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® Fundamentals of active and passive remote sensing of precipitation are briefly reviewed.

® The strengths and weaknesses of precipitation retrieval techniques using measurements from different remote sensing
platforms are summarized.

® FExample applications of active radar and passive satellite precipitation datasets are provided for monitoring and predicting
water-related hazards.
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2 Active and Passive Remote Sensing of Precipitation

Abstract

Precipitation is a vital component in the global, continental, and regional hydrologic cycles. Accurate precipitation obser-
vations and estimates are critical for providing improved situational awareness of hazards associated with both too much
(e.g., floods and debris flows) and too little water (e.g., drought and wildfire). Advanced quantitative precipitation infor-
mation is also important in addressing various weather, water, and energy challenges to improve climate adaptation and
resilience. Compared to rain gauges, remote sensing instruments such as radars and satellites have great advantages in
monitoring precipitation and its evolution at various spatiotemporal scales. This article presents a brief description of
fundamentals of active and passive remote sensing of precipitation. The strengths and weaknesses of various remote sensing
platforms, as well as precipitation retrieval techniques for ground-based and spaceborne radars, visible, infrared, and passive
microwave measurements from low Earth orbiting (LEO) and geostationary orbiting (GEO) satellites, are summarized.
Example applications of remote sensing precipitation datasets are also provided to highlight the use of radars and satellites
for monitoring and predicting water-related hazards.

Introduction

Precipitation plays a key role in understanding the global, continental, and regional water cycles and observations are critical for
providing improved situational awareness of hazards associated with both too much (e.g., floods and debris flows) and too little
water (e.g., drought and wildfire). Accurate precipitation measurements or estimates are also vital in addressing various weather,
water, climate, and energy challenges in the context of climate change. For example, the National Oceanic and Atmospheric Admin-
istration (NOAA) is currently leading the effort to update Precipitation Frequency and Probable Maximum Precipitation estimates
with climate change information. These products are used extensively by federal, state, and local water agencies, transportation plan-
ners, and other stakeholders to inform infrastructure design and to improve climate adaptation and resilience.

While pointwise rain gauges are conventionally used for precipitation estimation, they are typically restricted to populated areas
over land. It is difficult to capture precipitation features such as spatial distribution using rain gauge data and rain gauge networks
must be rigorously maintained to ensure the accuracy of the measurements. Compared to rain gauges, remote sensing instruments,
including radars and satellites, have demonstrated great advantages in monitoring precipitation and its evolution at various scales.
In particular, ground-based weather radars can provide spatially continuous observations over a large area with small temporal
sampling intervals (e.g., Bringi and Chandrasekar, 2001; Chen and Chandrasekar, 2015a; Cifelli et al., 2024). Therefore, ground-
based weather radar network is the primary system for quantitative precipitation estimation (QPE) in many nations. On the other
hand, satellites can fill in the huge data voids of rain gauge and ground-based weather radar networks, especially over mountains
and oceans where rain gauges or radars are sparsely deployed or completely absent (Kidd et al., 2017, 2021). With satellites and
radars operating for several decades, both regional and global precipitation climatology information has been developed, although
many challenges still remain in understanding the physical processes that drive precipitation patterns as well as the accuracy of the
observations.

A number of different instruments and retrieval techniques are used to estimate precipitation from radars and satellites. The
strengths and weaknesses of various remote sensing methods are briefly summarized in Table 1, whereas details on the general
classes of methods are provided in the following sections. Radars that are used to estimate precipitation are generally categorized
into single-polarization and dual-polarization systems, whereas satellites are typically categorized into low Earth orbiting (LEO)
and geostationary orbiting (GEO) satellites. Then, the various retrieval algorithms can be classified based on their observing

Table 1 Summary of precipitation remote sensing techniques and their attributes.

Sensor
Observation spectrum Platforms Examples Strength Weakness
Active microwave (AMW) Ground-based NEXRAD Direct measure of precipitation Poor coverage over mountains and
radars CSU-CHILL radar High spatiotemporal resolution oceans
NASA NPOL
radar
AMW LEO satellites CloudSat CPR  Direct measure of vertical structure of rain Narrow swath width
GPM DPR Precipitation rate sensitivity
Fengyun-3G DPR
Visible (VIS) GEO satellites GOES Imager  Cloud type Cloud tops
LEO satellites VIIRS Cloud evolution Indirect rain rate
Infrared (IR) GEO satellites GOES Imager  Cloud temperature cloud evolution Cirrus contamination
LEO satellites VIIRS Indirect rain rate
Passive microwave LEO satellites SSM/I; GMI; Direct measure of rain, especially over Temporal sampling

(PMW) AMSR-2; ATMS  ocean Indirect precipitation rate (land)
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spectrum (e.g., active microwave-AMW, visible-VIS, infrared-IR, passive microwave-PMW). In addition, there are techniques that
rely on a combination of these spectrums, commonly referred to as multispectral approaches. More recently, a number of methods
combine the best attributes of each individual product, and in some cases, in situ data; these are referred to as blended algorithms.
The goal of this chapter is to describe this wide spectrum of precipitation remote sensing methods, highlight their strengths and
weaknesses, and provide examples of their applications.

Active Microwave Methods
Ground-Based Radars

Ground-based radar has been used for precipitation estimation since its earliest application in meteorology. In contrast to passive
microwave radiometers, radars, as active microwave sensors, provide their own source of microwave radiation. Traditionally, precip-
itation estimation with radar has been accomplished through the radar reflectivity Z and rainfall rate R relationships, also known as
Z — R relations. However, it has been found that Z — R relations depend greatly on local raindrop size distributions (DSD), which
may vary across different rainfall regimes, even within a single precipitation system. It is often a nontrivial task to find an ideal Z — R
relation to represent the microphysical properties of all the storms. Since the introduction of polarization diversity in meteorolog-
ical radar (Seliga and Bringi, 1976), a large amount of effort has been devoted to polarimetric radar systems and their weather appli-
cations. Through the dual-polarization radar measurements, including reflectivity, differential reflectivity (Z;, ), specific differential
propagation phase (Ky,), and co-polar correlation coefficient (py, ), radar data quality can be considerably enhanced. In addition,
different hydrometeor types can be identified, and DSD information can be gleaned in more effective ways with the dual-
polarization observations (Bringi and Chandrasekar, 2001). Currently, all the radar stations comprising the US National Weather
Service (NWS) Weather Surveillance Radar-1988 Doppler (WSR-88D) network, or the Next-Generation Radar (NEXRAD) network,
are operating in dual-polarization mode. One of the main considerations for the dual-polarization upgrade was better QPE.

A number of dual-polarization radar rainfall estimation algorithms have been developed in previous studies, using Z, Z, Kgy or
a combination of these observables. Although there is no standard criterion to determine which estimator to employ for a given set
of dual-polarization measurements, the hydrometeor classification-based methods are widely used in the weather radar commu-
nity. Popular examples include the operational WSR-88D algorithm described in Giangrande and Ryzhkov (2008) and the dual-
polarization radar operational processing system (DROPS) developed at Colorado State University (Cifelli et al., 2011; Chen
et al., 2017). As shown in Fig. 1, such a QPE system typically consists of three components, namely, data quality control, classifi-
cation of different hydrometeor types, and precipitation quantification with appropriate polarimetric radar rainfall relations.

In order to obtain the specific radar rainfall relations, local DSD measurements are often required, which can be used to simulate
the dual-polarization radar observables at different frequencies using a scattering model such as the T-matrix method (Waterman,
1965). Based on the simulated radar observations and corresponding rainfall rates computed directly from the DSD data, nonlinear
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Fig. 1 A polarimetric weather radar rainfall estimation algorithm driven by hydrometeor classification results.
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regression can be applied to derive the specific relations including R(Zp,), R(Zy, Z4;), R(Kyp) and R(Zgy, Kgp). Fig. 2 illustrates
example polarimetric observations from the S-band KFWS WSR-88D radar during a storm event at 12:31UTC, June 09, 2013, as
well as the corresponding rainfall rate estimated using the DROPS method.

Combining the polarimetric observations and precipitation estimates from ~160 WSR-88D radars, as well as rain gauges and
other auxiliary environmental information, the National Oceanic and Atmospheric Administration (NOAA) has developed
a multi-radar multi-sensor (MRMS) system to produce precipitation estimates (Zhang et al., 2016a). The MRMS system has
been operational since 2015 and the MRMS products are widely used for various hydrometeorological applications. Fig. 3 shows
an example gauge-corrected radar hourly precipitation product from the MRMS system during a fast-moving severe thunderstorm
on December 11, 2021. This event developed as a trough progressed eastward across the U. S. and produced the devastating tornado
outbreak of 10—11 December 2021 across the Southern U S and Ohio Valley.

Nevertheless, one limitation of the operational, long-range microwave (e.g., S- or C-band) radars is the inability to cover the
lower part of atmosphere due to the Earth’s curvature and terrain blockage. To address these issues and enhance resolution of oper-
ational weather radar network, the US National Science Foundation Engineering Research Center (NSF-ERC) for Collaborative
Adaptive Sensing of the Atmosphere (CASA) introduced an innovative collaborative and dynamic sensing paradigm, which utilizes
a dense network of small, low-power, X-band dual-polarization radars to improve QPE and hazardous weather monitoring and
prediction (McLaughlin et al., 2009). The high-resolution observations and post-event case studies from CASA’s first research
testbed in Southwestern Oklahoma demonstrated the great potential of this new sensing paradigm. The great success of CASA
research radar network has also led to urban scale implementations of this concept across the world, such as the research-to-oper-
ation testbed in the Dallas-Fort Worth (DFW) metroplex (Chen and Chandrasekar, 2015a, 2018; Chandrasekar et al., 2018), the
operational gap-filing radar network in the San Francisco Bay Area (Cifelli et al., 2018, 2024), and the operational phased-array
weather radar network in Southern China (Zhao et al., 2024). At X-band or higher frequency, the choice of precipitation estimation
algorithm is influenced by attenuation since Z;, and Z; must be corrected for attenuation before using them for quantitative appli-
cations. As such, Ky, is often solely used for QPE as the differential phase is not affected by attenuation and is not sensitive to partial
beam blockage or radar system calibration error (Bringi and Chandrasekar, 2001; Chen and Chandrasekar, 2015b).
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Fig. 2 Polarimetric observations from the S-band KFWS WSR-88D radar at 12:31UTC, June 09, 2013: (A) reflectivity Z,, (B) differential reflectivity
Zyr, and (C) specific differential phase Ky,. (D) shows the corresponding rainfall rate (R) estimates using the method illustrated in Fig. 1.
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Fig. 3 (A) Gauge-corrected radar hourly precipitation estimates from the NOAA MRMS system for the hour ending at 17:00UTC, December 11,
2021. The line of enhanced rainfall draped across the southeast US (highlighted in the red box) is associated with a widespread tornado outbreak in
this region. (B) Zoomed-in version of the precipitation field in the red box in (A).

Another potential way to improve conventional radar QPE is using artificial intelligence and machine learning techniques.
Compared to traditional parametric radar rainfall relations, machine learning can often better extract precipitation information
from the multidimensional multiparameter polarimetric radar observations (Chen et al., 2019). Although a detailed explanation
of machine learning-based radar QPE methods is beyond the scope of this article, interested readers are referred to Li et al.
(2023, 2024a,b) for demonstration studies based on WSR-88D observations. These studies suggest that machine learning can
capture more spatial correlation of precipitation from dual-polarization radar data and effectively map the connection between
radar observations aloft and surface rainfall rates.

Space-Based Radars

One way to avoid the coverage limitations of ground-based radar sampling is to deploy radars on spaced-based platforms. Due to
deployment challenges and tradeoff between resolution and antenna size, only radars at frequencies greater than 10 GHz are prac-
tical for space-based platforms (Fujita and Satake, 1997). At these frequencies, the two-way path integrated attenuation (PIA)
becomes significant over the rain depth of kilometers, especially during moderate to heavy rain events. Unless reflectivity is corrected
for attenuation effects, the reflectivity-based rain rate estimate will have a bias, which increases with frequency as a result of an
increase in PIA.

Techniques have been developed to remove the effects of attenuation for space-based radar applications. The study by Hitschfeld
and Bordan (1954) was one of the first to propose a method for directly correcting measured reflectivity for attenuation. After atten-
uation correction, rain rates are estimated using the corrected reflectivity through Z—R relations. The Hitschfeld-Bordan (HB) solu-
tion gives reasonable estimates if the attenuation is small and the radar is well-calibrated. When these conditions are not met, this
method can become unstable. Numerous retrieval methods have been developed that incorporate this early work along with the
more recent technique of constraining the retrievals using PIA derived from surface reference technique (SRT) (Iguchi and Mene-
ghini, 1994; Meneghini et al., 2004, 2015). SRT relies on a reference measurement of the radar return from the surface in rain-
free conditions. For example, if the surface returns for a particular incidence angle and surface types are stable, the difference in
surface returns for rain-filled and rain-free radar beams can be ascribed to the effects of attenuation by precipitation. The SRT
method provides a reasonable way to monitor PIA over the ocean. Over land, particularly at near-nadir incidence where the surface
scattering cross section is usually highly variable in both space and time, the method is less reliable (Meneghini et al., 2004).

In addition, although these methods work fairly well for Ku-band Tropical Rainfall Measurement Mission (TRMM) Precipitation
Radar (PR) and Ku/Ka band Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR), it is challenging
to use these approaches when attenuation is strong such as the W-band cloud profiling radar (CPR) aboard CloudSat. Another
example of rainfall retrieval technique from spaceborne radar is to use the attenuation directly caused by rainfall (Matrosov,
2007). This method takes advantage of high attenuation in rain and low variability of nonattenuated reflectivity and uses estimates
of height derivatives of attenuated reflectivity. These estimates are then related to rain rates. Early results based on the CloudSat CPR
measurements demonstrates a possibility of rain rate profile retrieval (Matrosov, 2007; Mitrescu et al., 2010).

Here, a brief review of several space-based precipitation radars is provided, including TRMM PR, CloudSat CPR, GPM DPR, and
the Ka-band radar for the RainCube mission.

TRMM-PR

In operation for nearly 18 years (1997—2014), the TRMM PR was the first active passive microwave instrument designed to measure
rain from space (Kummerow et al., 1998). TRMM was a LEO satellite orbiting at 402.5 km above the Earth surface. Its subtrack
covered latitudes of & 35°. TRMM PR was a cross-track Ku-band (13 GHz) radar that surveyed a swath of 220 km at a horizontal
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resolution of 4.3 km, and a vertical distribution with the height resolution of 250 m. PR provided for the first time a direct, fine-
scale, view of both the vertical and horizontal distribution of precipitation across the global tropics. This information has advanced
our fundamental understanding of precipitation processes, as well as providing validation for model simulations and forecasts.

Several iterations of the PR rain retrieval algorithm have occurred since its original operation. Initially, the PR rain retrieval algo-
rithm used a hybrid of the HB and SRT methods to correct for attenuation (Iguchi et al., 2000). When the SRT is reliable, the radar-
rain rate relations are adjusted so that the HB path-attenuated estimate is equal to that of SRT. When the SRT is unreliable, the HB
method is usually used along with radar-rainfall relation derived from ground-based disdrometer measurements, conditioned on
rain type, to provide vertical profiles of rain rate.

There are some limitations to the TRMM PR-its sensitivity is about 18 dBZ and thus cannot retrieve very light rainfall rates below
~0.5 mm h™'. Additionally, there are adjustments that need to be accounted for over mountainous and rough terrain. Several
improvements to the original algorithms have been made over the years (e.g., Takahashi and Iguchi, 2008; Iguchi et al., 2009).

CloudSat

Launched in April 2006 and decommissioned in December 2023, CloudSat was the first millimeter wavelength (W-band, 94 GHz)
cloud profiling radar in space (Stephens et al., 2002). It was flown in the A-Train configuration and used synergistically with other
satellites and sensors to gain a better understanding of cloud-aerosol-precipitation processes (Fan et al., 2016). The CloudSat CPR
was a near nadir-pointing downward looking radar with 500 m vertical resolution, 1.7 km horizontal resolution, and sensitivity of
—30 dBZ. The design concept of CPR was to provide vertical cross section of nonprecipitating cloud liquid and ice water content and
particle size. At the altitude of 750 km, the CPR provided vertical profiles of radar reflectivity. Although the main objective of CPR
was to provide global information on clouds, it also resolved many precipitation systems, in particular, light rain and snow that
were often missed by the TRMM PR (L'Ecuyer and Stephens, 2002; Haynes and Stephens, 2007; Matrosov, 2007; Liu, 2008). As
such, it has been useful for gaining a better understanding of high-latitude precipitation features (Hong and Liu, 2015) and tropical
cloud and precipitation systems, including tropical cyclones (Tourville et al., 2015), although CloudSat CPR would attenuate at
higher rain rates and precipitation rates above ~5 mm h™" cannot be estimated reliably (Mitrescu et al., 2010).

The European Space Agency (ESA), in cooperation with the Japan Aerospace Exploration Agency (JAXA), has implemented the
Earth Cloud, Aerosol and Radiation Explorer (EarthCARE) satellite mission to measure global profiles of aerosols, clouds and
precipitation properties together with radiative fluxes and derived heating rates (Wehr et al., 2023). The EarthCARE mission was
launched on May 28, 2024 and is flying a cloud radar similar to CPR on CloudSat, but with greater sensitivity and higher spatial
resolution.

GPM DPR

GPM is a joint US - Japan mission designed to extend TRMM’s observations of precipitation to higher latitudes, with more frequent
sampling (Hou et al., 2014; Skofronick-Jackson et al., 2017). The GPM Core Observatory satellite was launched in February 2014
and carries a dual-frequency, cross-track scanning, Ku/Ka-band (13.6/35.5 GHz) precipitation radar, i.e., the DPR (Iguchi et al.,
2002). The addition of the Ka-band radar brings the sensitivity down to 12 dBZ, thus the advantages of the DPR over the single-
frequency TRMM PR include: enhanced sensitivity at light rain rates (down to 0.2 mm h™!); information on the particle size distri-
bution in rain and snow; and improvements in the identification of vertical layers consisting of mixed phase, frozen and liquid
particles (Toyoshima et al., 2015). Particle size estimation follows from Mie scattering effects in that the difference in radar reflec-
tivity at the two frequencies (also known as dual-frequency ratio) provides an estimate of the mean particle size of the distribution
(Meneghini et al., 1989, 1992; Meneghini and Kozu, 1990; Kuo et al., 2004). This dual-frequency measurement allows for recovery
of at least 2 of 3 parameters needed to describe the bulk distribution of the generalized DSD. The third parameter can be prescribed
by ground-based observations (Williams et al., 2014). Such measurements are important because increased knowledge of DSD
factors improves the retrievals of rain rate and can be incorporated into numerical weather prediction (NWP) and climate models
for increased performance and accuracy.

Fig. 4 illustrates an example of DPR’s capability to probe vertical precipitation structure during a storm that occurred on October
31, 2022. In addition to the precipitation pattern near the surface, the DPR shows the vertical extent of the precipitation, including
the melting layer, and high cloud tops indicated by the distinct reflectivity gradients from the Ku and Ka PRs.

During its decade of operation, much has been learned from GPM to advance the current understanding of the three-
dimensional structure of precipitation systems, improve the global retrieval of precipitation, and enhance our understanding of
the global water cycle. The DPR has served as the “anchor” for many of the advancements in the PMW algorithms and multisensor
datasets and will continue to do so for the foreseeable future.

On April 16, 2023, the China Meteorological Administration launched its Feng Yun 3G (FY-3G) satellite, which carries a Ku/Ka-
band precipitation measurement radar similar to GPM DPR. This new precipitation radar can further supplement low orbit precip-
itation measurements currently available from the international community.

Although not discussed in this chapter, there is a class of algorithms that use both the DPR and GPM Microwave Imager (GMI)
where the data are coincident; these algorithms are the most accurate ones but have limited use because of the rather narrow swath
width of the DPR.
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Fig. 4 GPM DPR observations and precipitation retrievals during a storm event at 10:40UTC, October 31, 2022. The surface precipitation rate
estimates from DPR are shown on the left, whereas DPR vertical precipitation information (i.e., reflectivity) is shown on the right. The DPR reflectivity
shows the vertical extent of the precipitation, including the melting layer.

RainCube

RainCube (Radar in a CubeSat) is a technology demonstration mission sponsored by NASA's Earth Science Technology Office
(ESTO) In-Space Validation of Earth Science Technologies (InVEST-15) program (Peral et al., 2018; Sy et al., 2022). It was a joint
development between the Jet Propulsion Laboratory and Tyvak NanoSatellite Systems (Tyvak). It was the first to successfully
demonstrate novel precipitation radar technology at Ka-band (35.75 GHz) with a 50-cm diameter parabolic reflector antenna all
fitting in a 6U CubeSat platform. The peak transmit power of RainCube’s radar is 10 W, and it has a sensitivity of 12 dBZ.

Like all the existing space-based precipitation radars, RainCube was operated on a low Earth orbit from which it measured the
vertical distribution of precipitation through the nadir-looking Ka-band radar. It was the only spaceborne precipitation radar that
oversampled its measurements in the along-track direction. The horizontal resolution of RainCube measurement is 10 km, and the
vertical resolution is 250 m.

RainCube was launched from the International Space Station in July 2018 and deorbited in December 2020. The success of Rain-
Cube has demonstrated the feasibility of cost-effective constellation missions of miniaturized radars in near-earth orbits for global
3-D measurements of precipitation (Sy et al., 2022).

Visible and Infrared Methods

This section provides an overview of visible (VIS) and infrared (IR) retrieval techniques, including the fundamental physics and
assumptions that are applicable, and a number of VIS and IR-based precipitation and microphysical retrieval algorithms that are
commonly used in the scientific community. VIS and IR were the first to be conceived for precipitation retrieval as these were
the first sensors on the early weather satellites that date back to 1960s. Many of these methods are rather simple to apply while
at the same time they show a relatively low degree of accuracy, and typically focus on rain rather than all forms of precipitation.
On the other hand, GEO weather satellite VIS and IR imagers uniquely provide the rapid temporal update cycle (e.g., 10 min or
less) needed to capture the growth and decay of precipitating clouds, with the most recent class of GEO satellites (i.e., GOES-R series;
Schmit et al., 2017) providing a regional update capability of every 60 seconds (or 30 seconds if the two mesoscale domains are the
same).

A complete overview of the early work and physical premises of VIS and thermal IR (10.5—12.5 um) techniques is provided by
Barrett and Martin (1981); while Kidder and Vonder Haar (1995) present some of the techniques that have evolved nearly 15 years
later. The rainfall retrieval in these wavelengths is based on the fact that visibly bright (optically thick) clouds are positively corre-
lated with regions of convective rainfall (Woodley and Sancho, 1971). On the other hand, clouds with cold tops in the IR imagery
produce more rainfall than those with warmer tops (Scofield, 1987). However, the correspondence between cold tops and visible
bright spots is far from perfect and cold cloud tops are not always well correlated with surface rainfall, especially in warm stratiform
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rainfall regimes. Fig. 5 presents an example of composite VIS imagery from NOAA-21, formerly known as Joint Polar Satellite
System — 2 (JPSS-2) prior to launch. The precipitation estimates from NASA’s Integrated Multi-satellitE Retrievals for GPM (IMERG)
on the same day are also indicated in Fig. 5 to highlight VIS signatures associated with precipitation. Fig. 6 illustrates an example of
IR image from the advanced baseline imager (ABI) aboard the Geostationary Operational Environmental Satellite (GOES-16)
during Hurricane Bonnie as it approached Clarion Island.

Various approaches have been developed to emphasize particular aspects of the sensing of cloud physics properties to reconcile
differences between VIS and IR retrievals and measured rainfall. From a traditional standpoint, following Barrett and Martin’s clas-
sification, the rainfall estimation methods can be divided into the following categories: cloud-indexing, bi-spectral schemes, life
history, and cloud model-based. However, more recent advances over the past two decades have led to multispectral (e.g., VIS/
IR) algorithms, machine learning models, as well as cloud microphysical techniques to retrieve actual cloud properties which
can then be associated with various precipitation types. The following subsections provide details and examples of these VIS
and IR precipitation retrieval techniques.

It should be noted that in many cases, the algorithms described could be fit into more than one category and that over time, more
techniques could be considered “hybrid” approaches of these generalizations. Finally, it would be impossible to cite every note-
worthy algorithm ever developed; it is the aim of this section to highlight examples to offer the readers some basic fundamentals
of visible and IR precipitation retrieval.

VIS and IR Fundamentals

Although some of these concepts may appear in other parts of this volume, a few basic concepts of VIS and IR remote sensing are
provided here for completeness. A good reference is Petty (2006), however, any book dedicated to atmospheric radiative transfer
will provide similar information. This chapter will focus on some conceptual ideas without diving too much into the mathematical
details or complex interactions between radiation and surface/atmospheric composition. In terms of the electromagnetic spectrum,
gamma rays are the shortest wavelengths, followed by X-rays, ultraviolet, visible (~0.40—0.75 um), near IR (~0.75—2.5 pm), IR (up
to 1000 pm or 1 mm), MW (1 mm to 10 cm), and radio waves. For precipitation remote sensing, we rely on VIS, near IR, IR, and
MW energy.

Radiation from the Earth’s surface and from layers of the atmosphere is transmitted through the atmosphere to reach the satel-
lite. For VIS, the satellite measures the reflection of solar energy by the surface and for the case of precipitation, it is the reflection of
the cloud tops that the satellite measures. In general, the higher the cloud tops, the brighter the signal is. Other factors include the
composition of the clouds: ice clouds tend to be more reflective than clouds that have just liquid droplets. Other atmospheric
constituents like aerosols can affect the energy through a scattering process.

For IR, it becomes more complicated because we measure Earth emitted energy from various gaseous absorption bands that exist
from oxygen, ozone, carbon dioxide, etc. Thus, in addition to effects from the underlying surface, which emits energy at different
levels of efficiency (i.e., a surface that emits all of the energy that it absorbs is referred to as a “black body”—most clouds act as black

Rain Rate now Rate

0.1 mm/hr >53.0 mm/hr jill 0.1 mm/hr = 53.0 mm/hr

Fig. 5 NOAA-21 (designated JPSS-2 prior to launch) color composite visible imagery from April 20, 2024. The color maps indicate precipitation
estimates from NASA’s Integrated Multi-satellitE Retrievals for GPM (IMERG).



Active and Passive Remote Sensing of Precipitation 9

30°N

320

w
o
o

N
[¢)]
o
Brightness Temperature (°K)

25°N

r280
20°N

15°N Av

240

N
N
o

10°N

N
o
o

5oN o A8 K i

130°W 122°W 114°W 106°W 98°W 90°W

Fig. 6 Color enhanced infrared (IR) image from GOES-16 advanced baseline imager (ABI) channel 14 at 2130UTC on July 7, 2022. The higher
cloud tops as inferred from IR temperatures are color enhanced in blue, indicating regions of deeper convection. Note the higher level clouds
associated with Hurricane Bonnie as it approaches the Clarion Island (18.36°N, 114.73°W).

bodies), the temperature structure of the atmosphere also contributes to the satellite measurement. In fact, there is a class of IR
sensors known as “sounders” that are specifically designed to exploit these absorption properties to retrieve the vertical profile
of the atmosphere; such measurements are a critical component in NWP models.

Cloud-Indexing Methods

Cloud-indexing techniques assign a rain rate level to each cloud type identified in the satellite imagery. The simplest and perhaps
most widely used is the one developed by Arkin (1979) during the Global Atmosphere Research Program'’s (GARP) Atlantic Tropical
Experiment (GATE) on the basis of a high correlation between radar-estimated precipitation and fraction of the area colder than
235 K in the IR. The scheme, named the GOES Precipitation Index (GPI) (Arkin and Meisner, 1987), assigns these areas a constant
rain rate of 3 mm h™!, which is appropriate for tropical precipitation over 2.5° latitude x 2.5° longitude areas. The GPI became
a standard for climatological rainfall analysis (e.g., Arkin and Janowiak, 1991) and is regularly applied and archived for climato-
logical studies and monitoring of tropical precipitation, including seasonal changes related to equatorial Pacific sea-surface temper-
ature warming and cooling episodes and Madden-Julian Oscillations (MJO) (Janowiak and Xie, 1999).

A family of cloud-indexing algorithms was developed at the University of Bristol. “Rain days” are identified from the occurrence
of IR brightness temperatures (TB) below a threshold at a given location. The estimated rain days are combined with rain-per-rain
day means that are spatially variable to produce rainfall estimations for extended periods (10 or more days). The most evolved
version of the Bristol technique uses variable IR rain/no-rain TB thresholds (Todd et al., 1995, 1999). Another cloud-indexing
method was developed for use in South America, where mesoscale convective complexes (MCC) are prevalent (Vila et al., 2008).

Bispectral Methods

Bi-spectral methods are based on the very simple, although not always accurate, relationship between cold and bright clouds and
high probability of precipitation, which is characteristic of cumulonimbus clouds. Lower probabilities are associated with bright but
warm clouds. The RAINSAT technique (Lovejoy and Austin, 1979; Bellon et al., 1980) screens out cold but not highly reflective
clouds or those that are highly reflective but have a relatively warm top. The number of false alarms of the pure IR techniques is
reduced. The algorithm is based on a supervised classification trained by ground radar to recognize precipitation from both VIS
brightness and IR brightness temperature.

Life-History Methods

A family of techniques that specifically requires GEO satellite imagery because of its rapid update cycle is the life-history methods
that rely upon a detailed analysis of the cloud’s life cycle, which is particularly relevant for convective clouds. An example is the
Griffith-Woodley technique described in Griffith et al. (1978). In this case, the increasing cloud area over time is treated differently
from shrinking clouds. A major problem arises in the presence of high cirrus anvils from neighboring clouds: they often screen the
cloud life cycle underneath leading to possible underestimates early in the day and overestimates toward the evening when, at least
over many land areas, clouds mature and tend to produce larger areas of high cirrus. Reasonable performance of this method is
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obtained for deep convective storms, while contradictory results arise from their application to stratiform systems or weak convec-
tion. More recently, Bellerby (2004) adopted a feature-based approach and a cloud motion method (Bellerby, 2006) to derive rain-
fall from GEO measurements.

Cloud Model-Based Techniques

Cloud model techniques aim at introducing the cloud physics into the remote sensing retrieval process for a quantitative improve-
ment that derives from the overall better physical description of the precipitation formation processes. A one-dimensional cloud
model relates cloud-top temperature to rain rate and rain area using a convective stratiform technique (CST) to separate different
forms of precipitation in convective and stratiform regions (Adler and Negri, 1988). Local minima in the IR brightness temperature
are identified and screened to eliminate thin, nonprecipitating cirrus. To accomplish this, a slope parameter is calculated for each
temperature minimum. Adler and Negri (1988) established an empirical discrimination of thin cirrus in the temperature/slope
plane using radar and visible imagery data. If the temperature minimum and its slope falls to the left of the discrimination line,
the temperature minimum location is classified as thin cirrus (nonraining). A larger slope implies a more clearly defined minimum
that corresponds to a thunderstorm.

The first space-based lightning sensor was flown on the TRMM satellite, which offered a full gamut of observations for precip-
itation detection through combining the Lightning Imaging Sensor (LIS) with other payloads, including the visible and IR scanner
(VIRS). Xu et al. (2013a,b) improved the CST through using the LIS information for better definition of convective cores. This work
can potentially be extended for lightning sensors such as the Geostationary Lightning Mapper (GLM) which is now operating on the
GOES-R series.

Multispectral Methods

As sensors became more sophisticated on GEO satellites, e.g., more spectral bands, higher temporal and spatial resolution, their
combination were exploited in the next phase of GEO-based retrieval algorithms that were geared for QPE over relatively short
time intervals. Some examples include the use of NWP moisture corrections for orographic driven precipitation (Vicente et al.,
1998). Specifically, the digital elevation model (DEM) and low tropospheric winds are used to adjust the final retrievals (Vicente
et al., 2002). The Auto-Estimator technique (Vicente et al., 1998) proposed a moisture correction factor (PW—RH) defined as the
product of precipitable water (PW) in the layer from the surface to 500 mb multiplied by mean relative humidity (RH) data between
the surface and the 500-mb level. The PW—RH factor decreases rainfall rates in very dry environments and increases them in very
moist ones. The operational version of this algorithm, called Hydro-Estimator (HE), uses PW to adjust the power-law relation
between cloud-top temperature and precipitation rates, while RH is applied to adjust the final rain rates (Scofield and Kuligowski,
2003; Kuligowski et al., 2016). Fig. 7 presents an example of GOES-16 IR-enhanced images from ABI channel 8 and channel 14, as
well as the corresponding rain rate estimates at 2200 UTC on January 13, 2024.

The GOES Multi-spectral Rainfall Algorithm, GMSRA (Ba and Gruber, 2001), combines multispectral measurements of the GEO
satellites to estimate rainfall. One of the principal innovations of GMSRA relative to previous IR/VIS algorithms is that it combines
several cloud properties used in a variety of techniques in a single and comprehensive rainfall algorithm. In particular, this tech-
nique uses cloud-top temperatures as a basis of rain estimation (e.g., Arkin and Meisner, 1987; Vicente et al., 1998), and it utilizes
the effective radii of cloud particles (e.g., Rosenfeld and Gutman, 1994) and spatial and temporal temperature gradients (e.g., Adler
and Negri, 1988; Vicente et al., 1998) to screen out nonraining clouds.

Kuligowski (2002) built upon the framework of the HE to develop the Self-Calibrating Multivariate Precipitation Retrieval
(SCaMPR) algorithm to exploit the rapid update available from GEO satellites and the more direct measure of precipitation
from PMW sensors. In its current form (Kuligowski et al., 2013, 2016), SCaMPR uses GOES bands 3 (6.7 pm) and 4 (10.7 pm)
brightness temperatures (and the difference between the two) as predictors, plus a pair of measures of local texture of the GOES
band 4 field. These predictors are calibrated against the Climate Prediction Center (CPC) combined microwave (MWCOMB)
data set. With the launch of GOES-16 in 2016, this algorithm now uses predictors from two water vapor bands (6.2 and
7.3 um) and the IR window bands at 8.5, 10.8, and 12.0 um, which will enhance its skill at detecting thin cirrus and rain from
warmer clouds.

Cloud Microphysical Retrieval Techniques

Exploitation of visible and near-IR bands can infer information on cloud microphysical properties, specifically, cloud droplet and
ice particle sizes. These techniques can be limited when cirrus clouds obscure the particles below which are related to precipitation
processes and in some cases, to daytime observations where reflected solar energy is needed. Nonetheless, these methods have
shown value for specific, regional applications where the precipitation characteristics can be adequately characterized by cloud
microphysical properties. Advancement in sensors (i.e., more channels, higher spatial resolution) has given these techniques
more significance over time.

Some of the early work was noted by Rosenfeld and Gutman (1994), who utilized multispectral measurements from the
Advanced High Resolution Radiometer (AVHRR) to retrieve rain associated with mid- and low-level clouds over arid regions. Recent
work in this area includes Chen et al. (2008), who focused on maritime light rain and drizzle associated with stratus clouds; Cattani
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Fig. 7 GOES-16 IR images from ABI channel 8 (top) and channel 14 (middle), as well as corresponding rain rate estimates (bottom) for 2200 UTC
on January 13, 2024. The rain region identified over California was associated with an extreme precipitation event known as an Atmospheric River.

etal. (2009), who focused on Mediterranean convective complexes; Walther and Heidinger (2012), who developed global methods
to retrieve both liquid and ice particle information; Ehsani et al. (2021), who used machine learning to retrieval snowfall in high
latitude based on AVHRR measurements.

Passive Microwave (PMW) Methods

In this section, passive microwave (PMW) satellite retrieval techniques for precipitation are reviewed. Unlike VIS and IR signals,
microwave energy can penetrate clouds, and depending on the frequency, can sense near surface precipitation. PMW sensors
with channels 6—190 GHz are highly sensitive to precipitation articles. This direct impact on microwave measurements by hydro-
meteors allows for the quantitative detection of precipitation properties in the atmosphere as well as on the surface. It should be
pointed out that “passive” means naturally emitted radiation from the Earth’s surface and atmosphere that interacts with clouds and
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precipitation and is detected by a radiometer on-board a satellite. Unlike the active sensors (i.e., radars) that transmit electromag-
netic waves, PWM sensors do not have transmitters.

There are three major techniques in precipitation estimation using passive microwave radiometry, namely, emission-based
methods, scattering-based methods, and physically based methods, which will be discussed following a brief overview of the
physics underlying PMW retrievals.

PMW Fundamentals

Unlike the VIS and IR, microwave radiation can be more complex because the surface is not a blackbody. Because microwave energy
is at longer wavelengths, it can see through many types of clouds that hinder the VIS and IR, thus providing a more all-weather
capability. Here we will focus on passive MW, which is energy naturally emitted by the Earth and atmosphere, as shown in
Fig. 8. Active MW is more complicated, although only so when precipitation is present. A good reference for passive MW can
also be found in Petty (2006).

Most passive microwave radiometers for precipitation observation launched to date operate in frequencies ranging from 6 to
190 GHz. In this frequency range, microwave radiometers observe different parts of the precipitation profile. Below 20 GHz, emis-
sion by precipitation-size rain drops dominates and ice particles above the rain layer are nearly transparent. Above 60 GHz, ice scat-
tering dominates, and the radiometers cannot sense the rain drops below the freezing layer. Both emission and scattering effects are
important for frequencies between 20 and 60 GHz. In general, over oceans, emission by liquid drops raises brightness temperature
while scattering by ice particles has the opposite effect. Besides the shift in the dominating mechanism from emission to scattering
with the increase of frequency, rain rate also plays a role by enhancing both the emission and the scattering signals. It is noted that
the scattering by ice increases much more rapidly with frequency than scattering by liquid (Gasiewski, 1993; Kidder and Vonder
Haar, 1995). Window channels can measure down to the earth’s surface and are strongly influenced by surface properties (i.e., vege-
tation, soil moisture, etc.) (Ferraro et al., 1994, 2013). Other frequencies are sensitive to oxygen or water vapor/cloud droplets
absorption. And during the past two decades, frequencies at or above 90 GHz have proven to be useful for the retrieval of snowfall
(i-e., Kongoli et al., 2015; Skofronick-Jackson et al., 2018). These microwave properties set the foundation for the development of
PMW precipitation estimation schemes.

PMW Emission-Based Methods

PMW emission-based rainfall algorithms are mostly applicable over ocean because water surfaces are relatively homogeneous and
provide a cold background due to low emissivity. Below certain threshold rain intensity, emission dominates rather than scattering
over water especially at lower frequencies. Brightness temperature (TB), which is directly related to the measured radiance, increases
rapidly with rain rate in this range and provides the basis for many emission-based precipitation retrieval methods. The primary
disadvantage of emission-based techniques is that the microwave signal can saturate with moderate to heavy rain rates (which is
frequency dependent), thus providing a strong nonlinear relationship between rain rate and TB. However, recent advances in sensor
spatial resolutions, most notably on the NOAA JPSS ATMS and the GPM Microwave Imager (GMI), offer the opportunity to exploit
measurements to retrieve high rain rates.

The earliest efforts to estimate rain rate from satellite measurements used microwave data from a series of NASA missions; this
included the electrically scanning microwave radiometer (ESMR) on the Nimbus 5 and Nimbus 6 satellites and the scanning multi-
channel microwave radiometer (SMMR) on both Nimbus 7 and Seasat-A. Wilheit et al. (1977) employed a radiative transfer model
to calculate the 19.35 GHz TB as a function of rain rate over ocean, and used the 19.35 GHz measurements from ESMR-5 to retrieve
rain rate. These sensors had vertically and horizontally polarized channels and Weinman and Guetter (1977) utilized the weak

Temperature

Cosmic Brightness
Background

Fig. 8 Passive microwave remote sensing brightness temperature observations measure naturally emitted and/or scattered energy from the cosmic
background, the surface temperature and emissivity, and the particles within the clouds. The resultant brightness temperature values are an
integrated quantity throughout the vertical column and are expressed in Kelvin.
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polarization of 37 GHz radiances from ESMR-6 to discriminate convective rain over land from open water. Rain rate over water was
expressed as a function of TB taking into consideration the polarization effects; a lower polarization was correlated to heavier rain
rates. SMMR had five frequencies with both horizontal and vertical polarizations. Spencer et al. (1983) took advantage of the signif-
icant impact of rain drops on the thermal emission at lower frequencies (highest SMMR frequency is 37 GHz) and used multiple
regression approach to relate SMMR TB's to rain rate.

The first of the Special Sensor Microwave/Imager (SSM/I) series was launched in 1987 and was followed by five more successful
SSM/T instruments, and then a follow on sensor, the SSMIS, which has flown on four satellites and is still in operation today. The
SSM/I has seven channels: y and horizontally polarized channels at 19.35, 37.0, and 85.5 GHz and vertically polarized channel at
22.235 GHz; the SSMIS expands to 24 channels that combines several capabilities, including temperature and moisture retrievals
(of significance to precipitation retrieval is the inclusion of channels at 150 and 183 GHz; the 85.5 GHz channel is replaced by
91.6 GHz). The SSM/1 is a well-studied instrument for rainfall estimation. Ferraro and Marks (1995) developed an SSM/I algorithm
linking oceanic rain rate with liquid water path (Weng and Grody, 1994) using ground-based radar measurements. The retrieval of
liquid water path relies on the emission signatures at 19 and 37 GHz.

Mugnai and Smith (1984) were the first to combine the cloud model with the radiative transfer model for estimating TB’s from
convective clouds. Studies along this line of thinking followed (Olson, 1989; Smith et al., 1994). The Goddard profiling algorithm
(GPROF) is one of the inversion algorithms that computes radiative transfer based on output from cloud models (Kummerow et al.,
1996, 2001; Pfreundschuh et al., 2024). GPROF was applied to the TRMM Microwave Imager (TMI) (in orbit 1997—2015) for the
retrieval of surface rain rate and rainfall profile. A large a priori database of atmospheric profiles and TB at the TMI frequencies was
constructed using output of two cloud-resolving models and a one-dimensional radiative transfer model. Then the algorithm
utilizes a Bayesian inversion approach to derive instantaneous rain rate and rainfall profile by a weighted summation of all the
profiles in the database. The weight is determined by how close each TB vector in the database resembles the observed vector.
GPROF is also the primary rainfall algorithm being applied to the Advanced Microwave Sounding Radiometer-Earth Observing
System (EOS) (AMSR-E) (Wilheit et al., 2003). GPROF has undergone several changes over the past decade to make it more robust
for use on multiple satellites, to include more diversity in the databases, and to expand its utility for both rainfall and snowfall (e.g.,
Gopolan et al,, 2010; Meyers et al., 2015; Kummerow et al., 2015).

Fig. 9 illustrates some emission signatures over the ocean due to clouds and precipitation from the NOAA-21 ATMS sensor.
Going from the lower frequencies at 31.4 GHz up to 183.3 GHz, greater sensitivity to precipitation and clouds can be seen by
the warming signatures compared with the radiatively cooler ocean surface. Use of multiple channels that are sensitive to both non-
raining and raining clouds can provide the full dynamic range of precipitation. Note that there are many other features unrelated to
precipitation noted in the imagery, such as sea-ice, water vapor over ocean, and different surface types over land.
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Fig. 9 NOAA-21 ATMS descending overpasses on January 23, 2024. (A)—(D) are brightness temperatures at 31.4 GHz (channel 2, vertical
polarization), 88.2 GHz (channel 16, vertical polarization), 165.5 GHz (channel 17, horizontal polarization), and 183.31 GHz (channel 18, horizontal
polarization), respectively. Examples of features related to liquid precipitation are highlighted by the black ovals and those related to solid
precipitation are indicated by red ovals.
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PMW Scattering-Based Methods

Due to the higher, but more varying emissivity of the land surface, in the past the only reliable means of detecting precipitation over
land was by isolating depressed TB's as a result of scattering by millimeter sized ice particles that exist in most rain clouds. Since the
signal being captured is predominantly a result of ice particles (including snowflakes) instead of rain drops, the scattering-based
precipitation estimation is an indirect measure, as it relates the magnitude of the scattering at and above the freezing layer to surface
precipitation. The launch of the SSM/I in 1987 provided the first opportunity to retrieve rain rate through scattering at higher
frequency (85 GHz). Meteorological satellites launched since then have included channels at or above 85 GHz that are sensitive
to scattering, including more recent sensors that contain measurement channels at or above 150 GHz. Thus, these measurements
have been exploited to develop scattering-based precipitation algorithms since they are sensitive to snowfall as well. These include
the SSMIS, AMSU-B/MHS, TMI, and GMI sensors.

Spencer et al. (1989) first introduced the concept of polarization-corrected brightness temperature (PCT) which is a linear
combination of the vertically and horizontally polarized brightness temperatures at 85.5 GHz. The coefficients in PCT can be
adjusted so that PCT is only sensitive to the scattering in the upwelling microwave radiation but not to other atmospheric and
land surface conditions including the contrast of land vs. ocean.

An operational SSM/I rain rate product generated at Fleet Numerical Meteorology and Oceanography Center (FNMOC) (Ferraro,
1997) combines a scattering-based global algorithm with the earlier-mentioned SSM/I emission-based ocean algorithm (Ferraro
and Marks, 1995). The global algorithm calculates a scattering index (SI) (Grody, 1991) which is the difference between the verti-
cally polarized 85.5 GHz observation and an estimate of the nonscattering contribution from this channel. The latter is a linear
combination of the observations at lower channels (19.35 and 22.235 GHz). The SI algorithms are calibrated with ground-
based radar measurements to produce instantaneous rain rate for both ocean and land (Ferraro and Marks, 1995). The
emission-based algorithm complements the SI algorithm by detecting rain systems over ocean that have little or no ice scattering.
A decision tree is included in the algorithm to screen out surface scattering sources such as snow cover and desert. This widely used
algorithm was also adapted into the TRMM GPROF land rain rate algorithm as described by McCollum and Ferraro (2003). The
relationships between rain rate and 85 GHz brightness temperature are recalibrated using TRMM precipitation Radar (PR) data,
and a new procedure is developed to estimate convective rainfall. Subsequent improvements to this adaptation included Gopolan
etal. (2010) and Meyers et al. (2015). Fig. 9B (88.2 GHz) illustrates some scattering signatures over land associated with convective
storms.

The first operational sensor with readily available data above 89 GHz was the Advanced Microwave Sounding Unit (AMSU-B)
which was flown on the NOAA-15 satellite in 1998. AMSU-B has operated on three satellites and was replaced with a similar sensor,
the Microwave Humidity Sounder (MHS), which continues to operate on NOAA-18 and NOAA-19, as well as MetOp-A, -B, and -C.
The MHS has recently been relaced by the Advanced Technology Microwave Sounder (ATMS), which is a 22-channel scanning
microwave radiometer and has been flown on the Suomi NPP and the Joint Polar Satellite Systems (i.e., NOAA-20 and -21).

Zhao and Weng (2002) took advantage of the highly scattering nature of 89 and in particular 150 GHz radiances from the
AMSU-B and retrieved ice water path (IWP) using scattering parameters measured at these two channels. The derived IWP is
then converted into the surface rainfall rate through an IWP and rainfall rate relationship developed from cloud model results
(Weng et al., 2003). The algorithm was further refined, including the use of the 183 GHz water vapor bands to delineate regions
of deep convection, as described in Ferraro et al. (2005) and Vila et al. (2008), and runs as an operation rain rate product at the
NOAA National Environmental Satellite, Data, and Information Service (NESDIS).

To illustrate the signatures associated with precipitation from the high frequencies, Fig. 10 shows the brightness temperatures at
88.2,165.5, and 183.31 & 7 GHz from the NOAA-20 ATMS. As we focus on the storm system over southeast US and adjacent ocean
regions, there is generally a warmer signature compared with the ocean background at 88 GHz that is associated with the rain region
due to emission processes. At 165 GHz, these features now show up as cold signatures, and extend over land; these are strictly due to
scattering due to precipitation sized ice particles. There are five bands on ATMS in the 183 GHz water vapor regime; in Fig. 10, we
highlight 183 + 7 GHz. Although water vapor signatures are dominate in the image (note the warm features stretching across the
United States), there are pockets of colder TB’s in the precipitation region; these indicate deeper convective precipitation features,
where the ice extends above 6 km.

Since the original work of Zhao and Weng (2002), several other precipitation algorithms emerged from the AMSU/MHS sensors;
this includes the Microwave Integrated Retrieval System (MiRS; Boukabara et al., 2011; Boukabara et al., 2013; Liu et al., 2020), the
183-WSL algorithm used by EUMETSAT (Laviola and Levizzani, 2011; Laviola et al., 2013), a MW radiometer constellation
approach used by GPM (Kidd et al., 2016), and most recently a machine learning approach to improve the MiRS precipitation
retrievals (Liu et al., 2023).

PMW Physically Based Methods

Radiometer algorithms for uniform global precipitation estimates must be physically consistent across multiple frequencies and
sensors. Bayesian or Optimal Estimation algorithms are well suited to retrieve precipitation and its vertical structure by comparing
the information content of any multifrequency radiometer to that supplied by a common a priori database of vertical profiles of
precipitating clouds together with simulated brightness temperatures for each profile and sensor. By associating precipitation by
spaceborne radar (as truth) and PMW brightness temperatures (as observed), a robust global a priori cloud database constrained
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Fig. 10 NOAA-20 ATMS descending overpasses on November 25, 2022. (A)—(C) are brightness temperatures at 88.2 GHz (channel 16), 165.5 GHz
(channel 17), and 183.31 GHz (channel 18), respectively. (D) shows the corresponding MiRS retrieved rain rates.

by both DPR and GMI measurements can be constructed. This eliminates the need for a priori databases that rely solely on cloud-
resolving models as described in emission-based methods (Fig. 11). This approach, designated as “radar-enhanced” radiometer
algorithms, improves accuracy and physical consistency. The methodology can be used over both land and ocean surfaces by
creating separate a priori databases associated with similar land climatology classifications (Kummerow et al., 2015). This obser-
vationally and physically based a priori Bayesian retrieval is the methodology employed by TRMM in its later algorithms and by
GPM currently. Algorithms in this form also have the capability to transition into truly physically based retrievals by incorporating
the physical characteristics of surface properties and using that to retrieve surface emissivity for use instead of the land climatology
classifications as currently employed (Ferraro et al., 2013; Boukabara et al., 2013; Ringerud et al., 2015).

Multisensor Precipitation Datasets

The individual sensors and retrieval approaches discussed so far each have limitations which make them unsuitable for use in
certain situations; their utility is driven by the need of a particular user, e.g., a weather forecaster or a climate scientist or a particular
observational need. For instance, from a satellite remote sensing perspective, frozen and mixed precipitation may be of more
interest in the mid-latitudes and very light rain and snow may be of more interest over complex surface types in the polar regions.
In addition, radar sensors directly observe precipitation particles, whereas PMW sensors indirectly observe integrated columnar
precipitation characteristics. PMW estimates over the ocean might be more accurate than GEO-IR estimates, but the latter are better
suited for studies of the diurnal cycle due to the superior temporal sampling obtained from a GEO satellite. For ground-based
remote sensing observations, radars may be blocked by terrain or otherwise unable to observe precipitation features, necessitating
the inclusion of other data sets such as satellite, rain gauge networks or numerical model forecasts to fill in the gaps. Conveniently,
the available remotely sensed estimates of precipitation have different strengths and weaknesses, so that combined datasets can be
superior to estimates from individual sensors. This section will present some evolution on this topic from both space-based and
ground-based perspectives, and then highlight several very mature combined global precipitation products and their attributes.
As previously described, the advent of the first operational passive microwave sensors in the 1980s led to a surge in the devel-
opment of various retrieval approaches. To foster collaborations among the community, and to determine which methods were
perhaps more robust than others, several efforts to intercompare and evaluate various types of precipitation algorithms using
remotely sensed information were carried out. The WetNet (Dodge and Goodman, 1994) Precipitation Inter-comparison Projects
(PIP) evaluated multiple global and near-global precipitation algorithms including merged satellite datasets (Barrett et al., 1994;
Kniveton et al., 1994; Smith et al., 1998; Adler et al., 2001). The Global Precipitation Climatology Project (GPCP) similarly spon-
sored three Algorithm Inter-comparison Projects (AIP; Ebert et al., 1996) that compared precipitation estimated from satellite obser-
vations against high-resolution observations from rain gauges and radars over limited domains (Arkin and Xie, 1994; Ebert and
Manton, 1998). Among other results, these studies showed that PMW estimates were more accurate than IR estimates on an instan-
taneous basis, but algorithms which combine PMW and IR estimates were superior in terms of bias and standard errors. However,
these intercomparisons did not show significant differences between individual algorithms of a common type and it remains the
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Fig. 11 Conceptual comparison of (A) emission-based methods with (B) physically based PMW retrievals. Plots in (B) include ground-based radar
rainfall rate estimates (upper panel) and corresponding BT observations from satellite. The emission-based methods are primarily based on simulated
satellite observations and rain rates, while the methods in (B) are based on satellite PMW and active ground- or space-based radar observations.

case that several merged satellite products exist without a clear consensus on which is superior, and it is common to see a range of
similar datasets used in the literature.

More recently, activities within the World Meteorological Organization (WMO) International Precipitation Working Group
(IPWG; see Kidd et al., 2010) have established regular monitoring and validation of several satellite products, including many
merged products (Ebert et al., 2007). Furthermore, under the auspices of IPWG, the Pilot Evaluation of High Resolution Precipita-
tion Products (PEHRPP) was established to intercompare and validate these datasets. PEHRPP included a number of high-
resolution datasets: the TRMM Multi-Satellite Precipitation Analysis (TMPA; Huffman et al., 2007), the CPC Morphing technique
(CMORPH; Joyce et al., 2004), the Hydro-Estimator (Scofield and Kuligowski, 2003), the NRL-Blended technique (NRL-Blended;
Turk and Miller, 2005), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN;
Hsu etal., 1997), and the Global Satellite Mapping of Precipitation (GSMaP) project (Kubota et al., 2007). Studies to compare these
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datasets were carried out, although there is no technique that outperforms the others on a consistent basis (e.g., Ebert et al., 2007;
Sapiano et al., 2008; Derin et al., 2019; Bytheway et al., 2023).

Table 2 provides attributes of several mainstream satellite precipitation datasets. Note that it is difficult to provide detailed error
estimates for these products because of the varying temporal and spatial resolutions that they are produced. Additionally, there are
regional differences among them (e.g., Maggioni et al., 2016; Bytheway et al., 2023, among others). Finally, there are also a host of
statistical parameters that are important based on the application: for climate monitoring, bias is perhaps the most important
whereas for hydrological applications, the root mean square error (RMSE) and correlation with in situ data are important. However,
in general, these products have RMSE errors that range between 5 and 15 mm/day, depending upon the storm type and intensity
(i.e., large scale systems have lower RMSE, whereas regional, convective systems have larger RMSE).

GPCP

Perhaps the most noteworthy blended precipitation product is the Global Precipitation Climatology Project (GPCP; Huffman et al.,
1997; Adler et al., 2003; Huffman et al., 2009; Adler et al., 2018; Huffman et al., 2023a). Although GPCP has evolved into several
versions over the years, including subdaily time scales, the baseline product is a global, 2.5-degree resolution monthly precipitation
analysis beginning in 1979. The latest version of the GPCP monthly product is the version 3.2 dataset (Huffman et al., 2023a),
which utilizes the Merged CloudSat, TRMM, and GPM (MCTG) climatological precipitation product over the mid-and high-
latitude oceans (Behrangi and Song, 2020) and an updated Tropical Composite Climatology over the tropical oceans for climato-
logical calibration (TCC, Adler et al., 2009; Wang et al., 2014), in order to improve performance of previous versions.

Although the monthly, 2.5-degree products are most commonly used, higher resolution products also exist as part of the GPCP
suite. Noticeably, GPCP Version 1.3 is the first generation GPCP daily product to provide 1° gridded precipitation estimates over the
entire globe from October 1996 to present (Huffman et al., 2023a). This daily product is created based on the One-Degree Daily
(1DD) technique described in Huffman et al. (2001) and then calibrated to the GPCP Version 2.3 monthly product to ensure accu-
racy and consistency (Huffman et al., 2023a). The GPCP Version 3.2 also provides daily, global 0.5° gridded precipitation data
covering June 2000 through September 2021, using the increased number of spaceborne sensors and enhanced merging algorithms
in the GPM era. This daily product was calibrated using the new GPCP v3.2 monthly product and will eventually replace the GPCP
Version 1.3 daily product.

CMORPH

NOAA's Climate Prediction Center (CPC) has developed a blended precipitation product known as CMORPH (CPC MORPHing
technique), which produces global precipitation estimates at very high spatial and temporal resolution (Joyce et al., 2004; Xie
et al.,, 2017). CMORPH uses precipitation estimates that have been derived from LEO PMW measurements, and whose features
are transported via spatial propagation information that is obtained entirely from the more frequently updated GEO IR data
This “morphing” feature makes the product unique from most of the other similar products described in this section. As is the
case with GPCP, there are a number of CMORPH products at various time and spatial resolutions, however, the finest resolution

Table 2 Summary of merged satellite precipitation products and their attributes.

Product name Primary data sources Spatial domain Temporal and spatial resolutions Period of record

GPCP V1.3 GEO IR 90S—90N Monthly—250 km 1979—present
LEO PMW Daily—100 km 1997—Present
Rain gauges

GPCP V3.2 GEO IR 90S—90N Monthly—250 km 1983—present
LEO PMW Daily—50 km 2000—Present
Rain gauges

TMPA GEO IR 505—50N 3 hourly—25 km 19982019
LEO PMW Daily—25 km

Monthly—25 km

IMERG V07 GEO IR 90S—90N 30 min—10 km 2014—Present
LEO PMW Monthly—25 km

CMORPH V01 GEO IR 60S—60N 30 min—=8 km 1998—Present
LEO PMW

CMORPH V02 GEO IR 90S—90N 30 min—>5 km 1998—Present
LEO PMW

PERSIANN GEO VIS/IR 60S—60N 1 hourly—25 km 2000—Present
LEO VIS/IR

GSMaP GEO IR 60S—60N 1 hourly—10 km 1998—Present

LEO PMW
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of CMORPH version 1.0 is 30 minutes and 8 km, and the finest scales of CMORPH version 2.0 are at 30 min and 5 km. To achieve
the finest spatial resolution, interpolation is performed (Xie et al., 2017; Chen et al., 2020).

In CMORPH, IR data are used as a means to transport, or morph, the microwave-derived precipitation features during periods
when microwave data are not available at a location. Propagation vector matrices are produced by computing spatial lag correla-
tions on successive images of geostationary satellite IR which are then used to propagate the microwave-derived precipitation esti-
mates. This process governs the movement of the precipitation features only. At a given location, the shape and intensity of the
precipitation features in the intervening half hour periods between microwave scans are determined by performing a time-
weighting interpolation between microwave-derived features that have been propagated forward in time from the previous micro-
wave observation and those that have been propagated backward in time from the following microwave scan (Joyce et al., 2004).
Compared to version 1.0, the second generation of CMORPH (i.e., version 2.0) can not only provide higher resolution complete
global coverage (90°S-90°N) with low production latency, but also greatly improves representation of cold season precipitation
(Xie et al., 2023).

An example of accumulated precipitation from CMORPH, both version 1.0 and version 2.0, over the United States during an
event in December 2023 is shown in Fig. 12A and B. Multiple regions of precipitation are indicated, including one shallow rainfall
system in southern California and a massive storm (event total exceeding 160 mm) near the US Gulf Coast. It should be noted that
the CMORPH products shown in Fig. 12A and B are near real-time (raw) products without any bias correction. In reality, the biased
corrected CMORPH is often used for various applications, especially at long-term climate scale. The bias correction is based on prob-
ability density function (PDF) matching against the CPC daily gauge analysis over land and through adjustment against the GPCP
merged analysis of precipitation over ocean (Xie et al., 2017).
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Fig. 12 Accumulated precipitation from 00UTC, December 22, 2023 to 00UTC, December 26, 2023, for four blended satellite precipitation products:
(A) CMORPH V01 (raw), (B) CMORPH V02 (raw), (C) IMERG V07 (Final Run), (D) PERSIANN, and (E) GSMaP V08 (raw).
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TMPA and IMERG

There are two widely used blended precipitation products that have emerged from NASA’s TRMM and GPM programs—The TRMM
Multi-Satellite Precipitation Analysis (TMPA; Huffman et al., 2007) and IMERG (Huffman et al., 2023b). Some initial comparisons
between the two products can be found in Liu (2016), although the IMERG product continues to evolve during the GPM-era. The
latest version IMERG is version 07 (Huffman et al., 2023b). Both TMPA and IMERG exploit GEO IR and LEO PMW data; the former
is also adjusted by monthly rain gauges. Like the other blended precipitation products described in this section, these data sets are
actually a series of products at various time and space scales, ranging down to 10 km and 30 min.

Conceptually, IMERG was developed to take the “best” attributes of TMPA, CMORPH and PERSIANN to have the best possible
blended product. The primary difference between TMPA and IMERG is that IMERG is exploiting PMW algorithms from GPM (Kum-
merow et al.,, 2015; Kidd et al., 2016) whereas TMPA relies on algorithms from the TRMM heritage (Kummerow et al., 2001; Ferraro
et al., 2005). In addition, IMERG multisatellite precipitation estimates are formally intercalibrated by the highly accurate GMI
(Wentz and Draper, 2016). Fig. 12C shows the IMERG V07 product for the same event as shown for CMORPH. In this case, IMERG
indicates slightly heavier event totals and also a larger areal extent of lighter precipitation. Because GPM was specifically designed to
detect falling snow, these lighter precipitation areas in IMERG most likely include snowfall—something that many of the other
products have not incorporated in their current operational versions. In addition, the TMPA product has been reprocessed using
the observationally based a priori database from GPM such that a uniform precipitation record will be made available starting
with TRMM and extending to the lifetime of GPM and even beyond.

PERSIANN

The PERSIANN (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) system uses a neural
network function classification/approximation procedures to compute an estimate of rainfall rate at each 0.25 ° x 0.25 ° pixel of the
GEO IR measurements (Hsu et al., 1997). An adaptive training feature facilitates updating of the network parameters whenever
independent estimates of rainfall are available, including those from PMW and AMW. The PERSIANN system was based on
GEO IR and later extended to include the use of both IR and daytime VIS imagery. As is the case for NOAA CMORPH and
NASA IMERG, there are several products within PERSIANN that cover various temporal and spatial domains. Most recently, PER-
SIANN was adopted by NOAA's Climate Data Record (CDR) program as one of its precipitation CDRs (Ashouri et al., 2015; Sadeghi
et al., 2021). PERSIANN CDR starts in 1983. Fig. 12D is the accumulated precipitation from PERSIANN for the same event as
provided for other precipitation products. The same regions of maximum rainfall are indicated, although PERSIANN is underesti-
mating the rainfall peaks compared to other products. In addition, the PERSIANN product is somewhat smoother than the others,
likely due to their use of IR only measurements in the retrieval.

GSMAP

Through their involvement with both the TRMM and GPM programs as well as the need to develop precipitation products to
support Japan and other Asian nations, Japan’s Aerospace Exploration Agency (JAXA), along with other Japanese partners, devel-
oped the Global Satellite Mapping of Precipitation (GSMaP) algorithm and suite of products (Kubota et al., 2007; Aonashi
et al.,, 2009). GSMaP is similar in philosophy to NASA's product suite, although the retrieval approach is somewhat different. First,
a precipitation detection method is applied (Seto et al., 2005; Kida et al., 2009) to separate the rain/no-rain pixels. The primary
difference between the detection methods over land from IMERG and GSMaP is that the rain/no-rain threshold value in JAXA's
approach is based on a climatological background whereas that of NASA is more of a static threshold. There are other fundamental
differences between the two techniques, however, both exploit the synergistic use of the TRMM/GPM radiometers and radars, and
then extend this to all of the PMW “constellation” radiometers. For comparison, Fig. 12E shows the GSMaP (version 8) rainfall
estimates during the same event as other products described above.

MRMS

In addition to satellite-based multisensor products, ground-based remote sensing methods also utilize blended approaches to
achieve improved precipitation estimation over single sensor estimates alone. There are a number of such products available
(e.g., Chen and Chandrasekar 2015a; Gou et al., 2020; Cifelli et al., 2024) but for the purposes of this discussion we will focus
on MRMS as it is one of the more popular ground-based multisensor precipitation systems and is commonly used in the validation
of various satellite QPE and numerical model quantitative precipitation forecasts.

As mentioned in Ground-Based Radars, the MRMS system produces a suite of QPE products that covers the conterminous US
and some outlying territories (Zhang et al., 2016a). The QPE products include radar-only, gauge adjusted radar, and a multi-sensor
product (MSQPE) that utilizes a combination of ground-based radar, rain gauges, satellite estimates, and numerical model forecasts
(Martinaitis et al., 2020). All are produced at 1-km resolution. The combination of observations in the MRMS multisensor product
generally provides more accurate QPE than the use of radar data alone, especially in areas where radar alone failed to detect precip-
itation due to significant beam blockage or poor coverage.
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Example Applications of Remote Sensing of Precipitation Data

Floods, rainfall-triggered landslides, and droughts are among the most widespread natural hazards on Earth, responsible for tens of
thousands of deaths and billions of dollars in property loss. In the U.S. alone, the combination of floods and droughts accounted for
over 20% of the annual billion-dollar disaster events between 1980 and 2024 (NOAA, 2024). To forecast and assess these hazards,
one generally requires accurate and prompt spatiotemporal information of precipitation. As mentioned, remote sensing techniques
including radars and satellites can provide unique ways to observe the spatial distribution of precipitation at various scales. In the
United States and a few other countries, ground radar based QPE systems are primary tools for real-time precipitation monitoring.
However, in many countries around the world, especially less-developed countries, satellite-based precipitation estimation may be
the best and only source of rainfall data due to a lack of surface observing networks (Adler et al., 2003). Naturally, the satellite
precipitation data is of potential use for monitoring flood, landslide and drought hazards over such data sparse areas.

Flood Monitoring and Prediction

Precipitation is required information for real-time forecasting of floods. A typical flood forecasting model system is usually based on
one or more hydrological models. These models can convert rainfall processes into land surface hydrological processes. The model
system can be as simple as a flood guidance index, which is defined as the amount of rain required over a given time and area to
produce bank-full conditions on small streams (Clark et al., 2014) and can be calculated using simple hydrological formulas and/or
hydrological models (Smith, 2003). For example, the National Weather Service (NWS) traditionally use flash flood guidance (FFG)
products based on radar-sensed precipitation products for forecasting flash floods (Clark et al., 2014). The NWS forecasters rely
primarily on basin-specific FFG products displayed within the flash flood monitoring and prediction system (FFMP) to provide
warnings of impending flash floods.

To better represent the underlying hydrological fluxes and storages in a more physical way, a sophisticated distributed hydro-
logical model is usually needed. One example is the NOAA National Water Model (NWM) that simulates observed and forecast
streamflow over the entire continental United States (CONUS), southern Alaska (Cook Inlet, Copper River Basin, and Prince Wil-
liam Sound regions), Hawaii, Puerto Rico and the US Virgin Islands (Cosgrove, 2016; Frame et al., 2021). The backbone of the
NWM is WRF-Hydro (Gochis et al., 2015), which is a parallelized distributed hydrologic model that can either be forced offline
using prescribed atmospheric forcing variables, or coupled to the Advanced Research version of the WRF (WRF-ARW) atmospheric
model (Skamarock et al., 2008). In addition to the NWM, NOAA forecasters also use other physically-based hydrologic modeling
systems, such as the Flooded Locations and Simulated Hydrographs (FLASH; Gourley et al., 2017). Ground-radar based MRMS
precipitation estimates are the key driver of both the NWM and FLASH for flood monitoring and prediction. In addition, NASA,
in partnership of University of Maryland, has developed a Global Flood Monitoring System by coupling the Variable Infiltration
Capacity (VIC) model with a runoff-routing model and using satellite remote sensing of precipitation products as inputs (Wu
etal, 2014).

Landslide and Debris Flow Forecasting

High-intensity rainfall processes caused by intense storms have great potential to trigger rapidly moving landslides and/or debris
flows, resulting in casualties and property damage across the world, especially in areas of complex terrain. Spatiotemporal precip-
itation data gained from remote sensing make it possible to conduct global-scale landslide hazard assessment.

Like flood forecasting, predicting rainfall-triggered landslides usually requires the rainfall rates and their history and a model
that, ideally, simulates the important watershed characteristics such as vegetation, soil properties, and terrain slope. The watershed
characteristics are especially important for anticipating post wildfire impacts where, depending on when the area was burned, may
be susceptible to landslides/debris flows for even short duration precipitation events (Oakley et al., 2023; Gourley et al., 2020).

One simple approach to map landslide susceptibility is to use satellite remote sensing, including remote sensing of precipitation,
and geographic information system (GIS) techniques using a GIS-based weighted linear combination method (Hong et al., 2007a)
and an adjusted empirical relationship between rainfall intensity-duration and landslide occurrence (Hong et al., 2007b). Kirsch-
baum et al. (2009) further improved this landslide susceptibility algorithm by introducing a stochastic method to forecast potential
landslides using global remote sensing precipitation products. A more sophisticated approach is to use process-based landslide
models to compute the stability of slope. There are many landslide models that potentially can be used for landslide forecasting,
e.g., Transient Rainfall Infiltration and Grid-based Regional Slope-stability (TRIGRS; Baum et al., 2008, 2010) and High Resolution
Slope Stability Simulator HIRESSS (Rossi et al., 2013). Recently, researchers have started to couple the landslide models with
distributed hydrological models to better represent the physical processes that cause both landslide and flood hazards (Ebel
et al.,, 2023). For example, Zhang et al. (2016b) developed the iCRESTRIGRS model by integrating a hydrological model with
the TRIGRS landslide model, which has been successfully applied to forecast rainfall-triggered landslides in North Carolina using
remotely sensing precipitation data as input.
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Probable Maximum Precipitation and Precipitation Frequency Estimation

Probable Maximum Precipitation (PMP and Precipitation Frequency (PF) both provide estimates of extreme precipitation; however,
they are not the same quantity and are aimed for different applications. PF is the probability (in a given year) of observing a precip-
itation event of a defined depth and duration at a particular location (e.g., 10% chance of observing 6 inches of rain over 3 hours).
PF estimates are disseminated by the NOAA Atlas 14 product and its future evolution, NOAA Atlas 15 (https://www.weather.gov/
owp/hdsc), which will be informed by climate variability.

Planning, design, and management of infrastructure including culverts, bridges, detention ponds, and sewers has long relied on
extreme rainfall statistics, such as the “100-year storm” and the so-called rainfall Intensity-Duration-Frequency (IDF) curves. In the
Us, these statistics are commonly disseminated by the NOAA Atlas 14 PF product (Perica et al., 2015), which is derived from histor-
ical rain gauge records that typically span several decades. However, the Atlas 14 product does not include data after 2012, and the
data record used in the early volumes of Atlas 14 was even shorter. While this product is currently the most reliable and widely used
design guidance of IDF statistics, there are growing concerns about this method’s uncertainty and inability. For example, the most
recent heavy rainfall events in a given region are not incorporated. The changing frequency and spatiotemporal patterns of heavy
rainfall events due to climate change are not taken into consideration. These may leave infrastructure “underdesigned” in the face of
current and future heavy rainfall events.

In contrast to PF, PMP represents the greatest depth of precipitation meteorologically possible for a given duration and design
watershed, or a given storm area at a particular location, at a particular time of year (World Meteorological Organization). PMP is
commonly used to establish design criteria for high-risk infrastructure such as dams and nuclear power plants. Similar to the PF
Atlas 14 methodology, almost all statistical PMP estimates are traditionally based on gauge records.

Recent advances in remote sensing of precipitation and long-term remote sensing precipitation products offer unprecedent
opportunities to depict the space-time structure of heavy rainfall at a high level of detail that cannot be addressed by gauge infor-
mation alone. Methods such as stochastic storm transposition (SST; Wright et al., 2013, 2020) have been demonstrated to be effi-
cient alternatives to derive rainfall IDF estimates. SST is distinct from Atlas 14's method as it relies on spatially complete rainfall
estimates, rather than long records of rain gage observations at one or several specific locations. In the context of SST or similar
approaches, the remote sensing precipitation datasets described in this chapter (20+ years of record) can sufficiently support the
estimates of “full-range” IDF statistics from 2-year to 1000-year return periods. The remote sensing precipitation datasets will
also bring new opportunities for PMP estimation (e.g., Yang et al., 2018) and for deriving long-term, high-resolution “storm
catalog”, especially over sparsely gauged or ungauged areas.

Drought Forecasting and Evaluation

Drought is an insidious natural hazard that can cause tremendous loss to agriculture, ecosystems, and other sectors. Reliable
drought monitoring and early warning are important for drought preparedness planning and mitigation to reduce potential
impacts, especially for early famine warnings (e.g., Funk, 2019). Traditionally, drought monitoring is usually based on drought
indices. Some of these well-known indices that use precipitation as input include Standardized Precipitation Index (SPI) and Palmer
Drought Severity Index (PDSI) (Palmer, 1965) among others. These drought indices have their own advantages and limitations due
to the multifaceted nature of drought: meteorological drought, hydrological drought, agricultural drought, and socioeconomic
(Wilhite, 2005). Therefore, combining or utilizing multiple indices can achieve better results. For example, the US Drought Monitor
(USDM) classifies drought conditions into different drought categories to provide composite drought information by integrating
multiple drought indices. The integrated indices have been widely used to help decision-making at local to state levels. In a recent
study, Hao et al. (2016) applied an ordinal regression model to characterize droughts in USDM drought categories based on several
drought indices, in which the probability of each drought category can be estimated. By taking advantage of real-time precipitation,
vegetation, and soil moisture data from remote sensing (e.g., AghaKouchak et al., 2015), these drought assessment and quantifica-
tion methods can provide prompt estimation of the severity of droughts to assist decision makers in taking timely and appropriate
action in order to save millions of lives in drought-affected areas.

Summary

Remote sensing techniques, including radars and satellites, are powerful in monitoring precipitation and atmospheric conditions at
good spatial and temporal resolutions. Over the past few decades, tremendous technological advancement has been made in quan-
titative remote sensing of precipitation, and numerous approaches have been developed to retrieve precipitation using various
remote sensing observations. Each approach has its own advantages that are dictated by the particular needs for the information.
In general, radars and/or the IR methods are used for short-term, high-spatial resolution applications such as flash flood prediction.
At global or climate scales, the PMW-based retrievals are usually preferred. In this regard, no single approach can be defined as the
best one, although in terms of instantaneous precipitation retrieval accuracy, it is generally accepted that the active MW methods
(i.e., radars) are the most accurate, followed by PMW approaches over ocean, PMW approaches over land, IR and VIS methods.
In addition, the ground-based radars have been used for precipitation observations for many decades, while the space-based
sensors were not necessarily designed for rainfall retrieval but more for tracking cloud features and monitoring atmospheric
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temperature and moisture. As was described, current and near-term missions are being designed specifically for precipitation moni-
toring and include AMW sensors (e.g., GPM mission, EarthCARE mission, and Atmosphere Observing System mission). The current
status of precipitation products now tends to focus on blended techniques which have proven to yield the most accurate results. As
we move into the second quarter of this century and an Al era, more advances are anticipated through new sensors such as CubeSats
or small satellites or multifrequency active/passive systems, through incorporating modern Al approaches and improvements in
estimating precipitation, especially light rain and falling snow over complex terrain regions. These advancements are sure to lead
to additional scientific insight into precipitation systems, to provide improved data for societal applications, and to better inform
NWP and climate models.

Disclaimer

This chapter is dedicated to former GPM Project Scientist Gail Skofronick-Jackson (1963—2021). Some parts of this chapter were adopted from the
first edition written by R.R. Ferraro, G. Skofronick-Jackson, Y. Hong, and K. Zhang. Scientific results and conclusions as well as any views and opinions
expressed herein are those of the author(s) and do not necessarily reflect the views of NOAA or the Department of Commerce.
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