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Abstract—Assessing soil organic carbon (SOC) stocks is crucial 

for understanding the carbon sequestration potential of 

agroecosystems and mitigating climate change. This study 

presents a novel method for assessing SOC and mineral content 

at various soil depths in sorghum crops using hyperspectral 

remote sensing. Conducted at Planthaven Farms, MO, the 

research encompassed 10 genotypes across 30 plots, yielding 180 

soil samples from six depth intervals (0-150 cm) for bare soil. 

Chemical analyses determined the SOC and mineral levels, which 

were then compared with spectral data from HySpex indoor 

sensors. We utilized time-frequency analysis methods, including 

Discrete Wavelet Transformation (DWT), Continuous Wavelet 

Transformation (CWT), and Frame transformation along with 

traditional spectral transformations, specifically Fractional 

Derivatives and Continuum Removal. Analysis revealed the 

shortwave infrared (SWIR) region, particularly the 1800-2000 

nm range, as exhibiting the strongest correlations with SOC 

content (exceeding 0.8). The visible near-infrared (VNIR) region 

also provided valuable insights. Models incorporating CWT 

achieved high accuracy (Test R2 exceeding 0.9), while Frame 

transformation achieved strong accuracy (Test R2 between 0.7-

0.8) with fewer features. The Random Forest Regressor proved 

most robust, demonstrating superior accuracy and reduced 

overfitting compared to Support Vector Regression, Partial Least 

Squares Regression, and Deep Neural Network models. The 

models demonstrated the efficacy of hyperspectral data for SOC 

estimation, suggesting potential for future applications that 

merge this data with above-ground biomass to improve SOC 

mapping across larger scales. This research offers a promising 

spectral transformation approach for effective carbon 

management and sustainable agriculture in a changing climate. 

 
Index Terms—Hyperspectral remote sensing; Soil organic 

carbon; Wavelet decomposition; Frame theory; Signal processing 
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I. INTRODUCTION 

GROECOSYSTEMS, which account for one-third of 

the global arable land, are vital in the global carbon 

cycle, serving as significant carbon sinks by 

sequestering large amounts of organic carbon in the 

soil [1]. This process is critical for mitigating climate change 

by reducing atmospheric carbon dioxide levels [2]. Soil 

Organic Carbon (SOC) is a key component of soil health, 

enhancing water retention, nutrient availability, soil 

biodiversity, and erosion resistance, thereby supporting 

optimal crop productivity. SOC is comprised of carbon found 

in living, dead, and decomposing organic materials within the 

soil, including plant material, soil organisms, and animal 

remains [3]. The role of SOC in improving the physical, 

chemical, and biological properties of soil is well documented, 

making it essential for fostering optimal crop productivity [4].  

Accurate Accurately quantifying SOC is inherently 

challenging due to soil's high spatial variability and the 

complexities introduced by differing sampling techniques, 

such as variations in depth and analysis increments [5]. 

Traditional field methods are labor-intensive and primarily 

focus on topsoil layers, often overlooking the substantial 

carbon stocks in deeper soils, which account for nearly half of 

the global SOC reserves [6]. 

The advent of hyperspectral imaging has significantly 

advanced soil analysis by capturing continuous spectra for 

each pixel, allowing for the identification of distinct spectral 

signatures associated with SOC [7]. In its developmental 

stages, hyperspectral imaging was utilized primarily for 

identifying minerals, rocks, and soils through handheld 

reflectance spectroscopy, with its applications expanding 

significantly over time [8]. Despite these advancements, the 

application of hyperspectral imaging in depth-sensitive SOC 

estimation remains limited. Recent developments in 

preprocessing methods, such as Savitzky-Golay derivatives 

and wavelet decomposition, have improved SOC prediction 

accuracy by enhancing the signal-to-noise ratio and extracting 

valuable spectral information [9]. However, these 

improvements have not fully addressed the complexities of 

SOC distribution across different soil layers. 

Recent advancements in AI techniques, such as SpectralGPT, 

have rapidly developed and are increasingly applied in 

hyperspectral remote sensing for SOC estimation [10]. 

However, hyperspectral data often suffer from degradation 

and variability, necessitating robust models [11]. Integrating 

multi-feature fusion approaches, like combining Graph Neural 

Networks with CNNs, enhances hyperspectral image 

classification [12]. Methods like CNNs with Bandwise-

Independent Convolution and Graph Attention Networks show 
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promise for band selection and classification [12]. While these 

methods offer future potential, this study utilizes traditional 

machine learning to identify key spectral regions for SOC 

detection through signal transformation methods. These 

foundational insights can be utilized in future studies on a 

larger scale, with more diverse soil types and geographical 

coverage, potentially integrating advanced AI models for 

enhanced prediction accuracy. Furthermore, research 

underscores the critical role of precise variable selection in 

enhancing the accuracy of SOC estimation models, as variable 

selection directly influences model performance by filtering 

out irrelevant data [13]. The challenges associated with 

transferring Vis-NIR models across different environmental 

contexts further emphasize the need for adapting models to the 

specific spectral and soil conditions of diverse study areas [14, 

15]. 

Wavelet decomposition and frame theory offer innovative 

approaches to address these challenges. Wavelet 

decomposition excels in capturing both low and high-

frequency components of hyperspectral signals, facilitating 

tasks like feature extraction and denoising, while frame theory 

provides a robust framework for processing complex, high-

dimensional datasets [16]. Frame theory, with its foundation in 

linear algebra and signal processing, provides a 

comprehensive framework for analyzing complex, high-

dimensional datasets, ensuring perfect reconstruction, 

stability, redundancy, and efficient, signal-independent linear 

inversion procedures [17]. The theoretical principles of frame 

theory, which are essential for processing and interpreting 

high-dimensional datasets in hyperspectral imagery analysis, 

are well articulated and supported by the foundational work of 

Kovačević & Chebira [18]. This attribute is crucial for 

analyzing intricate or non-stationary characteristics of 

hyperspectral data, thereby enhancing the precision of SOC 

estimations [19].  

Enhanced SOC quantification methods can improve carbon 

management strategies, aiding climate change mitigation 

through accurate monitoring of carbon sequestration in 

agroecosystems [20]. The study’s findings could influence soil 

health and climate change policies, emphasizing the need for 

advanced remote sensing technologies for environmental 

monitoring [21]. Additionally, the scalability of these 

techniques for airborne and spaceborne applications offers 

new opportunities for large-scale SOC quantification, critical 

for global carbon cycle studies. The versatility of these 

methods in various environmental contexts, such as water 

management and land use planning, highlights their broad 

relevance. By providing detailed SOC assessments across 

different soil depths, this research supports innovative soil 

management approaches, contributing to the resilience and 

sustainability of agricultural systems worldwide [22]. The 

objectives of the work presented in this article are to: (1) 

Identify spectral regions most sensitive to SOC changes and 

the influence of soil depth; (2) Quantify the improvement of 

wavelet decomposition and frame theory over traditional 

hyperspectral analysis methods; and (3) Develop an optimized 

SOC estimation model incorporating wavelet decomposition 

and frame theory.  

 

 
Fig. 1: Location of the study area and experimental setup. (a) Geographic 

location of the study area; (b) Location of the seven test fields; (c) Indoor 

Hyperspectral Scanner; (d) LECO 832 Analyzer; (e) Processed soil samples in 
tray; (f) GeoProbe machine.  

II. DATA 

A. Field Data Collection 

The field experiment was conducted at Planthaven Farms, 

MO, encompassing seven fields strategically positioned near 

the Missouri River watershed (Fig. 1a, b). These fields, 

totaling 2.2 hectares, were arranged in a randomized complete 

block design. We planted 308 sorghum plots, including 10 

select genotypes replicated three times for comprehensive 

analysis. Plot dimensions were standardized at 20 ft x 20 ft, 

with 8 rows of sorghum per plot. Planting occurred in late 

June, and baseline soil samples were collected prior to 

planting. Soil samples were collected using a GeoProbe 

machine (Fig. 1f) to extract cylindrical cores of 150 cm depth 

and 7.6 cm diameter. These cores were stored at temperatures 

between 0-4 degrees Celsius to preserve their integrity until 

further processing. 

 

B. Laboratory Analysis 

Soil core processing involved several steps (Fig. 2). The 

PVC-encased cores were sectioned using a bandsaw into six 

distinct depth intervals: 0-15 cm, 15-30 cm, 30-60 cm, 60-90 

cm, 90-120 cm, and 120-150 cm. Two cups of soil were 

reserved from each depth in a plastic bag, then dried at 40-45 

degrees Celsius until completely devoid of moisture and 

subsequently stored for analysis. We selected Ward 

Laboratories Inc. (Kearney, NE) for our carbon analysis needs.  
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Fig. 2: Soil Sample Processing workflow.  

 

Their LECO 832 instrument (Fig. 1d), operating on a 

combustion-based principle, provided precise SOC 

quantification. 

 

C. Hyperspectral Imagery 

To complement soil carbon analysis, we utilized advanced 

indoor hyperspectral scanning of dried soil samples using the 

HySpex sensor system, which captures both visible and near-

infrared (VNIR) and short-wave infrared (SWIR) regions. The 

VNIR sensor covers 400-1000 nm across 300 bands with 0.03 

mm/pixel resolution, while the SWIR sensor spans 960-2500 

nm across 362 bands at 0.15 mm/pixel. Custom close-up 

lenses were used to maintain a 30 cm working distance, and 

the setup included vertical sensor mounting with halogen 

lamps at 45-degree angles to minimize noise. A 50% zenith 

white reflectance panel corrected the raw data, and the 

HySpex RAD module facilitated radiometric calibration, 

converting raw values into absolute radiance(W/sr⋅nm⋅m²) 

[23]. Pre-processed samples were organized in 24-cell assay 

plates, with each row representing six soil depths from a plot 

for systematic scanning. Figures 3a and 3b illustrate the mean 

and variability of the samples and the spectra's relationship 

with SOC content, while Figure 4 shows the decline in SOC 

with increasing depth. Table 1 details the dataset's central 

tendency and spread. 

 

 
Fig. 3: Exploratory results, (a) Mean, 1 and 2 standard deviations of the 

sample spectra (n=180); (b) Reflectance spectra for soils with varying SOC 
content.  

 
Fig. 4: Soil Organic Carbon (SOC) percentage by depth.  
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Table 1: Descriptive statistics of SOC Samples (in %)  

 
Depth 
(cm) 

Sample 
Size 

Min Max Mean SD CV (%) 

0-15 

30 

0.582 1.273 0.866 0.152 17.53 
15-30 0.368 0.680 0.551 0.089 16.16 
30-60 0.330 0.458 0.394 0.034 8.786 
60-90 0.283 0.453 0.346 0.038 11.14 
90-120 0.214 0.480 0.275 0.055 20.32 
120-150 0.166 0.443 0.257 0.057 22.32 

III. METHODS 

A. Workflow 

The workflow is visualized in Figure 5. 

B. Spectral Transformation 

1) Wavelet Transformation 

In our study, we employed both discrete and continuous 

wavelet transformations to analyze the spectral data. Although 

wavelet transform has limitations in characterizing local time-

domain features, it is effective for decomposing signals into 

frequency components, which is essential for analyzing 

spectral features related to SOC. Despite the complexities of 

hyperspectral data, the wavelet transform's balance of time and 

frequency resolution made it a suitable and practical tool for 

our objectives. Discrete Wavelet Transformation (DWT) 

decomposes signals into wavelet coefficients at various scales 

and positions, providing insights into the signal's frequency 

composition by recursively filtering the spectrum with high-

pass and low-pass filters derived from the selected wavelet 

function [24]. This process yields detail coefficients 

representing high-frequency details and approximation 

coefficients representing the low-frequency trend within the 

spectrum [25]. On the other hand, Continuous Wavelet 

Transformation (CWT) offers a comprehensive analysis of 

hyperspectral data, capturing both broad and localized spectral 

features that indicate variations in soil organic carbon content. 

CWT is favored for its ability to provide a continuous 

spectrum of scales for feature extraction, enhancing estimation 

capabilities in soil properties an [26]. To address the 

sensitivity of wavelet packet transformation to noise, 

hyperspectral imaging was conducted in a controlled indoor 

environment using a specialized sensor, minimizing 

atmospheric noise and ensuring clean, accurate data. Basic 

denoising techniques were also applied during pre-processing 

to further enhance data quality. A Python package named 

“PyWavelets” was used to transform the spectral data [27]. 

We selected wavelet basis functions by testing several 

 
Fig. 5: Overall workflow of the data preparation to modelling pipeline.  
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common types and referencing previous studies to ensure they 

effectively captured the spectral characteristics of soil. In our 

study, we employ the following mother wavelets: 

 

Biorthogonal Wavelet (bior 1.3): The Biorthogonal 1.3 

wavelet ("bior1.3") is chosen for its precise symmetry and 

additional vanishing moments, which are critical for accurate 

feature extraction in hyperspectral data analysis [28]. Its 

robust edge-preserving capability ensures the integrity of 

nuanced spectral variations, enhancing the accuracy of SOC 

estimation by effectively isolating both approximation and 

detail coefficients. The transformation can be expressed as 

equations 1 and 2.  

 

𝐴[𝑛] = ∑  𝑘 ℎ𝑘 ⋅ 𝑥[2𝑛 − 𝑘]                       (1) 

 

𝐷[𝑛] = ∑  𝑘 𝑔𝑘 ⋅ 𝑥[2𝑛 − 𝑘]                       (2) 

 

Where, 𝐴[𝑛] are the approximation coefficients, 𝐷[𝑛] are 

the detail coefficients, ℎ𝑘 are the low-pass decomposition 

filter coefficients, 𝑔𝑘 are the high-pass decomposition filter 

coefficients, 𝑥[𝑛] is the input signal. 

 

Daubechies Wavelet (db2): Daubechies wavelets, 

particularly "db2," are valued for their compact support and 

significant vanishing moments, which are essential for 

processing complex signals like hyperspectral data [29]. The 

"db2" wavelet effectively captures sharp spectral 

discontinuities, making it ideal for SOC estimation by 

decomposing signals into approximation and detail 

components, thereby enhancing the detection of key spectral 

signatures related to soil organic carbon [30]. The 

transformation can be expressed as equations 3 and 4. 

 

𝐴[𝑛] = ∑  𝑘 ℎ𝑘
𝑑𝑏2 ⋅ 𝑥[2𝑛 − 𝑘]                    (3) 

 

𝐷[𝑛] = ∑  𝑘 𝑔𝑘
𝑑𝑏2 ⋅ 𝑥[2𝑛 − 𝑘]                    (4) 

 

Where, 𝐴[𝑛] are the approximation coefficients; 𝐷[𝑛] are 

the detail coefficients; ℎ𝑘
𝑑𝑏2 are the low-pass decomposition 

filter coefficients; 𝑔𝑘
𝑑𝑏2 are the high-pass decomposition filter 

coefficients; 𝑥[𝑛] is the input signal. 

 

Morlet Wavelet (morl): The Morlet wavelet, characterized 

by a cosine wave modulated by a Gaussian envelope [31], is 

especially effective for identifying spectral features that vary 

gradually across different frequencies [32]. This wavelet is 

well-suited for hyperspectral data analysis due to its ability to 

balance time and frequency resolution, making it ideal for 

detecting subtle changes in soil properties reflected in the 

spectral signatures. This decomposition can be expressed as 

equation 5. 

𝜓(𝑡) = exp−
𝑡2

2 ⁡ cos⁡(5𝑡)                           (5) 

 

Where, 𝜓(𝑡) represents the wavelet function, 𝑡 is the time 

or position parameter, exp represents the base of the natural 

logarithm. 

 

Complex Morlet Wavelets (cmor 1.5-0.5): The Complex 

Morlet wavelet, defined by its adjustable bandwidth and center 

frequency, is crucial for spectral analysis in soil carbon 

estimation [33]. The bandwidth controls frequency resolution 

and feature localization, while the center frequency targets 

specific soil-related frequencies, optimizing spectral feature 

detection [34]. The center frequency parameter allows for 

tuning the wavelet to target frequencies associated with soil 

characteristics, enhancing the detection of relevant spectral 

features [35]. Proper tuning of these parameters balances 

spectral detail with spatial precision, making the Complex 

Morlet wavelet a powerful tool for accurately extracting and 

analyzing soil carbon spectral information. This 

decomposition can be expressed as equation 6. 

 

𝜓(𝑡) =
1

√𝜋𝑓𝑏
𝑒2𝑖𝜋𝑓𝑐𝑡𝑒−𝑡

2/𝑓𝑏                        (6) 

 

Where, 𝜓(𝑡) represents the wavelet function; 𝑓𝑏 denotes the 

bandwidth parameter.; 𝑓𝑐 is the center frequency.; 𝑡 is the time 

parameter. 

 

Mexican Hat Wavelet (mexh): The Mexican Hat wavelet, 

or the Ricker wavelet, is a second derivative of a Gaussian 

function [36], producing a waveform that is adept at 

highlighting rapid changes in the signal [37]. Its shape makes 

it particularly useful for detecting inflection points and 

boundaries within the spectral data [38], which can signify 

transitions between different soil constituents or layers. This 

decomposition can be expressed as equation 7. 

 

𝜓(𝑡) =
2

√3 √𝜋
4 exp−

𝑡2

2 ⁡(1 − 𝑡2)⁡                  (7) 

 

Where, 𝜓(𝑡) represents the wavelet function, 𝑡 is a non-

dimensional time parameter, exp represents the base of the 

natural logarithm. 

We used the standard settings of PyWavelets for signal 

decomposition, which effectively handled energy distribution 

during wavelet packet transformation. 

 

2) Fractional Derivatives 

Fractional derivatives, extending differentiation to non-

integer orders, offer a powerful tool for enhancing feature 

extraction in hyperspectral imagery analysis for soil carbon 

estimation [39]. By emphasizing subtle spectral changes, 

fractional derivatives highlight variations in soil properties 

across spectral bands, improving SOC estimation accuracy. 

The derivative order controls signal smoothness, allowing 

adjustment of sensitivity to specific spectral features [40]. In 

this study, we employ the Grunwald-Letnikov (G-L) definition 

due to its straightforward coefficients [41]. The G-L definition 

is expressed as equation 8. 

  

𝑑𝛼𝑓(𝑥) = 𝑙𝑖𝑚
ℎ→0

 
1

ℎ𝛼
∑  
(𝑡−𝑎)/ℎ
𝑚=0 (−1)𝑚

Γ(𝛼+1)

𝑚!Γ(𝛼−𝑚+1)
𝑓(𝑥 − 𝑚ℎ)   (8)                                  

Where, 𝛼 is the order; ℎ is the step size; 𝑡 is the upper limit 

of fractional derivatives; 𝑎 is the lower limit of fractional 

derivatives; Γ is the gamma function.  
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3) Continuum Removal 

Continuum removal in spectral analysis normalizes the 

spectrum against a convex hull-based continuum curve, 

isolating absorption features critical for identifying soil 

properties linked to organic carbon [42]. By interpolating 

between reflectance maxima, the technique emphasizes the 

depth and shape of absorption features, enhancing the 

accuracy and comparability of spectral data across different 

samples by mitigating effects like lighting variations [43]. 

This transformation can be expressed as equation 9. 

 

𝑅𝑐𝑟(𝜆) =
𝑅(𝜆)

𝐶(𝜆)
                                 (9)                                                                          

 

Where, 𝑅𝑐𝑟(𝜆) is the continuum-removed reflectance at 

wavelength 𝜆; 𝑅(𝜆) is the original reflectance at wavelength 

𝜆; 𝐶(𝜆) is the continuum curve at wavelength 𝜆 obtained by 

interpolating the reflectance values at the local maxima. 

 

4) Frame Theory Applications 

Frame theory offers a mathematically rich and flexible 

framework for signal analysis, extending the capabilities of 

traditional basis-oriented approaches [44]. A frame for a 

Hilbert space is a collection of vectors that satisfy a specific 

frame condition, allowing for redundancy and enhanced 

representational power [45]. For our study, we employ Gabor 

frames due to their suitability for pinpointing localized 

changes within signals [46]. A Gabor system in L2(ℝ) has the 

form {𝑒2𝜋𝑖𝑚𝑏𝑥𝑔(𝑥⁡ − ⁡𝑛𝑎)}𝑚,𝑛∈ℤ⁡for some parameters a, b > 0 

and for some function 𝑔⁡ ∈ ⁡ 𝐿2(ℝ). Using the translation 

operators and the modulation operators we can denote a Gabor 

system by {𝑔𝑚,𝑛} = ⁡ {𝑀𝑚𝑏𝑇𝑛𝑎𝑔} [47]. This construction 

results in frame elements that are well-localized in both the 

time and frequency domains. The core of a Gabor function is 

defined as equation 10 [48].  

 

𝑔(𝑡) = 𝑒−𝜋𝛽𝑡
2
cos⁡(2𝜋𝜔𝑡)                       (10)                                                                  

 

Where, 𝑡 represents a time point, 𝜔 is the frequency of the 

oscillation within the Gabor function, and 𝛽 is the bandwidth 

of the Gabor function, determining its width. To further 

enhance the ability to capture subtle spectral nuances, we 

adopt an adaptive bandwidth strategy [49]. The bandwidth of 

each Gabor function is dynamically adjusted based on its 

frequency, as expressed in equation 11.  

 

𝛽(𝜔,𝜔𝑚𝑖𝑛 , 𝜔𝑚𝑎𝑥) = 1.0 + ĸ⁡ × 𝑙𝑛⁡ (1 +
𝜔−𝜔𝑚𝑖𝑛

𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛
)        (11)                                       

 

Where, 𝜔 denotes the frequency, ĸ⁡is the scaling factor and 

𝛽 is the bandwidth parameter. Compositional variations in 

soil, reflective of differing SOC content, manifest as localized 

features across the spectrum [50]. The adaptive Gabor frame 

enables the extraction of these features with the precision 

necessary for accurate SOC estimation. Higher frequencies 

often necessitate a broader bandwidth to accurately represent 

rapid oscillations within the signal. In contrast, lower 

frequencies can be effectively analyzed with a narrower 

bandwidth [51]. Our simplified Gabor frame construction 

focuses on this frequency-dependent modulation as expressed 

in equation 12.  

 

𝑔𝜔(𝑡) = 𝑒−𝜋𝛽(𝜔)𝑡
2
cos⁡(2𝜋𝜔𝑡)                 (12)                                                            

 

Where, 𝜔 denotes the frequency, 𝑔𝜔(𝑡) represents a single 

frame element indexed by frequency, and 𝛽(𝜔) is the 

bandwidth of a Gabor element, calculated based on its 

frequency using the adaptive bandwidth function. By tailoring 

the analysis to the spectral characteristics in this manner, we 

achieve a representation exceptionally sensitive to the subtle 

shifts in the soil spectra, directly correlated with SOC 

variations. Frame theoretic analysis was performed to extract 

the spectral characteristics encoded within the adaptive Gabor 

frame. For a fixed vector g ∈ L2(ℝ) and a, b > 0, the 

associated Gabor frame or Weyl-Heisenberg frame G(a, b, g) 

is a sequence {𝑔𝑚,𝑛} for which there exist two constants 0 < A 

< B < ∞ such that the frame inequality is satisfied [52]. This is 

expressed om equation 13,  

 

A∥f∥2 ≤∑ |⟨𝑓, 𝑔𝑚,𝑛⟩|
2

𝑚,𝑛∈ℤ⁡
 ≤ B∥f∥2 for all f ∈ L2(ℝ)          (13) 

 

An analysis operator for a Gabor frame is a linear map 

defined as Tg which takes f to {〈𝑓, 𝑔𝑚,𝑛〉}𝑚,𝑛
 and a synthesis 

operator 𝑇𝑔⁡⁡
∗ ⁡which is the adjoint of the analysis operator, takes 

elements {𝑐𝑚,𝑛} ∈ ℓ2(ℤ) to ∑ 𝑐𝑚,𝑛⁡𝑔𝑚,𝑛𝑚,𝑛∈ℤ⁡ . The Gabor 

frame operator 𝑆𝑔 = 𝑇𝑔⁡⁡
∗ 𝑇𝑔 is defined by equation 14,  

 

Sg f = ∑ ⟨𝑓, 𝑔𝑚,𝑛⟩𝑔𝑚,𝑛𝑚,𝑛∈ℤ⁡                      (14) 

 

This process mathematically decomposes the soil spectrum 

𝑓 into a combination of the frame elements 𝜙𝑖 as expressed in 

equation 15 [53], 

 

𝑆𝑓 = ∑  𝑖∈𝐼 ⟨𝑓, 𝜙𝑖⟩𝜙𝑖                           (15)                                                                  

Where the S is the frame operator, and frame coefficient 

𝑓, 𝜙𝑖 quantify how strongly the spectrum aligns with each 

frame element. In Python, we defined custom functions to 

construct individual Gabor functions and assemble the 

complete Gabor frame. To dynamically adjust the bandwidth 

of each Gabor function based on its frequency, the adaptive 

bandwidth strategy was incorporated. Frame analysis is 

performed using NumPy’s [54] matrix-vector multiplication 

capabilities, projecting the spectral data onto the adaptive 

Gabor frame.  

 

C. Modelling 

In this study an automated modeling pipeline (visualized in 

Figure 5) was deployed to apply machine learning regression 

techniques across spectrally transformed datasets for the 

assessment of SOC. These models are: Random Forest 

Regressor (RFR), Support Vector Regression (SVR), Partial 

Least Squares Regression (PLSR), and Deep Neural Network 

Regression (DNN), for their application in SOC estimation 

from spectral data. The implementation of these models was 

facilitated by the Scikit-learn package in python [55]. All 

spectral features were included in the model inputs, and 

Pearson Correlation Coefficient (PCC) analysis was  
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Fig. 6:  Transformation of soil reflectance spectra with increasing fractional 

derivative orders (0.2 to 2.0 at 0.2 intervals). 

 

 
Fig. 7:  Heat map of absolute value of Pearson’s correlation coefficient (PCC) 

between NDSI and SOC values. The green ‘+’ symbols indicate the NDSI 

with highest PCC in each region. The black contour lines indicate PCC from 
0.75 to 0.8 while the white contour lines indicate PCC above 0.8.  

 

performed to identify the most relevant spectral regions 

related to SOC, which provided a basis for understanding the 

spectral regions affecting SOC rather than refining the models' 

inputs. Hyperparameter tuning for the models, including RFR, 

SVR, and PLSR was conducted using Scikit-learn [55] and 

grid search functionality, while DNN tuning was facilitated by 

the Hyperband package [56]. A 10-fold cross-validation 

process was integrated within the hyperparameter tuning phase 

for all models.  

 
Fig. 8: Pearson's Correlation Coefficients between Transformed Spectra and 
Soil Organic Carbon (SOC). Correlations outside dashed lines are significant 

(p < 0.01). 

IV. RESULTS 

A. Spectral Sensitivity and Feature Importance 

Fractional derivative analysis significantly transformed soil 

reflectance spectra, revealing subtle variations indicative of 

soil carbon content (Fig. 6). As derivative orders increased, 

more pronounced spectral peaks and troughs emerged, with 

orders 0.4 and 1.6 (Fig. 6c, 6i) showing significant differences 

in maximum and minimum derivative values, suggesting 

increased sensitivity to spectral features linked to soil carbon. 

Normalized Difference Spectral Indices (NDSI) analysis 

highlighted strong correlations between soil organic carbon 

(SOC) and specific spectral regions within the SWIR and 

VNIR bands (Fig. 7). The SWIR region showed the highest 

correlations, particularly around 1900-2100 nm and 2200-

2400 nm, while the VNIR region exhibited a significant 

correlation band around 800-900 nm. 

Feature importance analysis (Fig. 8 and Fig. 9) further 

underscored the significance of these spectral ranges. PCC 

Scores (Fig. 8) indicated that certain transformations, 

especially CWT-mexh, emphasized critical regions in both  
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VNIR and SWIR bands. In Fig. 9, the Feature Importance 

subplot revealed significant concentrations of important 

features around 1300-1500 nm, 1830-1950 nm, and 2150-2300 

nm, primarily within the SWIR region. The Variable 

Importance in Projection (VIP) subplot highlighted a broader 

range of important features, spanning both VNIR (400-1000 

nm) and SWIR regions. The Feature Permutation Importance 

(FPI) subplot displayed fewer bands of high importance but 

consistently identified the 1850-2000 nm region as significant 

across all spectra. Overall, the 1850-2000 nm region within 

the SWIR demonstrated notable importance across all feature 

importance methods and spectral transformations. 

 

B. Model Results for SOC Estimation 

Model performance varied significantly depending on the 

modeling algorithm and spectral transformation (Fig. 10). 

RFR models consistently outperformed others, particularly 

with CWT-mexh, CWT-cmor, FD-0.4, and DWT-bior1.3, 

achieving test R² values of 0.8-0.92 and RMSE between 0.07- 

 
Fig. 9: Spectral Feature Importance for SOC Estimation. 

 

 

 
Fig. 10: Scatter plot showing the actual vs predicted SOC for each of the pipelines. The first character (A-J) indicates the spectral transformation used and the 

second character (1-4) indicates the ML model for the estimation. 
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Fig. 11: Key spectral regions based on the correlation between soil organic 
carbon and the spectra. Dashed lines indicate significance at p < 0.01.  

 

0.11. These transformations demonstrated strong potential for 

SOC estimation, though some models, especially RFR and 

PLSR, showed overfitting. PLSR models performed well, with 

test R² up to 0.93, while SVR results were more variable. 

DNN models, although better than SVR with unmodified 

spectra, generally performed similarly or slightly worse with 

transformed data. Transformations like CWT-mexh, with a 

high density of significant features, were linked to better 

model robustness, whereas GFT-Adaptive, with fewer 

important features, led to more frequent overfitting. 

 

V. DISCUSSION 

A. Key Spectral Regions for SOC Estimation 

Pearson's Correlation Coefficient analysis identified several 

key spectral regions with significant correlations to SOC 

content across the VNIR and SWIR spectra (Fig. 11). In the 

VNIR, positive correlations in the 490-520 nm range, 

influenced by humic substances, and negative correlations in 

the 595-685 nm, 750-770 nm, and 830-860 nm bands, related 

to iron oxides and moisture interactions, were observed. The 

SWIR revealed robust SOC-sensitive regions, notably at 1870-

1995 nm and 2160-2250 nm, linked to O-H and C-H bonds in 

organic matter [57]. Negative correlations in bands like 1260-

1340 nm and 1600-1700 nm suggest indirect SOC reflections 

through water and clay minerals, with the 2200-2400 nm 

range also showing sensitivity to organic molecules [58]. The 

consistent identification of these regions across both GFT-

Adaptive and CWT-mexh transformations underscores their 

robustness as SOC indicators. 

Further analysis emphasized the significance of specific 

spectral regions for SOC estimation across various 

transformation methods (Fig. 12). DWT methods highlighted 

the NIR region, particularly around 910-912 nm, while NT-

CR and CWT techniques underscored the importance of the 

SWIR, especially between 1865-2382 nm. Fractional  

 
Fig. 12: Feature Importances across all models and transformations 
techniques. Markers indicate significant features based on Pearson Correlation 

Coefficient (PCC) and SHAP values. 

 

 
Fig. 13: Distribution of important features for estimating SOC in the VNIR-

SWIR spectra. 

 

derivatives revealed sensitivity across both VNIR and SWIR, 

with notable correlations from 400-800 nm and 2200-2400 

nm. GFT-Adaptive pinpointed unique wavelengths, such as 

1296 nm and 1980 nm, suggesting the potential of subtle 

spectral features for SOC analysis, with further investigation 

warranted to understand these findings. 

Overall, feature importance analysis (Fig. 13) demonstrated 

that significant SOC-related features were predominantly 

located in the SWIR region (67%), particularly in the 1800- 
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2000 nm range, aligning with known absorption features 

linked to organic matter, moisture, and clay minerals [59]. The 

VNIR also contributed essential features, particularly in the 

900-1000 nm and 600-700 nm ranges. This comprehensive 

analysis reaffirms the critical role of both VNIR and SWIR 

regions in SOC estimation and highlights underexplored 

spectral variations that could advance SOC characterization. 

 

C. Model Performance Analysis 

Model performance across RFR, SVR, PLSR, and DNN 

algorithms (Fig. 14) revealed that RFR consistently 

outperformed others, achieving high R² scores in both training 

and testing, with minimal overfitting. SVR and DNN models 

often showed larger gaps between training and testing R² 

scores, indicating higher overfitting, particularly with DWT-

db2 and FD-1.6 transformations. PLSR exhibited moderate 

performance, with R² scores ranging from 0.6 to 0.78 and less 

overfitting. CWT-mexh, FD, and GFT-Adaptive 

transformations significantly improved model performance, 

with CWT-mexh delivering the highest test R² scores across 

all models (up to 0.95 with SVR). GFT-Adaptive, despite 

identifying fewer significant features, consistently achieved 

test R² scores above 0.7 across all algorithms, demonstrating 

its efficiency and potential in scenarios with limited spectral 

resolution, making it valuable for SOC prediction with fewer 

spectral bands. 

 

VI. CONCLUSION 

This study advances methodologies for SOC estimation by 

integrating hyperspectral imaging with signal processing 

techniques. Notably, CWT-mexh models achieved R² scores 

up to 0.95, with the RFR outperforming SVR, PLSR, and 

DNN models in both accuracy and reduced overfitting. Key 

findings include: 

 

1) The SWIR region, especially 1800-2000 nm, shows the 

strongest correlation with SOC content (above 0.8).  

2) CWT (Mexican Hat and Complex Morlet), Fractional 

Derivatives (Order 0.4 and 1.6), and Frame 

Transformation methods significantly improve SOC 

prediction accuracy. 

3) Random Forest Regressor, paired with selected spectral 

transformations, offers the most accurate and robust 

SOC estimation framework. 

4) The Frame Transformation method's success with 

fewer features suggests its potential where spectral 

resolution is limited, while CWT (Mexh) excels with 

high spectral resolution. 

5) Consistent spectral regions (1800-2000 nm, 900-1000 

nm, and weaker correlations in 400-700 nm) warrant 

further investigation regarding specific SOC 

constituents. 

This study primarily focused on lab-based spectroscopy and 

did not address depth-sensitive analysis. Future research 

should explore spectral responses across soil depths, 

 
Fig. 14 Evaluation of models and spectral transformations for SOC prediction. (a-d) Training R² scores and (e-h) test R² scores for RFR, SVR, PLSR, and DNN 

models, respectively. 
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scalability for airborne and spaceborne platforms, and 

assessments across diverse soil types to validate the robustness 

and generalizability of the findings. Additionally, integrating 

GFT-Adaptive with other spectral methods may further 

enhance SOC prediction accuracy. 
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