectral transformation used and the

second character (1-4) indicates the ML model for the estimation.

VNIR and SWIR bands. In Fig. 9, the Feature Importance
subplot revealed significant concentrations of important
features around 1300-1500 nm, 1830-1950 nm, and 2150-2300
nm, primarily within the SWIR region. The Variable
Importance in Projection (VIP) subplot highlighted a broader
range of important features, spanning both VNIR (400-1000
nm) and SWIR regions. The Feature Permutation Importance
(FPI) subplot displayed fewer bands of high importance but
consistently identified the 1850-2000 nm region as significant
across all spectra. Overall, the 1850-2000 nm region within

the SWIR demonstrated notable importance across all feature
importance methods and spectral transformations.

B. Model Results for SOC Estimation

Model performance varied significantly depending on the
modeling algorithm and spectral transformation (Fig. 10).
RFR models consistently outperformed others, particularly
with CWT-mexh, CWT-cmor, FD-0.4, and DWT-biorl.3,
achieving test R? values of 0.8-0.92 and RMSE between 0.07-
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Fig. 11: Key spectral regions based on the correlation between soil organic
carbon and the spectra. Dashed lines indicate significance at p < 0.01.

0.11. These transformations demonstrated strong potential for
SOC estimation, though some models, especially RFR and
PLSR, showed overfitting. PLSR models performed well, with
test R? up to 0.93, while SVR results were more variable.
DNN models, although better than SVR with unmodified
spectra, generally performed similarly or slightly worse with
transformed data. Transformations like CWT-mexh, with a
high density of significant features, were linked to better
model robustness, whereas GFT-Adaptive, with fewer
important features, led to more frequent overfitting.

V. DISCUSSION

A. Key Spectral Regions for SOC Estimation

Pearson's Correlation Coefficient analysis identified several
key spectral regions with significant correlations to SOC
content across the VNIR and SWIR spectra (Fig. 11). In the
VNIR, positive correlations in the 490-520 nm range,
influenced by humic substances, and negative correlations in
the 595-685 nm, 750-770 nm, and 830-860 nm bands, related
to iron oxides and moisture interactions, were observed. The
SWIR revealed robust SOC-sensitive regions, notably at 1870-
1995 nm and 2160-2250 nm, linked to O-H and C-H bonds in
organic matter [57]. Negative correlations in bands like 1260-
1340 nm and 1600-1700 nm suggest indirect SOC reflections
through water and clay minerals, with the 2200-2400 nm
range also showing sensitivity to organic molecules [58]. The
consistent identification of these regions across both GFT-
Adaptive and CWT-mexh transformations underscores their
robustness as SOC indicators.

Further analysis emphasized the significance of specific
spectral regions for SOC estimation across various
transformation methods (Fig. 12). DWT methods highlighted
the NIR region, particularly around 910-912 nm, while NT-
CR and CWT techniques underscored the importance of the
SWIR, especially between 1865-2382 nm. Fractional
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Fig. 13: Distribution of important features for estimating SOC in the VNIR-
SWIR spectra.

derivatives revealed sensitivity across both VNIR and SWIR,
with notable correlations from 400-800 nm and 2200-2400
nm. GFT-Adaptive pinpointed unique wavelengths, such as
1296 nm and 1980 nm, suggesting the potential of subtle
spectral features for SOC analysis, with further investigation
warranted to understand these findings.

Overall, feature importance analysis (Fig. 13) demonstrated
that significant SOC-related features were predominantly
located in the SWIR region (67%), particularly in the 1800-
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Fig. 14 Evaluation of models and spectral transformations for SOC prediction. (a-d) Training R? scores and (e-h) test R? scores for RFR, SVR, PLSR, and DNN

models, respectively.

2000 nm range, aligning with known absorption features
linked to organic matter, moisture, and clay minerals [59]. The
VNIR also contributed essential features, particularly in the
900-1000 nm and 600-700 nm ranges. This comprehensive
analysis reaffirms the critical role of both VNIR and SWIR
regions in SOC estimation and highlights underexplored
spectral variations that could advance SOC characterization.

C. Model Performance Analysis

Model performance across RFR, SVR, PLSR, and DNN
algorithms (Fig. 14) revealed that RFR consistently
outperformed others, achieving high R? scores in both training
and testing, with minimal overfitting. SVR and DNN models
often showed larger gaps between training and testing R?
scores, indicating higher overfitting, particularly with DWT-
db2 and FD-1.6 transformations. PLSR exhibited moderate
performance, with R? scores ranging from 0.6 to 0.78 and less
overfitting. =~ CWT-mexh, FD, and  GFT-Adaptive
transformations significantly improved model performance,
with CWT-mexh delivering the highest test R* scores across
all models (up to 0.95 with SVR). GFT-Adaptive, despite
identifying fewer significant features, consistently achieved
test R? scores above 0.7 across all algorithms, demonstrating
its efficiency and potential in scenarios with limited spectral
resolution, making it valuable for SOC prediction with fewer
spectral bands.

1.0 0.4 05 0.6 0.7 08 0.9

1.0 0.4 0.5 0.6 0.7 08 0.9 1.0

VI. CONCLUSION

This study advances methodologies for SOC estimation by
integrating hyperspectral imaging with signal processing
techniques. Notably, CWT-mexh models achieved R? scores
up to 0.95, with the RFR outperforming SVR, PLSR, and
DNN models in both accuracy and reduced overfitting. Key
findings include:

1) The SWIR region, especially 1800-2000 nm, shows the
strongest correlation with SOC content (above 0.8).

2) CWT (Mexican Hat and Complex Morlet), Fractional
Derivatives (Order 0.4 and 1.6), and Frame
Transformation methods significantly improve SOC
prediction accuracy.

3) Random Forest Regressor, paired with selected spectral
transformations, offers the most accurate and robust
SOC estimation framework.

4) The Frame Transformation method's success with
fewer features suggests its potential where spectral
resolution is limited, while CWT (Mexh) excels with
high spectral resolution.

5) Consistent spectral regions (1800-2000 nm, 900-1000
nm, and weaker correlations in 400-700 nm) warrant
further investigation regarding specific SOC
constituents.

This study primarily focused on lab-based spectroscopy and
did not address depth-sensitive analysis. Future research
should explore spectral responses across soil depths,
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scalability for airborne and spaceborne platforms, and
assessments across diverse soil types to validate the robustness
and generalizability of the findings. Additionally, integrating
GFT-Adaptive with other spectral methods may further
enhance SOC prediction accuracy.
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