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ABSTRACT 

 

Radar quantitative precipitation estimation (QPE) plays an 

important role in water, weather, and climate research due to 

the advantages of radars in providing seamless scan of 

precipitation in both time and spatial domains. With the 

development of dual-polarization radar systems and the 

innovation of precipitation estimation algorithms based on 

deep learning, the accuracy of radar QPE has been 

significantly improved. However, the deep learning QPE 

models trained using local data may still be subject to 

degraded performance when applied in other regions. This 

paper quantifies the generalization capability of a deep 

learning QPE model trained using data in Florida, U.S. over 

other regions such as Oklahoma, U.S., which is characterized 

by different precipitation characteristics. 

Index Terms—quantitative precipitation estimation, 

deep learning, weather radar 

 

1. INTRODUCTION 

 

Accurate estimation of surface precipitation at high 

spatiotemporal resolution is crucial for decision-making in 

severe weather and water resource management. Polarimetric 

weather radar, with its advantages of extensive area coverage 

and high spatiotemporal resolution, has become the primary 

operational instrument for Quantitative Precipitation 

Estimation (QPE) in many countries. Traditional parametric 

methods such as the radar reflectivity (𝑍) and rainfall rate (𝑅) 

relationships rely on local raindrop size distributions (e.g., 

[1][2]), which often cannot capture the dynamic 

characteristics of precipitation processes and exhibit low 

generalizability.  

With the development of artificial intelligence, 

particularly deep learning (DL) models, which have been 

utilized for classification and regression tasks, it has been 

demonstrated that DL can resolve the latent features 

contained in radar data and establish functional 

approximations between three-dimensional radar 

observations and surface precipitation measurements [3-5].  

However, deep learning models exhibit strong regional 

characteristics, posing challenges to their general 

applicability across different precipitation regimes. This 

obstacle hinders the practical implementation of DL-based 

QPE networks. To study this issue, this article assesses the 

applicability and accuracy of an adaptive deep learning model 

trained in Florida, United States, in the Oklahoma region and 

attempts to optimize the deep learning model based on this 

assessment. 

 

2. METHODOLOGY AND DEMONSTRATION 

STUDY 

2.1 Deep learning QPE model 

This article utilizes a deep learning framework based on 

ShuffleNet to quantify surface rainfall rates which framework 

shown in Figure 1. Within each range volume, the input data 

set for the deep learning system essentially constitutes a 9×9 

matrix constructed from three matrices of different sizes. 

These three matrices include radar reflectivity, differential 

reflectivity, and specific differential phase observed from the 

two lowest scan elevation angles, as well as a 9×9 

neighboring distance volume. Consequently, the input data 

can capture the physical and spatial patterns of the rainfall 

field, allowing the construction of a deep learning model to 

learn features from radar data and utilize the learned features 

for rainfall estimation.  

The QPE system is trained using ground-based KMLB 

radar and rain gauge data in Florida, and the data were 

collected from 2017 to 2021. Based on the independent 

testing analysis, previous research has demonstrated the 

accuracy of this model [3,5]. 

 

2.2 Applicability of the Deep Learning Model 

Given the prominent advantages of deep learning 

models in quantitatively estimating local precipitation, this 

research extends its focus to investigate the applicability 

and robustness of this model in different climatic and 

geographical conditions. Specifically, the study explores 

the performance of the deep learning model in Oklahoma, 

where the KTLX radar is deployed. This region presents a 

unique set of precipitation characteristics and challenges, 

providing a valuable opportunity to assess the 

generalizability and effectiveness of the deep learning 

approach across diverse environmental settings. This study 

aims to compare and validate the model’s accuracy and 

reliability beyond its initial training region. By doing so, it 

contributes to broader applications in meteorological 

studies and operational weather forecasting. 
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Fig. 1. Simplified diagram of the machine learning-based radar quantitative precipitation estimation (QPE) model. 

 

Figure 2 details the application study domain. The black 

dot represents the KTLX WSR-88D radar station, the primary 

source of radar data for the study. The blue dots indicate the 

rain gauge stations from the NOAA Meteorological 

Assimilation Data Ingest System (MADIS), located within a 

200-kilometer radius of the KTLX radar station. The red dots 

denote the local rain gauges in the Little Washita River Basin 

(LWRB). These local gauges are particularly significant as 

they serve as ground truth references, offering high-accuracy 

precipitation data essential for evaluating the performance of 

the QPE algorithms derived from the radar data in this 

specific region. 

 

 
Fig. 2. Location of the KTLX WSR-88D (black dot) in Oklahoma 

City, OK, USA. The red dots indicate rain gauges over the Little 

Washita River basin and the blue dots represent MADIS rain 

gauges within 200-km from the radar station. 

 

3. RESULTS AND DISCUSSION 

 

In order to evaluate the performance of the machine learning 

system, the following scores are calculated, including bias 

ratio (BIAS_Ratio), Pearson’s correlation coefficient 

(CORR), normalized standard error (NSE), root mean square 

error (RMSE), and mean absolute error (MAE).  

BIAS_Ratio =
∑ 𝑅𝑛

𝑁
𝑛=1

∑ 𝐺𝑛
𝑁
𝑛=1

     (1a) 

CORR =
∑ (𝑅𝑛−𝑅𝑛̅̅ ̅̅ )(𝐺𝑛−𝐺𝑛̅̅ ̅̅ )𝑁

𝑛=1

√∑ (𝑅𝑛−𝑅𝑛̅̅ ̅̅ )2𝑁
𝑛=1 √∑ (𝐺𝑛−𝐺𝑛̅̅ ̅̅ )2𝑁

𝑛=1

    (1b) 

NSE =
∑ |𝑅𝑛−𝐺𝑛|𝑁

𝑛=1

∑ 𝐺𝑛
𝑁
𝑛=1

       (1c) 

RMSE = √
1

𝑁
∑ (𝑅𝑛 − 𝐺𝑛)2𝑁

𝑛=1                (1d) 

MAE =
1

𝑁
∑ |𝑅𝑛 − 𝐺𝑛|𝑁

𝑛=1                        (1e)     

where 𝑅𝑛  and 𝐺𝑛  stand for the radar rainfall estimate and 

gauge rainfall record (mm/hr) at sample time 𝑛;  𝑅𝑛
̅̅̅̅  and 𝐺𝑛

̅̅ ̅ 

denote the mean of radar and gauge rainfall estimates; N 

stands for the total number of samples. 

To validate the effectiveness of the quantitative 

precipitation estimation (QPE) model for the Florida region, 

several traditional radar QPE algorithms (2a, 2b, 2c) were 

introduced for comparison, and quantitative evaluation 

metrics were used to analyze all algorithms. 

𝑍ℎ = 300𝑅1.4                         (2a) 

𝑍ℎ = 200𝑅1.6                          (2b) 

𝑅(𝑍ℎ, 𝑍𝑑𝑟) = (1.42 × 10−2)𝑍ℎ
0.770𝑍𝑑𝑟𝑙

−1.67 (2c) 

where 𝑍 is in units of mm6m−3 and R denotes the rainfall 

rate in mm/h. 

In addition, this article evaluates the general 

applicability of the deep learning algorithm by comparing 

it with two operational precipitation estimation products. 

The rainfall accumulations from 2200 UTC on August 31 

to 0400 UTC on September 1, 2020, are depicted in Figure 

3, which showcases the performance of various radar 

rainfall algorithms. Figure 3(a) represents the convective 

𝑍 − 𝑅 relation precipitation estimation, while Figure 3(b) 

shows the stratiform 𝑍 − 𝑅  relation precipitation 

estimation. Figure 3(c) illustrates the WSR-88D dual-

polarization algorithm's precipitation estimation. Figures 

3(e) and 3(f) present the MRMS Radar-Only and MRMS 

Gauge-Corrected product precipitation estimations, 

respectively.  

Notably, Figure 3(d) highlights the deep learning 

algorithm's precipitation estimation, which stands out due 

to its superior performance in capturing detailed spatial 

patterns of rainfall distribution. The deep learning model 

demonstrates a remarkable ability to accurately reflect 

variations in precipitation intensity and distribution, 

surpassing the other algorithms in both precision and 

detail. This enhanced capability to capture fine-scale 

details sets the deep learning approach apart. 
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Fig. 3. Rainfall accumulations from 2200UTC, Aug 31, to 0400UTC, Sep 1, 2020, based on different radar rainfall algorithms: (a) 

convective Z-R relation; (b) stratiform Z-R relation; (c) WSR-88D dual-pol algorithm; (d) deep learning model proposed in this study; (e) 

operational product from MRMS (radar-only); (f) operational product from MRMS (gauge-corrected). 

 

Fig. 4. Rainfall accumulations from 0600UTC to 1200UTC, Oct 26, 2020, based on different radar rainfall algorithms: (a) convective Z-R 

relation; (b) stratiform Z-R relation; (c) WSR-88D dual-pol algorithm; (d) deep learning model proposed in this study; (e) operational 

product from MRMS (radar-only); (f) operational product from MRMS (gauge-corrected). 
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In addition to this heavy precipitation event, Fig. 4 presents 

a case study during a light precipitation case. In cases of 

lower precipitation intensity, the deep learning model 

(Figure 4(d)) provides more accurate and detailed rainfall 

estimations compared to both the traditional radar methods 

(Figures 4(a)-(c)) and the MRMS products (Figures 4(e)-

(f)). This demonstrates the deep learning model's superior 

capability in capturing the nuances of light precipitation 

events, making it a more reliable option in such scenarios. 

 

 
Fig. 5. The average performance of evaluation scores for three 

precipitation events in 2020. 

 

Figure 5 illustrates the average performance of 

evaluation scores for three precipitation events on May 15, 

August 31, and October 26, 2020. Notably, the deep 

learning model demonstrates superior performance 

compared to traditional radar rainfall algorithms. The deep 

learning model achieves lower RMSE and MAE values, 

indicating its higher accuracy in estimating precipitation. 

Additionally, the deep learning model exhibits a 

comparable correlation coefficient (CORR) and bias ratio 

(BR), further highlighting its robustness in capturing the 

spatial and temporal variability of rainfall. These results 

underscore the deep learning model's ability to deliver 

more precise and reliable precipitation estimates, making 

it a valuable tool for meteorological applications. 

 

4. SUMMARY AND CONCLUSION 

 

This paper dives into the feasibility of deep learning in 

polarimetric radar-based quantitative precipitation 

estimation methods and its applicability in different 

precipitation regimes. The model was trained using dual-

polarization radar observations and rain gauge data 

collected in Florida from 2019 to 2021.  

To validate the model's performance in other regions, 

the study focuses on an area within a 200-kilometer radius 

of the KTLX radar in Oklahoma. By analyzing three 

precipitation events that occurred in 2020, the study 

compares the performance of the deep learning model 

using radar data against rain gauge data provided by the 

LWRB and MADIS networks. Both qualitative analysis of 

rainfall accumulation cases and quantitative error 

evaluations reveal that, despite being trained with data 

from Florida, the model can still accurately and effectively 

estimate precipitation in Oklahoma. The study 

demonstrates that the deep learning model not only 

exhibits high accuracy in quantitative precipitation 

estimation but also shows strong generalization capability 

across different regions. 
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