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ABSTRACT

Geostationary satellite sensors have been widely used for
precipitation retrieval, and numerous algorithms have been
developed for precipitation retrieval using observations from
geostationary satellite sensors. However, using the observa-
tions from a single geostationary satellite only offers a certain
viewing angle and lacks the observation from a different per-
spective. In this research, we propose a deep learning (DL)
framework for precipitation retrieval by leveraging the com-
bined observations from the duo GOES satellites, namely,
GOES-16 and GOES-18, as well as the Digital Elevation
Model (DEM) information of the selected study domain.
The experimental results show that the precipitation retrieval
performance of the proposed framework is superior to the
currently operational GOES RRQPE product and provides
more accurate satellite-based precipitation retrieval.

1. INTRODUCTION

Satellite sensors have been widely used for precipitation re-
trieval, and numerous algorithms have been developed for
precipitation retrieval using observations from geostationary
satellite sensors. The current operational rainfall rate quanti-
tative precipitation estimate (RRQPE) product from the geo-
stationary operational environmental satellite (GOES) offers
full disk rainfall rate estimates based on the observations from
the advanced baseline imager (ABI) aboard the GOES-R se-
ries. However, the performance of this precipitation product
still needs to be improved, especially in the western United
States where orographic precipitation processes are often un-
detected by the RRQPE and in mesoscale convective systems
(MCSs) that frequent the midwestern United States [1]. A
typical example of the DL-based precipitation retrieval frame-
work is the Precipitation Estimation from remotely Sensed
information using Artificial Neural Networks (PERSIANN)
products [2]. Chen et al. improved satellite-based precip-
itation retrievals using a deep-learning-based approaches in
[3, 4]. Recently, a DL framework for precipitation retrieval
using ABI and geostationary lightning mapper (GLM) mea-
surements on the GOES-16 in [5]. The results in [5] show
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the superiority of the DL-based precipitation retrieval model
to the currently operational GOES RRQPE product. How-
ever, the framework in [5] overlooked the parallax shift issue
of ABI measurement. The parallax effects refer to the fact
that the cloud-top features observed by the GOES satellite
sensors appear to be displaced away from the satellite sub-
point. Thus, it poses a significant challenge when attempting
to match the satellite observations with the ground reference
for training and testing a robust DL model for precipitation
retrieval.

In this research, we propose a DL framework for precipi-
tation retrieval by leveraging the combined observations from
the duo GOES satellites, namely, GOES-16 and GOES-18, to
address the parallax shift. The differing nadirs of GOES-16
and GOES-18 result in distinct viewing angles over the se-
lected study domain. By combining their observations, we
benefit from multi-angle perspectives, providing additional
information compared to using observations from a single
satellite alone.

2. DATASET AND METHODOLOGY

Aboard the GOES-16 and GOES-18 satellites, the ABI mea-
surement has 16 spectral bands with 10-min temporal reso-
lution and 2-km spatial resolution. The spectral bands sensi-
tive to water vapor are specifically used for this problem, in-
cluding the brightness temperatures (BTs) from bands 8, 10,
11, 14, and 15, as well as brightness temperature differences
(BTDs) between band 10 and 8, band 11 and 10, band 14 and
10, band 11 and 14, and band 14 and 15. In addition, the
hourly flash rates calculated from the GOES-16 GLM data by
counting the hourly flashes in a 2-km grid are also utilized. In
this research, we also incorporate the Digital Elevation Model
(DEM) data from Shuttle Radar Topography Mission (SRTM)
with 30 meters spatial resolution [6] to our DL model. Thus,
22 features are applied to the deep learning model. In the pre-
processing, the 11 features are partitioned into 29 x 29 x 22
patches with stride size 1 in a similar manner used in [5].
The proposed DL framework is composed of two deep
convolutional neural networks (CNNs) that are designed for
precipitation detection and quantification as shown in Fig-
ure 1. In the input layer, The cloud-top brightness tempera-
tures (BTs), brightness temperature differences (BTDs) from
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Fig. 1. The deep learning framework for precipitation retrievals using GOES- 16 ABI and GLM and GOES-18 ABI measure-
ments. In the convolutional (Conv-) and pooling (Pool-) layers, k, f, s, and p represent kernel size, number of feature maps,

stride size, and pooling size, respectively.
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Fig. 2. The DEM information of the selected study domain.
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GOES-16 and GOES-18 ABI channels and the lightning flash
rate from the GLM measurement on GOES-16 are used as
inputs to the DL model. The DL model includes a detec-
tion CNN module (CNN-1) and an estimation CNN module
(CNN-2) both of which can capture spatial and temporal fea-
tures of precipitation from the muti-channel satellite observa-
tions. In the detection model (CNN-1), the cross entropy loss
is calculated in the training, whereas the mean squared error
(MSE) loss is used in the estimation model (CNN-2). Both
CNNs use ReLLU as activation function at each neuron, and
the learning rate is set as le-5. In this research, the proposed
DL model was trained and tested in a region over the western
coast of the United States as shown in Figure 2.

The Stage-IV 6-hour precipitation accumulation data
from the National Centers for Environmental Prediction
(NCEP) are used as target labels to optimize the network
parameters. Particularly, the Stage IV estimates at the center
of the partitioned patches are used as targets during the train-
ing. To accommodate temporal and spatial resolution of the

GOES and the Stage IV data, the following pre-processing is
also performed: (1) the GOES data are aggregated to 6 hours;
(2) the Stage IV rainfall rate data are interpolated from 4 km
to 2 km; (3) the DEM information is also down-sampled from
30 m to 2-km.

In the testing phase, the test data (i.e., features) were pre-
processed into 29 x 29 x 22 patches similar to the training data
and then applied to trained CNN models. The final precipita-
tion retrievals can easily be derived by combining the results
from the two models. Specifically, if precipitation is detected
by CNN-1 in a patch, then the rainfall at the center location
of this patch will be the estimate at the center location from
CNN-2. Otherwise, the rainfall is 0 mm.

3. EXPERIMENT RESULTS

In this research, the data from September to December in
2022 are used for training the designed DL model and the data
from January to April in 2023 are used for independent test-
ing. Figure 3 (a), (b), and (c) display an example of 6-hour ac-
cumulated precipitation estimates on 12:00 UTC, Jan 9, 2023,
from the Stage IV ground reference, the proposed DL-based
precipitation retrieval results using the observations from Duo
Satellites Precipitation Estimates (DSPE) model, and the op-
erational product on GOES, respectively. The experimental
results show that the precipitation retrieval performance of
the proposed framework is superior to the currently opera-
tional GOES RRQPE product. In addition, the scatter plots
for this precipitation retrieval are presented in Figure 4. It can
be observed that DSPE outperformed the operational product
by having a closer cluster along the diagonal line.

To investigate the precipitation performance at different
levels on the testing set, the evaluation metrics were computed
based on a number of rainfall thresholds, including Heidke
skill score (HSS), critical success index (CSI), probability of
detection (POD), false alarm ratio (FAR), mean squared er-
ror (MSE), mean absolute error (MAE), normalized mean er-
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Fig. 3. Example of 6-hour accumulated precipitation estimates on 12:00 UTC, Jan 9, 2023 from: (a) Stave IV ground reference
(b) DSPE model; (c) operational GOES-16 RRQPE product. The light blue color indicates the ocean areas.
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Fig. 4. Scatter plots of DSPE vs. Stage IV (left) and Operational GOES-16 RRQPE vs. Stage IV (right).

ror (NME), and normalized mean absolute error (NMAE). At
each threshold, we determine the grid pixel indices where the
ground-based Stage IV product exceeds the threshold value.
We subsequently calculate the eight categories of evaluation

4. SUMMARY

In this research, we propose a DL framework for precipita-
tion retrieval by using the duo GOES satellites to address the

metrics based on the predicted rainfall and the ground-based
Stage IV product exclusively for these selected pixel indices.
These metrics versus thresholds were plotted in Fig. 5. It can
be seen from Fig. 5 that the proposed DSPE approach pro-
duced higher skill scores and lower errors compared to the
operational GOES-16 RRQPE product, especially for strong
precipitation.

One may notice that the proposed DL model was trained
based on autumn data while tested on winter/spring data.
This introduced the rain stationality effect. In this research,
although we neglect the rain stationality effect, leading to
some performance deficiencies (such as the under-estimation
over the valley region of the study domain), the proposed
DL model still outperformed the operational product and
provided promising precipitation distribution.

parallax shift. The experimental results show that the precipi-
tation retrieval performance of the proposed framework is su-
perior to the currently operational GOES RRQPE product and
provides more accurate satellite-based precipitation retrieval.
Future work will focus on investigating the potential noise
and inaccuracy introduced when we interpolate the Stage IV
data from 4 km to 2 km spatial resolution. In addition, we
will evaluate the generalization performance of the proposed
DL model over regions such as mountains and oceans where
ground-based radars are not available or reliable.
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Fig. 5. The quantitative evaluation scores of the operational GOES-16 RRQPE product and DSPE. The evaluation scores are
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