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Abstract—In weather radar data, partial beam blockage is
caused by the obstruction of the beam filling by mountains
or buildings, which often leads to incomplete and/or distorted
radar quantitative precipitation estimation (QPE). In this paper,
a novel deep learning approach using Generative Adversarial
Networks to correct radar beam blockage effects is presented
and demonstrated using radar observations over complex terrain
in Northern California. The model is trained and tested using
historical radar data collected during a number of precipitation
events. The testing results show that the precipitation patterns
are better captured by the beam blockage corrected data, and
the corrected radar reflectivity measurements agree better with
ground-based disdrometer data. In addition, radar QPE products
are derived using radar reflectivity before and after correction,
and the QPE results are evaluated using rainfall rates derived
from the disdrometer data. The improved QPE indicates the
potential of the proposed beam blockage correction model for
quantitative applications over complex terrain regions.

I. INTRODUCTION

Weather radars are crucial for monitoring and forecasting
precipitation and other hydro-meteorological events. However,
the accuracy of radar data can be compromised by partial
beam blockage, where physical obstructions impede the radar
signal, resulting in incomplete data and inaccuracies in weather
forecasting and quantitative precipitation estimation (QPE)
[1]. Traditional methods for addressing beam blockage, such
as statistical interpolation or multi-radar data fusion, often
struggle with complexity, cost, and reliance on external data
sources, which limits their effectiveness. To address these
limitations, this paper introduces a data-driven approach using
deep learning techniques—specifically, a Generative Adversar-
ial Network (GAN) [2] to correct the impact of beam blockage
on weather radar data. The GAN model is conditioned to
learn from historical radar data affected by beam blockage
and to generate corrected radar images by recovering the
precipitation information that has been lost or distorted. This
methodology is performed over complex terrain regions such
as Northern California. The corrected radar data are validated
against ground-based disdrometer measurements; this manner
of validation ensures that these improvements are both statis-
tically significant and meteorologically meaningful.

II. METHODOLOGY

A. Study Domain

The study area is in Northern California, known for its
diverse topography that includes the Coast Ranges, Central
Valley, and Sierra Nevada Mountains, making any weather
radar system particularly challenging for complete radar cov-
erage [3]. Located in Davis, CA, the KDAX radar is especially
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Fig. 1. (a) Partial beam blockage (PBB) ratio of KDAX radar observations;
(b) Reflectivity observation after applying a PBB mask.

susceptible to partial beam blockage because of the close
proximity of mountainous terrain [6]. As depicted in Fig.
la, the areas where the radar signal experiences the most
significant obstruction are predominantly located to the west of
the radar. For this study, we utilized regions with a blockage
ratio exceeding 0.5 as the final blockage mask. During the
wet seasons, precipitation in this area is often shallow and
stratiform. When combined with low radar beam elevation
angles and complex topography, significant data gaps are
observed.

The disdrometer data from Middletown (shown in Fig. 1b)
are utilized as an in-situ reference to validate the corrected
radar data using a deep learning model. The training dataset
of the deep learning model comprises radar observations
collected over three consecutive storm seasons, from 2019
to 2022, encompassing 26 precipitation events. This diverse
dataset allows the model to discern intricate patterns of radar
beam blockages.

B. Deep Learning Model

As shown in Fig. 2, the designed deep learning framework is
centered around a Conditional Generative Adversarial Network
(CGAN). In this model, the generator and discriminator are
defined as components. The generator is constructed upon a
5-layer UNet++ architectural framework, a variant of UNet
that incorporates skip connections and multi-scale feature
extraction to retain intricate details while generating precise
radar data. Its objective is to rectify distorted precipitation
data through the utilization of preprocessed radar information.
The discriminator, functioning as a classifier, discerns between
the corrected data from UNet++ and label radar data through
the deployment of convolutional layers. Training these GAN
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Fig. 2. CGAN-based deep learning model for radar beam blockage correction.
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Fig. 3. Evaluation results of the beam blockage correction performance: (a)
Radar reflectivity; (b) QPE during the precipitation event on Feb 13, 2019.
The mean values are illustrated in the figure to highlight the performance.

models involves the generator and discriminator entering a
form of adversarial scenario where they learn to beat each
other. The generator improves to the point that it can play
tricks on or introduce random noise to fool the discriminator.
Concurrently, this process ensures that the discriminators also
improve in their ability to distinguish between data that
was corrected and data that was not. This adversarial loop
compels the generator to produce more precise corrections by
discriminator feedback [4] [5].
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Fig. 4. Radar QPE errors before and after beam blockage correction.

III. RESULTS AND CONCLUSION

The CGAN-based beam blockage correction model was
evaluated using a precipitation event on February 13, 2019.
We aligned the precipitation data from 88 radar profiles
and disdrometers while ensuring that radar data could be
collected at the disdrometer. Fig. 3a illustrates the performance
of correction on reflectivity, the green line represents the
disdrometer data, which serves as the ground truth. The
orange line represents the CGAN-corrected data, and the blue
line represents the original, blocked radar data. Quantitative
evaluation of the reflectivity data reveals that the CGAN-
corrected data closely aligns with the disdrometer ground
truth. Before the correction, the raw radar data significantly
underestimated reflectivity profiles. In addition, we fitted a
Z — R relationship to the data for the entire event utilizing
the disdrometer measurements and derived a comparison curve
for rainfall rate estimates (Fig. 3b). We used precipitation data
from three different cases for fitting the Z — R relation. The
green line represents the true rainfall rate recorded by the
disdrometer, and the pink, orange, and blue lines represent
the fitted truth data, the fitted CGAN-corrected data, and the
fitted raw data, respectively. The mean of the CGAN-corrected
data closely approximates the mean of the disdrometer data
in reflectivity evaluation. While there is a slight difference
in the evaluation of rainfall rate, both are greatly improved
over the original data. In order to address the measurement
errors presented in the evaluation, we derive the measurement
error by removing the parameterization error from the total
QPE error. The results are displayed in 4. Overall, the CGAN
correction model reduced the measurement QPE error from
46.31% to 14.4%.
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