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Abstract

®

CrossMark

Buckling is a structural phenomenon that can induce significant motion with minimal input
variation. Electrothermal bimorphs, with their simple input and compact design, can leverage
out-of-plane buckling motion for a broad range of applications. This paper presents the
development of analytical electrothermal and structural models for such bimorphs. The
electrothermal model calculates the temperature distribution within the bimorph caused by
electrothermal heating, providing a 2D explicit analytical expression for estimating temperature
along the bimorph’s length and cross-section. Nonhomogeneous heating leads to varying strains,
which induce axial forces and moments along the bimorph’s neutral plane, varying with thermal
expansion. The structural model derives the governing equation of deformation for the bimorph
by analyzing internal strains and stresses resulting from deformation, electrothermal heating,
and residual stresses. An analytical solution for deflection is obtained, incorporating infinite
sums of heating and buckling modes, with closed-form equivalent expressions when possible.
The bimorph’s behavior under different scenarios of residual stresses and electrothermal heating
is elucidated based on the analytical model. Comparisons with finite element simulations
demonstrated excellent agreement, highlighting the high accuracy of the proposed models.

Keywords: buckling, electrothermal bimorph, modeling, MEMS

1. Introduction

With the growing demand for tunability in photonic
devices [1-3], micro-electro-mechanical systems (MEMS)
technology holds an unequivocal candidacy as it can offer
repeatability and extensive continuous tunability ranges [4-9].
Electrothermal actuation, in particular, is mainly appreciated
for its large range of motion and low actuation voltage [10—12].

" Author to whom any correspondence should be addressed.

Micro cantilevers and buckling beams are essential compon-
ents of MEMS actuators, utilized in various applications due
to their distinct mechanical properties. Unlike cantilevers,
buckling beams enable compact design tip-tilt free motions or
bistability, which is beneficial in multiple applications [13].
They have been deployed in bistable switches [14—16], energy
harvesting devices [17], micropositioning devices [18, 19],
microbots [20, 21] and as optical tuning elements [22], among
others.

Buckling of beams has been studied since the 18th cen-
tury, grounded in Euler’s equations, which describe the unpre-
dictable direction of deflection beyond the critical buckling
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load. Extensive modeling studies have addressed the buck-
ling of single-material structures [23-25]. The buckling of
multi-layer bimorphs has been mainly investigated in the con-
text of piezoelectric actuation [26, 27]. While electrothermal
actuation of bimorph cantilevers has been analyzed [28], there
is, to our knowledge, no analytical model for electrothermally-
induced buckling of bimorph beams.

Modeling the buckling of electrothermal bimorphs requires
an integrated approach that combines an electrothermal
model, mapping electrical power to structural heating, with
a structural model, translating thermal expansion to bimorph
buckling. Existing electrothermal models are typically one-
dimensional and based on the heat-transport equation [29-31]
and lumped-element models for conduction [32]. Advanced
approaches by Todd et al describe the electrothermal and struc-
tural behaviors of bimorph cantilever beams using lumped-
element models [33, 34]. However, the structure of the
bimorph necessitates a two-dimensional model to accurately
calculate temperature distribution along the bimorph’s length
and across its layers.

This paper presents comprehensive analytical models for
both the electrothermal and structural analysis of bimorph
beams. The electrothermal model, developed in section 2,
provides a two-dimensional explicit analytical expression to
estimate temperature distribution along the bimorph’s length
and cross-section. This approach addresses nonhomogeneous
heating, which results in varying strains and induces axial
forces and moments along the bimorph’s neutral plane, influ-
enced by thermal expansion. Residual stresses from the fabric-
ation process are considered in the modeling as those stresses
are identified as a significant factor contributing to failures in
experimental trials.

The structural model, developed in section 3, derives the
governing equation for the bimorph deflection by analyzing
internal strains and stresses resulting from deformation, heat-
ing, and residual stresses. An analytical solution for deflection
is achieved, incorporating infinite sums of heating and buck-
ling modes, with closed-form equivalent expressions where
feasible. The behavior of the bimorph under various scenarios
of residual stresses and electrothermal heating is discussed in
section 4. The comparison in section 5 demonstrates strong
agreement between the proposed models with finite element
(FE) simulations in ANSYS, across various potential scen-
arios, confirming the accuracy of the proposed models.

2. Electrothermal model

A bimorph consists of a stack of two layers with different
materials. Figure 1 shows a schematic of a bimorph with the
different dimensions. The first material on top, has a Young’s
modulus Ej, a resistivity 1, and a thermal expansion coef-
ficient . The second material at the bottom has a Young’s
modulus E», a resistivity 2, and a thermal expansion coeffi-
cient 3. The bimorph has alength /, a width b, and a thickness
t t t, with f; and f, being the thicknesses of the top and
bottom layers, respectively. A; and A, depict the cross-section
areas of both layers, respectively.

Es, p2, a2

-

- 7 >

Figure 1. Diagram of leg components inputs and outputs.

The bimorph in figure 1 is fabricated in the xy plane and its
deflection occurs along the out-of-plane z direction. The elec-
trical voltage is applied between the bimorph’s boundaries A
and B. The electrical power flowing through the bimorph stack
induced a buckling via Joule heating. The origin of the x axis
is at point A and the origin of the y axis is at the intersection
between both materials.

The convection and radiation are neglected in the model
and the heat transfer is limited to the conduction. Thus, the
temperature is considered homogeneous along the y direction.
In contrast, the temperature is not homogeneous in the z dir-
ection as the bimorph consists of a stack of materials with dif-
ferent properties. The electrothermal modeling problem can
be thus limited to the x and z directions. With these assump-
tions,the heat equation is expressed as follows [35]:

2T 2T
ik —4 —J& 0 M
where T is the temperature and J is the current density and K
is the thermal conductivity. The index i refers to the material,
i 1 for the top material and i 2 for the bottom material. For
all the equations in the rest of the paper, i is set equal to 1 for
z 01t andequal to?2 forz 0.

In the heat equilibrium equation, the rate of heat enter-
ing due to electrothermal heating minus the rate of heat leav-
ing due to conduction equals the rate of temperature change,
which becomes zero in the steady state. Using the steady-
state equation in (1) for modeling is appropriate for quasist-
atic applications where the required dynamic behavior is slow
compared to the response time of the electrothermal heating
process. The heat equation (1) is solved using the separation
of variables method:

T'xz XxZz (2)

The solution form for the temperature is obtained by intro-
ducing (2) into (1) and separating the variables.

e oz

cycoshepix  cgsinheyx

T xz X €3 CeXZ

C9COSC11Z  CoSinc)1z
C12COSC1gX C13SinCigXx

ciacosheez  cyssinhcigz (3)

where ¢ to ¢ are constants that are determined depending on
the boundary and continuity conditions.

Introducing (3) into (1) and considering T T; at the
bimorph ends connected to external support (Boundary sides
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A and B in figure 1), the solution form reduces to the following
form where constants ¢y to ¢y are neglected and constants ¢3
to ¢y have periodic solutions:

2

v
T T x dE
xig o Sk B
¥ . FE
PO
n 1
aincoshn—lz bin sinhn—lz @)
where v [ ;J; is the potential difference applied on the

bimorph boundaries A and B. aj;, and b;, are constants related
the a™ periodic solution in (4). Note that if the product of
the electrical resistivity and thermal conductivity K is equal
or nearly equal for both materials, , which is a constant
multiplied by the heating modes, will vanish. Consequently,
the temperature will be uniform across the cross-section of
the bimorph and will follow a parabolic distribution along
its length. The heat transfer between both materials of the
bimorph should conserve the continuity in temperature and in
flow. In addition, the temperature flow at the lateral boundar-
ies is neglected as the convection and radiation are negligible.
These boundary and continuity conditions are expressed as:

dr

— XL 0

dz

dr

— x t 0

iz~ 7 )
Tx0,;, , Tx0,;,

dT dT
k]d—zIO‘vl kgaxof-?_

The constants a;; and by, n 123 , are calcu-

lated to satisfy the boundary and continuity conditions (5).
Multiplying (5) by sin # x [ and integrating it over the beam
length helps to separate the ath periodic constants a;, and bi,
in the boundary and continuity conditions.

!
dT
/— xh sin>Zdx 0
o dz l
!
dT
/— x h singdx 0
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!
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The integrals in (6) neglect all the constants a; and by with
j n. Thereby, ai, and b;, expressions are obtained by solv-
ing the linear equation system in (6). For the non-symmetrical

solution modesn 24 6 ,aj, and by, are equal to zero.
a,, b aym by 0 @
n 246
For the symmetrical solution modesn 1335 ,aj, and
by, are expressed as:
K K
4282 i
1 2
1 n .. nt
g e cosh 7 sinh ] 2
1 ..nh .. n i
b nh inh
n e si ] s i
1 . 5] n i
aag ya sinh cosh 7 (8)
1 f f
by, sinh = sinh 222
K> l 1
.. n K n
» K;sinh TCOShT
t t
K> sinh % cosh HT]
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The temperature distribution in the electrothermal bimorph
is calculated from (4) after considering the constanis a;, and
by, calculated from (7) and (8). As the constants a;, and bj,
are inversely proportional to n°, a limited number of periodic
solutions is sufficient to accurately estimate the temperature.

3. Structural model

3.1 Strain and stress distribution

Strains and stresses are induced in the longitudinal direction
of the bimorph from four different sources: residual stress
due to fabrication, axial strain due to the length compression
between the two anchors, heating strain due to electrothermal
heating, and bending strain due to the bending of the bimorph
structure. Figure 2 shows a cross-section of the bimorph
under deformation and the distribution of stress due to all
sources.

3.11 Residual strain.  Residual stress in an elastic body per-
sists even without external force. In a multilayer microma-
chined bimorph, the distribution of residual stresses can be
influenced by various factors, including material properties,
fabrication processes, and thermal treatments. The residual
stresses may not necessarily have the same level of stress or
strain across different layers and may vary across the structure
of each layer [36].

The design and fabrication processes of bimorphs may be
tailored to achieve specific mechanical or thermal properties
[37], involving adjustments to material properties, depos-
ition control, or additional layers for stress distribution modi-
fication. In thin layers ( a few micrometers), completely
avoiding residual stress growth is challenging and its effect
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radius of b
curvature \

Figure 2. (a) Bending of a cross section of the bimorph.
(b) Stresses, forces, and moments induced due to the length
deformation, bending, and heating strains.

is non-negligible. This paper assumes a uniform residual
strain for simplicity, justified by strain uniformity at the
bimorph layer intersection and assuming relatively small
thickness [36].

I _ (€))

3.12. Axial strain.  Once the bimorph is under deforma-
tion, the bimorph length is either compressed or expanded.
A length deformation strain 4 is induced in the bimorph in
the axial direction. The expression of ; is shown in (10)
with a simplified approximation considering small deform-
ation hypothesis. 4 is related to w(x), which is the lat-
eral deformation of the bimorph neutral plane along the x
axis.

&€

(10)

&
P2 | —

3.13. Heating strain.  The bimorph length expands due to
electrothermal heating. This induces a length expansion that
varies along z direction as the heating rate is not homogeneous
between the two materials. The axial heat strain induced due
to heating is calculated as follows:

iTxz To (11)

hXZ

3.14. Bending strain. The bending strain , is induced due
to the local curvature of the bimorph structure after deforma-
tion. 4 is calculated as follows:

Z I d’w
r.X e dx2

b X2 (12)
where r(x) is the radius of curvature along the x direction and
7o is the z level of the neutral plane. The bending stress is equi-
valently distributed relatively to the neutral plane. This char-
acteristic helps to evaluate zp.
el 1E\} Exf}
] E; pdz 0O i Bl 7

5]

= 13

3.15. Total Strain.  The total axial strain inside the bimorph
is then the sum of the four strain components. Note that the
axial strain is induced as elastic reaction for axial deforma-
tion and thus it induces strains opposite to the deformation
direction.

X2 r a?X (14)

WXL B XZ

3.2. Axial force

The strains induced in the bimorph (14) result in an axial force
P and moment M(x) applied along the beam length. The axial
force is induced as reaction forces are oppositely applied by
the fixed bimorph ends due to the bimorph length expansion.
Thus, as expansion in the bimorph’s length leads to compres-
sion forces, in this paper we consider a positive sign for the
axial strains in the case of expansion, and for the axial force
and stresses in the case of compression. The axial force is equi-
valently distributed along the beam length and consists of one
component related to the length deformation and another com-
ponent related to the heating expansion. The bending strain has
no effect on the axial force.

1 [ pb pny
P —//] E; ;dzdydx P, P; Py
I 0 J0 I

3.2.1. Residual strain force.  The residual strain force P, is
evaluated from (15) considering (9):

(15)

P Rq . (16)
where R, E1A1 EA, is the axial rigidity for the bimorph.
A;  btyand A;  bt; are the bimorph cross-section areas for

the first and second material layers, respectively.

3.2.2. Length expansion force. = The length compression
force Py is evaluated from (10), (14), and (15):

2

R, ' d
" Y 17)

P Zal e

¢ 21 ), d&
3.2.3. Heating force. The heating force Py, is dependent on
the temperature distribution calculated in the electrothermal
model (4). Py, is evaluated considering (4), (11), (14), and (15):

v EA By o
" 12 Ky K> » i
E; 2byy  Ep 1biy (18)
261 —
n
n 135,...

3.3. Moment on the neutral plane

The moment on the neutral plane due to the strains in (14) is
calculated as follows:

b h
M x ]]E;,z Zp dzdy My x M, x  (19)
0 B
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The residual and axial stresses are equally distributed
between the two sides of the neutral plane, and thus their res-
ulting moment in the cross section is zero.

3.3.1 Bending moment.
from (12), (14), and (19):

The bending moment is calculated

d2w
My x f@ (20)
where Ry Eil, Elisthe flexural rigidity for the bimorph.
I, and I are the second quadratic moment for the first and
second material layers, respectively:
1 2
L b gﬁ’ fizn hizj
{ (1)
L b g’% hio bz

3.3.2. Heating moment.  The shift between the center of
heating strains in the cross-section and neutral plane results in
a varying heating moment applied on neutral plane. The heat-
ing moment is calculated from (4), (11), (14), and (19):

a2 I
My x m—p— mnSi-nT (22)
n 1,3,5,...
where the constants m and m, are expressed as follows:
- bt ty to K22 2Ky 1 EiEp V?
4K\K; | 2 E\ty B
blzg
My, & Ey by Ey 2by
b2
——= E imy Ey omy, (23)
n
1 t I
m, coshm—1 1 's.inl'l.u
nKl I )
1 nr nt
My cosh—2 1 sinh——
K> I

The heating moment expression can be reformulated based
on Fourier series along the beam length. This reformulation
helps to extract solutions that are satisfying the boundary con-
ditions in the structural model.

2i x
Cmi COS ——
i Ul ¢

M, x cpo (24)

where the constants c,,g and c,,; are calculated as follows:

33 2
Cm0 —/ Mp, x dx E .
L/ 6 n
w: T580.
i 2i
mi = | My x cos = X ax (25)
1 /s I
m dmun
Z 2 a2 n?

n 135,..

My Mg
.
P P

Figure 3. (a) Elastic Profile of the the bimorph after deflection.
(b) Boundary reactions applied on the bimorph. (c) Boundary and
internal reactions applied on a section of the bimorph.

Note that, as M, x is symmetric with respect to the bimorph
mid-length (x [ 2), the Fourier series components multi-
plied by (sin2i x [) vanish in the calculation and are not
shown in (25).

3.4. Governing equation and Normalization

Analyzing the force and moment diagram in figure 3, the
Moment equilibrium equation is expressed as:
M, x Mpx Pwx My (26)
Deriving (26) two times relatively to x, the equilibrium
equation is re-expressed as follows:

d*w d2w
S NEW jCOSNX 0 (27)
j 135....
where X, N, and ; are normalized parameters:

x I wx N 3
] w X R

N g 1 j 135 (28)
4 n N;

i = m il
Ry 5 1,3‘5,...N.? 2

3.5. Solution

The boundary conditions dictate that the shape of the bimorph
after deformation can only take on certain periodic forms
known as buckling modes. Consequently, the solution to the
structural problem in (27) is an infinite sum of these buckling
modes [12, 23-25].
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Symmetrical Modes of Buckling

/—\

Wi(X)
A S NG
/\/\/\ Ws(X)

Unsymmetrical Modes of Buckling
Wa(X)
Wi(X)

Figure 4. Shapes for the first five modes of buckling.

(29)

where W; X is the j" mode of buckling and | is the related
constant. The latter constant represents the contribution of the
Jjth mode of buckling in the deformed shape of the bimorph.
The buckling modes are calculated to satisfy the bound-
ary conditions as clarified in [23-25]. For clamped-clamped
bimorphs, the following buckling modes can be considered:

WX 1
W, X 1

135
246

cos N;:X J
cosNX 2X gLsinNX j
(30)

where N; is the jth positive non-zero solution for the following
equation:

N;

o

o=

. N;
sm? tan 0 (31)

The solutions of the later equation are obtained as follows:

1:3 5
246

N1 J
N; 286 492 694 |

o

(32)

o

The modes of buckling are divided into symmetrical
(modes 1, 3, 5, ...) and unsymmetrical modes (modes 2, 4,
0, ...). The first five modes of buckling are shown in figure 4.

As the bimorph deformation and loading conditions are
symmetric relatively to the bimorph mid-length, the non-
symmetrical modes of buckling (modes 2,4,6,...) are not

involved in the solution, except for mode 2 which appears in a
specific condition that will be clarified later.

(33

The solution is obtained by introducing (33) into (27) and
calculating the constants ;.

WX i

i 1.3.,5,...1'\{,:'2 N}z N?

(34

The solution in (34) requires determining the normalized
axial force N. Considering the normalized parameters in (28),
the following equation for determining N is obtained by intro-
ducing (34) into (15), (16), (17), and (18).

ﬁ 4R, I

Nt N?
"Ry R}

sz 1

2m n m,Sy,
n 135,.. (35)
n* 2mﬁS3ﬂ
n 135,..
h>n
2 nh 2m,mySi,
n 1,35..h 357,..

where N, is the normalized axial force due to residual stresses:

R,
N ;f .

(36)

Once N is calculated by solving (35), the deflection of
the bimorph at any point along its length can be obtained
from (33). The deflection d of the bimorph at its mid-length
(x I 2)is considered as the main output parameter for the
bimorph and is calculated from (33).

d W % 2 SRR —
j 1.5,9,...N_,,g N}‘ N?
(37
82
— mS; n mySe,
! n 1,35,..

The N equation (35) and d equation (37) contain infinite
sums of first, double, and triple order series. Among these
sums, Sy, S20. Szn. Sann. Ss and Ss,; are infinite sums of series
depending on N and N;.
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(38)

Explicit analytical expressions can be extracted for the
infinite sums Sy, Sa,, S34, Sann, S5 and Se,. These expressions
are calculated using Mathematica software.

% _2N*+3N%csc? § +18Ncot § —48
48N6
1 esc2f
Su =5 ne T 16N (N = m2n?)
coty (3N? —n?x2)
8N3 (N2 — n2rr2)’?
- cot% (3N + Hzﬂ'j)
8N (N2 — n2rr2)
csc2 ¥
Sanh =16 (N2 — n2n2) (N2 — W)
cot ¥ (3N* — (n? + h?) = 2N* — n2h*r*)
8N (N2 — n2n2)? (N2 — h2m2)?
4tan¥ — N
Sy=— &
32N3
nm tan g — Ntan %
a 8nw N(N? —nln?) "’

1+ csc? (g)
16 (N2 — n2n2)?

(39)

Sﬁn

The sums Sy, 52,4, S35, Saui, 5. and Sg, increase or decrease
monotonically relatively to N until reaching +oo for N = 2.
The value of these sums at N =0 and N = 7 requires a limit
calculus evaluation as certain denominators become equal to
zero. These limits are calculated in table 1. Note that the struc-
tural model equations are derived considering an axial com-
pression force, and thus a positive value for P. The result-
ant axial force can become tensile (P < (), especially when
the bimorph undergoes large lateral deformation (g4 > 0) or
when residual strain leads to length contraction (s, < 0). The

Table 1. Values of §1, S2,, S3a, S4nn, S5, and Sg, at N=0and N = 7.

™

N 0 n=1 n>1
Y 1 5wl 48
! 60480 1876

2.2 2
s 720 n'mw* 60ntw? 32 3x? wx18(n 1)
In 1440n6 7 6 64w 6 16n2(n? 1)mb
y Snim? 48 ! & 1
3n T I To8T T 8(n2 1)“wt

F:% 2

s wix? 12(n’ ) "3 1
4nh 24nthiTs 64(2 1)7mt I6nt(nT L)(E 1)
5 | 4
3 1536 327
Iy 4tan IF  nmw w3 n+tan &F
6n 327w 3277 Bl (al 1)

same equations apply in the case of axial tension, although N
becomes an imaginary number. To remove the imaginary num-
ber from governing equations, N can be replaced by N, in the
equations, where N? = —N? = —%:, allowing the imaginary
numbers to cancel out. Note that the trigonometric functions
(e.g. sin, cos, tan) for imaginary numbers are equivalent to the
hyperbolic functions for real number multiplied by an imagin-
ary number. The same type of calculation was considered in
[12] to derive the governing equations for the buckling of the
single-material shallow beam actuators under tension.

4. Behavior of the Electrothermal Bimorph

While the residual and electrothermal stresses are externally
excited, the axial and bending stresses are internally induced
due to the deformation of the bimorph. Increasing the external
stresses, either through residual stresses (e.g. increasing Ny)
or by electroheating (e.g. increasing Av), would increases the
axial force along the bimorph. The axial force, normalized by
N, plays a key role in determining the behavior and direction
of deflection of the bimorph.

First, without electrothermal heating, the bimorph is
prestressed with the residual stresses which increases N. The
latter has a critical limit at N =N, that it can reach but not
exceed without electrothermal heating. At this limit, buck-
ling occurs, resulting in two possible configurations: buckling
upward or downward. Second, with electrothermal heating,
N varies below or above N = N,. Each range corresponds to
deflection on the lower or upper side of buckling. This beha-
vior of the bimorph is thoroughly explained in this section.

4.1 Bifurcation at first mode of buckling

The first motivation for this study was the use of bimorph
buckling for an optical tuning application. However, during the
microfabrication process, the bimorph structures consistently
buckled after being released from the underlying substrate.
This behavior indicated the presence of residual stresses.
Despite numerous fabrication trials involving various paramet-
ers, we were unable to successfully reduce the residual stresses
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to prevent buckling in the fabrication process for our bimorphs
of specific dimensions and materials.

A significant challenge for the application is ensuring that
all bimorphs buckle in the same direction. Consistent dir-
ectionality is essential for controlling the individual relative
phase delay, particularly when the top side of the bimorph
is used for reflection. If some beams buckle upward while
neighboring beams buckle downward, controlling the phase
delay becomes complicated. Note that heating the bimorph
after buckling increases the deflection in the same direction as
the initial buckling. Hence, once buckled, there is no simple
mechanism to re-buckle the bimorph towards the other side,
especially in the case of mass distribution of bimorphs.

Understanding this buckling phenomenon prompted us to
include the residual stresses into the calculation and derive the
variation for the deformation energy with respect to the para-
meters of the solution to determine the conditions of buck-
ling. The derivation of the energy variation equation closely
resemble the case of a clamped-clamped beam made of a
single material, as described in [23—25]. The energy variation
equation for the bimorph is calculated as follows:

L N NN
j

(40)

where U, is the normalized total energy. It’s important to note
that (40) is calculated without considering the electrothermal
heating of the structure.

The parameters to be determined from (40) are the con-
stants ;representing the contribution of the modes of buckling
in the total solution (33). The energy variation in (40) should
be minimized, and it cannot be negative according to the vari-
ational principle. In the absence of residual or heating stresses,
N is equal to zero. Adding residual stresses increases N, and
N N, in the absence of heating stresses according to (35).
This remains valid as long as Ny N; 2 . In this range,

Nj—" N? remains posilive and non-negligible for all modes
of buckling. Thus, the buckling constants ; should be equal
to zero for all modes of buckling to minimize U, (40).

This indicates that the bimorph remains straight without
buckling during fabrication as long as the residual stresses
are in the range N; N,;. Once N; reaches N, and exceeds
it, N cannot exceed N, as this leads to a negative variation
of energy (40), breaking the laws of nature. One could argue
that allowing N to exceed N; while keeping ; equal to zero
would minimize the energy variation. This is mathematically
correct, but physically results in an unstable configuration for
the bimorph where a minimum disturbance would move the
bimorph far towards one of the two stable configurations at the
two sides of buckling. The stable and unstable configurations
for the bimorphs in the cases N Ny and N N, are shown in
figure 5, demonstrating typical curves for the variation of the
deformation energy with the amplitude of ;.

The first mode of buckling would increase the energy of
deformation for N Nj, while a specific magnitude of the first
mode of buckling can minimize the energy of deformation for
N N, according to figure 5. Thus, at the crifical limit of

ally
* 34,

=0 and stable x g—% = 0 but unstable

Deformation energy Uy

Figure 5. Variation of the deformation energy with the amplitude of
the first mode of buckling (represented by ;) for N N; and
N N

N Ny, the bimorph buckles up or down to limit the energy of
deformation. A bifurcation of the solution occurs at this crit-
ical limit of N, indicating a qualitative change in the behavior.
Three possible solutions bifurcate, two of which are stable
while the third is unstable. This indicates that the bimorph
remains straight without buckling during fabrication as long as
the residual stresses are in the range N, N;. Once N, exceeds
N1, N remains limited at N and buckling at first mode occurs
in two possible directions.

N N N N v 0

N N 1 N, r N 1 v 0 (41)
The constant  is not necessarily equal to zerofor N, Nj.

In this range, the bimorph takes the shape of the first mode of

buckling while the value of N remains equal to N;.

WX 0
W X

N N v O
1W1 X N,- N 1 ¥ 0 (42)
The normalized axial force equation is calculated by sub-
stituting (42) into (15) after normalization according to (28):

N N &

2 &

(43)
The constant i, representing the contribution of the first
mode of buckling, is calculated from (43) tokeep N Ni.

= B (44)
R, N
The calculation in (44) shows two possible solutions for
1 and thus two possible configurations with equal amplitude:
buckling upward and downward. Figure 6 shows the variation
of N and the amplitude of buckling depending on the normal-
ized residual stress N;.
The chances to buckle up or down are equal for a perfect
structure and in the absence of external excitation. It is the
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Figure 6. (a) Normalized axial force N as a function of normalized
residual stress N;. The first buckling mode emerges when N, reaches
N,. (b) Variation of buckling amplitude with N;. Buckling can occur
in either of two directions when N; exceeds N,.

imperfections in the structure or the presence of external dis-
turbance forces during the fabrication that lead to buckling
up or down. In our fabrication process, we believe that the
cohesion and attraction forces that appear during the release
phase between the bimorph and the substrate led to buck-
ling downward for the majority of the fabricated bimorphs.
Furthermore, since the temperature of materials deposited to
form the bimorphs is unknown (due to the absence of measure-
ment capabilities in deposition tools), the residual stress can-
not be estimated from the initial temperature of the bimorph
layer and the thermal expansion mismatch during cooling.
However, the residual strains can be estimated based on the
amplitude of buckling observed after fabrication.

4.2. Electroheating before buckling at first mode

While the residual stresses depend on the fabrication process,
the electrothermal heating is a controllable parameter that can
be varied to control the deflection amplitude. As explained in
the previous section, the electrothermal heating induces two
types of loading along the bimorph length: axial force P;, and
moment Mj,. Both P, and M}, are proportional to the square of
the electric input (i.e. oc Av?).

Before buckling at the first mode (N; < N;), the direction
of the heating moment is the main parameter that determines
the direction of deflection for the bimorph. Although there
are contributions from the 5%, ot 13t buckling modes,

Table 2. Dimensions and material properties for a bimorph made of
Silicon and Aluminium layers.

Unit
1 200 b 1 pm
1 0.46 Iz 0.5 pm
E, 70 E, 179 GPa
o1 28.2-10 ° p2 0.1 Q-m
K 237 K> 150 W-m 'K !
a 23.6 s 3 pm-m K !

the first mode of buckling is dominant in the shape of the
beam after deflection (37). Thus, the bimorph will be deflected
upward or downward depending on the sign of x; according
to (37). Note that M}, along the beam and «; should have the
same sign in practice.

d<0 N <N, Av>0,&k; <0’ (43)

{ d>0 N.<Nj, Av>0,&k; >0
Considering the bimorph dimensions and material proper-
ties in the example of table 2, M}, and &, are positive, and thus
the bimorph tends to deflect upward by increasing Av.
Figure 7 shows the deflection of the bimorph and the vari-
ation of N in response to Av for various values of N, below
N,. The deflection direction is upward, as can be seen in these
cases, and the deflection amplitude increases with Av. The
amplitude of the residual stress has a limited effect on the
deflection amplitude. The axial force increases when Av starts
to increase as the bimorph length expands, and then starts
to decrease at higher levels of Av as the deflection becomes
higher, which relaxes the axial force.

4.3. Electroheating after buckling at first mode

With electrothermal heating alone, the axial force N is not cap-
able of reaching the critical limit for the first mode of buckling
N1, as can be seen in figure 7. However, buckling in the first
mode can occur when the residual stresses (oc N;) exceed a
critical limit (i.e. N; > N;), as can be seen in figure 6(a). In
that case, the bimorph would have two stable configurations
(buckling up and buckling down) as depicted in figure 6(b).
The deflection amplitude would increase with the electrical
input as in the previous case. However, the direction of deflec-
tion after electroheating is mainly similar to the initial direc-
tion of buckling induced by residual stresses.

Once the beam is buckled in the first mode, it has one
of two stable configurations on either side of buckling.
Electrothermal heating in any of these configurations induces
two types of loading as usual: axial force P, and moment Mj,.
It turns out that increasing the axial force P, tends to amp-
lify the buckling amplitude in the same direction as the ini-
tial buckling, while the heating moment tends to deflect the
bimorph towards one direction regardless of the initial direc-
tion of buckling. Considering the bimorph example in table 2,
M), always pushes the bimorph up, while the axial force pushes
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Figure 7. (a) Mid-length deflection of the bimorph 4 in response to
the applied potential difference Av for various values of N; below
N. (b) Variation of N with Av for different values of N; below Nj.

&

-—l'""’-_.'"-—
a b

Figure 8. Effect of the heating axial force and moment on the
deflection of the bimorph.

upward or downward when the bimorph is buckled up or down,
respectively, as depicted in figure 8.

Figure 9 shows typical deflection and axial force variation
for the bimorph as v increases starting from both sides of
buckling. The curves show a slightly larger increase in the
amplitude of the deflection in the buckled-up configuration
due to the collaborative effect of P, and M; in this side of
buckling, as depicted in figure 8.

Figure 9(b) shows two different ranges for the axial force N
between the upper and lower configurations of the bimorph. N
is below N when the bimorph is buckled up and is above N,
when it is buckled down.

The behavior of the buckled-up configuration is quite sim-
ilar to the case of N,  Nj. The differences are that, in the case
of N; N, the deflection starts from a buckled configuration
d O(notfromd 0), and the normal force N only decreases
with v, as N is initially at the maximum level for buckled-
up configurations. figure 10 compares the deflection and axial
force curves for buckled-up configurations at different levels
of N;.

10

a fd(pm)

4 S
. ‘,.—-""‘-..

9 '_’,.-""- Q
Nl

O im0

4

2 [ m— |

3

4 ; ; ; ; : :
0 0.02 0.04 0.06 0.08 01 0.12

OIU 0.02

0.06 0.08

Av(V)

0.04

Figure 9. (a) Deflection of the bimorph 4 in response to Av when
N, exceeds Ny (N; =2 5 ) and on both sides of buckling. (b)
Variation of N with Av on both sides of buckling.

d(pum)

0.06 0.08 0.1

Au(V)

0.02 0.04

Figure 10. (a) Deflection of the bimorph 4 in response to Av when
N: exceeds N at different levels and the bimorph is on the upper
side of buckling. (b) Variation of N with Av for the different values
of N:.

The comparison in figure 10 shows that for larger values
of N;, there is a larger deflection and lower values of the
axial force, likely due to the larger deflection. However, the
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Figure 11. (a) Deflection of the bimorph 4 in response to Av when
N: exceeds NV at different levels and the bimorph is on the bottom
side of buckling. (b) Variation of N with Av for the different values
of N;.

difference between the deflection at its initial level before elec-
troheating and after is higher for lower values of the residual
stress.

Figure 11 compares the deflection and axial force curves
for buckled-down configurations at different levels of N..
Similarly to the buckled-up configurations, a larger deflection
and lower axial force occur in the buckled-down configura-
tions for higher values of N,. However, the difference between
deflection before and after electroheating is larger for lower
values of N,.

The axial force in the buckled-down configurations
increases due to the fact that the heating moment is pushing
towards the other side of buckling which makes the bimorph
length more compressed between the two fixed boundaries.
The axial force N in this setting keeps increasing with  v.

One can expect another bifurcation of solution once N
reaches N, similar to the case of a clamped-clamped beam
with a lateral force applied at the mid-length [23]. The second
mode of buckling would appear in that case in the shape of the
bimorph. However, we could not obtain such configurations in
the FE simulations made on Ansys. Probably the reason is that
the external moment due to heating is symmetrically applied
along the bimorph with respect to the mid-length which pre-
vent unsymmetrical deformation as unsymmetrical modes of
buckling from occurring.

1

5. Numerical procedure and FE simulations

5.1 Numerical procedure

The analytical solutions derived in the previous sections for the
temperature and deflection of an electrothermal bimorph can
be calculated numerically in the following order for a specific
bimorph with known materials and dimensions.

Calculate 7o (13), I, and I (21).
Case 1: No electroheating is applied:

Determine N according to (41).
Calculate the bimorph deflection from (42) and (43).

Case 2: Electroheating is applied:
(a) Electrothermal model
Calculate s s Qips b]l’.l! Aaps bEm Aps Qi forn 135

up to a limited number of n (8).
Calculate the temperature across the bimorph (4).

(b) Structural model

Calculate Py (18).

Calculate m, my,, ma,, and m, (23).

Calculate N by solving (35) and considering the infinite
sums expressions in (39).
Calculate ; (28) for j
of buckling modes j.
Calculate the deflection along the bimorph (34).

Calculate the deflection d at the mid-length (37) considering
the infinite sums expressions in (39).

I 35 up to a limited number

Once the solution is obtained, the strain at any point across the
bimorph can be calculated using (9)—(12), and (14). The stress
is then simply determined using Hooke’s law.

Note that the solution of N with electroheating (35) might
lie in different ranges, N 0 N, N? 0,and N N,. The
solution with deflection direction same as the direction driven
by the heating moment M), would have N N,, while the
solution with deflection in the opposite direction would have
N N;. It is important to look for the solution of N in the
corresponding ranges when solving (35). At large deflection,
the axial force might reduce to become negative, moving from
axial compression to tension. With negative axial force P, N
becomes an imaginary number with N> 0. In this case, the
same governing equations still apply as the imaginary num-
ber would cancel out in all the expressions that are dependent
on N.

As for the number of heating and buckling modes to be con-
sidered, it depends on the level of accuracy required in the
solution. In our calculation, we consider 101 heating modes
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and 201 buckling modes, which resulted in a very good agree-
ment with FE simulations. For simplification, one can consider
very few modes in the calculation as the effect of higher-order
modes on the solution significantly decreases from one mode
to the other.

Other electrothermal models, whether simpler, more
advanced, or dynamic, can be considered for calculating the
temperature. The coupling between the electrothermal and
structural models is established through the thermal expansion
relationship given in (11). Once the temperature is obtained
from the electrothermal model, the thermal strain is calculated
is calculated using (11), and the corresponding thermal force
and moment are derived from (18) and (22), respectively. The
same steps can then be followed to solve the structural model.

5.2. FE simulations

We noticed a perfect agreement in the comparison between
the analytical models provided in this paper and the FE simu-
lations run in ANSYS, both at the level of the electrothermal
model and the structural model under different conditions.

The Ansys simulations use a structural-thermoelectric tet-
rahedron element (Plane223) with a fine planar mesh to couple
thermoelectric effects with heat conduction and mechanical
equilibrium equations, accounting for thermal expansion. The
FE simulations were conducted using the same dimensions
and material properties listed in table 2. Mesh points are added
along the neutral line (with height levels calculated according
to (13)) to compare the deflection with the analytical model.
Fixed displacement and a constant temperature at T, 25 C
are applied as boundary constraints on the bimorph ands.
The bimorph is pre-strained with residual strains calculated
according to (36) ( ; R/N? Ral* ). A voltage difference is
then applied between the two fixed boundaries of the bimorph.

Figure 12 shows three comparisons between the mid-length
deflection of the bimorph with electroheating, calculated ana-
Iytically and obtained from FE simulations.

The comparisons in figure 12 consider three different initial
conditions: residual stresses Ny 15 N1 (figure 12(a)),
and residual stresses Ny, 25 N, with initial buckled-up
(figure 12(b)) and buckled-down (figure 12(c)) configurations.
The comparisons in all cases show a perfect correspondence
to the extent that it is difficult to differentiate between the
curves of the analytical model and FE simulations in the figure.
For the initially buckled configurations, the direction of buck-
ling was controlled in the simulation by forcing a mid-length
deflection of the bimorph in a specific direction before releas-
ing the defiection constraint and applying electroheating.

Note that each point in the simulation curves corresponds
to a separate simulation run. To demonstrate the agreement
between the calculated temperature and deflection across the
bimorph, we select the simulation run corresponding to N;
15 and v 012 V. In those conditions, figure 13 shows
the deflected shape of the bimorph with the temperature dis-
tribution across the bimorph obtained from both the analytical
models and FE simulation.

12
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Figure 12. Comparison of mid-length deflection of the bimorph
with electroheating: (a) residual stresses N, =15 Ny,

(b) residual stresses Nr =2 5 Ny with initial buckled-up
configuration, and (c) residual stresses Ny =2 5 N with initial
buckled-down configuration.

As it is difficult to notice differences in the two sep-
arate drawings in figure 13, and to better clarify the
agreement, figure 14 shows a combined comparison
between the analytical models and FE simulations for
the average temperature and the deflection profile of the
bimorph.

Each point in the average temperature curve represents the
average temperature in the cross-section at the correspond-
ing position along the bimorph. The deflected profile repres-
ents the deflection of the neutral line. The level of agreement
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Figure 13. Comparison between deflected shape of the bimorph
and internal temperature distribution calculated with both the
analytical models developed in this paper and FE simulations
performed in ANSYS. Residual stresses corresponding to Ny =15
and a potential difference Av =0 12 V are applied to the bimorph.
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Figure 14. Comparison between the analytical model and FE
simulation results for (a) the average temperature and (b) the
deflection profile of an electrothermal bimorph. The bimorph is
subjected to residual stresses correspondingtoNr =15 anda
potential difference of Av =012 V.

between both the temperature and deflection results is quite
excellent as is the case for the mid-length deflection compar-
isons shown in figure 13 which reveals the correctness and
high accuracy of both the electrothermal and structural models
developed in this paper.

6. Conclusion

This paper successfully developed and validated analyt-
ical electrothermal and structural models for electrothermal
bimorphs. The electrothermal model provides a comprehens-
ive understanding of the temperature distribution due to elec-
trothermal heating, offering a 2D explicit analytical expres-
sion for temperature estimation along the bimorph’s length
and cross-section. This enables accurate calculation of thermal
expansion and the resultant strains, forces, and moments.

The structural model effectively derives the governing
equation for bimorph deflection, accounting for deforma-
tion, electrothermal heating, and residual stresses. By incor-
porating infinite sums of heating and buckling modes, the
model presents a robust analytical solution for deflection, with
closed-form equivalent expressions where feasible.

The analytical models were rigorously compared with
FE simulations using Ansys, showing excellent agreement
and confirming their high accuracy. These models elucid-
ate the behavior of bimorphs under various scenarios of
residual stresses and electrothermal heating, offering valuable
insights for addressing fabrication challenges posed by resid-
ual stresses, and designing optimized bimorph-based optical
devices.
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