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problem. But, with new advanced radar network techniques, AQPI is helping fill an important
observational gap for this highly populated and vulnerable metropolitan area. The prototype AQPI
system consists of improved weather radar data for precipitation estimation; additional surface
measurements of precipitation, streamflow, and soil moisture; and a suite of integrated forecast
modeling systems to improve situational awareness about current and future water conditions from
sky to sea. Together these tools will help improve emergency preparedness and public response
to prevent loss of life and destruction of property during extreme storms accompanied by heavy
precipitation and high coastal water levels—especially high-moisture laden atmospheric rivers.
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intertime precipitation is vital for replenishing snowpack and filling reservoirs

in the western United States. Along the U.S. West Coast, much of the wintertime

precipitation comes from atmospheric rivers (ARs), which are narrow bands of
concentrated water vapor transport often associated with landfalling extratropical cyclones
(Zhu and Newell 1998). Nearly half of California’s annual precipitation comes from a handful
of AR events (Dettinger et al. 2011). ARs and their accompanying heavy rains can be both good
news and bad news for California residents: they can bring relief for anxious water managers
in a drought-prone region. However, that much water—arriving over a period of several days
or less—can cause major flooding, endangering lives and property. ARs are responsible for
more than 80% of the flood damages in the western United States, including California, with
over $1 billion in average annual costs (Corringham et al. 2019).

The San Francisco Bay Area is particularly prone to significant flooding and the
resulting damage from ARs (Corringham et al. 2019). Recent examples in the Bay Area
include flooding impacts from a series of rain events in February 2017 which caused
flood damage in the city of San Jose, as Coyote Creek overflowed its banks and inundated
neighborhoods forcing 14,000 residents to evacuate. This series of rain events was also
responsible for severe damage to the Oroville Dam spillway and an evacuation of nearly
200,000 residents downstream of the dam (White et al. 2019). All told, the February 2017
storms were responsible for over $1.5 billion in damages (NCEI 2021). In 2019, another
series of Bay Area rainfall events resulted in over $150 million in flood damages and a
presidential disaster declaration (FEMA 2019a,b). Landslides can also be a potential hazard.
Cordeira et al. (2019) showed that the vast majority of landslides in the San Francisco Bay
Area were associated with ARs.

The complex terrain and the proximity of San Francisco Bay makes this region susceptible
to flooding events. Flash flooding along inland rivers and creeks that drain hundreds of
small watersheds can combine with coastal flooding along the bay shoreline to exacerbate
the overall magnitude of an event, producing compound flooding events. Urbanization is
also a contributing factor. This area is home to more than 7 million people, encompassing
nine counties, three major cities (San Francisco, Oakland, and San Jose), and adjacent com-
munities. According to a recent report from the California Department of Water Resources
(CADWR 2013), nearly 400,000 people in the Bay Area are exposed in the 100-yr floodplain.
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Impervious surfaces and stormwater runoff can exacerbate flooding conditions. The urban
impacts from flooding range from degraded water quality in the Bay to flooded roadways and
buildings during storms. Sea level rise and continued urbanization in the region is expected
to amplify the problem.

The rugged terrain in the San Francisco Bay Area makes it especially challenging to moni-
tor and forecast extreme rain and subsequent flooding events. Existing weather monitoring
infrastructure—satellites, offshore observations, and the operational radar network (NEXRAD;
Crum and Alberty 1993)—have enabled forecasters to provide notice of rain events, and
ascertain their severity, much of the time. The forecasts, though, have not always provided
specificity sufficient enough to guide actions that could be taken to offset damaging impacts.
The reason is that precipitation often forms or is enhanced in very low levels of the atmo-
sphere, below the level that the existing NEXRAD network can see well, through orographic
lifting and warm rain collision—coalescence processes (White et al. 2003). Additionally, the
observations of some of the radars in the Bay Area are blocked by coastal mountains, leaving
blind spots in the observation network.

The CA DWR and the U.S. Department of Energy have invested in a “picket fence” of atmo-
spheric river observatories (AROs) along the U.S. West Coast to monitor wind and temperature
profiles, column-integrated water vapor, onshore moisture flux,
and freezing elevation at seven coastal sites and two inland

! The inland ARO site within the AQPI domain at

sites’ (White et al. 2015; Ray and White 2019). The AROs, built {  Twitchell Island, California, does not measure
by the National Oceanic and Atmospheric Administration : emperature profiles, butit has a precipitation
. X i profiling radar and surface-based disdrometer
Physmal Sciences Laboratory (NOAA/PSL), have been used to provide microphysical measurements of the
routinely to initialize and evaluate forecasts made by the i Precipitationobserved atthatsite.

National Weather Service (NWS). The system also enables water

resources managers to gauge the intensity of an AR event at the location of the ARO. They do
not, however, scan like a typical weather radar. Rather, AROs view the atmosphere directly
above them in fine detail. Scanning radar is needed to fill in the gaps between AROs to detect
variations in storms across different watersheds. A NOAA-supported, pre-AQPI temporary
deployment of a scanning radar system in Santa Clara, California, was able to demonstrate
improved high-resolution rainfall estimates (Cifelli et al. 2018).

The purpose of this article is to provide an overview of the Advanced Quantitative
Precipitation Information (AQPI) Project. The AQPI Project was awarded by CA DWR to NOAA
and contributing partners in 2017 and is administered by the Sonoma Water Agency. AQPI
was designed to obtain more precise measurements and forecasts of precipitation, streamflow,
and coastal flooding in the San Francisco Bay Area. The concept was developed in response
to requests from the Bay Area water management community for higher-temporal- and
spatial-resolution information than was currently available to guide their decision-making
for water management and flood response operations. The origins of AQPI trace back over a
decade, building on fundamental research to improve understanding of hydrometeorological
processes conducted through NOAA’s Hydrometeorology Testbed (Neiman et al. 2002; White
et al. 2003; Matrosov et al. 2005; Zhang et al. 2012; Sumargo et al. 2020) with support from
CA DWR and the Sonoma Water Agency. One of the strengths of AQPI is the collaborative
approach between local, state, and federal agencies. Table 1 lists agencies involved in AQPI
and their roles in the project.

AQPI components

AQPI includes a combination of integrated observations and high-resolution model forecasts
to track storm systems as well as to predict precipitation, streamflow, and coastal flooding
across the Bay Area (Fig. 1). As noted above, the foundation for AQPI observations builds
on an existing network established by NOAA, CA DWR, Scripps Institute of Oceanography,
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Table 1. Agencies involved in AQPI and their role.

Agency
NOAA Physical Sciences Laboratory

NOAA Global Systems Laboratory

NOAA Cooperative Institute for
Research in the Atmosphere

NOAA Cooperative Institute for
Research in Environmental Sciences

USGS Pacific Coastal and Marine
Science Center

NOAA National Severe Storms
Laboratory

Colorado State University Department
of Economics

Scripps Institute of Oceanography
CA DWR

Sonoma Water

Valley Water
San Francisco Public Utilities

Contra Costa County

East Bay Municipal
Alameda County
Napa County
Marin County

Role

Program technical lead; quantitative precipitation estimation (QPE)
development and evaluation; precipitation and streamflow forecast
evaluation; surface meteorology and profiler sites; benefits evaluation

AQPI system development; High-Resolution Rapid Refresh (HRRR) model
development and evaluation

Radar install, testing, operation; QPE and nowcast development, testing,
and evaluation

HRRR simulations and evaluation; QPE uncertainty

Coastal Storm Modeling System (CoSMoS) development, testing, and
operation

Integration of AQPI radar data into Multi-Radar Multi-Sensor (MRMS)
AQPI benefits analysis

Development of long-term concept of operations for AQPI
Grant sponsor

Grant administrator, facilitate interaction with local partners, radar siting,
product evaluation and feedback

Hosting X band; data provider; AQPI product evaluation and feedback
Hosting X band; data provider; AQPI product evaluation and feedback

Cohosting and infrastructure support for X band; data provider; AQPI product
evaluation and feedback

Cohosting X band; data provider; AQPI product evaluation and feedback
Cohosting X band; data provider; AQPI product evaluation and feedback
AQPI product evaluation and feedback
AQPI product evaluation and feedback

National Weather Service

AQPI product evaluation and feedback

San Jose State, and Sonoma Water to monitor extreme precipitation in California. The
coastal modeling component also builds upon work done in and around San Francisco Bay
by the USGS and collaborators (Nederhoff et al. 2021; Tehranirad et al. 2020; Martyr-Koller
etal. 2017).

The core foundation of AQPI observations are new radar systems: four X band and
one C band as shown in Fig. 2 (also see sidebar). These systems are designed to supplement
the coverage from NEXRAD in and around the Bay Area and increase the accuracy of quan-
titative precipitation estimation (QPE). The use of smaller radar systems to fill gaps in the
NEXRAD network supports recommendations for priorities in NOAA weather research (NOAA
Science Advisory Board 2021). The QPE derived from AQPI radars has been shown to have
better accuracy and improve streamflow simulations compared to NEXRAD (Cifelli et al. 2018;
Ma et al. 2021).

Importantly, the AQPI radars can detect narrow cold-frontal rainbands (NCFRs) in parts of
the Bay Area that are not well observed by NEXRAD (Fig. 3). NCFRs are rainbands that often
occur along the cold-frontal boundary of extratropical cyclones that can produce high-intensity
rain rates (Hobbs 1978) and are often responsible for flash floods and geomorphic hazards
such as debris flows (Collins et al. 2020; de Orla Barile et al. 2022).

To date, two X bands have been installed and are operating as shown in Fig. 2. The char-
acteristics of these radar units are described in Cifelli et al. (2018). The pandemic, wildfires,
and power outages have delayed the installation of two X-band radars and the C-band radar
which are expected to be installed by 2023.
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Fig. 1. Components of AQPI and the flow of information to and from the AQPI system user interface and Bay Area users.

Additional observations include preexisting station network data that are widely
available [e.g., Hydrometeorological Automated Data System (HADS); Kim et al. 2009], new
surface meteorological and precipitation profiling radar stations installed by NOAA/PSL for
AQPI and another statewide observing project supported by CA DWR (White et al. 2013),
as well as station data from existing local networks that were previously only available
to individual water agencies. All of the station data are brought in through the NOAA
Meteorological Assimilation Data Ingest System (MADIS; https://madis.ncep.noaa.gov/; Miller
et al. 2005), taking advantage of the MADIS integration and QC capabilities to provide data
standards for all datasets.

In addition to observations, forecast models are used to make predictions of precipitation,
streamflow, and coastal flooding in the AQPI region. The domain of model coverage is shown
in Fig. 4.

Description of AQPI forecast modeling
AQPI utilizes and couples several modeling systems to provide forecasts of precipitation,
streamflow, and water levels in and around the Bay coastline. Here, we provide a brief
description of each modeling component.

High-Resolution Rapid Refresh and Global Forecast System. High-Resolution Rapid
Refresh (HRRR) is a numerical weather prediction model run operationally at the NOAA
National Centers for Environmental Prediction (NCEP) and widely utilized by the NWS over
the conterminous United States and Alaska. The HRRR is designed for optimal short-term
forecasts, with an emphasis on capturing the evolution of precipitating systems. Its horizon-
tal grid spacing is 3 km, and thus is a convection permitting modeling system. It is initial-
ized hourly, assimilating a wide range of observations including Multi-Radar Multi-Sensor
(MRMS; Zhang et al. 2016) radar reflectivity, radiosonde and aircraft thermodynamic and
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wind profiles, surface meteorological terminal air report (METAR) observations, cloud infor-
mation from ground-based ceilometers and satellite observations, and more. MADIS serves
as the conduit for acquiring many of these observations. As a regional model, the HRRR gets
its boundary conditions from the 13-km Rapid Refresh (RAP) model (Benjamin et al. 2016),
which uses the same dynamic core and physical parameterizations as the HRRR (except that
convection is parameterized in the RAP). NOAA’s Global Systems Laboratory (GSL), work-
ing with other partners such as the NWS Environmental Modeling Center (EMC), are con-
tinually improving the model’s physical parameterizations and data assimilation system.
The HRRR first became operational in 2014, with subsequent updates in 2016 (version 2),
2018 (version 3), and 2020 (version 4). Importantly, version 3 provided 36-h forecasts when
initialized at 0000, 0600, 1200, and 1800 UTC; version 4 now provides 48-h forecasts at
those times (the forecast length for other initialization times is 18 h). A full description of the
model setup, physical parameterizations, and changes between the model versions is pro-
vided by Dowell et al. (2022) and James et al. (2022). As part of the AQPI project, the ability
of the HRRR to forecast precipitation during AR events was assessed, which demonstrated
that both version 3 and version 4 were able to capture these events well relative to observa-
tions, although the HRRR was somewhat dry biased in the Central Valley and moist biased
in the Sierra Nevada (English et al. 2021).
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Fig. 3. Comparison of radar reflectivity from (a) AQPI X band and (b) KMUX NEXRAD during an AR event observed at 1846 UTC
24 Oct 2021. The narrow ribbon of high radar reflectivity near Santa Rosa in the center of each image represents a NCFR. Areas
outlined in red represent recent burn scars.

The Global Forecast System (GFS) is the NWS’s operational medium-range global forecast
model. It is initialized 4 times per day at 0000, 0600, 1200, and 1800 UTC, generating fore-
casts out to 16 days. Its horizontal grid spacing is 13 km. It is initialized with a wide range of
satellite, ground-based, and airborne observations using a three-dimensional variational data
assimilation system. In 2019, its dynamic core was upgraded from a global spectral model
framework to the finite-volume cubed sphere (FV3) as part of the Unified Forecast System
(UFS; Jacobs 2021) effort, and at the same time the number of vertical levels was increased
from 64 to 127. Like the HRRR, the physical parameterizations within the GFS are continually
being updated by the NWS EMC and partners, with regular updates propagated to operational
status in NWS. Details on the model, including its evolution over time, can be found on the
NWS GFS website (www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php).

NWM. The National Water Model (NWM) is a relatively new hydrologic modeling system
developed by NOAA’s Office of Water Prediction and the National Center for Atmospheric
Research (NCAR). The NWM is based on the open source WRF-Hydro modeling framework
developed by NCAR (Gochis et al. 2021). Details of the model’s configuration are available
from the Office of Water Prediction’s website (https://water.noaa.gov/about/nwm). Briefly, the
NWM simulates current and future streamflow at approximately 2.7 million stream reaches
across the conterminous United States as well as Hawaii, the Virgin Islands, and Puerto
Rico on a 1-km grid. This includes over 11,000 stream reaches in the AQPI domain. The
NWM uses the Noah-MP (Niu et al. 2011) land surface model to simulate surface processes.
Surface water routing is performed on a 250-m grid using a diffusive wave scheme and
Muskingum-Cunge channel routing. The NWM is run in different analysis and forecast con-
figurations for short- (18-h), medium- (~10-day), and long-range (30-day) hydrologic predic-
tions. For the purposes of AQPI, the standard analysis and assimilation (current conditions)
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Fig. 4. Domain of coverage for modeling components of AQPI: HRRR/NWM, QPE, and CoSMoS domains
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and short-term forecast (18-h) configurations are most relevant since these use gauge and
radar observations as well as HRRR model data to force the NWM. These configurations, as
well as most of the others used by the NWM, benefit from the assimilation of USGS and U.S.
Army Corps of Engineer hourly streamflow data as well as the inclusion of reservoirs and
River Forecast Center forecasts of reservoir outflows at some locations. The analysis and
short-term forecast configurations are cycled hourly.

Kim et al. (2021, manuscript submitted to J. Hydrol.) evaluated the performance of the
short-range configuration of the NWM (v1.2) during the 2018/19 wet season. The analysis
used 65 USGS stream gauges in the San Francisco Bay Area and showed that, based on
Nash-Sutcliffe efficiency (NSE), the NWM provided useful forecasts (i.e., NSE > 0) out to about
10h of forecast lead time. However, significant variation in forecast skill was observed in
high flow versus low flow and natural versus managed river systems. The best overall skill
was found in high-flow, natural watersheds.

CoSMoS. The USGS Hydrodynamic Coastal Storm Modeling System (Hydro-CoSMoS; hereafter
referred to as CoSMoS; Tehranirad et al. 2020) applied in this system is based on the 1D-2D
Still Water Level San Francisco Bay Community model (d3d-baydelta.org; Nederhoff et al.
2021). CoSMoS is an operational application of the Community model, the ocean boundary
is forced with astronomical tides and forecast sea surface anomalies from the Global Water
Level Forecast System (HYCOM; Chassignet et al. 2007). The tributaries are forced with the
discharges provided by the nearest stream segment in the NWM. The surface boundary of the
model is forced by surface mean sea level pressure, surface wind velocities, and precipitation
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fields forecast by the HRRR model. Additionally, a wave model (SWAN; Booij et al. 1997) is
run with the same atmospheric inputs. The offshore swell forecasts at the oceanic boundary
are provided by the global WAVEWATCH III forecasts from NCEP (https://polar.ncep.noaa.gov/
waves/wavewatch/). It provides 19-h forecasts of water level and/or depth and wave parameters
from these two models, including significant wave height, direction, and period.

CoSMoS shows great skill in reproducing water levels in a hindcast mode using observa-
tions as inputs. Nederhoff et al. (2021) reported an average of 8-cm root-mean-square error
(RMSE) over a 70-yr retrospective analysis. In most of the coastal areas of the bay, the high-
est water levels are driven primarily by the tides and offshore sea level anomalies. However,
in the vicinity of rivers and other tributaries within the bay, the fluvial discharges can play
an important role in driving high water levels. Tehranirad et al. (2020) showed that during
February 2019, discharges contributed up to 5-10-cm surge in water levels in the North Bay,
highlighting the role of accurate discharges in projecting how much area will be inundated.
In a case study of water levels in San Mateo Creek (one of the smaller managed drainages
into San Francisco Bay), in the region where both discharges and tides are important to total
water level, the forecast is more sensitive to the magnitudes of discharge than to predict-
ing the timing correctly. When accounting for potential phasing issues by comparing daily
forecast peaks to observed daily peaks, the error is approximately half that observed by the
time matched errors (7- versus 14-cm RMSE). Overall, the baywide water levels are highly
accurate. Although the exact timing of peak water levels is more likely to be shifted near
fluvial discharges, the daily forecast peak will still be near the observation.

AQPI system

The AQPI team determined that a single data access system was needed to provide “one-stop
shopping” that could serve the needs for all of the stakeholders in the Bay Area region. The
AQPI system integrates all the observation and model data and provides it in usable formats
with customized threshold alerts for decision-making purposes. From the beginning, the sys-
tem was designed with significant input from local water management agencies to determine
needs and requirements for precipitation, streamflow, and coastal flooding information. The
AQPI research team conducted a number of in-person meetings with Bay Area water agency
representatives to identify specific geographic areas of concern and desired thresholds for
rainfall, streamflow, and/or coastal water levels to take action in advance and during a flooding
event. Because the water agencies can have somewhat different missions (flood protection,
wastewater, water supply, etc.) and encompass regions with differing characteristics (land use,
terrain, proximity to the Bay, etc.) the needs and requirements vary with each agency. These
meetings resulted in an extensive list of needs and requirements, which were used to build the
AQPI system. One example is the San Francisco Public Utilities (SFPUC), which is concerned
with potential flooding impacts of water releases from Lower Crystal Springs Reservoir on San
Mateo Creek, especially near Highway 101 where the creek meets the Bay. Forecasts of Bay
water levels from CoSMoS will help inform SFPUC’s decision-making concerning outflows
from the reservoir (A. Dufour, SFPUC, 2021, personal communication).

As noted above, one of the drivers for the AQPI system is to consolidate desired information
on precipitation, streamflow, and coastal water levels in the Bay Area. To this end, MADIS
is used to collect and distribute data in the AQPI domain. An additional advantage of add-
ing local data is that the precipitation information available in MADIS is used to bias correct
MRMS QPE products and improve their overall skill. To date, 295 local network stations have
been added through MADIS and the AQPI system is providing data and services (described
below) to 13 water agencies in the Bay Area.

Model forecast data from the HRRR, GFS, NWM, and CoSMoS are made available to users for
their specific domains of interest. This information can be used independently for situational
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awareness or used to drive other “local” models. For example, in Santa Clara County, the radar
data are used for real-time storm monitoring to inform potential areas of flooding concern
(J. Xu, Valley Water, 2021, personal communication). In Contra Costa County, NWM data are
used as input to a Hydrologic Engineering Center River Analysis System (HEC-RAS) model to
inform on flows in areas of concern. As another example, the SFPUC Wastewater enterprise
is using the AQPI HRRR forecasts to predict 18-h rainfall accumulation across different quad-
rants of the city as well as to identify short duration periods (1 h) with predicted rainfall rates
exceeding flood return period criteria. The goal is to eventually bring the information down
to the neighborhood scale to better identify parts of the city that may be at flood risk during
arain event (M. Chokshi, SFPUC, 2019, personal communication).

AQPI radar data are used to generate QPE and “nowcast” products and is also sent to
the National Severe Storms Laboratory and integrated with NEXRAD data in the develop-
ment version of the MRMS product. Future efforts are aimed at transitioning the AQPI
data into the operational version of MRMS so that it can be assimilated by the operational
HRRR model.

The AQPI graphical user interface is designed to display real-time model and observational
data to users and is customized for each water agency. Users can select products of interest
for their geographic regions of concern and preset thresholds for precipitation, streamflow,
and coastal flooding. Users can view and download the AQPI observation and model data
updated in real time.

AQPI products

AQPI includes a number of products from both the observations and models as shown in
Table 2. Some products are simply model forecasts of precipitation, streamflow, and coastal
water levels from the modeling systems described above, customized for the water agency’s
region of interest. Other products are derived from observations. This includes QPE and
nowcast. The QPE product includes a blend of AQPI radar data where the X bands provide
coverage and MRMS data to cover the rest of the domain. The AQPI radar QPE builds on the
specific differential phase approach described in Cifelli et al. (2018) and Biswas et al. (2020).
The current version of the QPE is based on the application of optimum radar rainfall estimators
(both reflectivity and specific differential phase based), which is guided by an orographic/
stratiform rainfall type classification as discussed in Biswas et al. (2024). It also includes an
algorithm to mitigate brightband contamination. The MRMS radar-only QPE is used to fill the
QPE in the remainder of the AQPI domain outside the coverage of the AQPI radars as well as
areas within the AQPI radar coverage domain that are blocked by terrain or other features.
Both 15-min and hourly QPE are provided with an update time of 2 min. An example of the
QPE product is shown in Fig. 5.

Table 2. Description of AQPI products.

AQPI product Inputs Description
Precipitation and HRRR+GFS Hourly forecast out to 18 h updated each hour with
near-surface temperature HRRR; GFS forecast appended to end of each 18-h
forecasts HRRR forecast out to 120h at 3-h intervals to 90- and
6-h intervals from 90 to 120 h; GFS updated every 6h
Streamflow forecasts NWM Hourly forecast out to 18 h updated each hour
Coastal water level CoSMoS Hourly forecast out to 18h using latest HRRR forecast and
forecasts using latest NWM forecast
QPE AQPI+MRMS 15- and 60-min rainfall accumulation updated every 2 min
radar-only QPE
Nowcast MRMS Precipitation nowcast out to 60 min updated every 2 min
radar-only QPE
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Fig. 5. (@) 15-min and (b) hourly QPE ending at 1926 UTC 24 Oct 2021. The QPE map is constructed using a combination of AQPI
radar QPE within the small circles and MRMS radar-only QPE over the rest of the domain. Small circles show the 40-km range
rings of AQPI X-band radars located near Santa Rosa (XSCW) and Santa Clara (XSCV) and the larger circles represent the 100-km
range ring of the NEXRAD KMUX and KDAX radar systems. Note that the streaks in the XSCW circle represent terrain blockage.

Note the “spike” appearance in QPE, especially in the northern part of the XSCW domain.
This pattern indicates blockage of the AQPI radar signal resulting from objects near the radar
site. MRMS data are currently used to fill gaps, which is less than ideal given the challenges
with NEXRAD coverage in this area. There are long-term plans to raise the XSCW radar to
help reduce the blockage or move it to an alternate location.

The AQPI real-time nowcast system uses the Dynamic and Adaptive Radar Tracking of
Storms (DARTS; Ruzanski et al. 2011) nowcast tool to extrapolate radar observations of
precipitation (QPE) for the next 60 min. DARTS is an area-based nowcast tool, and it solves
the field flow equation in the frequency domain. A fast Fourier transform (FFT) technique is
used for fast computation. Currently, the AQPI real-time nowcast uses the MRMS radar-only
QPE product to generate the nowcast. In the future, a blend of AQPI and NEXRAD data will
be used.

In addition to CoSMoS-derived water level forecasts in the Bay, AQPI includes displays
of coastal flood inundation from CoSMoS. These outputs include the water level referenced
to NAVD88, the water depth referenced to a recent DEM (Danielson et al. 2016) and wave
parameters. The wave fields include wave height, period, and direction and can be used
to assess the risk of wave-driven overtopping of nearby levies or sea walls. Additionally,
depth-averaged currents can be obtained from the outputs, although those are not available
as graphic displays. The CoSMoS information can be used to help assess risks for overtopping
coastal defenses such as levees and sea walls and timing of freshwater releases that will not
be blocked by high coastal water levels.

AQPI benefits
AQPI was designed to support a number of water management activities across the Bay Area.
While AQPI does not give a sufficiently long-range forecast for large reservoir operations, it
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could help managers of smaller reservoirs time appropriate discharges before and during
heavy rain events in order to maintain water supplies and not exacerbate flood damage
downstream. Wastewater treatment plant operators around the Bay would be able to take
remedial actions when these events include a significant storm surge. As described below,
another benefit is that flood protection agency managers would be able to better anticipate
flooding events and thus more effectively deploy their assets to deal with them.

Johnson et al. (2020) conducted a reconnaissance-level overview of potential benefits of
the AQPI system, examining the impact to different economic sectors including flood dam-
age mitigation, increasing water supplies, and enhancement of ecological, recreational, and
transportation services with the highest benefit (48%) associated with avoided flood dam-
ages. Benefit to costs were estimated to range of 2:1 to 10:1 with the most likely being 5:1.
The large range reflects the uncertainty in the percentage of water management agencies and
citizens that take appropriate action, emphasizing the importance of outreach and training
to maximize responses.

Current economic impact studies are underway with individual water management
agencies to better quantify benefits of AQPI information across the Bay Area. In particular,
members of the project team have integrated the AQPI system with hydrologic, civil engineer-
ing, and economic impact models built specifically for Santa Clara County that allow estimat-
ing the potential economic benefits arising from better and more advanced flood predictions.
The economic benefits focus on changes in employment, real household income, and sector
level gross domestic output. The basic intuition is that more timely, spatially defined warn-
ings can allow local governments, businesses, and homeowners the additional time needed
to implement short-term mitigation strategies that can help reduce direct financial and sub-
sequent economic losses. We compare two simulations: 1) estimating the economic losses of
a simulated flood due to the damage to commercial and residen-
tial buildings, and 2) estimating the impacts of the same flood

cpe . . . ’ Previously, computable general equilibrium

when short-term mitigation strategies are implemented (e.g., { (CGE) models have been constructed to estimate
sandbagging, installing short-term pumps, moving contentsto {  theeconomic impact of evaluating improvements
a second floor). The reduction in economic losses from the two i?oﬁ?fvﬁffiﬁ fo;;‘:riflizregzsézif’;fggpgfe
simulations will represent the value of the AQPI systemand will : Hartman etal. (2021), Turner et al. (2022), and
be the focus of a future journal publication.> i Jeonetal. (2022).

Preliminary results
To demonstrate the value of the AQPI approach, we use an event from 27 to 28 January 2021
toillustrate the system functionality and components. An overview of the event is provided by
the Monterey Forecast Office (www.weather.gov/mtr/AtmosphericRiver_1_26-29_2021). The event
was the biggest storm of the 2020/21 water year in the Bay Area with 2—4in. (~5—10-cm) pre-
cipitation accumulations in the urban regions and much higher accumulations farther south
(10-15in.; 25-38cm) in the Santa Lucia Mountains. Based on the duration and integrated
water vapor transport characteristics, the event was probably an AR2 using the scale developed
by Ralph et al. (2019). According to the Ralph et al. study, AR2 events are described as being
“mostly beneficial but also hazardous.” Although similar in many respects to ARs impacting
central California during the winter season, it was a “cold” event with low freezing levels
and produced snow on the peaks surrounding the Bay Area (Fig. 6). The Weather Prediction
Center issued high risk for flooding on both 27 and 28 January and flash flood warnings were
issued for many of the burn scar regions in the area with resulting debris flows occurring in
some parts of Central and Southern California.

The performance of the operational NOAA HRRR precipitation forecast for the period
extending from 0000 UTC 27 January to 1200 UTC 29 January is shown in Fig. 7. In particular,
the 6-h precipitation accumulation forecast was evaluated. Overall, the HRRR performed quite
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Fig. 6. The snow-level display produced from data collected by an S-band precipitation profiling radar located in Middletown,
California, at 972-m elevation. Colors represent the Doppler vertical velocity (m s-'; color scale on right), which is dominated by
hydrometeor fall velocity in precipitation. The table lists the snow level (when it is above the radar) and the surface temperature.
Precipitation fell as snow on 27 Jan, before transitioning to a cold rain on 28 Jan with snow levels remaining below ~1.5km MSL.
This profiling radar was installed prior to AQPI with support from the Sonoma Water Agency and is being leveraged as part of
the AQPI project.

well during this event, but had a dry bias along the Pacific coast and a wet bias in the Sierra
range similar to other cases evaluated in English et al. (2021).

A detailed evaluation of the AQPI radar QPE was conducted for this event as described in
Biswas et al. (2024). Scatterplots and error statistics for both of the operating AQPI radars are
shown in Fig. 8. The AQPI radar QPEs showed good skill overall with improvement over both
the MRMS QPE products in terms of bias, error, and correlation statistics. While not as good
as the Santa Clara radar performance, the Sonoma radar QPE shown in Fig. 8 is still a large
improvement over MRMS QPE. Differences in performance between the two radars are likely a
result of the more complicated terrain surrounding the Sonoma versus the Santa Clara radar.
Also, as discussed in Biswas et al. (2024), there is a lot of QPE performance variability from
event to event, depending on the height of the melting layer and the amount of orographic
enhancement resulting in variability of raindrop size distribution. However, in all cases ex-
amined, the AQPI radar QPE product outperforms both MRMS radar-only and Multisensor
Pass1 QPE products. Future efforts to improve the AQPI QPE will include implementing a
composite QPE product that will combine information from higher-elevation radar scans to
fill in the gaps. Additionally, efforts are being made to examine possible machine learning
approaches that will use ground-based rain gauge data for QPE correction.
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Fig. 7. Difference plot of all HRRR 6-h precipitation accumulation (6-h forecasts) and associated stage
IV QPEs for the period 0000 UTC 27 Jan to 1200 UTC 29 Jan 2021. (a) Full AQPI domain with Bay Area
outline indicated by black rectangle. (b) As in (a), but for Bay Area region only. Warm colors indicate
an underestimate of HRRR precipitation relative to stage IV while cool colors indicate an overestimate.

As shown in Fig. 9, the NWM 18-h forecasts were evaluated from 0000 UTC 27 January
to 2300 UTC 28 January 2021. The metrics used in the evaluation include Klein—Gupta effi-
ciency (KGE; Gupta et al. 2009), NSE (Nash and Sutcliffe 1970), correlation coefficient (CORR),
and RMSE, where NSE and KGE are commonly used statistics to calibrate and measure the
predictive skill of hydrologic models. The results show the best performance at the shortest
lead times, with errors rapidly decreasing until approximately 9-h lead time. These results
are similar to Kim et al. (2021, manuscript submitted to J. Hydrol.) described above.
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Fig. 10. Performance of Hydro-CoSMoS short-range forecast water-level products during the 27-28 Jan event. (a) Map of maxi-
mum water level in meters relative to NAVD88 over the 18-h forecast started on 0600 UTC 28 Jan. (b)-(g) Comparison of modeled
and observed water levels at selected NOAA COOPS tides and currents stations.

An evaluation of the CoSMoS short-range forecast was also conducted for the 27-28 Janu-
ary event. As shown in Fig. 10, although no significant coastal flooding occurred during
this event the water levels throughout the bay were predicted very well. The highest water
level at the San Francisco station occurred just after 1800 LT 28 January. During this time
period, the water levels were more than 20 cm above the tidally predicted values. The model
error (mean bias) over this time period ranges from -2.48 cm (at Port Chicago) to 1.52 cm
(at Alameda).

Next steps for AQPI

AQPI has advanced to the point that the information delivered by this system is being used
by local water managers on a regular basis. The information will continue to improve as the
additional radar systems come online, are integrated into the AQPI system providing improved
nowcasted QPF products, and are assimilated into the operational HRRR and the HRRR’s
eventual replacement—the Rapid Refresh forecast system. Water agencies have already devel-
oped methods to integrate the information into their operations and this process is expected
to accelerate over time. To facilitate this process, AQPI has developed a Data Implementation
Working Group where local users from the water management community interact with the
technical development team and provide ongoing feedback to improve the system’s products
and services as well as talk about ways to help each other use the AQPI information effec-
tively and provide lessons learned. Still, challenges lay ahead for AQPI, including where the
system will ultimately reside after NOAA completes development and hands it off, and how
the annual operations and maintenance costs will be supported. Toward that end, AQPI has
implemented a Local Partner Advisory Committee (LPAC) to help resolve issues related to
radar and other instrument deployments, outreach for the program, and the development of
a plan for long-term operations of AQPI data system.

The concept of AQPI, where improvements to high-resolution observations and forecasts
are driven by end users working closely with scientists and developers to improve informed
decision-making could be replicated in other urban centers in the United States and abroad.
Moreover, in California where flooding events are almost entirely restricted to the cool sea-
son, AQPI is exploring the benefit of leveraging the radar assets to track wildfire emissions
during the warm season (e.g., Zrni¢ et al. 2020), as well as monitoring for postfire debris
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flow hazards (e.g., Jorgensen et al. 2011). More information about AQPI, as well as access to
real-time information can be found at https:/psl.noaa.gov/aqpil.
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Weather radar frequency bands

Weather radars operate in different frequency bands. The most commonly used operational systems are at
S band (2,700-3,000 MHz), C band (5,600-5,700 MHz), and X band (9,300-9,500 MHz). To first order, the
minimum antenna size of the radar is inversely proportional to frequency, to support the narrow beams,
which means radars operating at higher frequencies can have a smaller antenna size. This is an important
consideration for overall cost and “agility” of the radar system. For example, S-band systems like WSR-88D
have an antenna diameter of about 8.5m. X-band systems like those used in AQPI are much smaller with an
antenna diameter of about 1.8 m. They can be mounted in a variety of locations, including building rooftops
and communication towers. C-band antenna diameters are in the range of 4.5m, making them less agile
than X band but still transportable and a good compromise between S and X bands. For example, C-band
radars have been deployed aboard research ships (see Rutledge et al. 2019).

Because of the enhanced cross section of meteorological targets with higher frequency, higher-frequency
radar systems like X band can operate at lower power, and can provide the same sensitivity at moderate
ranges. Higher-frequency electromagnetic waves experience attenuation due to propagation through rain.
Even though techniques are available to correct for attenuation so long as there is a signal, the amount
of additional power needed to mitigate attenuation effects is too high and it is cheaper to deploy another
radar at a farther distance than to transmit extra power to mitigate attenuation. Therefore X-band radars
are typically made for shorter ranges such as 40—-60km to be cost effective. Each of these frequency bands
has certain advantages and are tailored for specific applications. S band and C band have been generally
used to establish radar networks over large regions of continental scales. X-band networks are becoming the
deployment of choice for urban areas as the social footprint of these radars are very low (e.g., transmitted
power and radar size). The X-band systems can sit on existing infrastructure and, because of their relatively
small size, they tend to be lower cost and can also be moved around easily (Chandrasekar et al. 2018). Often
the infrastructure costs of weather radars far exceed the cost of radar itself in urban regions.
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