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ABSTRACT: Advanced Quantitative Precipitation Information (AQPI) is a synergistic project 
that combines observations and models to improve monitoring and forecasts of precipitation, 
streamflow, and coastal flooding in the San Francisco Bay Area. As an experimental system, 
AQPI leverages more than a decade of research, innovation, and implementation of a statewide, 
state-of-the-art network of observations, and development of the next generation of weather 
and coastal forecast models. AQPI was developed as a prototype in response to requests from 
the water management community for improved information on precipitation, riverine, and 
coastal conditions to inform their decision-making processes. Observation of precipitation in the 
complex Bay Area landscape of California’s coastal mountain ranges is known to be a challenging 
problem. But, with new advanced radar network techniques, AQPI is helping fill an important 
observational gap for this highly populated and vulnerable metropolitan area. The prototype AQPI 
system consists of improved weather radar data for precipitation estimation; additional surface 
measurements of precipitation, streamflow, and soil moisture; and a suite of integrated forecast 
modeling systems to improve situational awareness about current and future water conditions from 
sky to sea. Together these tools will help improve emergency preparedness and public response 
to prevent loss of life and destruction of property during extreme storms accompanied by heavy 
precipitation and high coastal water levels—especially high-moisture laden atmospheric rivers. 
The Bay Area AQPI system could potentially be replicated in other urban regions in California, the 
United States, and worldwide.
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W intertime precipitation is vital for replenishing snowpack and filling reservoirs 
in the western United States. Along the U.S. West Coast, much of the wintertime 
precipitation comes from atmospheric rivers (ARs), which are narrow bands of 

concentrated water vapor transport often associated with landfalling extratropical cyclones 
(Zhu and Newell 1998). Nearly half of California’s annual precipitation comes from a handful 
of AR events (Dettinger et al. 2011). ARs and their accompanying heavy rains can be both good 
news and bad news for California residents: they can bring relief for anxious water managers 
in a drought-prone region. However, that much water—arriving over a period of several days 
or less—can cause major flooding, endangering lives and property. ARs are responsible for 
more than 80% of the flood damages in the western United States, including California, with 
over $1 billion in average annual costs (Corringham et al. 2019).

The San Francisco Bay Area is particularly prone to significant flooding and the  
resulting damage from ARs (Corringham et al. 2019). Recent examples in the Bay Area 
include flooding impacts from a series of rain events in February 2017 which caused  
flood damage in the city of San Jose, as Coyote Creek overflowed its banks and inundated 
neighborhoods forcing 14,000 residents to evacuate. This series of rain events was also 
responsible for severe damage to the Oroville Dam spillway and an evacuation of nearly 
200,000 residents downstream of the dam (White et al. 2019). All told, the February 2017 
storms were responsible for over $1.5 billion in damages (NCEI 2021). In 2019, another 
series of Bay Area rainfall events resulted in over $150 million in flood damages and a 
presidential disaster declaration (FEMA 2019a,b). Landslides can also be a potential hazard. 
Cordeira et al. (2019) showed that the vast majority of landslides in the San Francisco Bay 
Area were associated with ARs.

The complex terrain and the proximity of San Francisco Bay makes this region susceptible 
to flooding events. Flash flooding along inland rivers and creeks that drain hundreds of 
small watersheds can combine with coastal flooding along the bay shoreline to exacerbate 
the overall magnitude of an event, producing compound flooding events. Urbanization is 
also a contributing factor. This area is home to more than 7 million people, encompassing 
nine counties, three major cities (San Francisco, Oakland, and San Jose), and adjacent com-
munities. According to a recent report from the California Department of Water Resources 
(CA DWR 2013), nearly 400,000 people in the Bay Area are exposed in the 100-yr floodplain. 
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Impervious surfaces and stormwater runoff can exacerbate flooding conditions. The urban 
impacts from flooding range from degraded water quality in the Bay to flooded roadways and 
buildings during storms. Sea level rise and continued urbanization in the region is expected 
to amplify the problem.

The rugged terrain in the San Francisco Bay Area makes it especially challenging to moni-
tor and forecast extreme rain and subsequent flooding events. Existing weather monitoring 
infrastructure—satellites, offshore observations, and the operational radar network (NEXRAD; 
Crum and Alberty 1993)—have enabled forecasters to provide notice of rain events, and 
ascertain their severity, much of the time. The forecasts, though, have not always provided 
specificity sufficient enough to guide actions that could be taken to offset damaging impacts. 
The reason is that precipitation often forms or is enhanced in very low levels of the atmo-
sphere, below the level that the existing NEXRAD network can see well, through orographic 
lifting and warm rain collision–coalescence processes (White et al. 2003). Additionally, the 
observations of some of the radars in the Bay Area are blocked by coastal mountains, leaving 
blind spots in the observation network.

The CA DWR and the U.S. Department of Energy have invested in a “picket fence” of atmo-
spheric river observatories (AROs) along the U.S. West Coast to monitor wind and temperature 
profiles, column-integrated water vapor, onshore moisture flux, 
and freezing elevation at seven coastal sites and two inland 
sites1 (White et al. 2015; Ray and White 2019). The AROs, built  
by the National Oceanic and Atmospheric Administration 
Physical Sciences Laboratory (NOAA/PSL), have been used 
routinely to initialize and evaluate forecasts made by the 
National Weather Service (NWS). The system also enables water 
resources managers to gauge the intensity of an AR event at the location of the ARO. They do 
not, however, scan like a typical weather radar. Rather, AROs view the atmosphere directly 
above them in fine detail. Scanning radar is needed to fill in the gaps between AROs to detect 
variations in storms across different watersheds. A NOAA-supported, pre-AQPI temporary 
deployment of a scanning radar system in Santa Clara, California, was able to demonstrate 
improved high-resolution rainfall estimates (Cifelli et al. 2018).

The purpose of this article is to provide an overview of the Advanced Quantitative  
Precipitation Information (AQPI) Project. The AQPI Project was awarded by CA DWR to NOAA 
and contributing partners in 2017 and is administered by the Sonoma Water Agency. AQPI 
was designed to obtain more precise measurements and forecasts of precipitation, streamflow, 
and coastal flooding in the San Francisco Bay Area. The concept was developed in response 
to requests from the Bay Area water management community for higher-temporal- and 
spatial-resolution information than was currently available to guide their decision-making 
for water management and flood response operations. The origins of AQPI trace back over a 
decade, building on fundamental research to improve understanding of hydrometeorological 
processes conducted through NOAA’s Hydrometeorology Testbed (Neiman et al. 2002; White 
et al. 2003; Matrosov et al. 2005; Zhang et al. 2012; Sumargo et al. 2020) with support from 
CA DWR and the Sonoma Water Agency. One of the strengths of AQPI is the collaborative 
approach between local, state, and federal agencies. Table 1 lists agencies involved in AQPI 
and their roles in the project.

AQPI components
AQPI includes a combination of integrated observations and high-resolution model forecasts 
to track storm systems as well as to predict precipitation, streamflow, and coastal flooding 
across the Bay Area (Fig. 1). As noted above, the foundation for AQPI observations builds 
on an existing network established by NOAA, CA DWR, Scripps Institute of Oceanography,  

1	The inland ARO site within the AQPI domain at 
Twitchell Island, California, does not measure 
temperature profiles, but it has a precipitation 
profiling radar and surface-based disdrometer 
to provide microphysical measurements of the 
precipitation observed at that site.
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San Jose State, and Sonoma Water to monitor extreme precipitation in California. The 
coastal modeling component also builds upon work done in and around San Francisco Bay 
by the USGS and collaborators (Nederhoff et al. 2021; Tehranirad et al. 2020; Martyr-Koller 
et al. 2017).

The core foundation of AQPI observations are new radar systems: four X band and  
one C band as shown in Fig. 2 (also see sidebar). These systems are designed to supplement 
the coverage from NEXRAD in and around the Bay Area and increase the accuracy of quan-
titative precipitation estimation (QPE). The use of smaller radar systems to fill gaps in the 
NEXRAD network supports recommendations for priorities in NOAA weather research (NOAA 
Science Advisory Board 2021). The QPE derived from AQPI radars has been shown to have 
better accuracy and improve streamflow simulations compared to NEXRAD (Cifelli et al. 2018;  
Ma et al. 2021).

Importantly, the AQPI radars can detect narrow cold-frontal rainbands (NCFRs) in parts of 
the Bay Area that are not well observed by NEXRAD (Fig. 3). NCFRs are rainbands that often 
occur along the cold-frontal boundary of extratropical cyclones that can produce high-intensity 
rain rates (Hobbs 1978) and are often responsible for flash floods and geomorphic hazards 
such as debris flows (Collins et al. 2020; de Orla Barile et al. 2022).

To date, two X bands have been installed and are operating as shown in Fig. 2. The char-
acteristics of these radar units are described in Cifelli et al. (2018). The pandemic, wildfires, 
and power outages have delayed the installation of two X-band radars and the C-band radar 
which are expected to be installed by 2023.

Table 1.  Agencies involved in AQPI and their role.

Agency Role

NOAA Physical Sciences Laboratory Program technical lead; quantitative precipitation estimation (QPE)  
development and evaluation; precipitation and streamflow forecast  
evaluation; surface meteorology and profiler sites; benefits evaluation

NOAA Global Systems Laboratory AQPI system development; High-Resolution Rapid Refresh (HRRR) model 
development and evaluation

NOAA Cooperative Institute for  
Research in the Atmosphere

Radar install, testing, operation; QPE and nowcast development, testing,  
and evaluation

NOAA Cooperative Institute for  
Research in Environmental Sciences

HRRR simulations and evaluation; QPE uncertainty

USGS Pacific Coastal and Marine  
Science Center

Coastal Storm Modeling System (CoSMoS) development, testing, and 
operation

NOAA National Severe Storms 
Laboratory

Integration of AQPI radar data into Multi-Radar Multi-Sensor (MRMS)

Colorado State University Department 
of Economics

AQPI benefits analysis

Scripps Institute of Oceanography Development of long-term concept of operations for AQPI

CA DWR Grant sponsor

Sonoma Water Grant administrator, facilitate interaction with local partners, radar siting, 
product evaluation and feedback

Valley Water Hosting X band; data provider; AQPI product evaluation and feedback

San Francisco Public Utilities Hosting X band; data provider; AQPI product evaluation and feedback

Contra Costa County Cohosting and infrastructure support for X band; data provider; AQPI product 
evaluation and feedback

East Bay Municipal Cohosting X band; data provider; AQPI product evaluation and feedback

Alameda County Cohosting X band; data provider; AQPI product evaluation and feedback

Napa County AQPI product evaluation and feedback

Marin County AQPI product evaluation and feedback

National Weather Service AQPI product evaluation and feedback

Brought to you by Colorado State University Libraries | Unauthenticated | Downloaded 06/01/25 05:44 AM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y F E B R UA RY  2 0 2 4 E317

Additional observations include preexisting station network data that are widely  
available [e.g., Hydrometeorological Automated Data System (HADS); Kim et al. 2009], new 
surface meteorological and precipitation profiling radar stations installed by NOAA/PSL for 
AQPI and another statewide observing project supported by CA DWR (White et al. 2013),  
as well as station data from existing local networks that were previously only available 
to individual water agencies. All of the station data are brought in through the NOAA  
Meteorological Assimilation Data Ingest System (MADIS; https://madis.ncep.noaa.gov/; Miller 
et al. 2005), taking advantage of the MADIS integration and QC capabilities to provide data 
standards for all datasets.

In addition to observations, forecast models are used to make predictions of precipitation, 
streamflow, and coastal flooding in the AQPI region. The domain of model coverage is shown 
in Fig. 4.

Description of AQPI forecast modeling
AQPI utilizes and couples several modeling systems to provide forecasts of precipitation, 
streamflow, and water levels in and around the Bay coastline. Here, we provide a brief  
description of each modeling component.

High-Resolution Rapid Refresh and Global Forecast System.  High-Resolution Rapid  
Refresh (HRRR) is a numerical weather prediction model run operationally at the NOAA  
National Centers for Environmental Prediction (NCEP) and widely utilized by the NWS over 
the conterminous United States and Alaska. The HRRR is designed for optimal short-term 
forecasts, with an emphasis on capturing the evolution of precipitating systems. Its horizon-
tal grid spacing is 3 km, and thus is a convection permitting modeling system. It is initial-
ized hourly, assimilating a wide range of observations including Multi-Radar Multi-Sensor 
(MRMS; Zhang et al. 2016) radar reflectivity, radiosonde and aircraft thermodynamic and 

Fig. 1.  Components of AQPI and the flow of information to and from the AQPI system user interface and Bay Area users.
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wind profiles, surface meteorological terminal air report (METAR) observations, cloud infor-
mation from ground-based ceilometers and satellite observations, and more. MADIS serves 
as the conduit for acquiring many of these observations. As a regional model, the HRRR gets 
its boundary conditions from the 13-km Rapid Refresh (RAP) model (Benjamin et al. 2016), 
which uses the same dynamic core and physical parameterizations as the HRRR (except that 
convection is parameterized in the RAP). NOAA’s Global Systems Laboratory (GSL), work-
ing with other partners such as the NWS Environmental Modeling Center (EMC), are con-
tinually improving the model’s physical parameterizations and data assimilation system. 
The HRRR first became operational in 2014, with subsequent updates in 2016 (version 2), 
2018 (version 3), and 2020 (version 4). Importantly, version 3 provided 36-h forecasts when 
initialized at 0000, 0600, 1200, and 1800 UTC; version 4 now provides 48-h forecasts at 
those times (the forecast length for other initialization times is 18 h). A full description of the 
model setup, physical parameterizations, and changes between the model versions is pro-
vided by Dowell et al. (2022) and James et al. (2022). As part of the AQPI project, the ability 
of the HRRR to forecast precipitation during AR events was assessed, which demonstrated 
that both version 3 and version 4 were able to capture these events well relative to observa-
tions, although the HRRR was somewhat dry biased in the Central Valley and moist biased 
in the Sierra Nevada (English et al. 2021).

Fig. 2.  Location of the radar network for AQPI. X-band systems supported by CA DWR are shown in green with the circles indicat-
ing a 40-km range of coverage. To date, the Sonoma and Santa Clara X bands have been installed and are operational (indicated 
with shading). The proposed C-band location is shown in red with the circle indicating 100-km range for rainfall analysis. The 
blue dashed lines indicate additional X-band systems that have been supported by other funding agencies and will be integrated 
into AQPI when they come online.
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The Global Forecast System (GFS) is the NWS’s operational medium-range global forecast 
model. It is initialized 4 times per day at 0000, 0600, 1200, and 1800 UTC, generating fore-
casts out to 16 days. Its horizontal grid spacing is 13 km. It is initialized with a wide range of 
satellite, ground-based, and airborne observations using a three-dimensional variational data 
assimilation system. In 2019, its dynamic core was upgraded from a global spectral model 
framework to the finite-volume cubed sphere (FV3) as part of the Unified Forecast System 
(UFS; Jacobs 2021) effort, and at the same time the number of vertical levels was increased 
from 64 to 127. Like the HRRR, the physical parameterizations within the GFS are continually 
being updated by the NWS EMC and partners, with regular updates propagated to operational 
status in NWS. Details on the model, including its evolution over time, can be found on the 
NWS GFS website (www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php).

NWM.  The National Water Model (NWM) is a relatively new hydrologic modeling system  
developed by NOAA’s Office of Water Prediction and the National Center for Atmospheric 
Research (NCAR). The NWM is based on the open source WRF-Hydro modeling framework 
developed by NCAR (Gochis et al. 2021). Details of the model’s configuration are available 
from the Office of Water Prediction’s website (https://water.noaa.gov/about/nwm). Briefly, the 
NWM simulates current and future streamflow at approximately 2.7 million stream reaches 
across the conterminous United States as well as Hawaii, the Virgin Islands, and Puerto 
Rico on a 1-km grid. This includes over 11,000 stream reaches in the AQPI domain. The 
NWM uses the Noah-MP (Niu et al. 2011) land surface model to simulate surface processes. 
Surface water routing is performed on a 250-m grid using a diffusive wave scheme and 
Muskingum–Cunge channel routing. The NWM is run in different analysis and forecast con-
figurations for short- (18-h), medium- (∼10-day), and long-range (30-day) hydrologic predic-
tions. For the purposes of AQPI, the standard analysis and assimilation (current conditions) 

Fig. 3.  Comparison of radar reflectivity from (a) AQPI X band and (b) KMUX NEXRAD during an AR event observed at 1846 UTC 
24 Oct 2021. The narrow ribbon of high radar reflectivity near Santa Rosa in the center of each image represents a NCFR. Areas 
outlined in red represent recent burn scars.
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and short-term forecast (18-h) configurations are most relevant since these use gauge and 
radar observations as well as HRRR model data to force the NWM. These configurations, as 
well as most of the others used by the NWM, benefit from the assimilation of USGS and U.S. 
Army Corps of Engineer hourly streamflow data as well as the inclusion of reservoirs and 
River Forecast Center forecasts of reservoir outflows at some locations. The analysis and 
short-term forecast configurations are cycled hourly.

Kim et al. (2021, manuscript submitted to J. Hydrol.) evaluated the performance of the 
short-range configuration of the NWM (v1.2) during the 2018/19 wet season. The analysis 
used 65 USGS stream gauges in the San Francisco Bay Area and showed that, based on 
Nash–Sutcliffe efficiency (NSE), the NWM provided useful forecasts (i.e., NSE > 0) out to about 
10 h of forecast lead time. However, significant variation in forecast skill was observed in 
high flow versus low flow and natural versus managed river systems. The best overall skill 
was found in high-flow, natural watersheds.

CoSMoS. The USGS Hydrodynamic Coastal Storm Modeling System (Hydro-CoSMoS; hereafter 
referred to as CoSMoS; Tehranirad et al. 2020) applied in this system is based on the 1D–2D 
Still Water Level San Francisco Bay Community model (d3d-baydelta.org; Nederhoff et  al. 
2021). CoSMoS is an operational application of the Community model, the ocean boundary 
is forced with astronomical tides and forecast sea surface anomalies from the Global Water 
Level Forecast System (HYCOM; Chassignet et al. 2007). The tributaries are forced with the 
discharges provided by the nearest stream segment in the NWM. The surface boundary of the 
model is forced by surface mean sea level pressure, surface wind velocities, and precipitation 

Fig. 4.  Domain of coverage for modeling components of AQPI: HRRR/NWM, QPE, and CoSMoS domains 
are shown in red, blue, and orange, respectively.
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fields forecast by the HRRR model. Additionally, a wave model (SWAN; Booij et al. 1997) is 
run with the same atmospheric inputs. The offshore swell forecasts at the oceanic boundary 
are provided by the global WAVEWATCH III forecasts from NCEP (https://polar.ncep.noaa.gov/
waves/wavewatch/). It provides 19-h forecasts of water level and/or depth and wave parameters 
from these two models, including significant wave height, direction, and period.

CoSMoS shows great skill in reproducing water levels in a hindcast mode using observa-
tions as inputs. Nederhoff et al. (2021) reported an average of 8-cm root-mean-square error 
(RMSE) over a 70-yr retrospective analysis. In most of the coastal areas of the bay, the high-
est water levels are driven primarily by the tides and offshore sea level anomalies. However, 
in the vicinity of rivers and other tributaries within the bay, the fluvial discharges can play 
an important role in driving high water levels. Tehranirad et al. (2020) showed that during 
February 2019, discharges contributed up to 5–10-cm surge in water levels in the North Bay, 
highlighting the role of accurate discharges in projecting how much area will be inundated. 
In a case study of water levels in San Mateo Creek (one of the smaller managed drainages 
into San Francisco Bay), in the region where both discharges and tides are important to total 
water level, the forecast is more sensitive to the magnitudes of discharge than to predict-
ing the timing correctly. When accounting for potential phasing issues by comparing daily 
forecast peaks to observed daily peaks, the error is approximately half that observed by the 
time matched errors (7- versus 14-cm RMSE). Overall, the baywide water levels are highly  
accurate. Although the exact timing of peak water levels is more likely to be shifted near 
fluvial discharges, the daily forecast peak will still be near the observation.

AQPI system
The AQPI team determined that a single data access system was needed to provide “one-stop  
shopping” that could serve the needs for all of the stakeholders in the Bay Area region. The 
AQPI system integrates all the observation and model data and provides it in usable formats 
with customized threshold alerts for decision-making purposes. From the beginning, the sys-
tem was designed with significant input from local water management agencies to determine 
needs and requirements for precipitation, streamflow, and coastal flooding information. The 
AQPI research team conducted a number of in-person meetings with Bay Area water agency 
representatives to identify specific geographic areas of concern and desired thresholds for 
rainfall, streamflow, and/or coastal water levels to take action in advance and during a flooding 
event. Because the water agencies can have somewhat different missions (flood protection, 
wastewater, water supply, etc.) and encompass regions with differing characteristics (land use, 
terrain, proximity to the Bay, etc.) the needs and requirements vary with each agency. These  
meetings resulted in an extensive list of needs and requirements, which were used to build the 
AQPI system. One example is the San Francisco Public Utilities (SFPUC), which is concerned 
with potential flooding impacts of water releases from Lower Crystal Springs Reservoir on San 
Mateo Creek, especially near Highway 101 where the creek meets the Bay. Forecasts of Bay 
water levels from CoSMoS will help inform SFPUC’s decision-making concerning outflows 
from the reservoir (A. Dufour, SFPUC, 2021, personal communication).

As noted above, one of the drivers for the AQPI system is to consolidate desired information 
on precipitation, streamflow, and coastal water levels in the Bay Area. To this end, MADIS 
is used to collect and distribute data in the AQPI domain. An additional advantage of add-
ing local data is that the precipitation information available in MADIS is used to bias correct 
MRMS QPE products and improve their overall skill. To date, 295 local network stations have 
been added through MADIS and the AQPI system is providing data and services (described 
below) to 13 water agencies in the Bay Area.

Model forecast data from the HRRR, GFS, NWM, and CoSMoS are made available to users for 
their specific domains of interest. This information can be used independently for situational 
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awareness or used to drive other “local” models. For example, in Santa Clara County, the radar 
data are used for real-time storm monitoring to inform potential areas of flooding concern 
(J. Xu, Valley Water, 2021, personal communication). In Contra Costa County, NWM data are 
used as input to a Hydrologic Engineering Center River Analysis System (HEC-RAS) model to 
inform on flows in areas of concern. As another example, the SFPUC Wastewater enterprise 
is using the AQPI HRRR forecasts to predict 18-h rainfall accumulation across different quad-
rants of the city as well as to identify short duration periods (1 h) with predicted rainfall rates 
exceeding flood return period criteria. The goal is to eventually bring the information down 
to the neighborhood scale to better identify parts of the city that may be at flood risk during 
a rain event (M. Chokshi, SFPUC, 2019, personal communication).

AQPI radar data are used to generate QPE and “nowcast” products and is also sent to 
the National Severe Storms Laboratory and integrated with NEXRAD data in the develop-
ment version of the MRMS product. Future efforts are aimed at transitioning the AQPI 
data into the operational version of MRMS so that it can be assimilated by the operational 
HRRR model.

The AQPI graphical user interface is designed to display real-time model and observational 
data to users and is customized for each water agency. Users can select products of interest 
for their geographic regions of concern and preset thresholds for precipitation, streamflow, 
and coastal flooding. Users can view and download the AQPI observation and model data 
updated in real time.

AQPI products
AQPI includes a number of products from both the observations and models as shown in  
Table 2. Some products are simply model forecasts of precipitation, streamflow, and coastal 
water levels from the modeling systems described above, customized for the water agency’s 
region of interest. Other products are derived from observations. This includes QPE and 
nowcast. The QPE product includes a blend of AQPI radar data where the X bands provide 
coverage and MRMS data to cover the rest of the domain. The AQPI radar QPE builds on the  
specific differential phase approach described in Cifelli et al. (2018) and Biswas et al. (2020). 
The current version of the QPE is based on the application of optimum radar rainfall estimators 
(both reflectivity and specific differential phase based), which is guided by an orographic/
stratiform rainfall type classification as discussed in Biswas et al. (2024). It also includes an 
algorithm to mitigate brightband contamination. The MRMS radar-only QPE is used to fill the 
QPE in the remainder of the AQPI domain outside the coverage of the AQPI radars as well as 
areas within the AQPI radar coverage domain that are blocked by terrain or other features. 
Both 15-min and hourly QPE are provided with an update time of 2 min. An example of the 
QPE product is shown in Fig. 5.

Table 2.  Description of AQPI products.

AQPI product Inputs Description

Precipitation and 
near-surface temperature 
forecasts

HRRR+GFS Hourly forecast out to 18 h updated each hour with  
HRRR; GFS forecast appended to end of each 18-h  
HRRR forecast out to 120 h at 3-h intervals to 90- and  
6-h intervals from 90 to 120 h; GFS updated every 6 h

Streamflow forecasts NWM Hourly forecast out to 18 h updated each hour

Coastal water level 
forecasts

CoSMoS Hourly forecast out to 18 h using latest HRRR forecast and 
using latest NWM forecast

QPE AQPI+MRMS 
radar-only QPE

15- and 60-min rainfall accumulation updated every 2 min

Nowcast MRMS 
radar-only QPE

Precipitation nowcast out to 60 min updated every 2 min
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Note the “spike” appearance in QPE, especially in the northern part of the XSCW domain. 
This pattern indicates blockage of the AQPI radar signal resulting from objects near the radar 
site. MRMS data are currently used to fill gaps, which is less than ideal given the challenges 
with NEXRAD coverage in this area. There are long-term plans to raise the XSCW radar to 
help reduce the blockage or move it to an alternate location.

The AQPI real-time nowcast system uses the Dynamic and Adaptive Radar Tracking of 
Storms (DARTS; Ruzanski et al. 2011) nowcast tool to extrapolate radar observations of 
precipitation (QPE) for the next 60 min. DARTS is an area-based nowcast tool, and it solves 
the field flow equation in the frequency domain. A fast Fourier transform (FFT) technique is 
used for fast computation. Currently, the AQPI real-time nowcast uses the MRMS radar-only 
QPE product to generate the nowcast. In the future, a blend of AQPI and NEXRAD data will 
be used.

In addition to CoSMoS-derived water level forecasts in the Bay, AQPI includes displays 
of coastal flood inundation from CoSMoS. These outputs include the water level referenced 
to NAVD88, the water depth referenced to a recent DEM (Danielson et al. 2016) and wave 
parameters. The wave fields include wave height, period, and direction and can be used 
to assess the risk of wave-driven overtopping of nearby levies or sea walls. Additionally, 
depth-averaged currents can be obtained from the outputs, although those are not available 
as graphic displays. The CoSMoS information can be used to help assess risks for overtopping 
coastal defenses such as levees and sea walls and timing of freshwater releases that will not 
be blocked by high coastal water levels.

AQPI benefits
AQPI was designed to support a number of water management activities across the Bay Area. 
While AQPI does not give a sufficiently long-range forecast for large reservoir operations, it 

Fig. 5.  (a) 15-min and (b) hourly QPE ending at 1926 UTC 24 Oct 2021. The QPE map is constructed using a combination of AQPI 
radar QPE within the small circles and MRMS radar-only QPE over the rest of the domain. Small circles show the 40-km range 
rings of AQPI X-band radars located near Santa Rosa (XSCW) and Santa Clara (XSCV) and the larger circles represent the 100-km 
range ring of the NEXRAD KMUX and KDAX radar systems. Note that the streaks in the XSCW circle represent terrain blockage.
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could help managers of smaller reservoirs time appropriate discharges before and during  
heavy rain events in order to maintain water supplies and not exacerbate flood damage 
downstream. Wastewater treatment plant operators around the Bay would be able to take 
remedial actions when these events include a significant storm surge. As described below, 
another benefit is that flood protection agency managers would be able to better anticipate 
flooding events and thus more effectively deploy their assets to deal with them.

Johnson et al. (2020) conducted a reconnaissance-level overview of potential benefits of 
the AQPI system, examining the impact to different economic sectors including flood dam-
age mitigation, increasing water supplies, and enhancement of ecological, recreational, and 
transportation services with the highest benefit (48%) associated with avoided flood dam-
ages. Benefit to costs were estimated to range of 2:1 to 10:1 with the most likely being 5:1. 
The large range reflects the uncertainty in the percentage of water management agencies and 
citizens that take appropriate action, emphasizing the importance of outreach and training 
to maximize responses.

Current economic impact studies are underway with individual water management  
agencies to better quantify benefits of AQPI information across the Bay Area. In particular, 
members of the project team have integrated the AQPI system with hydrologic, civil engineer-
ing, and economic impact models built specifically for Santa Clara County that allow estimat-
ing the potential economic benefits arising from better and more advanced flood predictions. 
The economic benefits focus on changes in employment, real household income, and sector 
level gross domestic output. The basic intuition is that more timely, spatially defined warn-
ings can allow local governments, businesses, and homeowners the additional time needed 
to implement short-term mitigation strategies that can help reduce direct financial and sub-
sequent economic losses. We compare two simulations: 1) estimating the economic losses of 
a simulated flood due to the damage to commercial and residen-
tial buildings, and 2) estimating the impacts of the same flood 
when short-term mitigation strategies are implemented (e.g., 
sandbagging, installing short-term pumps, moving contents to 
a second floor). The reduction in economic losses from the two 
simulations will represent the value of the AQPI system and will 
be the focus of a future journal publication.2

Preliminary results
To demonstrate the value of the AQPI approach, we use an event from 27 to 28 January 2021 
to illustrate the system functionality and components. An overview of the event is provided by 
the Monterey Forecast Office (www.weather.gov/mtr/AtmosphericRiver_1_26-29_2021). The event 
was the biggest storm of the 2020/21 water year in the Bay Area with 2–4 in. (∼5–10-cm) pre-
cipitation accumulations in the urban regions and much higher accumulations farther south 
(10–15 in.; 25–38 cm) in the Santa Lucia Mountains. Based on the duration and integrated 
water vapor transport characteristics, the event was probably an AR2 using the scale developed 
by Ralph et al. (2019). According to the Ralph et al. study, AR2 events are described as being 
“mostly beneficial but also hazardous.” Although similar in many respects to ARs impacting 
central California during the winter season, it was a “cold” event with low freezing levels 
and produced snow on the peaks surrounding the Bay Area (Fig. 6). The Weather Prediction 
Center issued high risk for flooding on both 27 and 28 January and flash flood warnings were 
issued for many of the burn scar regions in the area with resulting debris flows occurring in 
some parts of Central and Southern California.

The performance of the operational NOAA HRRR precipitation forecast for the period  
extending from 0000 UTC 27 January to 1200 UTC 29 January is shown in Fig. 7. In particular, 
the 6-h precipitation accumulation forecast was evaluated. Overall, the HRRR performed quite  

2	Previously, computable general equilibrium 
(CGE) models have been constructed to estimate 
the economic impact of evaluating improvements 
in NOAA’s HRRR system for forecasting precipita-
tion, wind, and temperature. As examples, see 
Hartman et al. (2021), Turner et al. (2022), and 
Jeon et al. (2022).
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well during this event, but had a dry bias along the Pacific coast and a wet bias in the Sierra 
range similar to other cases evaluated in English et al. (2021).

A detailed evaluation of the AQPI radar QPE was conducted for this event as described in 
Biswas et al. (2024). Scatterplots and error statistics for both of the operating AQPI radars are 
shown in Fig. 8. The AQPI radar QPEs showed good skill overall with improvement over both 
the MRMS QPE products in terms of bias, error, and correlation statistics. While not as good 
as the Santa Clara radar performance, the Sonoma radar QPE shown in Fig. 8 is still a large 
improvement over MRMS QPE. Differences in performance between the two radars are likely a 
result of the more complicated terrain surrounding the Sonoma versus the Santa Clara radar. 
Also, as discussed in Biswas et al. (2024), there is a lot of QPE performance variability from 
event to event, depending on the height of the melting layer and the amount of orographic 
enhancement resulting in variability of raindrop size distribution. However, in all cases ex-
amined, the AQPI radar QPE product outperforms both MRMS radar-only and Multisensor 
Pass1 QPE products. Future efforts to improve the AQPI QPE will include implementing a 
composite QPE product that will combine information from higher-elevation radar scans to 
fill in the gaps. Additionally, efforts are being made to examine possible machine learning 
approaches that will use ground-based rain gauge data for QPE correction.

Fig. 6.  The snow-level display produced from data collected by an S-band precipitation profiling radar located in Middletown, 
California, at 972-m elevation. Colors represent the Doppler vertical velocity (m s−1; color scale on right), which is dominated by 
hydrometeor fall velocity in precipitation. The table lists the snow level (when it is above the radar) and the surface temperature. 
Precipitation fell as snow on 27 Jan, before transitioning to a cold rain on 28 Jan with snow levels remaining below ∼1.5 km MSL. 
This profiling radar was installed prior to AQPI with support from the Sonoma Water Agency and is being leveraged as part of 
the AQPI project.
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As shown in Fig. 9, the NWM 18-h forecasts were evaluated from 0000 UTC 27 January 
to 2300 UTC 28 January 2021. The metrics used in the evaluation include Klein–Gupta effi-
ciency (KGE; Gupta et al. 2009), NSE (Nash and Sutcliffe 1970), correlation coefficient (CORR), 
and RMSE, where NSE and KGE are commonly used statistics to calibrate and measure the 
predictive skill of hydrologic models. The results show the best performance at the shortest 
lead times, with errors rapidly decreasing until approximately 9-h lead time. These results 
are similar to Kim et al. (2021, manuscript submitted to J. Hydrol.) described above.

Fig. 7.  Difference plot of all HRRR 6-h precipitation accumulation (6-h forecasts) and associated stage 
IV QPEs for the period 0000 UTC 27 Jan to 1200 UTC 29 Jan 2021. (a) Full AQPI domain with Bay Area 
outline indicated by black rectangle. (b) As in (a), but for Bay Area region only. Warm colors indicate 
an underestimate of HRRR precipitation relative to stage IV while cool colors indicate an overestimate.
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Fig. 8.  Scatterplots and error statistics for the (a) Santa Clara and (b) Sonoma AQPI radar domains (blue) for the period from  
0000 UTC 28 Jan to 0000 UTC 29 Jan 2021. Blue, yellow, and orange colors represent AQPI radar QPE, MRMS Multisensor Pass1, 
and MRMS radar-only, respectively.

Fig. 9.  Performance of NWM (V2.1) short-range forecast (1–18-h) streamflow products in the AQPI domain for the period from 
0000 UTC 27 Jan to 2300 UTC 28 Jan 2021. (a) Location of USGS stream gauges (blue dots) used in this analysis, and (b) error  
statistics of NWM V2.1 short-range forecasts at the lead times of 1–18 h, including KGE (blue), NSE (black), CORR (red), and RMSE 
(green).
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An evaluation of the CoSMoS short-range forecast was also conducted for the 27–28 Janu-
ary event. As shown in Fig. 10, although no significant coastal flooding occurred during 
this event the water levels throughout the bay were predicted very well. The highest water 
level at the San Francisco station occurred just after 1800 LT 28 January. During this time 
period, the water levels were more than 20 cm above the tidally predicted values. The model 
error (mean bias) over this time period ranges from −2.48 cm (at Port Chicago) to 1.52 cm 
(at Alameda).

Next steps for AQPI
AQPI has advanced to the point that the information delivered by this system is being used 
by local water managers on a regular basis. The information will continue to improve as the 
additional radar systems come online, are integrated into the AQPI system providing improved 
nowcasted QPF products, and are assimilated into the operational HRRR and the HRRR’s 
eventual replacement—the Rapid Refresh forecast system. Water agencies have already devel-
oped methods to integrate the information into their operations and this process is expected 
to accelerate over time. To facilitate this process, AQPI has developed a Data Implementation 
Working Group where local users from the water management community interact with the 
technical development team and provide ongoing feedback to improve the system’s products 
and services as well as talk about ways to help each other use the AQPI information effec-
tively and provide lessons learned. Still, challenges lay ahead for AQPI, including where the 
system will ultimately reside after NOAA completes development and hands it off, and how 
the annual operations and maintenance costs will be supported. Toward that end, AQPI has 
implemented a Local Partner Advisory Committee (LPAC) to help resolve issues related to 
radar and other instrument deployments, outreach for the program, and the development of 
a plan for long-term operations of AQPI data system.

The concept of AQPI, where improvements to high-resolution observations and forecasts 
are driven by end users working closely with scientists and developers to improve informed 
decision-making could be replicated in other urban centers in the United States and abroad. 
Moreover, in California where flooding events are almost entirely restricted to the cool sea-
son, AQPI is exploring the benefit of leveraging the radar assets to track wildfire emissions 
during the warm season (e.g., Zrnić et al. 2020), as well as monitoring for postfire debris 

Fig. 10.  Performance of Hydro-CoSMoS short-range forecast water-level products during the 27–28 Jan event. (a) Map of maxi-
mum water level in meters relative to NAVD88 over the 18-h forecast started on 0600 UTC 28 Jan. (b)–(g) Comparison of modeled 
and observed water levels at selected NOAA COOPS tides and currents stations.
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flow hazards (e.g., Jorgensen et al. 2011). More information about AQPI, as well as access to 
real-time information can be found at https://psl.noaa.gov/aqpi/.
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Weather radar frequency bands
Weather radars operate in different frequency bands. The most commonly used operational systems are at 
S band (2,700–3,000 MHz), C band (5,600–5,700 MHz), and X band (9,300–9,500 MHz). To first order, the 
minimum antenna size of the radar is inversely proportional to frequency, to support the narrow beams, 
which means radars operating at higher frequencies can have a smaller antenna size. This is an important 
consideration for overall cost and “agility” of the radar system. For example, S-band systems like WSR-88D 
have an antenna diameter of about 8.5 m. X-band systems like those used in AQPI are much smaller with an 
antenna diameter of about 1.8 m. They can be mounted in a variety of locations, including building rooftops 
and communication towers. C-band antenna diameters are in the range of 4.5m, making them less agile 
than X band but still transportable and a good compromise between S and X bands. For example, C-band 
radars have been deployed aboard research ships (see Rutledge et al. 2019).

Because of the enhanced cross section of meteorological targets with higher frequency, higher-frequency 
radar systems like X band can operate at lower power, and can provide the same sensitivity at moderate 
ranges. Higher-frequency electromagnetic waves experience attenuation due to propagation through rain. 
Even though techniques are available to correct for attenuation so long as there is a signal, the amount 
of additional power needed to mitigate attenuation effects is too high and it is cheaper to deploy another 
radar at a farther distance than to transmit extra power to mitigate attenuation. Therefore X-band radars 
are typically made for shorter ranges such as 40–60 km to be cost effective. Each of these frequency bands 
has certain advantages and are tailored for specific applications. S band and C band have been generally 
used to establish radar networks over large regions of continental scales. X-band networks are becoming the 
deployment of choice for urban areas as the social footprint of these radars are very low (e.g., transmitted 
power and radar size). The X-band systems can sit on existing infrastructure and, because of their relatively 
small size, they tend to be lower cost and can also be moved around easily (Chandrasekar et al. 2018). Often 
the infrastructure costs of weather radars far exceed the cost of radar itself in urban regions.
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