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Abstract—This study investigates the generalization capability
of a deep learning model for dual-polarization radar-based
quantitative precipitation estimation (QPE). The model is built
upon a ShuffleNet architecture and trained using an extensive
dataset, including radar reflectivity, differential reflectivity, and
specific differential phase, from the KMLB radar in Florida
covering the years from 2017 to 2021. Rain gauge data was
also incorporated to enhance accuracy in estimating surface
rainfall rates. Although the model demonstrates great perfor-
mance in Florida, its adaptability was assessed by testing it in
two contrasting regions: Oklahoma and California. Oklahoma,
with its complex weather systems influenced by topography and
the nearby Gulf of Mexico and Rocky Mountains, presents
unique challenges for QPE models. Similarly, California’s diverse
precipitation patterns, ranging from coastal rain events to moun-
tainous snowfall, offer another rigorous testing environment. The
model’s performance in these regions was validated against high-
precision rain gauge measurements, providing key insights into
its strengths and limitations. The results indicate that while the
model performs well in its training region, accuracy challenges
arise when applied to areas with differing climatic conditions,
highlighting the need for adaptive learning techniques or region-
specific model adjustments to improve QPE performance across
diverse environments.

I. INTRODUCTION

One of the persistent challenges in radar-based quantitative
precipitation estimation (QPE) lies in applying radar rainfall
relations developed in specific regions to areas with varying
weather and geographical conditions. The traditional para-
metric approaches may face limitations in capturing local
precipitation dynamics when used in regions outside their
training environment [1] [2].

Deep learning has shown great promise in overcoming these
challenges by detecting complex patterns in large datasets,
leading to more accurate QPE models. However, even the most
sophisticated deep learning models struggle with generaliza-
tion when applied to regions with distinct climatic patterns and
topographies. This limitation highlights the need for adaptive
QPE models capable of maintaining high performance across
diverse regions [3] [4] [5].

This study addresses model generalization by evaluating
a deep learning-based QPE model trained with radar data
from Florida, a region characterized by frequent convective
storms and coastal precipitation. The model’s performance is
assessed in two distinct precipitation regimes: Oklahoma and
California. By exploring the model’s adaptability, this study
emphasizes the importance of region-specific modifications
and adaptive learning techniques to improve the reliability of
QPE models in operational settings.
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II. METHODOLOGY AND DEMONSTRATION STUDIES
A. Deep learning QPE model

This study employs a deep learning framework based on
ShuffleNet to estimate surface rainfall rates. The model pro-
cesses radar observations within each range volume, structured
into a 9x9 matrix that integrates three key radar variables:
reflectivity (Z), differential reflectivity (Zg.), and specific
differential phase (/4,). These variables are extracted from
the two lowest scan elevation angles, while a 9x9 neighboring
distance volume is also included to capture spatial patterns in
the precipitation field. This combination enables the model to
learn both physical and spatial features of rainfall.

The model is trained using data from the KMLB radar in
Florida, along with rain gauge measurements collected from
2017 to 2021. The integration of radar variables and ground-
based rain gauge data helps the model learn the relation-
ship between radar observations and surface rainfall rates,
improving the estimation accuracy across various precipitation
scenarios [5].

B. Suitability of the Deep Learning Model

In this study, the deep learning QPE model, trained with
radar and rain gauge data from Florida (Fig. 1(d)), is applied
to two distinct regions: California (Fig. 1(b)) and Oklahoma
(Fig. 1(c)). The figure illustrates the test locations, where
stars indicate radar sites and colored dots represent rain gauge
stations. California uses the KMUX radar (green star) with
rain gauge data from Valley Water (red dots), while Oklahoma
utilizes the KTLX radar (blue star) and rain gauge data from
the NOAA MADIS and LWRB networks (green dots). These
setups help assess the model’s generalization across different
precipitation regimes and provide valuable insights into its
performance in varying climatic conditions.

III. RESULTS AND EVALUATION

Fig. 2 compares the performance of six precipitation es-
timation models across three regions—Florida, Oklahoma,
and California—using five key metrics: mean absolute error
(MAE), root mean squared error (RMSE), correlation coef-
ficient (CORR), normalized standard error (NSE), and BIAS
Ratio (BR). The models evaluated are Convective Z-R rela-
tion, Stratiform Z-R relation, WSR-88D dual-pol algorithm,
deep learning model, MRMS radar-only, and MRMS gauge-
corrected.

The deep learning model consistently outperforms other
models across all regions. It achieves the highest Correlation
Coefficient (CORR), indicating its ability to accurately capture
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Fig. 1. Geographical representation of the test regions used to evaluate the deep learning-based QPE model trained on Florida data. The top panel(a) shows
the locations of the three regions: California (red box), Oklahoma (green box), and Florida (blue box). The bottom panels depict zoomed-in views of each
region with rain gauge stations (colored dots) and radar locations (stars). California(b) uses the KMUX radar and Valley Water rain gauges, Oklahoma(c)
utilizes the KTLX radar and NOAA MADIS and LWRB rain gauges, and Florida(d)is represented with the KMLB radar and its associated rain gauge network.
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Fig. 2. Model performance comparison across (a) Florida, (b) Oklahoma, and
(c) California using estimation metrics (MAE, RMSE, CORR, NSE, BR).

precipitation patterns. The model also delivers competitive
results in MAE and RMSE, with low error rates in its
predictions. Its performance remains robust across regions
with varying weather conditions, including California, which
is known for its complex terrain and precipitation patterns.

Overall, the deep learning model demonstrates strong pre-
dictive accuracy and adaptability, making it the most reliable
option for precipitation estimation. Its consistent performance
across all regions and metrics highlights its effectiveness in
handling diverse climate challenges.
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