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ABSTRACT

Radar quantitative precipitation estimation (QPE) plays an
important role in water, weather, and climate research due to
the advantages of radars in providing seamless scan of
precipitation in both time and spatial domains. With the
development of dual-polarization radar systems and the
innovation of precipitation estimation algorithms based on
deep learning, the accuracy of radar QPE has been
significantly improved. However, the deep learning QPE
models trained using local data may still be subject to
degraded performance when applied in other regions. This
paper quantifies the generalization capability of a deep
learning QPE model trained using data in Florida, U.S. over
other regions such as Oklahoma, U.S., which is characterized
by different precipitation characteristics.

Index Terms—quantitative precipitation estimation,
deep learning, weather radar

1. INTRODUCTION

Accurate estimation of surface precipitation at high
spatiotemporal resolution is crucial for decision-making in
severe weather and water resource management. Polarimetric
weather radar, with its advantages of extensive area coverage
and high spatiotemporal resolution, has become the primary
operational instrument for Quantitative Precipitation
Estimation (QPE) in many countries. Traditional parametric
methods such as the radar reflectivity (Z) and rainfall rate (R)
relationships rely on local raindrop size distributions (e.g.,
[1][2]), which often cannot capture the dynamic
characteristics of precipitation processes and exhibit low
generalizability.

With the development of artificial intelligence,
particularly deep learning (DL) models, which have been
utilized for classification and regression tasks, it has been
demonstrated that DL can resolve the latent features
contained in radar data and establish functional
approximations between three-dimensional radar
observations and surface precipitation measurements [3-5].
However, deep learning models exhibit strong regional
characteristics, posing challenges to their general
applicability across different precipitation regimes. This
obstacle hinders the practical implementation of DL-based
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QPE networks. To study this issue, this article assesses the
applicability and accuracy of an adaptive deep learning model
trained in Florida, United States, in the Oklahoma region and
attempts to optimize the deep learning model based on this
assessment.

2. METHODOLOGY AND DEMONSTRATION
STUDY

2.1 Deep learning QPE model

This article utilizes a deep learning framework based on
ShuffleNet to quantify surface rainfall rates which framework
shown in Figure 1. Within each range volume, the input data
set for the deep learning system essentially constitutes a 9x9
matrix constructed from three matrices of different sizes.
These three matrices include radar reflectivity, differential
reflectivity, and specific differential phase observed from the
two lowest scan elevation angles, as well as a 9x9
neighboring distance volume. Consequently, the input data
can capture the physical and spatial patterns of the rainfall
field, allowing the construction of a deep learning model to
learn features from radar data and utilize the learned features
for rainfall estimation.

The QPE system is trained using ground-based KMLB
radar and rain gauge data in Florida, and the data were
collected from 2017 to 2021. Based on the independent
testing analysis, previous research has demonstrated the
accuracy of this model [3,5].

2.2 Applicability of the Deep Learning Model

Given the prominent advantages of deep learning
models in quantitatively estimating local precipitation, this
research extends its focus to investigate the applicability
and robustness of this model in different climatic and
geographical conditions. Specifically, the study explores
the performance of the deep learning model in Oklahoma,
where the KTLX radar is deployed. This region presents a
unique set of precipitation characteristics and challenges,
providing a valuable opportunity to assess the
generalizability and effectiveness of the deep learning
approach across diverse environmental settings. This study
aims to compare and validate the model’s accuracy and
reliability beyond its initial training region. By doing so, it
contributes to broader applications in meteorological
studies and operational weather forecasting.
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Overview of The QPE Network
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Fig. 1. Simplified diagram of the machine learning-based radar quantitative precipitation estimation (QPE) model.

Figure 2 details the application study domain. The black
dot represents the KTLX WSR-88D radar station, the primary
source of radar data for the study. The blue dots indicate the
rain gauge stations from the NOAA Meteorological
Assimilation Data Ingest System (MADIS), located within a
200-kilometer radius of the KTLX radar station. The red dots
denote the local rain gauges in the Little Washita River Basin
(LWRB). These local gauges are particularly significant as
they serve as ground truth references, offering high-accuracy
precipitation data essential for evaluating the performance of
the QPE algorithms derived from the radar data in this
specific region.
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Fig. 2. Location of the KTLX WSR-88D (black dot) in Oklahoma
City, OK, USA. The red dots indicate rain gauges over the Little
Washita River basin and the blue dots represent MADIS rain
gauges within 200-km from the radar station.
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3. RESULTS AND DISCUSSION

In order to evaluate the performance of the machine learning
system, the following scores are calculated, including bias
ratio (BIAS Ratio), Pearson’s correlation coefficient
(CORR), normalized standard error (NSE), root mean square
error (RMSE), and mean absolute error (MAE).

RMSE = L1, (R, — Gu? (14)
MAE = ~3N_ IR, — G| (1)
where R, and G, stand for the radar rainfall estimate and
gauge rainfall record (mm/hr) at sample time n; R,, and G,,
denote the mean of radar and gauge rainfall estimates; N
stands for the total number of samples.

To wvalidate the effectiveness of the quantitative
precipitation estimation (QPE) model for the Florida region,
several traditional radar QPE algorithms (2a, 2b, 2c) were
introduced for comparison, and quantitative evaluation
metrics were used to analyze all algorithms.

Z, = 300R* (2a)
Z, = 200R*® (2b)
R(Zp, Zgy) = (142 X 1072) 277077587 (2¢)
where Z is in units of mm®m™3 and R denotes the rainfall
rate in mm/h.

In addition, this article evaluates the general
applicability of the deep learning algorithm by comparing
it with two operational precipitation estimation products.
The rainfall accumulations from 2200 UTC on August 31
to 0400 UTC on September 1, 2020, are depicted in Figure
3, which showcases the performance of various radar
rainfall algorithms. Figure 3(a) represents the convective
Z — R relation precipitation estimation, while Figure 3(b)
shows the stratiform Z — R relation precipitation
estimation. Figure 3(c) illustrates the WSR-88D dual-
polarization algorithm's precipitation estimation. Figures
3(e) and 3(f) present the MRMS Radar-Only and MRMS
Gauge-Corrected product precipitation estimations,
respectively.

Notably, Figure 3(d) highlights the deep learning
algorithm's precipitation estimation, which stands out due
to its superior performance in capturing detailed spatial

] $N_ Ry patterns of rainfall distribution. The deep learning model
BIAS_Ratio = SN Gn (12)  demonstrates a remarkable ability to accurately reflect
CORR = YN (Rn—Rn) (Gn—Gn) (1b) variations in precipitation intensity and distribution,

T [N — [N — surpassing the other algorithms in both precision and

JEN -T2 S (Gn-T) e o

N rg eta%l. This enhanced c.apablllty to capture fine-scale
NSE = Z";t,l# (1c)  details sets the deep learning approach apart.

n=14Yn
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(a) Convective R(Zp,) relation (b) Stratiform R(Zy,) relation (c) WSR-88D dual-pol algorithm
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Fig. 3. Rainfall accumulations from 2200UTC, Aug 31, to 0400UTC, Sep 1, 2020, based on different radar rainfall algorithms: (a)
convective Z-R relation; (b) stratiform Z-R relation; (¢) WSR-88D dual-pol algorithm; (d) deep learning model proposed in this study; (¢)
operational product from MRMS (radar-only); (f) operational product from MRMS (gauge-corrected).
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Fig. 4. Rainfall accumulations from 0600UTC to 1200UTC, Oct 26, 2020, based on different radar rainfall algorithms: (a) convective Z-R
relation; (b) stratiform Z-R relation; (c) WSR-88D dual-pol algorithm; (d) deep learning model proposed in this study; (e) operational
product from MRMS (radar-only); (f) operational product from MRMS (gauge-corrected).
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In addition to this heavy precipitation event, Fig. 4 presents
a case study during a light precipitation case. In cases of
lower precipitation intensity, the deep learning model
(Figure 4(d)) provides more accurate and detailed rainfall
estimations compared to both the traditional radar methods
(Figures 4(a)-(c)) and the MRMS products (Figures 4(e)-
(f)). This demonstrates the deep learning model's superior
capability in capturing the nuances of light precipitation
events, making it a more reliable option in such scenarios.
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Fig. 5. The average performance of evaluation scores for three
precipitation events in 2020.

Figure 5 illustrates the average performance of
evaluation scores for three precipitation events on May 15,
August 31, and October 26, 2020. Notably, the deep
learning model demonstrates superior performance
compared to traditional radar rainfall algorithms. The deep
learning model achieves lower RMSE and MAE values,
indicating its higher accuracy in estimating precipitation.
Additionally, the deep learning model exhibits a
comparable correlation coefficient (CORR) and bias ratio
(BR), further highlighting its robustness in capturing the
spatial and temporal variability of rainfall. These results
underscore the deep learning model's ability to deliver
more precise and reliable precipitation estimates, making
it a valuable tool for meteorological applications.

4. SUMMARY AND CONCLUSION

This paper dives into the feasibility of deep learning in
polarimetric  radar-based quantitative  precipitation
estimation methods and its applicability in different
precipitation regimes. The model was trained using dual-
polarization radar observations and rain gauge data
collected in Florida from 2019 to 2021.

To validate the model's performance in other regions,
the study focuses on an area within a 200-kilometer radius
of the KTLX radar in Oklahoma. By analyzing three
precipitation events that occurred in 2020, the study
compares the performance of the deep learning model
using radar data against rain gauge data provided by the
LWRB and MADIS networks. Both qualitative analysis of
rainfall accumulation cases and quantitative error

evaluations reveal that, despite being trained with data
from Florida, the model can still accurately and effectively
estimate precipitation in Oklahoma. The study
demonstrates that the deep learning model not only
exhibits high accuracy in quantitative precipitation
estimation but also shows strong generalization capability
across different regions.
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