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Abstract— A ground-based weather radar is commonly used
for observing severe convective weather. However, the limited
coverage of the radar poses difficulties in obtaining reliable radar
observations for oceanic and mountainous regions. An effective
solution is to derive radar data from meteorological satellite
observations using deep-learning methods. This study proposes
a novel feature redistribution module-based convolutional neu-
ral network (FR-CNN) to retrieve radar composite reflectivity
(CREF) data from geostationary satellite observations. Differing
from existing skip connection (SC)-based CNNs, FR-CNN adopts
a feature redistribution module (FRM) to alleviate the problem
of information scarcity during network propagation. In the
FRM, a parallel attention block (PAB) is introduced to preserve
key feature information and improve the retrieval ability of
the FR-CNN. The evaluation results show that the FR-CNN
can effectively reconstruct radar reflectivity data and has a
better performance than other methods like U-Net in terms of
assessment indices including the probability of detection (POD),
false alarm ratio (FAR), and critical success index (CSI).

Index Terms— Convolutional neural networks (CNNs), deep
learning, geostationary satellite, weather radar.

I. INTRODUCTION

EVERE convective weather events such as extreme pre-
Scipitation pose a significant threat to human safety,
leading to potential damages and mortality [1]. The ground-
based weather radar is regarded as the primary observation
instrument for monitoring convective events, providing high
resolution and reliable information for accurate extreme
weather forecasting [2], [3], [4]. However, the inherent lim-
itations of the ground-based weather radar, such as complex
terrains and high deployment costs, impose significant con-
straints on radar coverage in specific regions, particularly
mountainous and oceanic areas.

Compared with the ground-based radar, geostationary mete-
orological satellites can offer prominent advantages in terms
of continuous and wide-ranging observations with high spatial
and temporal resolutions, which enables the timely tracking of
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convective events in specific regions [5], [6], [7]. As satellites
can observe clouds that cannot be seen by the radar due to
terrain occlusion, using satellite observations to reconstruct
radar data is a valuable endeavor, especially in the regions
without radar coverage, which can effectively enhance the
forecasting capability for severe convective weather events
within these areas [8].

Recently, deep-learning technology has made remarkable
strides in various scientific fields. Convolutional neural net-
works (CNNs), in particular, have been widely applied in
diverse domains, including object detection, semantic segmen-
tation, target tracking, as well as the remote-sensing field
[9], [10], [11]. Hilburn et al. [12] proposed a U-Net method
to derive radar reflectivity from satellite observations and
lightning data. Duan et al. [8] extended the above U-Net
method to another geostationary satellite (i.e., Himawari-8).
The input of the network is the brightness temperature (BT)
data of five infrared channels of Himawari-8. The output is the
composite reflectivity (CREF, the maximum base reflectivity
factor). Similar to [8], Sun et al. [13] utilized BT data from the
Fengyun-4A (FY-4A) meteorological satellite along with the
U-Net to reconstruct radar reflectivity in the regions lacking
radar coverage. In addition, Yang et al. [14] introduced an
attention mechanism-based U-Net to reconstruct radar reflec-
tivity using FY-4A observations, yielding improved retrieval
results. The retrieval networks mentioned above incorporate
skip connections (SCs) to mitigate the loss of feature infor-
mation caused by downsampling operations.

In this study, we propose a novel CNN-based radar reflec-
tivity retrieval network based on the feature redistribution
module-based CNN (FR-CNN) to retrieve CREF radar obser-
vations using satellite data. Compared with conventional
U-Net, the FR-CNN adopts a feature redistribution module
(FRM) to replace the SC operation. The FRM is designed
to incorporate a parallel attention block (PAB) to preserve
key spatial and channel information simultaneously, thus more
inner structure of radar echoes can be captured. The rest of
this letter is organized as follows. Section II introduces the
data used in this study. Section III presents the architecture and
details of the proposed FR-CNN. We evaluate the performance
of the FR-CNN and other methods in Section IV. Finally, the
conclusion is depicted in Section V.

II. DATA

The BT data and the CREF data are used in this study. All
of the data are collected by the China Meteorological Admin-
istration (CMA). Fig. 1 shows our study domains including
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Fig. 1. Demonstration of study domains (red rectangles).

Fujian province (marked as FJ), encompassing a latitude range
of 23°N-29°N and a longitude range of 115.5°E-121.5°E,
and Guizhou province (marked as GZ), covering a latitude
range of 24°N-30°N and a longitude range of 103°E-109°E.
The proposed deep-learning model (FR-CNN) is trained and
tested over FJ. Then, the model is used over GZ to assess its
generalization and practical application capability.

The BT data of Chinese regions are provided by the
advanced geosynchronous radiation imager (AGRI) carried on
the Fengyun-4A satellite with temporal and spatial resolutions
of 5 min and 4 km, respectively. Inspired by [13] and [14],
three channel observations at wavelengths of 3.75, 6.90, and
10.70 pwm are used in this study. For the retrieved CREF, it has
the same temporal resolution as the satellite data. In this study,
the time interval of retrieved CREF is also 5 min.

Considering the differences in spatiotemporal resolution of
satellite and radar observations, we apply a bilinear inter-
polation approach [15] to adjust the satellite data resolution
to 1 km to ensure consistency in spatial resolution. Finally,
we collected 17476 samples from May to June 2019, where
13980 samples were collected from May to July for training
and validation (80% of the data) and 3496 samples collected in
August for testing (20% of the data) over the FJ area. For the
generalization test purpose, we used 3936 samples collected
from May 1 to May 31, 2019, over the GZ area.

III. METHODOLOGY

Fig. 2 presents an overview of the workflow of the FR-CNN.
The proposed model is mainly composed of three components
including an encoder, an FRM, and a decoder. The inputs of
the model are BT data, and the outputs are CREF reconstruc-
tions. More details are given in Sections III-A-III-C.

A. Encoder

The structure of the encoder can be found in Fig. 2, which
consists of one convolution module (marked as CM-1) and
three pooling modules (marked as PM-1, PM-2, and PM-3).
The input of the encoder is multiband satellite data.

The input data are followed by a series of modules including
CM-1, PM-1, PM-2, and PM-3. The structure of CM-1 can be
found in Fig. 3(a). The module consists of two convolutional
layers. Each layer includes a convolution operation followed
by rectified linear units (ReLUs) [10]. The size and number
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of convolution kernels in the layers are set to 3 x 3 and 256,
respectively.

Following CM-1, three pooling modules, namely PM-1,
PM-2, and PM-3, are designed. The structure of these modules
is illustrated in Fig. 3(b). Similar to the CM module, these
modules also consist of two convolutional layers. However,
a max-pooling operation is utilized to reduce the dimension
of feature maps. In this study, the pooling stride is assigned
to 2, and the size of the convolution kernels in PM-1, PM-2,
and PM-3 is set to 3 x 3. The number of convolution kernels
in the modules is assigned to 32, 64, and 128, respectively.
The ReLU activation function is employed in all layers.

B. Feature Redistribution Module

For conventional U-Net, the SC is adopted to suppress
the loss of pristine information during network propagation.
However, for the feature maps of the connections, pristine
information is not fully included, which may result in less
details of strong echoes. Therefore, inspired by [16] and [17],
to capture more details of the inner structure of strong echoes,
an attention-based FRM is designed. The module adopts a
residual block (RB) to extract features of input connections.
A PAB (i.e., PAB) is then employed to reserve key spatial
and channel information simultaneously, which can enable the
FRM to capture more inner structure of radar echoes. Due to
sufficient consideration of pristine information and attention
mechanism, the module can effectively mitigate the issue of
information shortage of SC during network propagation.

The proposed FRM regards the output feature maps of
CM-1, PM-1, and PM-2 as inputs. Since these PM modules
have different sizes compared to the CM module, we upsam-
ple them using transpose convolution operations to ensure
consistency in size. The strides of the transpose convolution
operations in the modules are set to 1, 2, and 4, respectively.
Subsequently, we concatenate the processed feature maps for
further operations.

Following the concatenation step, the obtained feature map
is fed into an RB to extract complex characteristics. The
architecture of the residual module is depicted in Fig. 3(c). The
RB consists of several operations, including convolution, batch
normalization (BN), and ReLU activation function. Notably,
to prevent information loss during these operations, the input
feature map is element-wise added to the map obtained after
the second BN operation. Finally, the ReLU activation function
is applied to obtain the output of the RB. The kernel size of
the convolution operations is set to 3 x 3, and the number of
convolution kernels is set to 224 for both operations within
the RB.

To preserve key feature information of RB, we introduce a
PAB. The structure of PAB is illustrated in Fig. 4. The block
consists of three branches: spatial branch, channel branch, and
input branch. Let X represent the input of PAB, which is also
the output of the RB. The output of the spatial branch can be
obtained as follows:

Wipaial = o (conv(concat(AP(X), MP(X)))) ey

where o (-), conv(-), concat(-), AP(-), and MP(-) represent
the operations including sigmoid, convolution, concatenation,
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Fig. 2. Architecture of the proposed FR-CNN.
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Fig. 4. Flowchart of PAB.

average-pooling, and max-pooling, respectively. In this study,
the kernel size of convolution operations is assigned to 7 x 7.
The number of convolution kernels is set to 1. Similarly, the
output of the channel branch can be acquired as follows:

Wenhannel = 0 (A1 X conv(ReLU(conv(AP(X))))
+ A x conv(ReLU(conv(MP(X))))) (2)
where \; and ), are the weight parameters that are set to \; =

Ay = 0.5 after tuning them from {(0.4, 0.6), (0.5, 0.5), (0.6,
0.4), (1, 1)}. The kernel size of both convolution operations

is set to 3 x 3 [16]. The number of convolution kernels is
assigned to 224. The attention weights can be obtained from
various branches of PAB as follows:

Wattenlion = Wspatial * Wchannel * X (3)

where * denotes the Hadamard product [18]. Through PAB,
the feature map P can be obtained as follows:

P = Wagention * X. @)

The feature map P is then downsampled by two strides
to acquire pooling versions. In our experiments, the sample
strides of two max-pooling operations in Fig. 2 are assigned to
4 and 2, respectively, and the feature maps (marked as P1 and
P2) can be obtained. Finally, three maps including P, PI,
and P2 are regarded as inputs of the decoder for subsequent
operations.

C. Decoder

The decoder in the FR-CNN is employed to decode the
features obtained from the encoder and the FRM and recover
the resolution of the output radar reflectivity image. The
architecture can be seen in Fig. 2. Similar to the encoder,
the module consists of several CM modules including CM-2,
CM-3, and CM-4, two transpose convolution operations, and
three concatenation operations (marked as red circle C in the
figure). The features P, P1, and P2 obtained from the FRM
are regarded as inputs of the decoder. In the CM modules,
the input is the concatenation of the previous module’s result
and the special output of the FRM. For example, the input
of CM-3 is the concatenation of P2 and the output of CM-2.
In this study, the kernel size of the convolution operations
in CM-2, CM-3, and CM-4 is set to 3 x 3. The number of
convolution kernels in the modules is assigned to 256, 128,
and 64, respectively. After CM-4, the reconstructed CREF
data corresponding to the input satellite observations can be
obtained.

IV. EXPERIMENTS AND RESULTS

In our experiments, the proposed FR-CNN is trained for
100 epochs to achieve the experimental results. Adam opti-
mization [10] with initial learning rate 1 x 10~* is adopted
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TABLE I TABLE II
PERFORMANCE COMPARISON OF DIFFERENT MODELS PERFORMANCE COMPARISON OF ABLATION EXPERIMENTS
Scheme POD FAR CSI Scheme POD FAR CSI
baseline 0.586 0.432 0.427 baseline 0.586 0.432 0.427
U-Net 0.611 0.394 0.482 baseline + SC (U-Net) 0.611 0.394 0.482
MVGG 0.621 0.362 0.511 baseline + RB 0.644 0.346 0.524
FR-CNN 0.663 0.331 0.533 baseline + RB + PAB 0.663 0.331 0.533

to optimize the regression object. An L1 loss function is
employed to train the model as follows:

1 N
min,, > |f ;@) = il )
k=1

where f(x;; ) is the retrieved CREF data of the kth input xy,
and yy is the ground truth of the kth input. N is the number
of training patches.

The contingency table approach is employed to evaluate the
retrieval performance, as it is used commonly in atmospheric
science areas [19]. Three widely used evaluation indices
including the probability of detection (POD), false alarm ratio
(FAR), and critical success index (CSI) with a threshold of
35 dBz [12] are utilized in this study.

Four experiments, baseline, U-Net, modified VGG
(MVGG), and FR-CNN are conducted to demonstrate the
performance of various models as follows.

1) Baseline: The architecture refers to the conventional
encoder—decoder structure of the CNN, which is com-
posed of an encoder and a decoder as shown in Fig. 2.

2) U-Net: The network is referred to [12], equipped with
SC.

3) MVGG: The structure removes all pooling layers, the
final convolution layer, and all fully connected layers
of VGG-16 [11] and adds a convolution layer with the
kernel number of 1 and size of 3 x 3.

4) FR-CNN: The proposed method in this letter.

A. Results and Analysis

For quantitative comparison, we calculate the values of
POD, CSI, and FAR over the testing dataset, as shown
in Table I. It is evident that the baseline network exhibits
lower performance compared to other comparison methods.
The baseline model achieves the lowest POD (0.586), CSI
(0.427), and highest FAR (0.432), where the higher POD
and CSI, the lower FAR correspond to better performance.
This can be attributed to the lack of original information in
the baseline network, which hinders its ability to accurately
reconstruct CREF data. For U-Net, SC is used to preserve
fine-scale information from shallower layers leading to better
performance than the baseline network, that is, higher POD
(0.611) and CSI (0.482) and lower FAR (0.394). MVGG is
superior to U-Net, but it has comparatively worse performance
than the FR-CNN, which can be attributed to the insufficient
consideration of attention mechanisms. In contrast, the FR-
CNN outperforms both U-Net and MVGG as it uses pristine
information and attention mechanisms simultaneously.

Fig. 5 shows a case study of retrieved radar reflectivity
using U-Net, MVGG, and FR-CNN. It is obvious that the
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Fig. 5. Retrieved results at 08:30 UTC on 30 August 2019. (a) Radar
observation. (b) U-Net. (c) MVGG. (d) FR-CNN.
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FR-CNN can capture more detailed information than other
models, showing the finer inner structure of convective cells,
which indicates the effectiveness of the proposed method.

B. Ablation Experiments

In ablation experiments, the components including SC, RB,
and PAB are incrementally added to the baseline, without other
parameters and parts changed. The experimental results are
shown in Table II, where it can be found that the progressive
improvement in POD and CSI as the SC, RB, and PAB are
successively incorporated into the baseline network, which
confirms the effectiveness of the proposed PAB, FRM, and
FR-CNN in enhancing the performance of radar reflectivity
retrieval.

C. Generalization Performance Tests

To verify the generalization ability of the proposed method,
U-Net and FR-CNN trained over the FJ area are directly used
over the GZ area. POD, FAR, and CSI over the GZ area
are regarded as quantity comparison indices. The FR-CNN
has a higher POD value than U-Net (0.627 versus 0.582),
a lower FAR value (0.351 versus 0.419), and a higher CSI
(0.502 versus 0.448). The indices indicate that the proposed
FR-CNN has better generalization performance than U-Net.

We further demonstrate a case study in the mountainous area
where radar beams are often blocked resulting in the absence
of radar echoes. The FR-CNN can reconstruct radar reflectivity
images in those areas using satellite observations. Fig. 6 shows
such a case over the GZ area. In the red rectangles, there are no
radar echoes due to the blockage of radar beams, as is shown in
Fig. 6(b). But from the satellite observation shown in Fig. 6(a),
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a large storm can be clearly observed. U-Net and FR-CNN
successfully reconstruct radar echoes in this area, whereas due
to the usage of the FRM, the FR-CNN can provide the finer
inner structure of storm cells than U-Net.

V. CONCLUSION AND FUTURE WORKS

This study proposes a novel CNN-based network called FR-
CNN to reconstruct radar reflectivity data from geostationary
satellite observations. Especially, an attention-based FRM is
adopted in the FR-CNN. Compared with SC, the proposed
module regards feature maps with more pristine information
as inputs, which can effectively mitigate the problem of
information scarcity during network propagation and capture
more details of the inner structure of strong precipitation
echoes. Experimental results demonstrate that the FR-CNN
outperforms other methods such as U-Net. Case studies also
show that the FR-CNN can reconstruct satisfactory CREF
data over mountainous areas where radar echoes are absent
due to beam blockage. In our future works, more machine-
learning models such as XGBoost, GAN, and Transformer
will be further explored to improve the retrieval ability of
radar reflectivity reconstruction networks. Furthermore, as the
BT is the top-down observational result and is often affected
by the occlusion of clouds, the retrieved CREF cannot fully
reflect lower-level features where there are strong echoes at
high levels. This issue is worth a deeper study in the future.
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