
1

StarNet: A Deep Learning Model for Enhancing
Polarimetric Radar Quantitative Precipitation

Estimation
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Abstract—Accurate and real-time estimation of surface pre-
cipitation is crucial for decision-making during severe weather
events and for water resource management. Polarimetric weather
radar serves as the primary operational tool employed for
quantitative precipitation estimation (QPE). However, the conven-
tional parametric radar QPE algorithms overlook the dynamic
spatiotemporal characteristics of precipitation. In addition, chal-
lenges such as radar beam attenuation and imbalanced distri-
bution of precipitation data further compromise the estimation
accuracy. This article develops a three-dimensional star neural
network (StarNet) for polarimetric radar QPEs that integrates
physical height prior knowledge and employs a reweighted
loss function. To better cope with the dynamic characteristics
of precipitation patterns, 3D convolution is introduced within
StarNet to effectively capture the spatiotemporal features be-
tween successive radar volume scanning data. In particular,
multidimensional polarimetric radar observations are utilized as
inputs, and surface gauge measurements are employed as training
labels. The feasibility and performance of the StarNet model are
demonstrated and quantified using U.S. Weather Surveillance
Radar-1988 Doppler (WSR-88D) observations collected near Mel-
bourne, Florida. The experimental results show that the StarNet
model enhances the prediction accuracy of moderate to heavy
precipitation events and improves the estimation performance
over long distances, with a mean absolute error (MAE) of 1.55
mm, root mean squared error (RMSE) of 2.63 mm, normalized
standard error (NSE) of 25%, correlation coefficient (CC) of
0.92 and BIAS of 0.94, for hourly rainfall estimates. The results
suggest that StarNet is able to effectively map the connection
between polarimetric radar observations and surface rainfall.

Index Terms—quantitative precipitation estimation, dual-
polarimetric radar, 3D convolutional neural network, spatiotem-
poral characteristics

I. INTRODUCTION

PRECIPITATION plays a crucial role in the Earth’s wa-
ter cycle and is an essential element in maintaining
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ecosystem balance, climate change, and human activities [1].
However, the occurrence of heavy rainfall can also serve as a
catalyst for natural calamities such as floods and mudslides.
With the rapid pace of urbanization, densely populated areas
are becoming particularly susceptible to urban flash floods [2–
5]. Hence, precise and prompt precipitation estimations play
pivotal roles in flood control and water resource management.

Weather radar and rain gauges are two major measuring
instruments used for observing precipitation. Weather radar
can collect continuous observations over a large area with
high spatial and temporal resolution (e.g., [3]). Rain gauges
are ground-based observational instruments used to measure
precipitation in real-time, and their observations are often
used as validation data for tasks related to precipitation mea-
surements [6, 7]. Traditional radar quantitative precipitation
estimation (RQPE) methods estimate precipitation rates based
on the exponential relationships between the radar reflectivity
(Z) and the surface rainfall rate (R), i.e., Z-R relations.
Since the inception of radar polarization [8], extensive research
efforts have been dedicated to polarimetric radar systems and
precipitation estimation based on polarimetric observables,
encompassing radar reflectivity, differential reflectivity (Zdr),
and specific differential phase (Kdp) [9]. The radar polari-
metric relationships can provide more precise microphysical
information for precipitation estimation, such as the phase,
size and shape of raindrops [10]. Nonetheless, the functional
relationships between radar observation data and rainfall rates
are typically intricate and nonlinear, as defined by explicit and
generalized equations. Moreover, these power-law relations
are inadequate for accurately capturing the spatiotemporal
characteristics of precipitation based on radar observations.
Therefore, optimizing the quantitative application of polari-
metric radar by adaptively integrating the spatiotemporal char-
acteristics of precipitation observations remains a challenge.

The past few years have witnessed the remarkable prowess
of deep learning across various domains, encompassing medi-
cal image recognition, unmanned vehicles, and machine trans-
lation [11–13]. Recently, meteorological researchers have also
employed neural networks in an attempt to model the relations
between radar observations and rainfall rates (e.g., [14–17])
and to predict rainfall at short-term scales (i.e., precipitation
nowcasting [18–23]). Simultaneously, certain researchers uti-
lize satellite data for precipitation estimation through deep
learning techniques [14, 24, 25]. In contrast to conventional
approaches for precipitation estimation, deep learning employs
hierarchical feature extraction and combination techniques to
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identify patterns and correlations within the data. Our previous
work demonstrated the effectiveness of applying deep learning
models to the task of RQPE [15]. However, this model only
focuses on the spatial characteristics of the lowest and second
lowest elevation angles in radar observations while ignoring
the temporal correlation between the data at each elevation an-
gle, and the large number of parameters in this model requires
a large amount of training time, which increases the computa-
tional cost and limits the flexibility of the models in practical
applications. The temporal information of precipitation data is
now effectively utilized in the task of precipitation forecasting
[18]. However, there are limited applications in the field
of precipitation estimation. In addition, the electromagnetic
waves emitted by radar are subject to absorption, scattering,
and refraction in the atmosphere during propagation, resulting
in a gradual attenuation of signal strength with increasing
distance [26]. This attenuation phenomenon adversely affects
the radar’s ability to accurately detect and locate precipitation,
thereby reducing measurement accuracy. Particularly in cases
of heavy precipitation or high atmospheric humidity, signal
attenuation becomes more pronounced. Moreover, traditional
parametric relations simplify precipitation formation and dis-
tribution, potentially leading to inaccuracies in portraying
real precipitation patterns. For instance, they might assume
a uniform distribution of precipitation over a specific area
or time period, failing to capture the true variability seen in
nature. Actually, precipitation events often exhibit a long-tailed
distribution characterized by an abundance of weak precipi-
tation events and a scarcity of moderate/heavy precipitation
events. This phenomenon can result in the model’s tendency
to effectively capture the characteristics of weak precipita-
tion during training and evaluation, while exhibiting limited
capability in estimating heavy precipitation. Consequently,
the model is prone to underestimating heavy precipitation as
weak rainfall, leading to poor accuracy for heavy precipitation
events. Overall, there are three main limitations in radar
precipitation estimation, i.e., accumulated attenuation along
the propagation paths, spatiotemporal feature extraction using
traditional parametric radar rainfall relations, and misrepresen-
tation of precipitation regimes of those traditional parametric
relations.

To solve the above problems, the proposed approach aims
to enhance the mapping capability from radar observations
to precipitation. The method mainly includes three aspects of
improvement:

1. The physical height prior information is incorporated into
the radar data to convey the distance information of the sample
data from the radar station. The objective of this work is to
mitigate precipitation estimation errors caused by the cumu-
lative attenuation of radar signals along the propagation paths
and improve the ability of the model to capture spatiotemporal
variations in precipitation over extended distances.

2. Aiming to enhance the model’s spatiotemporal feature
extraction and information transmission capabilities, this paper
introduces a three-dimensional star neural network (StarNet)
inspired by recurrent neural networks [27] and self-attention
mechanisms [28]. The features of different layers within the
network modules are interconnected and utilized iteratively to

establish a star-like information flow delivery, and the model’s
multi-head attention mechanism with 3D convolution further
refines the spatio-temporal features of precipitation at different
scales [29, 30].

3. A reweighted loss function is devised to effectively
mitigate the issue of imbalanced distribution among heavy,
moderate and light precipitation events. This modification
enhances the model’s estimation performance for moderate
to heavy precipitation events, ensuring adaptability to vari-
ous precipitation scenarios. Furthermore, the feasibility and
performance of StarNet are demonstrated and quantified using
Weather Surveillance Radar-1988 Doppler (WSR-88D) obser-
vations collected near Melbourne (KMLB), Florida, USA.

Section II introduces the study domain and datasets. Section
III describes the data preprocessing and the architecture of
the StarNet. Section IV presents the experimental results. A
discussion and conclusion are provided in Section V.

II. STUDY DOMAIN AND DATASETS

A. Study Domain

Our study domain is situated in Florida, a region located
in the southeastern United States and characterized by a
tropical and subtropical climate. Due to its proximity to the
equator and the influence of both the Atlantic Ocean and
the Gulf of Mexico, Florida experiences high average year-
round precipitation and is frequently impacted by tropical
storms and hurricanes. Additionally, Florida has a flat terrain,
with an average elevation of less than 30 meters, providing
minimal obstruction to radar observations. Therefore, it is a
region of interest for precipitation research. Fig. 1 shows the
study domain for this paper, where the yellow point (80.65◦W,
28.11◦N) is the location of the KMLB radar site. To ensure
data quality, rain gauge data within 150 km of the KMLB
radar site are used in this paper. The red and black dots in
Fig. 1 represent the locations of the rain gauge sites within
and outside 150 km, respectively.

B. Datasets

In this article, ground radar observations are collected from
KMLB Weather Surveillance Radar-1988 Doppler (WSR-88D)
near Melbourne, FL. The KMLB radar is an S-band radar with
a working frequency of 2.8GHz. The volume scan duration
for KMLB radar ranges from 5 to 7 minutes, with a range
resolution of 250 meters and an azimuth resolution of 0.5◦.
The KMLB radar has a maximum detection range of 460
kilometers and an elevation range from 0.5◦ to 19.5◦. To
mitigate the impact of nonprecipitation echoes on precipita-
tion estimation in the polarimetric radar data, the DROPS2.0
data quality control algorithm is employed for their filtration
and specific differential phases Kdp are estimated using the
algorithm [31]. The rain gauge measurements utilized in this
paper are sourced from the South Florida Rainfall Observation
(SFL) tipping bucket rain gauge network, which is operated
and managed by the South Florida Water Management District.
The temporal resolution of the rain gauge data is 1 min,
and the data are scalar with fixed longitudes and latitudes.
The aforementioned data are also utilized as the verification
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Fig. 1: Demonstration study domain in Florida, USA. The
yellow dot represents the KMLB WSR-88D radar location
(28.11◦N, 80.65◦W). The black circle indicates 150 km cov-
erage range of the KMLB radar. The red dots and black dots
indicate the distribution of rain gauges within and beyond 150
km from the radar site, respectively.

dataset for NASA’s Global Precipitation Measurement (GPM)
mission.

Radar and rain gauge data from 2016–2019 are utilized in
this study. Specifically, the data from 2016 to 2018 are used
for training (80% of the data) and validation (20% of the data),
and the data from 2019 served as independent test data.

III. METHODOLOGY

Figure 2 illustrates the pipeline of our framework for QPE.
It is divided into two parts: (a) the data preprocessing and (b)
the deep learning framework for QPE, where Q1, Q2 and Q3
are the three questions addressed in this paper. Next, we will
provide an introduction to the data preprocessing.

A. Data Preprocessing

To enhance the microphysical information of precipitation,
we use three polarization radar observables radar reflectivity
(Z), differential reflectivity (Zdr) and specific differential
phase (Kdp) as the model inputs, where Zdr is used to
describe the differences in particle shape and size within
the echo, and Kdp characterizes the cumulative phase delay
caused by water droplets of various sizes and types along the
path of radar beam scanning. The rain gauge is considered
the most precise equipment for monitoring precipitation as
it enables direct measurement of ground-level precipitation
and allows for continuous observation without time intervals.
Consequently, we use rain gauge data as the ground truth for
estimating precipitation.

To ensure the quality and consistency of the radar data,
we applied specific thresholds and normalization procedures.
Values outside this range are clipped:

• Z: The range is set between [0, 70].
• Zdr: The range is set between [-1, 5].
• Kdp: The range is set between [-1, 10].
• Radar Observed Height: The range is set between [0,

15,000] meters.
For normalization, we employed a linear normalization

method to scale these variables to a [0, 1] range using the
following formula:

Xnorm =
Xinput −Xmin

Xmax −Xmin
(1)

where Xinput is the original data, Xnorm is the normalized
data, and Xmax and Xmin are the maximum and minimum
values, respectively.

Additionally, regions with no radar echo data are assigned
a value of -1. This differentiation helps in distinguishing be-
tween areas with and without data, enhancing the model’s abil-
ity to learn boundary information.These data quality measures
and normalization steps are crucial for ensuring transparency
and replicability of our results by other researchers.

As being introduced in Section II, KMLB dual-polarization
radar observations have a temporal resolution of 5–7 minutes
and a range resolution of 250 m. The temporal resolution of
the rain gauge data is 1 min, and the data are scalar. Thus,
there is a need to align the two data in temporal and spatial
dimensions. In the temporal dimension, we take the average of
the rain gauge data sums within the radar temporal resolution
as the ground truth. In the spatial dimension, to align rain
gauge data with radar observations accurately, we first identify
the geographical coordinates (latitude and longitude) of each
rain gauge. For each rain gauge site, we select the nearest
radar data point as the center. Around this center point (5, 5),
we extract a 9×9 pixel window from the radar data, which
serves as our sample data for that particular rain gauge site.

Unlike previous related research, this paper utilizes radar
data from the four lowest elevation angles and incorporates
the corresponding height information for each elevation angle.
The reason for this is that, as the propagation distance of the
radar beam increases, there is a gradual attenuation in signal
strength and an increase in vertical distance between the target
detected by the radar beam and ground level, which leads to an
escalation in discrepancies between the radar observations and
rain gauge data, as shown in Fig. 2(a). Hence, the inclusion
of height information from radar data enables deep learning
models to effectively perceive both horizontal and vertical
distances, thereby offering an indirect compensation for the
attenuation effects. Specifically, the model is capable of more
accurately estimating precipitation at various distances by an-
alyzing radar echo data from different height layers and iden-
tifying those precipitation signals that may be underestimated
due to attenuation. The scanning information of the three radar
observables at different elevations is depicted in Fig. 2(a),
where t, t+1, t+2 and t+3 represent the scanning times for the
lowest (approximately 0.5◦), 2nd lowest (approximately 0.9◦),
3rd lowest (approximately 1.3◦) and 4th lowest (approximately
1.8◦) elevation angles, respectively. Also, t represents the time
to collect radar data at different elevation angles. Similarly, Ht,
Ht+1, Ht+2 and Ht+3 denote the height information for these
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Fig. 2: Flowchart of the deep learning method for polarimetric radar QPE: (a) data preprocessing, (b) deep learning framework
for QPE. Q1, Q2, and Q3 indicate issused addressed in this article.

elevation angles. In this context, each sample is structured as
a 4×4×9×9 matrix, where the first dimension represents the
number of radar observables, including Z, Zdr, Kdp, and H .
The second dimension corresponds to four consecutive time
points, capturing temporal dynamics. The third and fourth
dimensions represent the spatial extent of the data in terms
of length and width respectively.

B. Model Architecture

The proposed StarNet model architecture, depicted in Fig.
3(a), comprises four sequentially cascaded star blocks. Each
block incorporates a circular connection among its layers, en-
hancing inter-layer feature refinement. The model’s core layers
incorporate 3D modules, enabling the effective processing of
time-dimensional features to capture temporal variations in
precipitation dynamics accurately. The estimation head mod-
ule integrates features across various semantic levels during
training, thereby improving precipitation estimation accuracy.

1) 3DConv Layer: Our previous research typically em-
ploys a 2D multichannel convolution method to analyze
radar observations across two spatial dimensions: latitude
and longitude. However, this approach often overlooks the
temporal correlation inherent in precipitation patterns, specif-
ically the variations in precipitation over time. Recent studies
have demonstrated that 3D convolutional neural networks
(3DCNNs) are particularly effective in various domains that
involve spatiotemporal data [29]. This success is attributed to
the architecture’s inherent capacity to simultaneously capture
both spatial and temporal information, thereby significantly
enhancing the model’s feature learning capabilities.

Considering precipitation as a dynamically evolving pro-
cess, it becomes evident that relying solely on 2D features

is insufficient to accurately capture its complex and chang-
ing nature. The data of each radar observable at different
scanning moments are superimposed in this paper, and 3D
convolution is used for processing. Fig. 4 shows the 3D
convolution operation of the StarNet model, whose filter size is
4×4×3×3. In contrast to 2D convolution, the 3D convolution
kernel represents the height, width, and time/depth dimensions
of radar data to generate a group of 3D feature maps. In
this example, input features have dimensions of 4×4×9×9,
corresponding to channel, time, length, and width, respec-
tively. During convolution with a 64 × 4×4×3×3 kernel, the
operation extends beyond height and width, sliding across the
time dimension as well, thereby effectively capturing temporal
information within the feature. After the 3D convolution, the
feature map is generated with the size of 64×4×7×7. Core
components of the model, including convolution, pooling,
and batch normalization, are enhanced with 3D modules for
comprehensive multidimensional data processing.

2) Star Block: The cornerstone of our model is the ’star
block’, derived from the 3DConv layer and clique unit [30]. Its
distinctive pentagram-like structure facilitates interconnected
feature processing across different levels, so it is named
’3DStar’. Each star block comprises two stages: stage 1
focuses on the flow of radar observation information from
shallow to deep features, while stage 2 reverses this flow,
facilitating the interaction and fusion of features across levels.
This module allows for the transfer of information from
shallow to deep convolutional units and in reverse, within
the same forward propagation stage. This enhancement signif-
icantly increases the use and reuse of convolutional units and
refines feature representation, aiding in the precise capture of
precipitation change information. The process is illustrated in
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Fig. 3: The detailed architecture of StarNet: (a) StarNet, (b) Star Block, (c) Transition Layer and (d) Estimation Head. Conv
and BN stand for convolution and batch normalization, respectively.

Fig. 4: The architecture of 3D convolution layer.

Fig. 3(b).
For example, in stage 1, a star block processes five depth-

level feature maps through bottleneck layers (BN3D-ReLU-
3DConv(1×1) and BN3D-ReLU-3DConv(3×3)). The feature
map #4, for instance, is derived as follows:

X1
4 = H([X1

0 , X
1
1 , X

1
2 , X

1
3 ]) (2)

where Xi
j represents the jth radar observation feature of the

ith stage, with H denoting the bottleneck layer. Conversely,
in stage 2, the feature input at each level comprises deeper
features from stage 1 and shallower features from stage 2. For
example, the input for radar observation feature #3 in stage 2
is:

X2
3 = H([X1

4 , X
2
1 , X

2
2 ]) (3)

Notably, the bottleneck layers in both stages share parameters,
optimizing the model’s efficiency.

Our model integrates four star blocks, each consisting of
six cascaded bottleneck layers, with the output channels of
the 3DConv radar observation features in these blocks being
40, 80, 160 and 160, respectively.

3) Transition Layer: The transition layer in our model
serves two primary functions: downsampling features and fil-
tering critical features. This is achieved through a combination
of 3D average pooling and a multi-head attention mechanism.
Initially, radar observation features Xi

4 from the star block
undergo a 3D batch normalization layer (3DBN) and ReLU
activation, followed by a 1×1 3D convolution to enhance
nonlinear transformations, as shown in Fig. 3(c).

To efficiently extract precipitation information from se-
quence data and enhance the model’s ability to differentiate
between various locations and features, we have integrated a
multi-head attention mechanism, as described by Vaswani et
al. [32], into a residual structure. Unlike single-head attention,
which focuses on a singular subset of information at any given
time, multi-head attention enables the model to simultaneously
attend to information from different representation subspaces
at various positions. This approach with multiple ’heads’
allows the model to capture a broader and more diverse range
of information, significantly improving its ability to discern
intricate patterns in the spatial features of precipitation data.
In this process, the output from the 3DConv layer is first trans-
formed into 2D spatial features through dimensional flattening,
encompassing temporal, length, and width dimensions.

Subsequent to layer normalization, we formulate the query
Q, key K, and value V vectors essential for the attention
mechanism. In this setup, each element within the sequence
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generates a ’query’. The mechanism then evaluates the rel-
evance of this query in relation to a set of ’keys’ linked
to other elements, thus producing ’values’ that signify this
relevance. Such a process empowers the network to concen-
trate on specific segments of the input sequence that are most
crucial for the task, thereby significantly enhancing its learning
capabilities. Our model employs eight attention heads, with
each head computing attention as per the scaled dot-product
attention mechanism. The attention output of each head is
computed as follows:

hi = Attention(Qi,Ki, Vi) = softmax
(
QiK

T
i√

dk

)
Vi, (4)

where Qi, Ki, and Vi are the query, key, and value matrices,
respectively, for the i-th head, and dk is the dimensionality of
the keys. The function softmax is applied row-wise. Each head
computes attention by first calculating the dot product of the
query with the key, followed by scaling, applying the softmax
function, and finally multiplying by the value. This scaled dot-
product attention is a fundamental component of our transition
layer, allowing it to effectively focus on different aspects of
the input data in each head. The query, key, and value vectors
for each head are obtained by linearly projecting the input
matrix X using distinct weight matrices for each head:

Qi = W
(Q)
i X, Ki = W

(K)
i X, Vi = W

(V )
i X. (5)

here, W
(Q)
i , W

(K)
i , and W

(V )
i are the learnable parameter

matrices for the query, key, and value, respectively, for the i-th
attention head. The concatenated outputs of the eight attention
heads are passed through a linear layer to yield enhanced
features. This process can be represented by the following
equation:

X̂ = X +Wo

h1

...
h8

 (6)

In this equation, X̂ represents the final output of the linear
layer, incorporating the residual connection. Here, h1 . . .h8

are the outputs of the eight attention heads, and Wo is the
learnable weight matrix of the linear transformation. This
structure allows the model to effectively integrate the informa-
tion processed by each attention head, enhancing the feature
representation derived from the input data.

Ultimately, the processed radar observation feature maps
are resized back to their original four-dimensional format,
after which they undergo refinement through a 3D averaging
pooling layer with a stride of 2 to produce refined radar
observation feature maps.

4) Estimation Head: In the estimation header module, the
process begins with the aggregation of feature maps from
stage 2 of each star block. These aggregated features are
then compressed using a 3DBN and a 1×1 3D convolution,
effectively reducing the number of channels in the feature
map by half. Subsequently, a 3DBN and a 3D adaptive global
pooling layer are applied, transforming these features into a

refined 1×1×1 shape representation. The final step involves
the concatenation of these feature streams from each block,
resulting in a combined feature set. This combined feature set
is then fed into a linear layer, leading to the computation of
the final precipitation rate.

5) Loss Function: The estimation model for precipitation
encounters significant challenges in dealing with extreme pre-
cipitation, particularly when employing the conventional mean
absolute error (MAE) or mean squared error (MSE) as the loss
function; the model tends to underestimate heavy rainfall rates.
This is explained by the fact that the limited occurrence of
heavy precipitation events in the samples hampers effective
learning of such events during the model training process,
resulting in a tendency to estimate strong precipitation events
as weak or moderate events with larger sample sizes, as shown
in Fig. 2(b). To enhance the model’s ability to estimate heavy
precipitation events and address dataset imbalances, this paper
proposes the use of a balance-Huber (B-Huber) loss function.
The initial Huber loss function is defined as follows:

Lδ(y, e(x)) =

{
1
2 (y − e(x))2 for |y − e(x)| ≤ δ,

δ(|y − e(x)| − 1
2δ) otherwise,

(7)
where y is the actual observation, e(x) is the estimate of
the model, and δ refers to the threshold hyperparameter.
The model employs the MSE loss function when the error
between observations and estimates is less than or equal to
δ; otherwise, it uses the MAE loss function. The Huber loss
function takes advantage of the benefits of both the MAE and
MSE, enabling the model to accurately fit normal values while
mitigating the impact of outliers, thus improving the stability
and generalizability of the model.

The B-Huber loss function proposed in this paper is based
on the original Huber function and assigns varying weights to
different precipitation rates. The formula is as follows:

LB-Huber(y, e(x), r) = w(r)× Lδ(y, e(x)) (8)

w(r) =


1 if r ≤ 10 mm/h,
1 + k × (r − 10) if 10 < r ≤ 40 mm/h,
1 + k × (40− 10) if r > 40 mm/h,

(9)

where r is the rainfall rate and k is the proportional factor for
weight increase, which is set to 0.2 in this paper. During the
experiments, setting the rainfall rate thresholds to 10 mm/h
and 40 mm/h yielded optimal estimation results.

C. Comparison Methods and Evaluation Metrics

In this paper, the rainfall rate is evaluated as the cumulative
amount of hourly precipitation. To demonstrate and evaluate
this innovative model for mapping regional rainfall, we con-
ducted a comparative analysis between the rainfall estimates
obtained from six deep learning networks and those derived
from four Z-R relations [33, 34]. These four Z-R relations
are defined as follows:
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R(Z) = 1.70× 10−2 × Z0.714 (Convective relation) (4a)

R(Z) = 3.64× 10−2 × Z0.625 (Stratiform relation)
(4b)

R(Z,Zdr) = 1.42× 10−2 × Z0.77 × (10
Zdr
10 )−1.67

(NEXRAD relation) (4c)

R(Kdp) = sign(Kdp)× 54.3|Kdp|0.806(Florida relation)
(4e)

To comprehensively quantify the precipitation estimation
performance of the StarNet model, eleven evaluation metrics
are used in this article, which include five metrics: MAE,
root mean squared error (RMSE), BIAS, correlation coefficient
(CC), normalized standard error (NSE) and ubRMSE, which
are computed respectively as follows:

RMSE =

√∑N
n=1 (Rn −Gn)

2

N
(11)

MAE =

∑N
n=1 |Rn −Gn|

N
(12)

CC =

∑N
n=1 (Rn − R̄N )(Gn − ḠN )√∑N

n=1 (Rn − R̄N )
2
√∑N

n=1 (Gn − ḠN )
2

(13)

NSE =

∑N
n=1 |Rn −Gn|∑N

n=1 Gn

(14)

BIAS =

∑N
n=1 Rn∑N
n=1 Gn

(15)

ubRMSE =

√∑N
n=1

(
(Rn − R̄N )− (GN − ḠN )

)2
N

(16)

where Rn and Gn denote the rainfall estimates and rain gauge
measurements (mm) at the nth hour, respectively. N is the total
number of hours, which is 3950 in our experiments. R̄N and
ḠN represent the average of rainfall estimates and rain gauge
measurements (mm) in the test dataset. When the CC and the
BIAS ratios approach 1, or when the RMSE, MAE, and NSE
exhibit lower values, the estimates show good performance.

In addition, five evaluation metrics are also used, namely,
the probability of detection (POD), false alarm ratio (FAR),
critical success index (CSI), Heidke skill score (HSS), and
Gilbert skill score (GSS) are computed respectively as follows:

POD =
S

S + F
(17)

FAR =
A

S +A
(18)

CSI =
S

S + F +A
(19)

HSS =
2× (S ×N − F ×A)

(S + F )× (F +N) + (S + A)× (A+N)
(20)

TABLE I: The performance of various models in precipitation
estimation.

Methods
MAE

(mm)

RMSE

(mm)
CC

NSE

(%)

BIAS

(ratio)

Convective Z-R relation 3.26 5.07 0.76 54 0.54

Stratiform Z-R relation 3.39 5.34 0.77 56 0.48

NEXRAD relation 3.34 5.15 0.78 55 0.49

Florida relation 2.42 3.74 0.85 40 0.81

RepVGG [35] 1.77 2.99 0.89 29 0.93

CliqueNet [30] 1.65 2.81 0.90 27 0.92

UNet [36] 1.64 2.78 0.91 27 0.90

ResNet101 [12] 1.63 2.75 0.91 27 0.91

RQPENetD1 [15] 1.60 2.74 0.91 26 0.91

StarNet 1.55 2.63 0.92 25 0.94

GSS =
S −Q

S + F +A−Q
Q =

(S + F )× (S +A)

S + F +A+N
(21)

If the radar precipitation estimates and rain gauge mea-
surements are greater than a threshold, they are considered
active, otherwise inactive. S denotes a success (i.e., both the
rain gauge measurement and rainfall estimate are active); F
denotes a failure (i.e., the rain gauge measurement is active,
but the rainfall estimate is inactive); A denotes a false alarm
(i.e., rain gauge measurement is inactive, but the rainfall
estimate is active); N denotes a correct negative (i.e., rain
gauge measurement and rainfall estimate are both inactive).
Higher POD, CSI, HSS, GSS, or lower FAR indicate better
estimation performance.

IV. EXPERIMENTS AND RESULTS

In the experimental section, we initially quantify the estima-
tion performance of different methods using all precipitation
samples. Then, we conducted a comparative analysis of the
estimation performance of the nine methods at thresholds of
2.5 mm, 5.0 mm, and 7.6 mm. We also evaluate the perfor-
mance of these methods in different observation ranges and
loss functions. The estimation results are ultimately visualized
by generating precipitation product maps.

In Table I, the precipitation estimation performance of four
Z-R relations and six deep learning models are compared
under all samples. It can be seen that StarNet achieves superior
estimation performance, with the lowest MAE of 1.55 mm,
RMSE of 2.63 mm, NSE of 25%, highest CC of 0.92 and
the BIAS ratio of 0.97. The estimated results of RQPENetD1

are suboptimal. Fig. 5 shows a scatter plot of precipitation
estimation errors for nine RQPE methods, with the horizontal
axis representing cumulative hourly rain gauge measurements,
the vertical axis representing the cumulative hourly precip-
itation estimated by the different methods. The color-coded
axis uses the y = log10x function to indicate the sample size
of each scatter, where x is the actual number of samples at
a given scatter point, and y is the color-coded value in the
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Fig. 5: Scatter plots of hourly precipitation estimates from different RQPE methods versus validation gauge observations:
(a)-(c) represent convective Z-R relation, NEXRAD Z-R relation, and Florida relation, respectively, and (d)-(i) correspond to
RepVGG, CliqueNet, UNet, ResNet101, RQPENetD1 and StarNet, respectively.

color range. A higher concentration of red indicates higher
sample sizes while blue represents lower sample sizes. The
precipitation per hour is represented by each scatter in Fig.
5. The value of n represents the cumulative number of hours,
which amounts to 3950. The closer the red regression line of
the scatter aligns with the diagonal, the higher the estimated
accuracy. Meanwhile, we introduce two additional parameters,
namely unadjusted bias root mean squared error (ubRMSE)
[37] and bias, to facilitate the evaluation of different methods.
The ubRMSE considers both the bias and variance in model
estimation, and the bias represents the disparity between the
average estimates derived from different methods and the
average rain gauge measurements. As can be seen from Fig.
5(a)-(c), the scatter points of the Z-R relations have an overall
downward slope, i.e., the precipitation estimates by the Z-R
relations are lower than the rain gauge measurements. The
bias value also indicates a significant disparity between the
precipitation estimated by the Z-R relations and the rain gauge

measurements. Additionally, both RMSE and ubRMSE values
are notably high. The scatter plots in Fig. 5(d)-(i) depict
the performance of six deep learning methods in estimating
precipitation. It is evident that the scatter points of the deep
learning models are densely clustered around the diagonal line,
indicating a closer proximity between the model’s precipitation
estimates and the measurements from rain gauges. This effec-
tively mitigates the issue of underestimating precipitation. The
RMSE, ubRMSE, and bias values are significantly decreased.
Notably, StarNet exhibited the highest accuracy, achieving a
minimal RMSE of 2.632 mm, ubRMSE of 2.608 mm, and a
bias of -0.358 mm. Through the analysis of Fig. 5, it is evident
that the majority of precipitation generated by precipitation
events falls within the range of 0-20 mm. However, there is a
scarcity of data for heavy or extreme precipitation, leading to
an inadequate sample size for model training and subsequently
impacting the accuracy of precipitation estimation. This defi-
ciency is also the primary reason for the increasing discrepancy
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Fig. 6: Taylor plots of nine RQPE algorithms: (a)-(c) represent convective Z-R relation, NEXRAD Z-R relation, and Florida
relation, respectively, and (d)-(i) correspond to RepVGG, CliqueNet, UNet, ResNet101, RQPENetD1 and StarNet, respectively.

between estimates and ground truths as precipitation levels
rise.

To provide a more comprehensive and intuitive comparison
of the performance of different RQPE methods, we employ
the Taylor diagram, as illustrated in Fig. 6. When comparing
multiple models, it is not straightforward to determine which
model performs better or has less estimation error solely
by examining the scatter plot. The Taylor diagram utilizes
trigonometric geometry to visually represent three statistics -
CC, normalized standard deviation (NSD), and centralized root
mean square error (CRMSE) - on a single graph, facilitating
a more direct comparison of model performance. In Fig. 6,
the horizontal and vertical axes represent the NSD of the
precipitation estimation values. The NSD helps assess the
deviation between the precipitation estimates and the average

measurements of rain gauges. The radial axis denotes the
correlation coefficient between estimates and measurements
of rain gauges. Furthermore, the CRMSE is represented by
a semicircular blue dashed line, indicating the central mean
square error between the estimates and the measurements; a
smaller value indicates better model estimation performance.
Each red dot in the figure represents the normalized average
precipitation estimate for each rain gauge. These data points
are aggregated to form a green star, which represents the
average estimate of the different methods and serves as an
overall performance indicator for the model. Regarding overall
performance, the Z-R relations and the RepVGG method
have correlation coefficients less than 0.9 and more dispersed
rain gauge points, indicating poor model performance due to
low correlation between model estimates and actual values.
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TABLE II: Quantitative Evaluation results of nine RQPE methods under different precipitation intensities.

Threshold 2.5 mm 5.0 mm 7.6 mm

#Sample 1300.00 1596.00 1054.00

Total rainfall amounts

(mm)
1554.39 7568.90 14911.50

Methods
MAE

(mm)

RMSE

(mm)
CC

NSE

(%)

BIAS

(ratio)

MAE

(mm)

RMSE

(mm)
CC

NSE

(%)

BIAS

(ratio)

MAE

(mm)

RMSE

(mm)
CC

NSE

(%)

BIAS

(ratio)

Convective Z-R relation 0.76 1.06 0.39 64 0.55 2.79 3.31 0.33 59 0.50 7.05 8.84 0.64 50 0.56

Stratiform Z-R relation 0.71 0.98 0.44 59 0.59 2.70 3.18 0.32 57 0.48 7.74 9.51 0.65 55 0.47

NEXRAD relation 0.74 1.00 0.43 62 0.50 2.81 3.25 0.35 59 0.46 7.35 9.07 0.67 52 0.50

Florida relation 1.10 1.60 0.32 92 0.79 2.12 2.72 0.43 45 0.79 4.50 6.17 0.74 32 0.83

RepVGG [35] 0.67 1.03 0.69 56 1.46 1.38 1.91 0.52 29 0.97 3.72 5.16 0.78 26 0.86

CliqueNet [30] 0.57 0.92 0.70 48 1.34 1.32 1.82 0.56 28 0.95 3.47 4.85 0.81 25 0.87

UNet [36] 0.50 0.85 0.65 41 1.19 1.42 1.87 0.58 30 0.91 3.39 4.77 0.82 24 0.86

ResNet101 [12] 0.51 0.88 0.67 43 1.26 1.37 1.83 0.58 29 0.93 3.40 4.74 0.82 24 0.87

RQPENetD1 [15] 0.54 0.92 0.62 45 1.17 1.40 1.86 0.57 29 0.92 3.43 4.71 0.83 24 0.86

StarNet 0.56 0.90 0.71 47 1.34 1.26 1.73 0.59 27 0.98 3.23 4.52 0.83 23 0.88

TABLE III: Qualitative Evaluation results of nine RQPE methods under different precipitation intensities.

Threshold 2.5 mm 5.0 mm 7.6 mm

Methods POD FAR CSI HSS GSS POD FAR CSI HSS GSS POD FAR CSI HSS GSS

Convective Z-R relation 0.56 0.03 0.55 0.43 0.28 0.45 0.06 0.44 0.45 0.29 0.42 0.12 0.39 0.48 0.31

Stratiform Z-R relation 0.57 0.03 0.56 0.44 0.28 0.40 0.05 0.39 0.41 0.26 0.32 0.07 0.31 0.39 0.24

NEXRAD relation 0.54 0.02 0.53 0.42 0.26 0.41 0.04 0.40 0.42 0.27 0.35 0.09 0.34 0.42 0.27

Florida relation 0.76 0.08 0.72 0.58 0.41 0.70 0.12 0.64 0.64 0.47 0.67 0.17 0.59 0.66 0.49

RepVGG [35] 0.92 0.12 0.82 0.69 0.53 0.79 0.11 0.72 0.73 0.57 0.75 0.16 0.66 0.72 0.57

CliqueNet [30] 0.91 0.09 0.84 0.73 0.58 0.80 0.10 0.74 0.75 0.60 0.75 0.15 0.67 0.73 0.58

UNet [36] 0.86 0.06 0.82 0.72 0.56 0.80 0.09 0.74 0.75 0.60 0.77 0.14 0.68 0.74 0.59

ResNet101 [12] 0.89 0.07 0.83 0.73 0.58 0.81 0.09 0.75 0.76 0.61 0.76 0.15 0.67 0.74 0.58

RQPENetD1 [15] 0.89 0.07 0.84 0.74 0.59 0.79 0.09 0.73 0.74 0.59 0.75 0.14 0.67 0.74 0.59

StarNet 0.92 0.09 0.85 0.75 0.60 0.84 0.11 0.76 0.76 0.62 0.79 0.15 0.70 0.76 0.61

Deep learning-based models such as CliqueNet, ResNet101,
and RQPENetD1 show a general improvement in correlation
coefficients to around 0.9, but still exhibit large standard
deviations, indicating significant differences between model
precipitation estimates and gauge measurements, thus leading
to unstable performance. UNet and 3D-StarNet demonstrate
the best overall performance in experiments, with correlation
coefficients greater than 0.9 and closely clustered rain gauge
points, showing normalized standard deviations less than 1.5,
which indicates higher accuracy and reliability in their esti-
mates. However, StarNet demonstrates better CC values and
green center point values than UNet. Despite their outstanding
performance, both models rely on supervised training and
their effectiveness is heavily contingent upon the quantity and
quality of the training data. When transitioning to regions
with sparse or lower-quality data, the generalizability of these
models cannot be guaranteed and necessitates further vali-
dation. Additionally, we must consider the challenges posed

by different climatic conditions or geographical environments
during model training.

The performance of different RQPE methods under various
precipitation thresholds is presented in Table II and Table III.
It can be observed from Table II that the accuracy of StarNet
surpasses other methods significantly in moderate and heavy
precipitation, thereby demonstrating the efficacy of the B-
Huber loss function. But in weak precipitation events, UNet
outperforms the StarNet model possibly due to the B-Huber
loss function attenuating the performance of the latter. In Table
III, except for the FAR parameter, StarNet achieves the highest
POD, CSI, HSS and GSS values under 2.5 mm, 5.0 mm and
7.6 mm. For the 2mm and 5mm thresholds, the NEXRAD
relation has the lowest FAR values. For the 7.6mm thresh-
old, the Stratiform Z-R relation has the lowest FAR values.
Nonetheless, it should be mentioned that CSI possesses a more
comprehensive capacity for evaluating models compared to
POD and FAR. In general, StarNet has the best comprehensive
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TABLE IV: The performance comparison of precipitation estimation models at various distance ranges. StarNet w/o. height
indicates results without using prior height information in radar data.

Threshold 50 km 100 km 150 km

#Sample 1878 1258 814

Methods
MAE

(mm)

RMSE

(mm)
CC

NSE

(%)

BIAS

(ratio)

MAE

(mm)

RMSE

(mm)
CC

NSE

(%)

BIAS

(ratio)

MAE

(mm)

RMSE

(mm)
CC

NSE

(%)

BIAS

(ratio)

Convective Z-R relation 3.28 5.05 0.78 0.55 0.50 2.94 4.69 0.78 0.50 0.57 3.71 5.63 0.73 0.56 0.58

Stratiform Z-R relation 3.44 5.40 0.78 0.57 0.45 3.08 5.01 0.78 0.53 0.50 3.73 5.68 0.75 0.57 0.50

NEXRAD relation 3.39 5.18 0.80 0.56 0.46 3.07 4.89 0.79 0.52 0.51 3.65 5.47 0.76 0.55 0.52

Florida relation 2.20 3.28 0.88 0.37 0.82 2.48 4.01 0.81 0.42 0.80 2.84 4.27 0.83 0.43 0.83

RepVGG [35] 1.55 2.53 0.92 0.26 0.97 1.76 3.13 0.87 0.30 0.93 2.28 3.66 0.86 0.35 0.87

CliqueNet [30] 1.45 2.42 0.93 0.24 0.93 1.67 3.00 0.88 0.28 0.91 2.07 3.30 0.88 0.31 0.94

UNet [36] 1.47 2.41 0.93 0.25 0.90 1.67 2.98 0.89 0.29 0.90 2.00 3.21 0.89 0.30 0.89

ResNet101 [12] 1.47 2.39 0.93 0.24 0.90 1.63 2.92 0.89 0.28 0.91 2.00 3.24 0.89 0.30 0.94
RQPENetD1 [15] 1.48 2.40 0.93 0.25 0.94 1.68 2.88 0.90 0.29 0.87 2.03 3.27 0.89 0.31 0.85

StarNet w/o. height 1.48 2.42 0.93 0.25 0.91 1.62 2.78 0.90 0.28 0.95 2.01 3.19 0.89 0.31 0.94

StarNet 1.39 2.32 0.94 0.23 0.94 1.57 2.77 0.90 0.27 0.94 1.90 3.07 0.90 0.29 0.94

TABLE V: Evaluation results of the StarNet under different precipitation intensities and loss functions.

Threshold All 2.5 mm 5.0 mm 7.6 mm

Loss MAE RMSE CC NSE BIAS POD FAR CSI HSS GSS POD FAR CSI HSS GSS POD FAR CSI HSS GSS

B-Huber 1.55 2.63 0.92 0.25 0.94 0.92 0.09 0.85 0.75 0.60 0.84 0.11 0.76 0.76 0.62 0.79 0.15 0.70 0.76 0.61

MSE 1.60 2.69 0.91 0.26 0.94 0.94 0.12 0.84 0.71 0.55 0.81 0.08 0.75 0.76 0.62 0.75 0.14 0.67 0.74 0.59

MAE 1.73 2.92 0.91 0.28 0.82 0.85 0.04 0.82 0.74 0.58 0.71 0.06 0.68 0.69 0.53 0.68 0.10 0.63 0.70 0.54

performance.
The performance evaluation of various RQPE methods at

different radar ranges is presented in Table IV. By comparing
the performance of the same method across different radar area
ranges, it is evident that the method’s estimation performance
diminishes with increasing distance and is significantly influ-
enced by radar beam attenuation. It is worth noting that, with
the exception of the StarNet w/o. height method, the other
RQPE methods employed in this study all utilize radar data
with height prior information. Overall, StarNet exhibits supe-
rior estimation performance compared to other methods within
the radar range of 50 km, 100 km, and 150 km. Although
the estimation performance of StarNet without height prior
information is reduced, it still outperforms other methods.
This demonstrates that incorporating height information in
radar data mitigates the impact of radar beam attenuation
while highlighting the superior ability of StarNet to extract
spatiotemporal characteristics of precipitation.

Table V shows the comparison of the estimation perfor-
mance of StarNet under different precipitation thresholds and
various loss functions. It can be seen that employing the B-
Huber loss function enhances the estimation accuracy across
various precipitation amounts, and improves the model’s per-
formance particularly during moderate and heavy precipitation
events. The reason for this is that the gradient of the loss
function guides the updating of the model parameters during

training. By weighting the training weights of the medium
and heavy precipitation samples, the estimation errors of these
samples will produce a larger gradient, which means that
when the parameters are updated, these larger error samples
will have a greater impact on the learning of the model.
Simultaneously, it enhances the model’s capacity to learn and
characterize moderate and heavy precipitation events, thereby
facilitating the model to rapidly and accurately estimate heav-
ier precipitation events. In general, the performance of the
B-Huber loss function outperforms that of the MSE and
MAE loss functions. Fig. 7 shows the precipitation products
generated by four Z-R relations and four deep learning models
at 20:00 UTC on May 13, 2019. A histogram is utilized to
compare the evaluation metrics of five methods through their
precipitation predictions, namely Florida relation, RepVGG,
ResNet101, RQPENetD1 and StarNet, where ”Diff.” is the dif-
ference between the average of rain gauge measurements and
the average of model estimates. Fig. 7 illustrates a significant
underestimation of precipitation by the Z-R relations, whereas
the deep learning models effectively address this issue. The
evaluation metrics reveal that the estimation performance of
StarNet surpasses other models significantly, with the lowest
MAE of 1.23 mm, RMSE of 2.03 mm, NSE of 24%, Diff. of
0.16 mm, highest CC of 0.92 and the BIAS ratio of 1.03. In
general, the StarNet precipitation estimation is closer to the
ground truth value of precipitation.
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Fig. 7: Rainfall maps derived from eight QPE methods at 20:00 UTC on 13 May 2019: (a) Convective Z-R relation, (b)
Stratiform Z-R relation, (c) NEXRAD relation, (d) Florida relation, (e) RepVGG, (f) ResNet101, (g) RQPENetD1, (h) StarNet.
Panel (i) indicates the comparison results of hourly rainfall estimates from five QPE methods.

V. SUMMARY

The current tasks of radar quantitative precipitation es-
timation are primarily constrained by the following limita-
tions: accumulated attenuation along the propagation paths,
spatiotemporal feature extraction using traditional parametric
radar rainfall relations, and misrepresentation of precipitation
regimes of those traditional parametric relations. This paper
presented solutions to three problems in the current radar-
based quantitative precipitation estimation:

1. Signal quality attenuation caused by radar beam prop-
agation is mitigated by incorporating altitude information
into our model. This enables the model to understand the
distribution characteristics of precipitation at different heights
and its impact on beam attenuation, indirectly compensating
for attenuation effects. 2. The traditional parametric radar
rainfall relations often lack spatiotemporal dimension feature
extraction. To address this limitation, a StarNet model has been
developed. This model utilizes three-dimensional convolution
to extract spatiotemporal features from radar variables and
significantly improves estimation performance by incorpo-
rating temporal relationships in precipitation processes. 3.
Traditional parametric relations often simplify the formation
and distribution of precipitation by assuming a uniform spread
over a specific area or time period, but this may not accu-
rately capture the true variability observed in nature. In fact,
the distribution of precipitation events often shows a long-
tail pattern, where moderate and heavy precipitation events
are often not well represented in the data. To improve the

estimation of these events, we have developed a B-Huber loss
function. This function gives more importance to these specific
categories by increasing the loss weights for moderate and
heavy precipitation samples.

Dual-polarization radar observations and rain gauge mea-
surements were used in the designed deep leaning model.
By utilizing ten evaluation metrics to quantify various RQPE
methods across different precipitation thresholds and regions,
the experimental results show that StarNet exhibits superior
comprehensive performance, proving that this model can ef-
fectively extract spatiotemporal information in precipitation.
Simultaneously, the incorporation of height information mit-
igates the impact caused by radar beam attenuation, thereby
enhancing the model’s performance in long-distance precipita-
tion estimation. The experimental results of StarNet employing
different loss functions show that the B-Huber loss function
improves the problem of long-tailed distribution in precipita-
tion data. Finally, the generated precipitation maps are utilized
to visually demonstrate the efficacy of StarNet in polarimetric
radar-based precipitation estimation.
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