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Abstract—Deep Reinforcement Learning has shown excellent
performance in generating efficient solutions for complex tasks.
However, its efficacy is often limited by static training modes and
heavy reliance on vast data from stable environments. To address
these shortcomings, this study explores integrating dynamic
weight adjustments into Deep Q-Networks (DQN) to enhance
their adaptability. We implement these adjustments by modifying
the sampling probabilities in the experience replay to make the
model focus more on pivotal transitions as indicated by real-time
environmental feedback and performance metrics. We design a
novel Interactive Dynamic Evaluation Method (IDEM) for DQN
that successfully navigates dynamic environments by prioritizing
significant transitions based on environmental feedback and
learning progress. Additionally, when faced with rapid changes in
environmental conditions, IDEM-DQN shows improved perfor-
mance compared to baseline methods. Our results indicate that
under circumstances requiring rapid adaptation, IDEM-DQN
can more effectively generalize and stabilize learning. Extensive
experiments across various settings confirm that IDEM-DQN
outperforms standard DQN models, particularly in environments
characterized by frequent and unpredictable changes.

Index Terms—Deep Q-Networks, Adaptive Learning, Environ-
mental Feedback Integration

I. INTRODUCTION

Deep Reinforcement Learning (DRL) has shown to be ca-
pable of learning human-level control policies, outperforming
traditional methods in domains from strategic game play to
autonomous vehicle navigation [1]-[4]. Despite these advance-
ments, the typical application of DRL, especially in the form
of Deep Q-Networks (DQN), often falls short in dynamic envi-
ronments where adaptability is crucial [5]-[9]. This limitation
primarily stems from the static nature of traditional training
methods and the substantial data requirements from relatively
stable environments. Such conditions are not always feasible or
realistic, particularly when environmental variables frequently
change and unpredictability is high [10]-[12].

The standard approach in DQN involves a fixed strategy
for experience replay, which treats all transitions equally,
regardless of their significance or the context of their oc-
currence [13]-[16]. While beneficial in stable settings, this
method lacks the flexibility needed to cope with environments
where the dynamics evolve more rapidly than the model can
adapt [17]. Moreover, this approach may lead to inefficient
learning and poor generalization when applied outside the
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training data distribution, as the model is often trained on a
backlog of outdated or irrelevant experiences.

To address the issues found in DQN, researchers have
developed several improvements, such as Double DQN [18]-
[20], Prioritized Experience Replay [21], and Twin Delayed
DDPG (TD3) [22]-[24]. Double DQN uses two networks
to separate action selection from evaluation, reducing Q-
value overestimations. However, this increases computational
complexity and does not directly solve problems with low
sample efficiency or insufficient exploration [25]. Prioritized
Experience Replay enhances learning efficiency by assigning
different importance to each experience based on its Temporal
Difference (TD) error. This method requires manual tuning
of hyperparameters, which could introduce biases. TD3 re-
duces overestimations further with dual Q-networks and policy
smoothing and enhances stability with delayed policy updates.
However, TD3 is complex and challenging to tune, mainly
suited for continuous action spaces [26].

These approaches primarily focus on reducing overestima-
tions and enhancing sample efficiency. Thus, these methods
show limitations in dynamic or non-static environments. Al-
though they improve training efficiency and bias reduction,
they often fail to consider environmental changes, which leads
to weak real-time adaptation. For instance, Double DQN and
TD3 can stabilize the learning process and minimize Q-
value overestimations with multiple networks and complex
update mechanisms. However, their fixed network structures
and update strategies might lack flexibility in rapidly chang-
ing environments. Additionally, while Prioritized Experience
Replay optimizes data usage, its static priority settings and
resampling mechanisms may not adjust quickly enough when
the environment changes. This setting could harm the learning
adaptability and outcomes.

Therefore, we think of introducing a dynamic adjustment to
the experience replay mechanism in vanilla DQN. This replay
mechanism in DQN influences the storing and reusing of past
transitions (states, actions, rewards, new states) to enhance data
utilization and stabilize learning. It breaks the correlation in
time-series data through random sampling to help the network
learn more effectively and stably. However, standard experi-
ence replay does not differentiate the importance of transitions,
which might cause key experiences to be overlooked. Hence,
we consider introducing a dynamic adjustment here for DQN



to better adapt to environmental changes. We want this method
to adjust the sampling frequency of important transitions based
on current learning progress and environmental feedback. This
improvement can enhance DQN’s performance in various
dynamic environments and make it more robust and effective
in practical applications.

Our Target. To address these problems, we target three
main aspects: 1) We aim to improve DQN’s adaptability in
dynamic environments by introducing a dynamic adjustment
mechanism. This mechanism adjusts the sampling strategy
or learning parameters in real time to enhance the model’s
performance as conditions change. 2) We strive to make
our improvements simple and stable. They should integrate
seamlessly into the existing DQN architecture without adding
too much complexity or computational load. This approach
will enhance DQN’s generalization and robustness without
losing efficiency. 3) We plan to test our method across various
environments to evaluate DQN’s performance and stability in
real-world conditions.

Our Method. To achieve our goals, we design the
Interactive Dynamic Evaluation Method (IDEM), an adaptive
DQN adjustment framework optimized for dynamic environ-
ments. Specifically, to help DQN better adapt to environ-
mental changes, we introduce dynamic weight adjustments
into DQN’s experience replay mechanism. We implement a
mechanism that adjusts the importance of samples based on
real-time environmental feedback. This involves modifying the
weights of samples in the experience replay to prioritize those
experiences that are most critical for improving the current
strategy. Adjustments are based on the outcomes of actions;
if an action yields better results than expected, we increase
the replay probability for that type of action, and decrease
it otherwise, focusing the learning process on transitions that
could significantly enhance performance.

For our second goal, we design an adaptive learning rate ad-
justment function to ensure easy implementation and computa-
tional efficiency. We incorporate the learning rate adjustments
based on performance feedback, effectively preventing over-
fitting and enhancing the model’s generalization capability.
These designs can optimize DQN’s performance in dynamic
environments while maintaining the algorithm’s computational
efficiency and stability.

Furthermore, our method addresses issues when the model
encounters unknown or rare states. We achieve this through
a dynamic adjustment mechanism that continually tweaks
key learning parameters. This allows the model to adapt
more quickly to new or infrequent environmental conditions,
improving its responsiveness and adaptability. This dynamic
adjustment strategy enables DQN to handle complex, dynamic
environments without sacrificing learning efficiency.

In summary, our contribution includes:

1) We propose a dynamic adjustment mechanism that
uses real-time environmental feedback and performance-
based importance adjustments of samples for DQN. This
mechanism improves DQN'’s adaptability to dynamic
environments and its sample efficiency.

2) We create a simple yet effective weight adjustment func-
tion. This function includes adjustments to the learning
rate and sample resampling probabilities. Thus, it allows
us to optimize the learning strategy dynamically based
on the model’s immediate performance and feedback
from the environment. This design in the mechanism
boosts learning efficiency and enhances the model’s
generalization capabilities and robustness when facing
new and rare states.

3) We validate our method through a series of experi-
ments. The results demonstrate significant advantages
in enhancing DQN’s ability to adapt to dynamic envi-
ronments, optimizing learning efficiency, and increasing
model stability. Compared to traditional DQN and its
variants, our method shows better strategy learning and
decision quality in various challenging environments.

II. RELATED WORK AND PRELIMINARY

DQN is a reinforcement learning method that inte-
grates deep learning techniques with Q-learning, tailored for
decision-making problems involving continuous state spaces
and discrete action spaces [27]-[33]. In DQN, the state space
S encompasses all possible states of the environment, and
the action space A includes all possible actions an agent can
execute [34]-[37]. The policy =, typically parameterized by a
neural network Q(s, a; #), maps states s € S to actions a € A,
with 6 representing the neural network parameters. The reward
function R(s,a) defines the immediate reward received by the
agent after transitioning from state s to a new state s’ through
action a. The discount factor ~, generally set between 0 and
1, calculates the present value of future rewards, prioritizing
nearer over more distant rewards.

The goal of DQN is to learn a policy 7* that maximizes the
total expected return, i.e., the cumulative discounted rewards
obtained by following policy 7w from any initial state s.
Mathematically, this is represented as:

Q"(s.0) =E [R(s,a) + ymaxQ*(s',a)|, (1)

where Q*(s, a) is the maximum expected return obtainable
from taking action a in state s.

In practical training, DQN iteratively updates the neural
network parameters to approximate the optimal Q-function
Q*(s,a), using the update formula:

Orp1 = 0 + alye — Q54,013 01)] Vo, Q(5¢, a3 0,),  (2)

where y; = 7 + ymaxy Q(s¢11,a’;0;) is the target Q-
value, r; is the immediate reward received, and « is the
learning rate. And our target is to find the optimal policy 7*
that maximizes the expected cumulative reward, which can be
mathematically expressed as:
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where 7(s;) denotes the action taken in state s; according
to policy 7, R(st, at) is the reward function, - is the discount
factor, representing the importance of future rewards.

III. METHODOLOGY
A. Methodology Overview

In the methodology section, we introduce the Interactive
Dynamic Evaluation Method (IDEM), a strategy designed
to address the adaptability issues and low sample efficiency
of DQN in dynamic environments. We employ a dynamic
weight adjustment mechanism to respond to environmental
changes in real time and optimize the learning process.
Additionally, we have developed an adaptive learning rate
adjustment function to enhance the model’s robustness and
generalization capabilities when facing unfamiliar or rare
states. Our methodology is divided into three main parts: (1)
Dynamic Weight Adjustment Mechanism: We describe how
we adjust the weights of samples in the experience replay
based on environmental feedback and the progress of learning
with IDEM. In this part, we aim to guide the model to focus
more on significant transitions that are crucial for improving
current strategies; (2) Adaptive Learning Rate Adjustment
Function: We introduce and analyze the traction function of
the IDEM mechanism, as well as explore its mathematical
properties and impact within DQN. This traction function
dynamically adjusts the learning rate based on the immediate
performance of the model. In this part, the function helps the
model to better adapt to the complexities and variabilities of
the training environment; (3) Implementation of the IDEM:
We detail how we integrate the IDEM method with DQN,
and explain the practical steps and modifications made to
the standard DQN framework to incorporate our dynamic
adjustments.

B. Dynamic Weight Adjustment Mechanism

Here, we aim to enhance the model’s adaptability and
learning efficiency in dynamic environments. Therefore, we
design a mechanism for dynamically adjusting the weights
of experiences within the replay buffer. This mechanism
prioritizes learning from the most crucial transitions at any
given point in the learning process by adjusting the weights
of experiences based on their relevance and impact.

The experience replay mechanism in DQN traditionally
stores transitions (8¢, as, ¢, S¢4+1) from agent-environment in-
teractions. These transitions are crucial for updating Q-value
estimates to optimize the policy. Our goal is to significantly en-
hance DQN’s learning efficiency and adaptability, particularly
in dynamic environments where the relevance of experiences
can change over time. To achieve this, the IDEM introduces
a dynamic weighting system into the experience replay. This
system aims to amplify the impact of significant transitions on
the learning process. In the IDEM framework, the dynamic
weighting mechanism is applied to the experience replay
component of DQN. Each transition in the replay buffer, de-
noted by (s¢, at, r4, St+1), is associated with a dynamic weight
wy that influences how frequently it is sampled for training
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Fig. 1: Flowchart of IDEM-DQN. Here the IDEM focuses
on assigning weights to transitions based on their significance
and adjusting learning rates based on real-time error metrics.
These enhancements prioritize crucial learning opportunities
and optimize the model’s response to changing environmental
conditions.

the network. In this way, it ensures that more informative
experiences exert a greater influence on model updates.

a) Temporal Difference Error Calculation: Specifically,
the TD error for a transition is fundamental in updating the
weights and is calculated using the following equation:

6t =Tt +’anaa/XQ(st+laa/;0) 7Q(staat;a); (4)

where r, is the reward received after taking action a; in
state s¢, 7y is the discount factor representing the importance



of future rewards, Q(s¢41, a’; 8) estimates the maximum future
reward from the next state s;y1, and 6 are the parameters of
the Q-network. This equation reflects the difference between
the predicted reward for the action taken in the current state
and the maximum predicted reward for the best possible action
in the next state, adjusted by the immediate reward received
and discounted by . The magnitude of d; indicates the degree
to which the current Q-value predictions are off-target, which
in turn informs how much the model needs to adjust its predic-
tions. A high absolute value of J; suggests a significant error
in prediction, implying that the learning from this particular
transition could lead to substantial improvements in policy
performance.

b) Weight Adjustment Formula: The weight w; of each
transition in the experience replay is dynamically adjusted
based on the absolute temporal difference error:

wi = exp(A[d:]), ®)

where ) is a positive scaling factor that determines how
sensitive the weight adjustments are to the TD error. This
formula uses the exponential function to scale the weights of
transitions in the experience replay, with the scaling factor A
modulating the extent of the adjustment. A larger A increases
the responsiveness of the weight to changes in the TD er-
ror, enhancing the priority of transitions with larger errors
during training. This method prioritizes transitions that the
model currently mispredicts the most, under the assumption
that these transitions are more informative and, thus, more
valuable for learning. The exponential function ensures that
even small discrepancies are noted but gives exponentially
greater importance to larger discrepancies, thereby focusing
learning efforts where they are needed most.

c) Sampling Mechanism Based on Updated Weights:

The probability of sampling a particular transition from the
experience replay buffer is adjusted in proportion to its weight:

(6)

> Wi ’

where P(t) is the probability of sampling transition ¢, w; is the
weight of transition ¢, and ) , w; is the sum of weights for all
transitions stored in the replay buffer. This formula increases
the frequency of sampling transitions with higher weights
during training. We calculate the sampling probability P(t)
by weighting it with wy, the transition’s weight. This method
allows us to focus on transitions with substantial prediction
errors, thus prioritizing the most crucial learning opportunities.
We normalize the weights by the sum of all weights, > . w;,
to ensure that P(t) forms a valid probability distribution. This
normalization keeps the sampling process fair and balanced
while focusing on the most valuable experiences.

P(t)

C. Adaptive Learning Rate Adjustment Function

In reinforcement learning with DQN, it is essential to
manage the source of learning experiences and the pace at
which learning unfolds. Traditional DQN often employs a
constant learning rate, which might not cope well with the

variable complexities and demands of different environments.
A static rate could be too slow for simple scenarios or too fast
in complex or volatile conditions.

a) Adaptive Learning Rate Adjustment Function: To
overcome these issues, we integrate an Adaptive Learning
Rate Adjustment Function in Eq. 7 in the IDEM framework.
This function adjusts the learning rate 7, of the Q-network to
match the precision of the model’s predictions. By fine-tuning
1y according to recent performance metrics, it customizes the
learning speed to the current environmental conditions, thus
enhancing both learning efficiency and stability:

ne = 1o - exp(—k - 6¢), (7)

where 7, is the learning rate at time ¢, 7 is the initial
learning rate, s is a positive decay factor, and §; represents
the moving average of the absolute temporal difference errors
over a recent window of transitions. This function adapts the
learning rate based on the magnitude of recent errors; larger
average errors suggest significant prediction discrepancies and
necessitate a slower learning rate for stable convergence, while
smaller errors indicate more accurate predictions and allow for
an increased learning rate to expedite convergence.

b) Continuity and Differentiability in Backpropagation:
Continuity. The adaptive learning rate function is continuous
for all x, and —k - &, is a linear transformation of the moving
average of absolute temporal difference errors, also assumed
continuous if §; is derived from real-valued data sequences.
Hence, the overall function 7; is continuous. This continuity
ensures that small changes in the temporal difference errors
lead to minor adjustments in the learning rate, thus providing
stability and smooth responses to changes in training dynam-
ics.

Differentiability. Furthermore, the function 7, is differen-
tiable where its components are differentiable. Since the ex-
ponential function exp(x) is differentiable for all real numbers
x, and the term —« - 0; is a linear (and hence differentiable)
transformation, it follows that 7, is differentiable as well. This
property is crucial for enabling gradient-based optimization
techniques such as backpropagation to compute gradients
and update model parameters effectively, avoiding issues like
discontinuities or non-differentiable points.

According to the analysis, we see that:

o The differentiable and continuous nature of 7, aligns
well with the gradient descent steps in backpropagation,
where precise control over the learning rate is essential
for achieving convergence. By smoothly adjusting based
on the error metrics, 7; allows the gradient descent
algorithm to leverage this dynamic adjustment without
interruptions.

o The function’s dependence on &; enables a responsive
adaptation of the learning rate to the actual performance
and error landscape of the model. This adjustability
prevents scenarios where the learning rate might be
too high, causing overshooting, or too low, leading to
excessively slow convergence. This dynamic adjustment



is essential for maintaining robust performance in envi-
ronments where the characteristics and challenges can
change unpredictably.

IV. EXPERIMENTS

In the experimental section of our study, we conduct a series
of tests in a standard testing environment FrozenLake to
evaluate the performance of IDEM-DQN compared to standard
DQN. We aim to answer three key questions through the
following experiments:

1) How does the performance of IDEM-DQN compare to
that of standard DQN in a static environment?

2) How does IDEM-DQN perform relative to vanilla DQN
in dynamically changing environments?

3) What is the impact of IDEM’s parameters on the effec-
tiveness of IDEM-DQN?

To answer these questions, we design the following ex-
periments: (1) Baseline Performance Comparison. We first
establish a baseline by running both the IDEM-DQN and
standard DQN on the classic FrozenLake!. We measure
and compare the average cumulative rewards, the number
of episodes to convergence, and the stability of the learning
curves; (2) Adaptability in Changing Environments. We test
the adaptability of IDEM-DQN by introducing sudden changes
in the environment dynamics; (3) Sensitivity to Parameter
Settings. We conduct a sensitivity analysis on the parameters
learning rate and Adam’s (3;, which control the step size of
updates and the exponential decay rate for the first moment
estimates of past gradients, respectively. 3; can be seen as
the model’s short-term memory of gradient changes. We vary
these parameters and observe their impact on average winning
steps, win rate, average reward, and average loss. We use a grid
search approach to systematically explore a range of values for
each parameter.

A. Experimental Settings

a) Environment: In this study, we select the standard
FrozenLake environment from Al Gym, which is a simple,
grid-based maze challenge. The grid is composed of a start
state S and a goal state (G, where the main objective is
navigating from S to G across a simulated frozen lake. The
grid includes “frozen” states marked F' which are safe for
traversal, and ‘“hole” states marked H that terminate the
episode upon entry. Agents can perform one of four actions:
left (L), down (D), right (R), or up (U). Actions leading off
the grid result in the agent remaining in its current position.

This environment’s dynamics introduce an element of un-
predictability through the slipperiness of the ice, affecting
movement decisions. For example, selecting action L might
actually result in movement in any of the directions {U, L, D}
with an equal probability of % This stochasticity extends
similarly across other actions. The reward function R(s,a)
grants a reward of 1 if the state s is the goal G, and 0
otherwise. The game ends once the agent enters a termination

Uhttps://www.gymlibrary.dev/environments/toy_text/frozen_lake/

state from the set { H, G}, where it then remains indefinitely.
This environment setup tests the agent’s navigation skills under
conditions that mirror the unpredictability found in real-world
scenarios, requiring adaptive and strategic responses.

b) Inplemental Details: In this study, we configured our
experiments using a custom setup in the FrozenLake-v1l
with a 4x4 or 8x8 grid. The DQN part comprises two layers:
the first layer maps the state space to 50 hidden units, and
the second maps these hidden units to the number of possible
actions. The network parameters are optimized using the Adam
optimizer with a learning rate of 0.0001.

The agent’s behavior is controlled by an epsilon-greedy
strategy, with e set to 0.1. This setup is to balance between
exploration and exploitation during the training process. We
employ a memory buffer capable of storing up to 3000
transitions to maintain an essential balance between recent
and past experiences. This buffer is crucial for our dynamic
weighting mechanism.

For our experimental runs, we set the batch size for network
training to 1000 and conducted a total of 3000 episodes to
sufficiently train and evaluate our model. These settings ensure
rigorous testing and validation of the modified DQN model
under controlled, reproducible conditions.

B. Overall Performance

In this experiment, we aim to evaluate and compare the
performance of the standard DQN model and our IDEM-DQN
model. Here we measure the average number of steps required
to successfully reach the goal and observe the changes in loss
across epochs in a 4x4 grid.

As shown in Fig. 2a and Fig. 2b, the trends of losses for
both standard and IDEM-DQN models fluctuate but generally
decrease. Initially, both models experience peaks in loss as
they adapt to the environment. Then, the IDEM-DQN model
shows a smoother and quicker stabilization in loss reduction.
This demonstrates that IDEM-DQN handles environmental
complexities better due to its dynamic adjustment capabilities.

Moreover, the results in TABLE I and TABLE II demon-
strate that IDEM-DQN consistently outperforms the traditional
DQN across all metrics. IDEM-DQN shows lower average
winning steps, higher win rates, and higher rewards in both
4x4 and 8x8 environments. These improvements highlight the
adaptability and effectiveness of the IDEM-DQN under more
dynamically changing conditions.

TABLE I: Average Winning Steps comparison of DQN and
IDEM-DQN on the 4x4 FrozenLake (Lower values indicate
better performance). The best results are highlighted in bold.

Metric DQN

Average Winning Steps 35

IDEM-DQN
33.35

C. Adaptive Performance in Dynamic Environments

In this experiment, we aim to assess the adaptive capabilities
of both the DQN and IDEM-DQN models in response to dy-
namically changing conditions in the grid. In this experiment,
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we randomly alter the stability of the ice tiles and periodically
move the goal location to create a more challenging and
variable scenario for the models. In this dynamic setting,
we evaluate the speed at which each model adapts to these
changes, focusing on metrics such as the time required to
return to high performance and the variability in episode
rewards. The changes are introduced at random intervals to
thoroughly test each model’s ability to re-learn and adjust
strategies quickly.

The results, as summarized in Fig. 3 and TABLE III, reveal
that IDEM-DQN significantly outperforms the standard DQN
model across all metrics. The IDEM-DQN model demonstrates
quicker adaptation to changes with lower average winning
steps, higher win rates, and improved average rewards. Ad-
ditionally, it maintains a lower average loss, indicating more
stable and efficient learning under dynamic conditions. These
findings confirm the enhanced robustness and adaptability
of the IDEM-DQN model to work in environments where
conditions frequently change.

TABLE II: DQN and IDEM-DQN performance in an 8x8
FrozenLake environment. The best results are highlighted in
bold.

Metric DQN IDEM-DQN
Average Winning Steps  91.34 88.54
Win rate 0.41 0.42
Average reward 0.41 0.42

TABLE III: Performance comparison of DQN and IDEM-
DQN in dynamic environments. The best results are high-
lighted in bold.

Metric DQN IDEM-DQN
Average Winning Steps 9.93 7.88

Win rate 0.83 0.88
Average reward 0.83 0.88
Average Loss 1.73 x 107*  1.39442 x 104

D. Ablation Study

In ablation study, we conduct an ablation study to investigate
the influence of learning rate and the [, parameter on the
effectiveness of the IDEM-DQN model. As shown in Fig. 4
and Fig. 5, we highlight significant variations in performance
metrics with changes in these parameters. For the learning rate,
the optimal range is found between 10~% and 10~2, where the
model achieves higher win rates and average rewards coupled
with a decrease in average loss. This suggests that a mid-
range learning rate effectively balances the model’s ability
to adapt quickly without overwhelming the learning process
with rapid updates. Regarding the [, parameter, the figures
show that values around 0.8 to 0.9 optimize win rates and
rewards. This suggests that a higher momentum term in the
Adam optimizer improves IDEM-DQN’s navigation through
its learning landscape. However, the variable average loss
across different 3; values indicates the model’s sensitivity to
this parameter. Thus (; is vital to ensure stability and prevent
performance degradation due to overfitting or erratic learning
behavior.

V. CONCLUSION

In conclusion, our study introduces a novel method, IDEM,
to enhance DQN’s adaptability in dynamic environments
through dynamic weight adjustments and adaptive learning
rate modifications. IDEM-DQN prioritizes significant transi-
tions based on real-time feedback and outperforms standard
DQN models, particularly in environments with frequent and
unpredictable changes. We conducted a series of extensive
tests to confirm that these strategic modifications improve
learning efficiency and model robustness without the com-
putational complexity of more advanced models. The results
demonstrate that IDEM-DQN is an effective and scalable
solution for real-world applications where environmental con-
ditions rapidly evolve, and that targeted enhancements to DQN
frameworks can significantly boost performance in dynamic
settings.
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