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Abstract—For ground-based weather radar systems, reflectiv-
ity is particularly crucial for monitoring severe convective events.
However, its limited coverage poses challenges in acquiring reli-
able radar data, especially for oceanic and mountainous regions.
In contrast, geostationary meteorological satellites offer near-
global coverage and near-real-time cloud-top observations. This
paper introduces a novel deep learning-based radar reflectivity
emulation method to reconstruct surface radar observations from
cloud-top satellite data, termed Dynamic Residual Convolution-
based Network (DRC-Net), aiming to provide more accurate and
reliable reflectivity data in regions lacking radar coverage. It
uniquely combines dynamic convolution, which focuses atten-
tion on convolutional kernels for dynamically adjusting weights
based on input, with residual convolution, effectively enhancing
network’s ability to capture intricate radar echo details. Exper-
imental results demonstrate that DRC-Net outperforms existing
methods in various assessment indices, including Probability Of
Detection (POD), False Alarm Ratio (FAR), Critical Success
Index (CSI) and Heidke Skill Score (HSS). Generalization tests
and case studies further illustrate its effectiveness in recon-
structing radar reflectivity across various regions, particularly
in mountainous and oceanic areas.

Index Terms—Weather Radar, Dynamic Convolution, Geosta-
tionary Satellite, Reflectivity Emulation

I. INTRODUCTION

THE ground-based weather radar can provide high-
resolution and reliable data by analyzing the echo signals

generated when emitted pulse waves bounce back from rain
particles [1]. Reflectivity in radar observations is commonly
employed to indicate the intensity of atmospheric targets,
playing a crucial role in various extreme convective event
monitoring missions, such as echo extrapolation and numerical
weather prediction (e.g., [2]–[4]). Typically, higher reflectivity
values reflect a greater likelihood of strong convective weather
events, with values exceeding 35 dBZ often signifying severe
convective weather [5]. However, due to radar deployment
limitations such as complex terrains and high costs, most radar
systems are concentrated in densely populated areas, resulting
in the lack of effective radar observation data in mountainous
and oceanic regions.
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Unlike ground-based radars, space-based geostationary me-
teorological satellites primarily observe cloud-top properties,
without complicated topography constraints. They can provide
continuous and extensive observations at high spatial and
temporal resolutions, effectively complement radar limitations
and enable real-time tracking of convective events [6]–[10].
In particular, Brightness Temperature (BT) data obtained from
infrared (IR) bands contain pivotal information regarding the
evolution of extreme weather events. The main motivation
of our work is to use cloud-top satellite observations to
reconstruct surface radar reflectivity data in regions lacking
radar coverage, particularly in oceanic and mountainous areas.
Using these reconstructed radar reflectivity data can benefit
various operational applications, such as regional or national
radar mosaic products, radar extrapolation nowcasting, radar
data assimilation, etc. [11].

Recently, advances in computer hardware and computa-
tional power have led to significant progress in deep learning
technology. Convolutional Neural Networks (CNNs), known
for their strong feature extraction capabilities, have gained
substantial traction across various domains, including target
tracking, image classification, object detection, as well as
remote sensing [12], [13]. Several studies have explored the
utilization of CNNs and BT data in retrieving radar reflectivity
data. In [11], Hilburn et al. proposed a retrieval method to
reconstruct radar reflectivity using lightning data and BT data
from the GOES-R satellite, aiming to enhance the accuracy
of short-term convective-scale predictions for high-impact
weather hazards. They utilize BT and lighting data as inputs,
leveraging the widely used U-Net learning model to transform
these observations into radar reflectivity. Duan et al. [14]
introduced a CNN-based data-driven model to reconstruct
radar reflectivity in the regions without radar coverage. Four
infrared channels BT data of Himawari-8 satellite are regarded
as network inputs. These data are then fed into U-Net to
obtain the composite reflectivity data (CREF, the maximum
base reflectivity factor) of alpine areas and the ocean, which
can effectively enhance predictive capability for convective
storms within these areas. In [15], Wan et al. proposed a CREF
retrieval model based on UNet++ and Himawari-9 satellite
observations to reconstruct reflectivity data for remote offshore
areas. Five infrared channel data and their differences from
Himawari-9 satellite are fed into UNet++ network to obtain
retrieved CREF results. Sun et al. [16] proposed to reconstruct
CREF data from BT data and U-Net model. The data are
from both infrared and visible channels of Fengyun-4A (FY-
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4A) meteorological satellite. In [17], considering both pristine
information and attention mechanism, Si et al. proposed a
novel CNN-based radar reflectivity retrieval network based
on feature redistribution module (FR-CNN) to retrieve CREF
radar observations using FY-4A satellite data. Compared with
U-Net, FR-CNN adopts a residual convolution based feature
redistribution module to replace the skip connection operation,
which can effectively mitigate the problem of information
scarcity during network propagation. Zhao et al. [18] devel-
oped a U-Net based intelligent radar reflectivity retrieval net-
work to reconstruct radar CREF data in beam blockage regions
from FY-4A satellite observations. Two modules including
hybrid convolutional module and enhanced pooling module
are designed to compensate for lost spatial information and
capture strong echo information. These aforementioned light-
weight models utilize fixed kernel parameters after training
stage, which constrains the representation ability due to static
parameter assignment strategy.

A possible solution to the above limitation is dynamic con-
volution. Chen et al. [19] introduced the concept of dynamic
convolution, an innovative approach that incorporates attention
mechanisms directly into convolutional kernels. Unlike tradi-
tional convolution operations, this technique dynamically ad-
justs the convolutional kernel weights based on input features
during network propagation, enabling CNN-based architec-
tures to focus on critical spatial and channel-wise information,
significantly enhancing their representation capacity. Inspired
by dynamic convolution, Sun et al. [20] proposed Gaussian
dynamic convolution, which efficiently aggregates contextual
information to produce richer and more detailed features for
single-image segmentation. In [21], Xiao et al. developed a dy-
namic convolution-based sound event detection network. The
multi-dimensional frequency dynamic convolution is adopted
to improve feature representation. Akbaba et al. [22] proposed
a channel fusion-based dynamic convolution network for per-
son re-identification, allowing adaptive kernel adjustments and
effectively enhance feature extraction. Similarly, Soloviev et
al. [23] introduced a two-branch CNN architecture leveraging
dynamic convolution for image matching, achieving faster
learning and superior performance compared to comparison
methods. These advancements have demonstrated significant
potential in improving model performance across various
tasks, and their applicability will be further explored within
the context of our work.

In this study, we introduce a novel radar reflectivity emula-
tion network, Dynamic Residual Convolution based Network
(DRC-Net), designed to reconstruct ground-based radar reflec-
tivity data from FY-4A AGRI cloud-top observations. Notably,
we deploy six dynamic residual convolution modules (DRMs)
incorporating residual blocks and dynamic convolution blocks
to capture intricate details within radar echoes. The incorpora-
tion of dynamic convolution empowers DRMs to dynamically
adjust the weights of convolutional kernels based on input data,
thus significantly enhancing the representation capability of
DRC-Net. Furthermore, the hierarchical structure and diverse
output channels in various DRMs empower DRC-Net to
effectively learn complex linear and non-linear characteristics
from both satellite and radar observations.

The rest of this paper is organized as follows. Section II
introduces the data used in this study. Section III presents
the architecture and specific details of the proposed DRC-Net.
The performance evaluation of DRC-Net and other compar-
ative methods is detailed in Section IV. Finally, Section V
encapsulates the conclusions and future works of this study.

II. DATA

This study utilizes Brightness Temperature (BT) data and
composite reflectivity (CREF) data collected by the China
Meteorological Administration (CMA). Fig. 1 presents our
study domains including Fujian Province (marked as FJ) and
Guizhou Province (marked as GZ). The former spans a latitude
range of 23°N to 29°N and a longitude range of 115.5°E to
121.5°E, while the latter covers 24°N to 30°N and 103°E to
109°E, respectively. In this study, the data from FJ are utilized
for training the proposed DRC-Net, whereas the data from
GZ are used to assess its generalization ability and practical
application capability.

A. Brightness Temperature Data from Fengyun-4A Satellite

The Fengyun-4A satellite is China’s first new-generation
meteorological satellite, equipped with three advanced optical
instruments: the Advanced Geosynchronous Radiation Imager
(AGRI), the Geosynchronous Interferometric Infrared Sounder
and the Lightning Mapping Imager. AGRI offers a spatial
resolution spanning from 0.5 km (visible channels) to 4
km (infrared channels). It can observe 14 different bands,
including visible bands with central wavelengths ranging from
0.47 µm to 0.65 µm, infrared bands with central wavelengths
ranging from 3.725 µm to 13.5 µm, and near-infrared bands
with central wavelengths ranging from 0.825 µm to 2.225
µm. Furthermore, the satellite performs regular observations
through two scanning operations: a 15-minute full disk scan
and a 5-minute scan covering the Chinese continental domain.

Various AGRI channels have different central wavelengths
and diverse sensitivities to cloud-top properties. In this study,
inspired by [11], [24], we select the data of Band 08 (central
wavelength of 3.75 µm), Band 10 (central wavelength of
6.90 µm) and Band 12 (central wavelength of 10.80 µm) of
Chinese region to reconstruct radar reflectivity due to their
significant correlation with cloud microphysical properties and
the distribution of hydrometeors.

B. Radar Data from China New Generation Weather Radar
Network

The radar data utilized in this study are sourced from the
China New Generation Weather Radar Network (CINRAD)
administered by the CMA. This extensive radar network
encompasses more than 123 S-band and 94 C-band Doppler
weather radars strategically deployed across the eastern and
coastal regions, as well as the northwest and northeast areas
of China [25]. The radar data adopted in this study possess a
temporal resolution of 6 min and a spatial resolution of 1 km.
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Fig. 1. Demonstration study domains. (a) map of China. (b) study domain of Guizhou Province (red rectangle). (c) study
domain of Fujian Province (chocolate rectangle). Both domains are about 600 km×600 km.

C. Training Dataset Construction

In our experiments, we utilize BT data from FY-4A AGRI
and CREF data from CINRAD of FJ and GZ to train and
test proposed network. The data are collected during the
warm seasons from May to August 2019. The satellite data
have a temporal resolution of 5 min and a spatial resolution
of 4 km, while the radar observations exhibit a temporal
resolution of 6 min and a spatial resolution of 1 km. The
size of satellite and radar data is 150 × 150 and 600 × 600
respectively. Due to the spatial resolution disparities, we
employ a bilinear interpolation approach [26] to adjust satellite
data to the size of 600 × 600. This method is chosen for its
balance between computational efficiency and the preservation
of spatial patterns, ensuring smooth transitions and minimizing
artifacts during resampling stage. Therefore, the dimensions of
multi-channel satellite and radar data input to the network are
600×600×3 and 600×600 respectively. Likewise, to ensure
temporal consistency, the observation time difference between
satellite and radar data remains within 5 min. We select the
samples with maximum radar echo more than 35 dBZ to build
proposed DRC-Net.

Finally, we can obtain 17476 samples collected from May
to August 2019, where 13980 samples collected from May to
July for training and validation (80% of the data) and 3496
collected in August for testing (20% of the data) over the FJ
area. Similarly, 3936 samples selected from May 1 to May
31 over GZ region are employed to test the generalization
ability of proposed model. Then we normalize the samples
for training, validation and testing processes [27].

III. METHODOLOGY

A. Overall Structure

Fig. 2 illustrates the architecture of the proposed DRMs and
DRC-Net. The network primarily comprises two convolutional

layers (Conv-1 and Conv-2), six DRMs (i.e. DRM-i, i=1, ...,6),
and two dense layers (Dense-512 and Dense-1). The input of
DRC-Net is BT data after preprocessing operation, fed into
Conv-1 and Conv-2. The kernel size of the convolution layers
is both set to 3 × 3 and the kernel number is assigned to
32 and 64 respectively. Subsequently, six DRMs, each with
varying output channels, are employed to capture intricate
inner structure details associated with strong echoes. Finally,
two dense layers, Dense-512 and Dense-1, are utilized to
generate the final CREF retrieval results based on the input BT
data. Further details regarding the structure of DRMs and the
proposed DRC-Net are elaborated in the following subsection.

B. Dynamic Residual Convolution Module (DRM)

Conventional light-weight models like U-Net typically as-
sign the same static parameters to various input samples of the
network after training stage, which may lead to insufficient
detailed information of strong echoes and affect the represen-
tation ability and capacity. Therefore, inspired by [19], we pro-
pose six hierarchical Dynamic Residual Convolution Modules
(i.e. DRM-1, DRM-2, ..., DRM-6) with residual blocks and
dynamic convolution blocks to explore the inner information
associated with strong radar echoes. The incorporation of
dynamic convolution blocks empowers DRMs to dynamically
adjust the weights of convolutional kernels based on input
data. This can effectively explore inner structure information
associated with strong convective events, enhancing the repre-
sentation ability of DRC-Net. Moreover, inspired by [28], [29],
we allocate various output channels across different DRMs and
design hierarchical structure of DRC-Net to capture intricate
non-linear and linear characteristics of input BT data. For
DRM-1, DRM-2, and DRM-3, the number of output channels
is configured as 64, 128, and 128, respectively, while that of
remaining DRMs are assigned to 256.
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Fig. 2. Architectures of DRC-Net and DRM. (a) Architecture of the dynamic residual convolution-based network (DRC-Net).
(b) Illustration of the detailed structure of Dynamic Residual convolution Module (DRM). The details of Complementary

Attention Units (CAU) will be shown in Fig. 3.

Fig. 2(b) presents the architecture of each DRM, which
mainly includes two convolution layers (denoted as Conv1 and
Conv4), a residual block and two dynamic convolution blocks.
The design of the blocks aims to extract complementary
features separately and capture complex spatial patterns related
to strong echoes. The input of DRMs can be represented as
Im, where m (m ∈ 1, ..., 6) represents the index of DRM. The
input Im is followed by Conv1 firstly, which is composed
of a convolution operation, batch normalization and ReLU
activation function [30]. The kernel number of Conv1 in DRM-
1 to DRM-6 is assign to 64, 128, 128, 256, 256 and 256
respectively. The kernel size and convolution stride of the layer
in DRMs are all set to 3×3 and 1 respectively. After Conv1,
I1m can be obtained and regarded as the input of dynamic
convolution blocks and residual block.

Dynamic convolution blocks: The structure of the blocks
can be found in Fig. 2(b). We take the left block as the
example to introduce its structure. In the DRM, the dynamic
convolution blocks are divided into two groups to achieve
diversity in feature extraction while maintaining computational

efficiency. The input I1m is fed to several Complementary
Attention Units (CAUs) (i.e. CAU-1, CAU-2 and CAU-3)
to preserve key information and obtain attention weights
of convolution kernels including conv1m, conv2m and conv3m.
Each CAU has the same structure as Fig. 3. Let I1m (where
m = 1, 2, . . . , 6) denotes the input of the unit, which is fed
into two branches firstly. One is consisted of global average-
pooling, Conv-A1, ReLU and Conv-A2 operations while the
other is composed of global max-pooling, Conv-M1, ReLU
and Conv-M2 operations. For the convolutions, the number
and kernel size of convolutional kernels are all set to 3 × 3
and 16 respectively. After the branches, two outputs (CAt

m

and CM t
m, where t represents t-th CAU in m-th DRM) can

be obtained. Then the outputs are fused to attain the final
attention weight as follows:

atttm = Softmax(CAt
m × α+ CM t

m × β) (1)

where α and β are the weights of branches. Considering the
same importance of the branches, we set α = β = 0.5.
Through the CAUs including CAU-1, CAU-2 and CAU-3, the
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Fig. 3. The structure of Complementary Attention Units
(CAU).

attention weights of conv1m, conv2
m and conv3

m can be acquired
and represented by att1m, att2m and att3m.

Then the attention weights are combined with convolution
kernels to get the output of left dynamic convolution block as
follows:

I lm = ReLU(BN(
3∑

j=1

attjm × convjm)) (2)

where BN(·) and ReLU(·) denote batch normalization and
ReLU activation function [30] respectively. Similar to left
block, the input of right dynamic convolution block is I lm.
Attention weights of convolution kernels including conv4m,
conv5m and conv6m can be obtained and represented by att4m,
att5m and att6m. Then the weights are applied to acquire the
output Irm as follows:

Irm = ReLU(BN(
6∑

k=4

attkm × convkm)) (3)

For dynamic convolution blocks in DRMs, two outputs I lm
and Irm can be obtained for subsequent operations.

Residual convolution block: The architecture of the block
can also be found in Fig. 2(b). The input is I1m, which is fed
into two convolution layers (marked as Conv2 and Conv3).
In this study, the structure and kernel settings of the layers
for various DRMs are fully same to Conv1. To maintain
significant original information, we add the output of Conv3
and the input I1m to attain the output of residual convolution
block, which can be represented by I res

m . The outputs of

residual convolution block and dynamic convolution blocks
are combined as follows:

Iadd
m = I lm + I res

m + Irm (4)

Finally, Iadd
m is filtered by Conv4 to obtain the final output

of DRM, which is represented by Om. Similar to Conv1, the
kernel number of Conv4 in DRM-1 to DRM-6 is assign to 64,
128, 128, 256, 256 and 256 respectively. The kernel size and
convolution stride of the layer in DRMs are all set to 3×3 and
1 respectively.

As shown in Fig. 2(a), based on the obtained fusion convo-
lution result O6, two dense layers Dense-512 and Dense-1 are
adopted to aggregate learned high-level feature representations
and map them to the final radar reflectivity emulation result,
which can be symbolized as ŷ.

IV. EXPERIMENTS AND ANALYSIS

A. Training Details

We utilize TensorFlow 2.80 as the backend and implemented
the network using Keras for software implementation. During
the training process, the choice of a suitable loss function
is crucial for achieving the expected performance. Similar to
[27], a L1 loss function is employed to train DRC-Net as
follows:

minω
1

N

N∑
k=1

|ŷk − yk| (5)

where yk is the ground truth of the k-th input and N is
the number of training patches. In addition, to expedite the
convergence of proposed network, Adam optimization [31]
with initial learning rate 1× 10−4 is adopted to optimize the
regression object.

B. Comparison Methods

Four experiments, U-Net, Attention U-Net (AU-Net), FR-
CNN and DRC-Net, are conducted to demonstrate the perfor-
mance of various networks as follows:

1) U-Net: the network is adopted in [11], equipped with
conventional convolution layers, the first radar reflectivity
retrieval algorithm;

2) Attention U-Net (AU-Net): the architecture is adopted
in [32], considering attention mechanism in skip connections
compared with U-Net;

3) FR-CNN: the structure is employed in [17], replacing
skip connection with feature redistribution module to mitigate
the problem of information scarcity;

4) DRC-Net: the proposed dynamic residual convolution
based CREF retrieval network in this paper;

C. Evaluating Indices

The contingency table approach is employed to evaluate the
emulation performance, as it is used commonly in atmospheric
research. Four widely used indices, namely the Probability of
Detection (POD), False Alarm Rate (FAR), Critical Success
Index (CSI) and Heidke Skill Score (HSS), are employed to
assess the performance of different radar reflectivity emulation
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TABLE I: Definition of various index parameters.

Observation
T F

Estimation T TP FP
F FN TN

algorithms at various thresholds (i.e., 20, 25, 30, 35, 40 dBZ).
Higher values of POD, CSI and HSS, along with lower values
of FAR, indicate superior performance of the network. These
indices can be calculated as follows:

POD =
TP

(TP + FN)
(6)

FAR =
FP

(FP + TP)
(7)

CSI =
TP

(TP + FP + FN)
(8)

HSS =
2 ∗ (TP ∗ TN − FN ∗ FP)

(FN + TP) ∗ (TN + FN) + (TP + FP) ∗ (TN + FP)
(9)

where TP, TN, FN, and FP denote true positive, true negative,
false negative, and false positive, respectively. The definition
of these parameters can be found in Table I, where ”T” and
”F” represent True and False classification results in radar
reflectivity emulation restuls with the thresholds of 20, 25,
30, 35, 40 dBZ, respectively.

D. Results and Analysis

We adopt mean values of assessment indices including
POD, FAR, CSI and HSS over testing dataset to quantitatively
compare the performance of various methods including U-
Net, AU-Net, FR-CNN and DRC-Net, which can be seen in
Table II. ”POD20”, ”FAR20”, ”CSI20” and ”HSS20” means
the POD, FAR, CSI and HSS value with the threshold of
20 dBZ, so as other thresholds including 25, 30, 35 and 40
dBZ. In the table, the best performance values are in bold.
It is evident that U-Net has inferior performance across all
experimental thresholds (from 20 dBZ to 40 dBZ) than other
methods, exhibiting lowest POD, CSI and HSS values, and
highest FAR values. AU-Net considering attention mechanism
demonstrates improved performance across all thresholds in
comparison to U-Net. FR-CNN achieves comparatively better
performance than U-Net and AU-Net due to its consideration
of both pristine information and attention mechanisms. But it
has lower performance than DRC-Net due to insufficient con-
sideration of dynamic convolution. In contrast, the proposed
network with dynamic convolution-based DRMs outperforms
the comparison methods at thresholds of 20 dBZ, 35 dBZ,
and 40 dBZ, which can reflect the effectiveness of proposed
network. It is noted that DRC-Net exhibits a higher FAR than
FR-CNN at 30 dBZ (0.475 VS 0.454) and a lower HSS at 25
dBZ (0.683 VS 0.698), which may be attributed to DRC-Net’s
emphasis on strong echo details while potentially neglecting
some comparatively low echo features. But it still has better
performance than comparison metrics in other indices.

TABLE II: Performance comparison of different comparison
networks.

POD20 FAR20 CSI20 HSS20
U-Net 0.724 0.297 0.634 0.692

AU-Net 0.755 0.377 0.678 0.753
FR-CNN 0.820 0.257 0.683 0.726
DRC-Net 0.854 0.252 0.696 0.767

POD25 FAR25 CSI25 HSS25
U-Net 0.652 0.392 0.542 0.623

AU-Net 0.714 0.320 0.570 0.657
FR-CNN 0.775 0.326 0.596 0.683
DRC-Net 0.792 0.292 0.630 0.698

POD30 FAR30 CSI30 HSS30
U-Net 0.579 0.555 0.406 0.518

AU-Net 0.674 0.465 0.496 0.608
FR-CNN 0.723 0.454 0.543 0.672
DRC-Net 0.784 0.475 0.592 0.686

POD35 FAR35 CSI35 HSS35
U-Net 0.331 0.583 0.258 0.368

AU-Net 0.352 0.585 0.329 0.466
FR-CNN 0.404 0.500 0.388 0.552
DRC-Net 0.405 0.452 0.409 0.563

POD40 FAR40 CSI40 HSS40
U-Net 0.187 0.740 0.140 0.241

AU-Net 0.213 0.643 0.189 0.314
FR-CNN 0.219 0.601 0.182 0.303
DRC-Net 0.247 0.558 0.218 0.353

For qualitative comparison, Fig. 4 provides three cases of
retrieved CREF data over testing dataset using U-Net, FR-
CNN and proposed DRC-Net, where each line indicates a
retrieval sample. U-Net exhibits poor performance by cap-
turing fewer strong echoes compared to other methods. FR-
CNN, while capturing more strong echoes than U-Net, tends
to generate more false alarms in certain cases (e.g. the first
sample in Fig. 4), likely due to insufficient consideration of
dynamic convolution. Consequently, owing to the incorpo-
ration of the technology, DRC-Net can capture more inner
structure of convective cells, signifying the effectiveness of
DRMs and the proposed network. In particular, in strong
echo regions, dynamic convolution blocks allow the network
to adjust the importance of different convolutional kernels
dynamically based on input features, which enables the model
to capture subtle but critical variations in cloud-top features
related to strong echoes. Furthermore, the design of two blocks
for complementary feature extraction further enhances the
network’s ability to reconstruct intricate structures in strong
echo regions.

E. Ablation Experiments

In ablation experiments, we specifically varied parameters
such as the number of DRMs, the output channels of DRMs,
the quantities of dynamic blocks and residual convolution
blocks and mapping methods to evaluate the performance of
the proposed network, without other parameters and compo-
nents changed, which can be organized as follows:

1) The number of DRMs is set to 2, 4, 6 and 8 respectively,
each maintaining an identical output channels of 256;

2) The output channels of DRM-1 to DRM-6, which means
the number of convolution kernels in Conv4 within the blocks,
are assigned to specific values:
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(a) Radar observation (b) U-Net (c) FR-CNN (d) DRC-Net

Fig. 4. Comparison of radar retrieval results using different networks at various times. The first row corresponds to 11:30
UTC on August 15, 2019, the second row to 14:20 UTC on August 15, 2019 and the third row to 13:50 UTC on August 29,

2019. The first column (a) displays the original radar observations, while the second (b), third (c) and fourth (d) columns
present the retrieval results using U-Net, FR-CNN and DRC-Net, respectively.

TABLE III: Performance comparison with different DRM
numbers at 35 dBZ threshold.

The number of DRMs POD FAR CSI HSS
2 0.302 0.643 0.357 0.421
4 0.356 0.539 0.382 0.500
6 0.405 0.452 0.409 0.563
8 0.403 0.482 0.413 0.541

TABLE IV: Performance comparison with different output
channels in DRMs at 35 dBZ threshold.

Output channels in DRMs POD FAR CSI HSS
Scheme-1 0.355 0.486 0.353 0.400
Scheme-2 0.358 0.502 0.331 0.394
Scheme-3 0.414 0.447 0.392 0.489
Scheme-4 0.405 0.452 0.409 0.563

• Scheme-1: [64, 64, 64, 64, 64, 64]
• Scheme-2: [128, 128, 128, 128, 128, 128]
• Scheme-3: [64, 64, 64, 128, 128, 128]
• Scheme-4: [64, 128, 128, 256, 256, 256]
3) The number of dynamic convolution blocks is set to 0,

1, 2, 3 respectively, with 1 residual convolution block;
4) The number of residual convolution blocks is arranged

to 0, 1, 2, 3 respectively, with 2 dynamic convolution blocks;
5) The mapping methods including global average pooling,

point-wise convolution and dense layers are adopted to map
learned high-level features to reconstructed CREF data.

TABLE V: Performance comparison with various dynamic
convolution blocks in DRMs at 35 dBZ threshold.

Dynamic convolution block POD FAR CSI HSS
0 0.366 0.573 0.308 0.394
1 0.384 0.516 0.360 0.444
2 0.405 0.452 0.409 0.563
3 0.405 0.462 0.393 0.516

TABLE VI: Performance comparison with various residual
convolution blocks in DRMs at 35 dBZ threshold.

Residual convolution block POD FAR CSI HSS
0 0.392 0.475 0.388 0.500
1 0.405 0.452 0.409 0.563
2 0.394 0.467 0.400 0.500
3 0.389 0.496 0.381 0.455

The experimental results of above ablation experiments are
listed in Table III to Table VII respectively. It can be found
that apart from CSI index in Table III, the network with 6
DRMs, 2 dynamic convolution blocks, 1 residual convolution
block and dense layers achieves best performance across all
experimental indices compared to other schemes. Therefore,
these settings are adopted to construct the proposed DRC-
Net. However, it should be noted that in Table IV, Scheme-
4 exhibits a lower POD (0.405 vs 0.414) and higher FAR
(0.452 vs 0.462) compared to Scheme-3. Considering a more
significant improvement in CSI and HSS, Scheme-4 is chosen
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Fig. 5. Case study of typhoon Doksuri at 07:36 UTC on July 28, 2023.

TABLE VII: Performance comparison with various mapping
methods at 35 dBZ threshold.

Mapping method POD FAR CSI HSS
Global average pooling 0.387 0.515 0.398 0.525
Point-wise convolution 0.391 0.477 0.400 0.542

Dense layers 0.405 0.452 0.409 0.563

to construct the proposed network.

F. Case Study of Super Typhoon Doksuri

Typhoons, characterized by their powerful winds, torrential
rains, and intense storms, stand as one of the most destructive
natural disasters in the world. Unless it’s a landfall typhoon,
ground-based radar often fails to adequately observe the ty-
phoon. Fig. 5 shows a case study of super typhoon Doksuri
at 07:36 UTC on July 28, 2023. During that period, the spiral
cloud systems around the typhoon brought heavy precipitation
to Philippines and Chinese eastern coastal areas. Although all
methods can achieve the basic structure of the typhoon, the
reflectivity obtained by the U-Net method in the eye region of
the typhoon is significantly lower, which leads to a wide range
of misses in the region. In contrast, FR-CNN and DRC-Net
can provide comparatively better results, and our DRC-Net
provides finer details of inner structure than FR-CNN and U-
Net. In this case, as the typhoon is very close to land, radar can
observe it completely. For typhoons that are far from land and
beyond radar coverage, reconstructing surface reflectivity data
using cloud-top satellite observations becomes undoubtedly
valuable. This approach aids in diagnosing and forecasting the
track and intensity of typhoons.

G. Generalization Performance Tests and Application

In this subsection, the generalization performance of the
proposed DRC-Net can be tested by applying the trained

TABLE VIII: Generalization performance of various
networks.

POD20 FAR20 CSI20 HSS20
U-Net 0.759 0.336 0.560 0.680

AU-Net 0.763 0.301 0.592 0.650
FR-CNN 0.783 0.335 0.632 0.650
DRC-Net 0.802 0.233 0.667 0.716

POD25 FAR25 CSI25 HSS25
U-Net 0.671 0.432 0.448 0.512

AU-Net 0.723 0.355 0.502 0.554
FR-CNN 0.758 0.262 0.506 0.584
DRC-Net 0.771 0.230 0.535 0.637

POD30 FAR30 CSI30 HSS30
U-Net 0.584 0.432 0.375 0.426

AU-Net 0.616 0.459 0.403 0.486
FR-CNN 0.695 0.370 0.470 0.542
DRC-Net 0.740 0.336 0.507 0.592

POD35 FAR35 CSI35 HSS35
U-Net 0.345 0.643 0.213 0.348

AU-Net 0.351 0.589 0.255 0.404
FR-CNN 0.341 0.531 0.331 0.497
DRC-Net 0.383 0.491 0.415 0.553

POD40 FAR40 CSI40 HSS40
U-Net 0.152 0.794 0.133 0.245

AU-Net 0.173 0.739 0.167 0.259
FR-CNN 0.179 0.670 0.200 0.301
DRC-Net 0.206 0.633 0.217 0.299

model from the FJ area directly to generate CREF data over
the GZ area. The assessment indices including POD, FAR, CSI
and HSS over GZ region are adopted to quantitatively compare
the performance of various networks. The comparison results
are listed in Table VIII. The proposed DRC-Net demonstrates
superior performance compared to other methods including U-
Net, AU-Net and FR-CNN across thresholds from 20 dBZ to
40 dBZ. In terms of the the most important comprehensive
metric, CSI, DRC-Net exhibited improvements ranging from
2 to 10 percentage points when compared to other methods. In
all evaluations, DRC-Net only marginally lagged behind FR-
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Fig. 6. A retrieved case without radar coverage at 23:20 UTC on September 19, 2023. This example illustrates the absence
of radar data in the region due to insufficient deployment in mountainous areas, and demonstrates the use of satellite

observations to supplement the missing information.

(a) Satellite observation (10.8um)

(b) Radar observation (c) DRC-Net

Fig. 7. A retrieved case of China region at 12:50 UTC on June 29, 2022.

CNN in the case of 40 dBZ (0.299 vs 0.310). Nevertheless, in
all other assessments, DRC-Net consistently achieved superior
results.

Radar data collected over the ocean and the mountainous
regions plays a crucial role in monitoring and predicting

destructive natural disasters. However, the availability of such
data is often constrained by limitations in radar deployment.
Fig. 6 presents a case of retrieved CREF data within 33°N-
39°N and 92°E-98°E using U-Net, FR-CNN and proposed
DRC-Net. Notably, radar echoes are absent within the region,
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attributed to the lack of radar deployment, as depicted in
Fig. 6(b). However, satellite observation in Fig. 6(a) reveals a
large storm in this region. U-Net can capture the fundamental
structure of the storm compared to satellite observation. FR-
CNN, benefiting from the integration of pristine information
and attention mechanisms, can retrieve comparatively more
details of the storm than U-Net. In contrast, leveraging DRMs,
DRC-Net can reconstruct most details of inner structure of
the storm among experimental methods, surpassing U-Net
and FR-CNN. Moreover, Fig. 7 presents a case of retrieved
CREF data spanning the nationwide region within 12°N-
54°N and 75°E-135°E using DRC-Net. It is evident that the
proposed network can reconstruct radar reflectivity data in
regions lacking radar coverage, particularly in oceanic and
mountainous areas, leading to a better national mosaic product.

V. CONCLUSION

In this study, we introduce DRC-Net, a radar reflectivity
emulation network designed for reconstructing surface CREF
data from FY-4A satellite cloud-top observations. The key
innovation lies in the design of six DRMs featuring dynamic
and residual convolution blocks. Unlike conventional convo-
lution operations, the incorporation of dynamic convolution
allows for the dynamic adjustment of weights in convolutional
kernels. This adaptability enables DRMs to explore more
intricate structural information associated with strong radar
echoes. Furthermore, the design of diverse output channels
across distinct DRMs, coupled with a hierarchical structure,
empowers DRC-Net to effectively capture intricate linear and
non-linear features between satellite and radar observations.
Experimental results underscore that the proposed DRC-Net
outperforms U-Net, AU-Net and FR-CNN, showcasing su-
perior performance in radar reflectivity reconstruction across
nationwide regions, particularly in mountainous and oceanic
areas. Case study highlights the network’s effectiveness in
retrieving inner structures of typhoon. In future works, we
aim to explore advanced deep learning networks such as
Generative Adversarial Networks (GANs) and Transformers to
further enhance the emulation capabilities of radar reflectivity
reconstruction methods.
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