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Abstract
Conformal prediction builds marginally valid prediction intervals that cover the unknown outcome of a randomly 
drawn test point with a prescribed probability. However, in practice, data-driven methods are often used to 
identify specific test unit(s) of interest, requiring uncertainty quantification tailored to these focal units. In such 
cases, marginally valid conformal prediction intervals may fail to provide valid coverage for the focal unit(s) 
due to selection bias. This article presents a general framework for constructing a prediction set with finite- 
sample exact coverage, conditional on the unit being selected by a given procedure. The general form of our 
method accommodates arbitrary selection rules that are invariant to the permutation of the calibration units 
and generalizes Mondrian Conformal Prediction to multiple test units and non-equivariant classifiers. We also 
work out computationally efficient implementation of our framework for a number of realistic selection rules, 
including top-K selection, optimization-based selection, selection based on conformal p-values, and selection 
based on properties of preliminary conformal prediction sets. The performance of our methods is 
demonstrated via applications in drug discovery and health risk prediction.
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1 Introduction
Conformal prediction is a versatile framework for quantifying the uncertainty of any black-box 
prediction model, by issuing a prediction set that covers the unknown outcome with a prescribed 
probability. Formally, suppose the task is to predict an outcome Y ∈ Y based on features X ∈ X . 
Given a set of calibration data {(Xi, Yi)}

n
i=1 and the features of a new test point Xn+1, conformal 

prediction builds upon a given prediction model and delivers a prediction set 􏽢Cα,n+1 ⊆ Y at level 
α ∈ (0, 1), which obeys

P Yn+1 ∈ 􏽢Cα,n+1

􏼐 􏼑
≥ 1 − α, (1) 

as long as {(Xi, Yi)}
n+1
i=1 are exchangeable (e.g. when they are i.i.d. samples). The probability in (1) is 

over both the calibration data and the test point (Lei et al., 2018; Vovk et al., 2005).
With this finite-sample, distribution-free guarantee, the conformal prediction set 􏽢Cα,n+1 de

scribes a range of plausible values the unknown outcome Yn+1 may take, thereby expected to in
form downstream decision-making based on the black-box prediction model. With such a 
promise, methods for constructing marginally valid—in the sense of (1)—prediction sets have 
been developed for various problems; see e.g. Angelopoulos and Bates (2021) for a review.
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In many downstream applications, however, people are often only interested in a selective sub
set of units. For example, practitioners may only act upon a unit if it exhibits an interesting prop
erty (Levitskaya, 2023; Olsson et al., 2022; Sokol et al., 2024), or focus only on a subset of test 
units picked by a complicated data-dependent process such as resource optimization (Castro & 
Petrovic, 2012; Gocgun & Puterman, 2014; Kemper et al., 2014; Svensson et al., 2018). It would 
be misleading for the practitioners if the prediction sets fail to deliver the promised coverage guar
antee for the selected unit(s). Let us discuss a few applications where such cases may arise. 

• In drug discovery, an important task is to predict the binding affinity of a drug candidate to a 
disease target, which informs subsequent drug prioritization (Laghuvarapu et al., 2024). 
Among many drug candidates, scientists may only focus on those with highest predicted af
finities, or those selected by a false discovery rate (FDR)-controlling procedure (Jin & 
Candès, 2023), or whose prediction sets only cover high values (Svensson et al., 2017), or 
those optimizing resource usage (Svensson et al., 2018). It may lead to a waste of resources 
if the prediction sets for the selected drugs fail to cover the actual binding affinities with an 
exceedingly high chance.

• In business decision-making, companies may take different inventory decisions based on 
whether a conformal prediction set suggests a strong demand or a weak demand 
(Levitskaya, 2023). Similarly, it will be problematic if a strong-demand prediction cannot 
cover with at least 1 − α of the time.

• In disease diagnosis, Olsson et al. (2022) suggest human intervention if the prediction set for a 
disease status is too large (this implicitly declares confidence in small prediction sets; see simi
lar ideas in Ren et al., 2023; Sokol et al., 2024). However, it would be concerning if, with more 
than a chance α, the small-sized prediction sets—‘approved’ as confident—miss the true dis
ease status.

• In healthcare management, patients may be sent to different healthcare categories based a pro
gram that optimizes some performance measure (such as waiting time) subject to certain con
straints, such as budget, capacity, or fairness (Castro & Petrovic, 2012; Gocgun & Puterman, 
2014; Kemper et al., 2014). The subset of patients in each category is therefore 
data-dependent.

In all these examples, it is highly desirable that a prediction set should cover the unknown outcome 
for a unit of interest with a prescribed probability. This motivates a stronger, selection-conditional 
guarantee. Supposing there are m ≥ 1 test units Dtest = {Xn+j}

m
j=1, we aim for

P Yn+j ∈ 􏽢Cα,n+j | j ∈ S(Dcalib, Dtest)
􏼐 􏼑

≥ 1 − α, (2) 

where Dcalib = {(Xi, Yi)}
n
i=1 is the calibration data, and S( · , · ) is a data-driven process to decide 

the units of interest, which maps the calibration and test data to a subset of [m] := {1, . . . , m}. 
Our target is similar in spirit to post-selection inference (Lee et al., 2016; Tibshirani et al., 
2018), but we consider predictive inference settings and develop distinct techniques; see online 
supplementary material Section S1.1 for more discussion. Throughout, we focus on settings where 
the prediction sets are constructed after S(Dcalib, Dtest) is determined. By separating the selection 
process from the (post hoc) uncertainty quantification step, we leave the freedom of defining selec
tion rules to the practitioners.

A prediction set with marginal validity (1) does not necessarily cover an unknown outcome con
ditional on being of interest as in (2). Such a selection issue has recently been raised in the literature of 
predictive inference: through analysis of a real drug discovery dataset, Jin and Candès (2023, Section 
1) demonstrate that more than 30% of seemingly promising prediction sets (in the sense that 
􏽢Cα,n+j = {active}) miss the actual outcomes when the nominal marginal miscoverage rate is 
α = 0.01. We shall see more examples of this issue in our numerical experiments with various selec
tion processes. New techniques are therefore needed for constructing prediction sets achieving (2).
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1.1 Exchangeability via reference sets
Accounting for selection in conformal prediction is a delicate task since it breaks exchangeability. 
The core of conformal prediction is to leverage the exchangeability among the calibration and test 
data, such that their ‘prediction residuals’, referred to as nonconformity scores, are comparable in 
distribution (see Section 3.1 for more details). The calibration scores therefore inform the magni
tude of uncertainty in a new test point (Vovk et al., 2005). However, given a selection event, the 
calibration data are no longer exchangeable with the test point, leading to violation of the cover
age guarantee mentioned above. In general, the selection-conditional distributions of these scores 
are complex since the selection event can be highly data-dependent.

Such a challenge motivates our new framework, named JOint Mondrian Conformal Inference 
(JOMI), which builds prediction sets that achieve selection-conditional coverage, with (2) as a spe
cial case. As visualized in Figure 1, our key idea is to find a ‘reference set’—a data-dependent subset 
of calibration data that remain exchangeable with respect to the new test point conditional on the 
selection event. This reference set thus provides calibrated quantification of uncertainty for a se
lected unit. The mechanism we devise accommodates arbitrary selection rules S(Dcalib, Dtest) 
that are invariant to permutations of data in Dcalib and can be computed efficiently for a wide range 
of commonly used selection rules.

We also note that the selection-conditional coverage (2) may be implied by other stronger no
tions such as conditional coverage: P(Yn+1 ∈ 􏽢Cα,n+1 | Xn+1 = x) ≥ 1 − α for P-almost all x ∈ X . 
Conditional coverage implies (2) if {(Xi, Yi)}

n+1
i=1 are mutually independent and the selection rule 

only depends on test features. However, it is not achievable by finite-length prediction intervals 
without distributional assumptions (Barber et al., 2021; Vovk et al., 2005), and practical selection 
rules may also depend on other information. Given these considerations, we may view (2) as a ‘re
laxed’ version of conditional coverage that is both achievable and relevant for practical use.

1.2 Preview of contributions
In Section 3, we introduce the general formulation of JOMI, including the construction of refer
ence set and its use in deriving a selection-conditionally valid prediction set. We prove that under 
exchangeability, the prediction set 􏽢Cα,n+j produced by JOMI covers Yn+j with probability at least 
1 − α conditional on a selection event. The selection event can be ‘test unit j is selected’, which leads 
to (2); it can also be more granular, such as ‘test unit j is selected, and there are k selected test units’. 
This framework is valid for any selection rule S(Dcalib, Dtest) that is permutation-invariant to 
Dcalib, without any modelling assumptions on the data generating process.

In Section 4, we study the computational aspect of JOMI. We show that when |Y| < ∞, our 
method can be computed with a worst-case complexity of O(|Y|mn) times that of the selection 
rule. Moreover, for general continuous outcome space Y, we work out efficient implementation 
of JOMI for a number of selection processes that may be of practical interest, including: 

• Covariate-dependent selection. When the selection rule does not involve {Yi}
n
i=1, the compu

tation complexity of our generic method is (at most) O(mn) times that of the selection rule. 
This implies efficient implementation for a wide range of problems, including various forms 
of top-K selection (for which the computation can be further reduced to O(m + n)) and selec
tion based on complicated constrained optimization programs. As a special case, we recover 
the method of Bao et al. (2024) for top-K selection among test data and provide valid solu
tions to other ranking-based selection methods attempted in their work.

• Conformal p-value-based selection. We derive efficient implementation for a class of selection 
rules based on thresholding conformal p-values with ‘stopping time-type’ cutoffs. For in
stance, our prediction set is finite-sample exactly valid for units selected by the Conformal 
Selection method (Jin & Candès, 2023), which is studied in Bao et al. (2024) with approxi
mate FCR guarantee.

• Selection based on preliminary conformal prediction sets. In addition, we derive a general, ef
ficient instantiation when selecting units whose marginal prediction sets demonstrate certain 
interesting properties, such as being of a short length, or having a lower bound above some 
threshold. Our method can be useful for re-calibrating the uncertainty quantification of 
such seemingly promising units.
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Finally, we demonstrate the application of our methods via several realistic selection rules that 
may occur in drug discovery (Section 5) and health risk prediction (Section 6). Our results 
show that marginal prediction sets may undercover or overcover the selected units, while our 
methods always achieve the promised coverage guarantees.

Due to space constraints, we delegate a comprehensive literature review to online 
supplementary material Section S1.1. We end this section with some useful notations.

Notations. For a positive integer n ∈ N+, write [n] := {1, . . . , n}. We write the data pair as 
Z = (X, Y), so that the calibration data are Dcalib = {Zi}

n
i=1. For any j ∈ [m], we define the aug

mented calibration set as Dj = Dcalib ∪ {Zn+j} and the remaining test set as Dc
j = Dtest\{Xn+j}. The 

unordered set of Dj is denoted [Dj] = [Z1, . . . , Zn, Zn+j], which provides the order statistics.

2 Problem setup
Following the split conformal prediction framework (Lei et al., 2018; Vovk et al., 2005), we build 
our prediction sets based on a prediction model fitted on a training set Dtrain, assuming Dtrain is 
independent of the calibration and test data. In what follows, we always condition on Dtrain, there
by treating the fitted models as fixed. In this section, we formally introduce the selection- 
conditional coverage guarantees and compare them to other related notions in the literature.

2.1 Selection-conditional coverage
Recall that j ∈ [m] is a focal unit if j ∈ 􏽢S, where 􏽢S = S(Dcalib, Dtest) ⊆ [m] is obtained from a selec
tion rule S that depends on the observed data. Its potential dependence on Dtrain is clear since we 
treat Dtrain as fixed. Without loss of generality, we posit that S is a deterministic function; when the 
selection rule is randomized, one can condition on its randomness and follow our framework.

For each test unit j, we wish to construct a prediction set 􏽢Cα,n+j ⊆ Y such that

P Yn+j ∈ 􏽢Cα,n+j | j ∈ 􏽢S, 􏽢S ∈ S
􏼐 􏼑

≥ 1 − α, (3) 

where α ∈ (0, 1) is the confidence level, and S ⊆ 2[m] is some pre-specified collection of subsets 
of [m]. We call S the selection taxonomy in what follows. Different choices of S lead to a spec
trum of granularity in the conditioning event. For instance, taking S = 2[m] puts no restrictions 
on the selection set, giving rise to the guarantee (2) introduced in the beginning (coverage con
ditional on a unit being selected). Taking S = {S ⊆ [m] : |S| = r} for some r ≤ m achieves cover
age conditional on selecting a specific number of units. Finally, taking S = {S0} for some 
S0 ⊆ [m] achieves coverage conditional on selecting a specific set; this is similar to the coverage 
guarantee conditional on a selected model in Lee et al. (2016) for high-dimensional parameter 
inference.

(a) (b) (c) (d)

Figure 1. Visualization of the intuition behind the reference set. (a) Marginally, the calibration data (shaded) are 
exchangeable with respect to the test point (no shade). (b) The calibration data are not exchangeable with respect to 
the test point (shaded slash) given a selection event. (c) We find calibration data which, when posited as a ‘test 
point’, would lead to the same selection event. (d) The reference set consists of calibration data that are 
exchangeable with respect to the test point given selection, and we use them to construct JOMI prediction sets.
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In words, the selection-conditional coverage guarantee (3) can be interpreted as follows: 
imagine there are infinitely many independent realizations of Dcalib and Dtest; among those realiza
tions where the selection event of interest happens, the prediction set 􏽢Cα,n+j will cover the true out
come for at least 1 − α fraction of times. Here, S is introduced to provide practitioners with the 
language to specify the granularity of the conditioning event, allowing them to tailor the guarantee 
to their specific needs. Moreover, it allows us to properly describe the relationship between 
selection-conditional coverage and FCR control, as we will see below.

2.2 Relations among notions of selective coverage
Before introducing our methods, we take a moment to compare different notions of selective 
coverage. Readers who are more interested in our methodology may skip the remaining of this 
section.

Our first observation is that (3) implies (2) under appropriate conditions. The proof of the next 
proposition is in online supplementary material Section S4.1.

Proposition 1 Suppose a family of prediction sets {􏽢C(ℓ)
α,n+j}ℓ∈L satisfy P(Yn+j ∈ 􏽢C(ℓ)

α,n+j | j ∈ 
􏽢S, 􏽢S ∈ Sℓ) ≥ 1 − α for a set of disjoint taxonomies {Sℓ}ℓ∈L such that 

∪ℓ∈L Sℓ = 2[m]. Define the prediction set 􏽢Cα,n+j = 􏽢C(ℓ)
α,n+j when j ∈ 􏽢S and 

􏽢S ∈ Sℓ. Then P(Yn+j ∈ 􏽢Cα,n+j | j ∈ 􏽢S) ≥ 1 − α.

To distinguish the selection-conditional coverage in (3) and that in (2), we refer to (3) as strong 
selection-conditional coverage and (2) as weak selection-conditional coverage.

Another widely used post-selection guarantee is the false coverage rate (FCR) (Benjamini & 
Yekutieli, 2005), defined as the expected proportion of selected units missed by the prediction set:

FCR := E

􏽐
j∈[m] 1{j ∈ 􏽢S, Yn+j ∉ 􏽢Cα,n+j}

|􏽢S| ∨ 1

􏼢 􏼣

, (4) 

where a ∨ b = max {a, b} for any a, b ∈ R. Previous works (Bao et al., 2024; Gazin et al., 2025; 
Weinstein & Ramdas, 2020) mainly focus on constructing prediction sets with FCR control. 

However, with m = 1, it holds that FCR = P(j ∈ 􏽢S, Yn+j ∉ 􏽢Cα(Xn+j)) ≤ α for any marginally valid 
prediction set. Thus, FCR does not always address the selection issue.

The following proposition shows that strong selection-conditional coverage implies FCR con
trol with a proper choice of selection taxonomy, whose proof is in online supplementary 
material Section S4.2.

Proposition 2 Suppose a family of prediction sets {􏽢C(ℓ)
α,n+j}ℓ∈L satisfy P(Yn+j ∈ 􏽢C(ℓ)

α,n+j | j ∈ 
􏽢S, 􏽢S ∈ Sℓ) ≥ 1 − α for a set of disjoint selection taxonomies {Sℓ}ℓ∈L

such that ∪ℓ∈L Sℓ = 2[m], and for each ℓ ∈ L, Sℓ ⊆ {S ⊆ [m] : |S| = r(ℓ)} 

for some 0 ≤ r(ℓ) ≤ m. Define the prediction set 􏽢Cα,n+j = 􏽢C(ℓ)
α,n+j when j ∈ 

􏽢S and 􏽢S ∈ Sℓ. Then its FCR (4) is upper bounded by α · P(􏽢S ≠ ∅) ≤ α.

The selection taxonomies in Proposition 2 require the selection set to be of a specific size, with
out other conditions on its form. This can be automatically satisfied by some selection rules such as 
top-K selection. Extending Proposition 2 to non-exact scenarios yields useful insights in practice. 
For instance, consider the family of taxonomies with Sℓ ⊆ {S ⊆ [m] : r(ℓ) − δ ≤ |S| ≤ δ + r(ℓ)} for 
some small δ ∈ N+. When the selection size is stable, weak selection-conditional coverage implies 
P(Yn+j ∈ 􏽢Cα,n+j | j ∈ 􏽢S, 􏽢S ∈ Sℓ) ≈ 1 − α, which leads to FCR ≈ α · P(􏽢S ≠ ∅). This approximate re
sult helps explain several phenomena in our numerical experiments: first, the FCR is usually con
trolled empirically by our method; second, we sometimes observe significantly lower FCR than the 
selection-conditional coverage when P(􏽢S = ∅) is moderately large. As we shall see later, a version 
of our proposed method achieves coverage guarantees conditional on being selected and the selec
tion size, which requires checking a slightly more complex condition in the reference set 
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construction when the selection size varies. The computation of such prediction sets can be done 
efficiently for all the instances provided in the article, with the corresponding worst-case compu
tational complexity explicitly stated in each section. One potential concern, though, is that the 
additional condition on the selection size may reduce the number of calibration data points in 
the reference set, especially when the selection step is highly variable. This could potentially 
lead to wider and/or unstable prediction intervals.

As a side note, the weak selection-conditional coverage does not necessarily imply FCR control, 
although in some special cases both can be true (see, e.g. Bao et al., 2024 for such examples). We 
put this as a proposition below, with a counterexample given in online supplementary material 
Section S4.3.

Proposition 3 There exists an instance and prediction sets {􏽢Cα,n+j : j ∈ 􏽢S} that satisfy the 
weak selection-conditional coverage at level α but violate the FCR control 
at level α.

We end this section with a remark on the interpretation of selection-conditional coverage and 
FCR control.

Remark 1 (Interpretation of selection-conditional coverage and FCR control). As shown by 
Proposition 2, the guarantee in (3) is stronger than FCR control (for a proper choice 
of the selection taxonomy). In fact, the former has often been used as a device to 
derive the latter in the literature (e.g. Bao et al., 2024; Weinstein et al., 2013).

In terms of interpretation, there are two main differences between selection- 
conditional coverage and FCR. First, the guarantee of FCR is averaged over all 
the selection events, including the case of empty selection set where the false 
coverage proportion is by definition zero. Therefore, even with FCR control, 
one could still suffer from a high false coverage proportion when the selection 
set is non-empty as long as this is compensated by the cases where the selection 
set is empty. On the other hand, selection-conditional coverage delivers guar
antees conditioning on selection events of interest, which prevents the afore
mentioned undesired situation. Second, FCR control provides a guarantee 
that is averaged over all the selected units: it could be possible that for some 
selected units, the coverage is much lower than the nominal level, and for 
others the coverage is much higher, so that the average coverage over all the 
selected units is controlled at the nominal level. In contrast, selection- 
conditional coverage provides guarantees specific to each selected units.

Finally, we note that the distinction between the two concepts can be 
asymptotically negligible in special cases. We refer to Lemma S1 in the 
online supplementary material for such an instance.

3 JOMI: a unified framework
3.1 Warm-up: split conformal prediction
To warm up, we briefly summarize the split conformal prediction (SCP) method (Lei et al., 2018; 
Vovk et al., 2005), and how it achieves finite-sample coverage under exchangeability.

SCP starts with a nonconformity score function V : X × Y 7! R determined by Dtrain, so that 
V(x, y) informs how well a hypothetical value y ∈ Y conforms to a machine prediction. For in
stance, one may set V(x, y) = |y −􏽢μ(x)|, where 􏽢μ(x) is regression function fitted on Dtrain. Other 
popular choices include conformalized quantile regression (CQR, Romano et al., 2019) for regres
sion and adaptive prediction sets (APS, Romano et al., 2020) for classification.

Compute Vi = V(Xi, Yi) for i ∈ [n]. The split conformal prediction set for test unit j ∈ [m] is

􏽢CSCP
α,n+j = y : V(Xn+j, y) ≤ Quantile 1 − α; {Vi}

n
i=1 ∪ { + ∞}

 􏼁􏼈 􏼉
, 

where Quantile(1 − α; · ) is the (1 − α)th empirical quantile of the set in the second argument. 

When (Z1, . . . , Zn, Zn+j) are exchangeable, 􏽢CSCP
α,n+j achieves (1) (Vovk et al., 2005).
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It helps motivate our approach to see the ideas behind the validity of 􏽢CSCP
α,n+j. In words, 􏽢CSCP

α,n+j finds 
hypothesized values of y that make V(Xn+j, y) look similar to calibration scores. Note that

P Yn+j ∈ 􏽢CSCP
α,n+j

􏼐 􏼑
= P Vn+j ≤ Quantile 1 − α; {Vi}

n
i=1 ∪ {Vn+j}

 􏼁 􏼁
, (5) 

where Vn+j = V(Xn+j, Yn+j). Recall the unordered set [Dj] = [Z1, . . . , Zn, Zn+j] where 
Zi = (Xi, Yi). Conditional on the event {[Dj] = [z1, . . . , zn+j]}, the only randomness is in the order
ing of (Z1, . . . , Zn, Zn+j); due to exchangeability, the probability of Zn+j taking on each value in 
z1, . . . , zn, zn+j is equal. Therefore, conditional on [Dj] = [z1, . . . , zn+j], the chance of Vn+j being 
no greater than the (1 − α)th quantile of [v1, . . . , vn, vn+j], where vi = v(zi), is at least 1 − α, i.e.

P Vn+j ≤ Quantile 1 − α; {vi}
n
i=1 ∪ {vn+j}

 􏼁
| [Dj] = [z1, . . . , zn+j]

 􏼁
≥ 1 − α. (6) 

This leads to (5) by the tower property. Therefore, inverting the criterion on the right-hand side of 
(5) gives a valid prediction set for Yn+j.

The reason why vanilla SCP may fail to achieve selection-conditional coverage like (3) is that, 
conditional on the selection event, the data points {Z1, . . . , Zn, Zn+j} are no longer exchangeable. 
In other words, in (6), it is unclear how Vn+j is distributed over v1, . . . , vn+j if we additionally con
dition on the selection event. As such, a natural remedy is to find a subset of calibration data that 
are ‘exchangeable’ with respect to the test point conditioning on the selection event, and leverage 
their scores to calibrate the prediction of the test unit. We introduce our methods below.

3.2 Conformal inference via a reference set
Fix a test unit j ∈ [m]. Recall that Zn+j(y) = (Xn+j, y) is the imputed test point with a hypothesized 
response y ∈ Y. The core of our method is to find calibration points that are exchangeable with 
respect to the test point conditional on the selection set. At a high level, they are calibration units 
i ∈ [n] that are ‘indistinguishable’ with j ∈ [m], in the sense that treating Zn+j(y) as a calibration 
point and Zi as a test point results in the same selection event.

We formalize this idea via a ‘swap’ operation. For any calibration unit i ∈ [n], we define the 
‘swapped’ calibration data Dswap(i,j)

calib (y) and the swapped test data Dswap(i,j)
test as follows:

D
swap(i,j)
calib (y) = (Zswap(i,j)

1 (y), Zswap(i,j)
2 (y), . . . , Zswap(i,j)

n (y)),

D
swap(i,j)
test = (Xswap(i,j)

n+1 , Xswap(i,j)
n+2 , . . . , Xswap(i,j)

n+m ), 

where for k ∈ [n] and ℓ ∈ [m],

Zswap(i,j)
k (y) = Zn+j(y) k = i,

Zk k ≠ i.

􏼚

Xswap(i,j)
n+ℓ = Xi ℓ = j,

Xn+ℓ ℓ ≠ j.

􏼚

That is, Dswap(i,j)
calib (y) and Dswap(i,j)

test are the calibration and test data if we treat Zi as the jth test point, 
and Zn+j(y) as the ith calibration point. Figure 2 is an illustration of the swap operation.

Applying the same selection rule S to the swapped data, we define the swapped selection set with 
the hypothesized y as

􏽢Sswap(i,j)(y) = S D
swap(i,j)
calib (y), D

swap(i,j)
test

􏼐 􏼑
.

Then, we define the ‘reference set’ for achieving (3) with taxonomy S as

􏽢Rn+j(y) = i ∈ [n] : j ∈ 􏽢Sswap(i,j)(y), and 􏽢Sswap(i,j)(y) ∈ S
􏽮 􏽯

.
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In words, the reference set is the collection of calibration points i ∈ [n] such that, after swapping 
unit i and n + j, the (posited) test point j (which is the original unit i) remains in the focal set and the 
focal set remains in S. We use the notation 􏽢Rn+j(y) to emphasize that 􏽢Rn+j(·) is a data-dependent 
mapping from Y to the power set of [n].

With all the preparation, we define our prediction set for Yn+j as

􏽢Cα,n+j = y ∈ Y : V(Xn+j, y) ≤ Quantile 1 − α; {Vi}
i∈􏽢Rn+j(y)

∪ { + ∞}
􏼒 􏼓􏼚 􏼛

. (7) 

As we shall show shortly, our prediction set (7) achieves near-exact coverage when the noncon
formity score is continuous and the reference set is of moderate size. In addition, we can achieve 
exact coverage by introducing extra randomness:

􏽢Crand
α,n+j

= y :

􏽐

i∈􏽢Rn+j(y)
1{V(Xn+j, y) < Vi} + Uj · (1 +

􏽐

i∈􏽢Rn+j(y)
1{V(Xn+j, y) = Vi})

1 + |􏽢Rn+j(y)|
≤ 1 − α

⎧
⎨

⎩

⎫
⎬

⎭
,

(8) 

where U1, . . . , Um are i.i.d. random variables drawn from Unif[0, 1] independent of the data. In 
online supplementary material Sections S1.2 and S1.3, we discuss in detail the connection of our 
method to Mondrian conformal prediction (MCP) and comparison with the BY procedure 
(Benjamini & Yekutieli, 2005). While the BY procedure is a natural and heuristic solution to post- 
selection inference, it suffers from over-conservativeness and non-adaptivity to the selection event.

3.3 Theoretical guarantees
Theorem 1 confirms the conditional validity of our prediction sets 􏽢Cα,n+j in (7) and 􏽢Crand

α,n+j in (8).

Theorem 1 Suppose S(Dcalib, Dtest) is invariant to permutations of Dcalib, and that 
{Zi}

n
i=1 ∪ {Zn+j} are exchangeable conditional on {Xn+ℓ}ℓ∈[m]\{j} for any 

j ∈ [m]. Then, for any selection taxonomy S, the following statements hold. 

(a) 􏽢Cα,n+j defined in (7) obeys

P Yn+j ∈ 􏽢Cα,n+j | j ∈ 􏽢S, 􏽢S ∈ S
􏼐 􏼑

≥ 1 − α. (9) 

Furthermore, if ties among V1, . . . , Vn, Vn+j occur with probability zero, 
then

P Yn+j ∈ 􏽢Cα,n+j | j ∈ 􏽢S, 􏽢S ∈ S
􏼐 􏼑

≤ 1 − α + E
1

1 + |􏽢Rn+j(Yn+j)|

􏼢 􏼣

.

Figure 2. Graphical illustration of Dswap(i,j)
calib (y ) and Dswap(i,j)

test .
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(b) The randomized prediction set 􏽢Crand
α,n+j defined in (8) satisfies

P(Yn+j ∈ 􏽢Crand
α,n+j | j ∈ 􏽢S, 􏽢S ∈ S) = 1 − α.

We defer the detailed proof of Theorem 1 to online supplementary material Section S4.4 and pro
vide some intuition here. Similar to the ideas of SCP in Section 3.1, the key fact we rely on is that, 
plugging in the true value y = Yn+j, data in the reference set and the new test point are still exchange
able conditional on the selection event. To be specific, to prove (9), we are to show a stronger result:

P Vn+j ≤ Quantile 1 − α; {Vi}
i∈􏽢Rn+j(Yn+j)

∪ {Vn+j}
􏼒 􏼓 􏼌

􏼌
􏼌 j ∈ 􏽢S, 􏽢S ∈ S, [Dj], Dc

j

􏼒 􏼓

≥ 1 − α, (10) 

where we recall [Dj] = [Z1, . . . , Zn, Zn+j] and Dc
j = Dtest\{Xn+j}. For any fixed values 

z1, . . . , zn, zn+j, once given the unordered values [Dj] = [dj] = [z1, . . . , zn, zn+j] and the values of 
other test points {Xn+ℓ}ℓ≠j, the only randomness is in the ordering of Z1, . . . , Zn+j among 

[z1, . . . , zn, zn+j]. Meanwhile, we show that our reference set 􏽢Rn+j(·) is constructed in a delicate 
way such that the (unordered set of) scores {Vi}

i∈􏽢Rn+j(Yn+j)
∪ {Vn+j} is fully determined by 

[z1, . . . , zn, zn+j]. That is, 􏽢R+
n+j := [Vi : i ∈ 􏽢Rn+j(Yn+j) ∪ {n + j}] is fully determined given [dj]. 

Then, (10) reduces to

P Vn+j ≤ Quantile 1 − α; 􏽢R+
n+j

􏼐 􏼑 􏼌
􏼌
􏼌 j ∈ 􏽢S, 􏽢S ∈ S, [Dj], Dc

j

􏼐 􏼑
≥ 1 − α, 

Finally, by the exchangeability of Z1, . . . , Zn, Zn+j, the probability of Vn+j taking on any value in 
􏽢R+

n+j is equal given [Dj] and Dc
j , leading to the validity in Theorem 1 via Bayes’ rule.

4 Computationally tractable instances
So far, we have presented a general framework for constructing valid prediction sets conditional 
on general selection events. However, computing the prediction sets according to their definition 
requires looping over all possible values of y ∈ Y, which can be computationally intractable. When 
|Y| is finite (and relatively small), our proposed method can be efficiently implemented according 
to its definition; the corresponding computational complexity is at most O(|Y|mn) times the com
plexity of the selection rule.

In this section, we instantiate our general procedure beyond the small |Y| setting with concrete 
examples where special structures enable efficient computation. We focus on three classes of selec
tion rules that can be of practical interest: selection using only the covariates, selection based on 
conformal p-values, and selection based on conformal prediction sets. When practitioners are will
ing to slightly modify the selection rule to improve computation efficiency, they may refer to online 
supplementary material Section S5.4 where we discuss extensions to simplify the construction of 
prediction sets by further splitting the calibration data.

4.1 Covariate-dependent selection rules
We first consider covariate-dependent selection rules, i.e. when S(Dcalib, Dtest) is only a function of 
{Xi}

n+m
i=1 . Under such rules, the reference set no longer depends on y; we shall suppress the depend

ence on y and write 􏽢Rn+j(y) ≡ 􏽢Rn+j throughout this subsection.
Here, 􏽢Rn+j can be efficiently computed by looping over i ∈ [n]. The complete procedure for con

structing 􏽢Cα,n+j and 􏽢Crand
α,n+j with an arbitrary covariate-dependent selection rule is summarized in 

Algorithm 1. Its overall computational complexity is O(mn · CS), with CS being the complexity 
of the selection process.

By Theorem 1, the output of Algorithm 1 is valid as long as the selection rule does not rely on the 
ordering of the calibration points. This includes many commonly used selection rules: 
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1. Top-K selection. The K test units with the highest scores S(Xi) are selected, where S : X → R is 
a pre-trained score function. For example, S(Xi) may be the predicted binding affinity for a 
drug with chemical structure Xi or the predicted health risk of a patient with features Xi, 
and the drug discovery process or clinical system admits a fixed number of new units.

2. Selection based on joint quantiles. A unit j is selected if its score S(Xn+j) surpasses the qth 
quantile of both the calibration and test scores {S(Xi)}

n+m
i=1 . For instance, a scientist may be in

terested in toxicities of drug candidates in Dtest where those in Dcalib have been tested, but they 
only focus on drugs with highest predicted activities S(Xi) in the entire library.

3. Selection based on calibration quantiles. A test unit j is selected if its score S(Xn+j) surpasses 
the qth quantile of calibration scores {S(Xi)}

n
i=1. This may happen when a doctor uses the pre

dicted health risks of existing patients to determine a normal range, and picks test units an
ticipated to have a relatively extreme health risk.

4. Selection by black-box optimization procedures. A test unit j is selected by running an arbitrary 
(even black-box) optimization program that does not involve {Yi}i∈I calib

. One such example is 
optimization under constraints: apart from the score S(Xn+j), each unit j is associated with a 

cost Cn+j, and 􏽢S is the subset of test units that maximizes 
􏽐

j∈􏽢S
S(Xn+j) subject to 

􏽐

j∈􏽢S
Cn+j ≤ c, where c reflects the total budget. This may happen in healthcare management 

systems that optimize resources subject to constraints and send patients to different care cat
egories, or in candidate screening for job interviews subject to budget and diversity constraints. 
More generally, in drug discovery, scientists may run a complex Bayesian optimization algo
rithm to select the next batch of drugs to evaluate (Pyzer-Knapp, 2018), which may be viewed 
as a black box process. No matter how complicated these optimization programs are, as long 
as they do not involve calibration labels, JOMI supports efficient uncertainty quantification 
afterwards. We will see some stylized examples in our numerical experiments.

We additionally show in online supplementary material Section S2 that we can further improve the 
computational efficiency of JOMI for rules (1)–(3) by deriving exact forms of the reference sets, 
where in each case the computation complexity is O( max {m, n}). We also note that rules 
(1)–(2) were considered in Bao et al. (2024), where they propose methods that achieve (2) and 
FCR control. The prediction sets proposed therein coincide with ours, and our results imply 
that they in fact achieve the strong selection-conditional coverage in (3) for free.

4.2 Selection based on conformal p-values
The second class of selection rules we study concern selecting units whose outcomes satisfy certain 
conditions while controlling some type-I error. To this end, the test units are selected by 

Algorithm 1 JOMI for arbitrary covariate-dependent selection rules

Input: Calibration data Dcalib; test data Dtest; miscoverage level α; nonconformity score V(·, ·); selection rule S; 
selection taxonomy S; form of prediction set ∈ {dtm,rand}.

Compute 􏽢S = S(Dtrain, Dtest).

for j ∈ 􏽢S do

Initialize 􏽢Rn+j = ∅.

for i = 1, . . . , n do
􏽢Rn+j = 􏽢Rn+j ∪ {i} if j ∈ 􏽢Sswap(i,j) and 􏽢Sswap(i,j) ∈ S.

if form = dtm then
􏽢Cα,n+j =

􏽮
y ∈ Y : V(Xn+j, y) ≤ Quantile(1 − α; {Vi}

i∈􏽢Rn+j
∪ {+∞})

􏽯
.

if form = rand then

Sample Uj ∼ Unif[0, 1].

􏽢Cα,n+j ←

􏼨

y :

􏽐

i∈􏽢Rn+j
1{V(Xn+j, y) < Vi} + Uj · (1 +

􏽐

i∈􏽢Rn+j
1{V(Xn+j, y) = Vi})

1 + |􏽢Rn+j|
≤ 1 − α

􏼩

Output: {􏽢Cα,n+j}
j∈􏽢S

.
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thresholding a class of conformal p-values, where each p-value is computed via contrasting a test 
point with the calibration data. As such, the selection rule can be complicated and asymmetric.

We will follow the framework of Jin and Candès (2023) to define the p-values and selection 
rules, who study the problem of discovering test units with large outcomes. Examples include se
lecting drugs with sufficiently high binding affinities, finding highly competent job candidates, and 
identifying patients who benefit from a treatment, etc. In these problems, predictions from ma
chine learning models serve as proxies for the true outcomes of interest that are too expensive 
or impossible to evaluate, and the selection procedure leverages the power of predictions to select 
units with large outcomes while ensuring error control.

Given test points {Xn+j} j∈[m] and (potentially random) thresholds cn+j ∈ R, the goal is to select 
those Yn+j > cn+j while controlling the number/fraction of false positives. The statistical evidence 
for detecting a large outcome is quantified by the so-called ‘conformal p-values’.

Suppose the calibration data are {(Xi, Yi, ci)}
n
i=1, such that the tuples {Xi, Yi, ci}

n+m
i=1 are ex

changeable. Assume access to a score function S : X × R → R such that S(x, y) is non-increasing 
in y for any x ∈ X . An example is S(x, y) =􏽢μ(x) − y, where 􏽢μ(x) is a point predictor trained on 
Dtrain. We then compute 􏽢Si = S(Xi, ci) for i ∈ [n + m] and define the conformal p-values1

pj =
1 +

􏽐
i∈[n] 1{􏽢Si ≥􏽢Sn+j, Yi ≤ ci}

n + 1
, j ∈ [m]. (11) 

Hereafter, we call S the selection score function. We can show that pj is valid in the sense that 
P(pj ≤ t, Yn+j ≤ cn+j) ≤ t, ∀t ∈ [0, 1]. That is, testing with pj controls the type-I error in finding 
one large outcome, accounting for the randomness in the outcomes as well. We then select test 
units whose conformal p-values are below a threshold, the choice of which determines the type 
of error control guarantee. Some examples are given below. 

1. Fixed threshold. We select test units whose conformal p-values (11) are below a fixed thresh
old q ∈ (0, 1). This could happen when testing a single hypothesis, or testing multiple hypoth
eses with Bonferroni correction. The latter controls the family-wise error rate in finding large 
outcomes, which is useful in highly risk-sensitive settings such as disease diagnosis.

2. Benjamini–Hochberg threshold. We select test units whose conformal p-values (11) are below 
a data-dependent threshold given by the Benjamini–Hochberg (BH) procedure (Benjamini & 
Hochberg, 1995). This selection procedure is shown in Jin and Candès (2023) to control the 
FDR in detecting large outcomes, which is useful in exploratory screening such as drug dis
covery for ensuring efficient resource use in follow-up investigations.

For generality, we consider the selection rule in the form of 􏽢Scp = {j ∈ [m] :􏽢Sn+j ≥ τ}, where τ is a 
stopping time adapted to the filtration {σ({As}s≤t, {Bs}s≤t)}t∈R:

As = 1 +
􏽘

i∈[n]

1{􏽢Si ≥ s, Yi ≤ ci}, Bs =
􏽘

j∈[m]

1{􏽢Sn+j ≥ s}. (12) 

Equivalently, for any t ∈ R, we can write 1{τ ≤ t} = ft({As}s≤t, {Bs}s≤t) for some function ft. It can be 
shown that the two examples above are special cases of this general rule (these results can be found 
in Section S5.3 in the online supplementary material).

We now provide a general solution for constructing selection-conditional prediction sets corre
sponding to such rules. The challenge here is that all the p-values depend on each other, as they 
leverage the same set of calibration data, and/or the data-driven threshold determined by all 
p-values would further add to the intricacy. We note that the BH-based rule is studied in Bao 
et al. (2024) with approximate FCR control, while we are to provide an efficient solution with 

1 Our p-value slightly modify the definition in Jin and Candès (2023) for the ease of describing our prediction sets. 
Similar to the original ones, our p-values control the type-I error in detecting one large outcome. In addition, using our 
p-values in their original procedures maintains error control with improved power; we discuss these results in online 
supplementary material Section S5.2 for completeness.
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exact coverage guarantee. The following proposition lays out the form of the reference set and its 
validity, with its proof delegated to Section S4.5 in the online supplementary material.

Proposition 4 Suppose the selection set is 􏽢Scp = {j ∈ [m] :􏽢Sn+j ≥ τ}, where τ is determined 
by 1{τ ≤ t} = ft({As}s≤t, {Bs}s≤t), for some ft and (As, Bs) defined in (12), 
∀t ∈ R. For any S ∈ 2[m] and j ∈ [m] such that j ∈ 􏽢Scp and 􏽢Scp ∈ S, the ref
erence set can be simplified as

􏽢R
cp
n+j(y) = 1{y ≤ cn+j} · 􏽢R

cp,1
n+j + 1{y > cn+j} · 􏽢R

cp,0
n+j , where

􏽢R
cp,k
n+j = {i ∈ [n] : Yi ≤ ci,􏽢Si ≥ τ(j)(k, 0),

{ℓ ∈ [m] :􏽢Sswap(i,j)
n+ℓ ≥ τ(j)(k, 0)} ∈ S}

∪ {i ∈ [n] : Yi > ci,􏽢Si ≥ τ(j)(k, 1),

{ℓ ∈ [m] :􏽢Sswap(i,j)
n+ℓ ≥ τ(j)(k, 1)} ∈ S}.

(13) 

For k, ℓ ∈ {0, 1}, the adjusted threshold τ(j)(k, ℓ) is given by

1{τ(j)(k, ℓ) ≤ t} = ft({A(j)
s (k, ℓ)}s≤t, {B(j)

s }s≤t), where

A(j)
s (k, ℓ) = ℓ +

􏽘

i∈[n]

1{􏽢Si ≥ s, Yi ≤ ci} + k · 1{􏽢Sn+j ≥ s},

B(j)
s = 1 +

􏽘

ℓ≠j

1{􏽢Sn+ℓ ≥ s}.

(14) 

Based on Proposition 4, the JOMI prediction set is given by

􏽢Cα,n+j = y ∈ Y : y > cn+j, V(Xn+j, y) ≤ 􏽢q0
􏼈 􏼉

∪ y ∈ Y : y ≤ cn+j, V(Xn+j, y) ≤ 􏽢q1
􏼈 􏼉

, 

where 􏽢qk = Quantile(1 − α; {Vi : i ∈ 􏽢R
cp,k
n+j } ∪ {∞}) for k = 0, 1. See Algorithm 2 for a summary of 

the complete procedure, where we only present the deterministic version for simplicity. The overall 
computation complexity is at most O(m(m + n)|􏽢S|).

4.3 Selection based on conformal prediction sets
The final class of selection rules we study are based on the properties of (preliminary) prediction 
sets, usually constructed by running the vanilla SCP. Such use cases have appeared implicitly in 
many heuristic applications of conformal prediction. For example, practitioners may select units 
whose prediction intervals are shorter/longer than a threshold, which roughly indicates enough 
confidence (Sokol et al., 2024). People may also select units whose prediction sets entirely lie above 
a threshold, which roughly indicates a desired outcome (Svensson et al., 2017). Note that the ori
ginal prediction intervals are no longer valid conditional on being selected (Jin & Candès, 2023), 
and thus using them for interpreting downstream uncertainty can be misleading. In this section, we 
apply our general framework to re-calibrate prediction sets for the units selected in such a way.

Formally, we consider two stages of prediction set construction. The one constructed in the first 
stage, called the preliminary prediction set, is used for determining the selection set 􏽢S. The one in 
the second stage, which we call the selective prediction set, is the one we are to build with JOMI. 
Following SCP in Section 3.1, we let S(x, y) and V(x, y) be the nonconformity score functions for 
the two stages, respectively. The (1 − β)-level preliminary prediction set for the jth test unit is

􏽢Cprelim
β,n+j = y ∈ Y : S(Xn+j, y) ≤ η

􏼈 􏼉
, (15) 

where η is the K := ⌈(1 − β)(n + 1)⌉th smallest element in {S(Xi, Yi)}
n
i=1.

We consider any selection rule based on the preliminary prediction set 􏽢Cprelim
β,n+j . Note that by (15), 

given the first-stage score function S( · , · ), the form of 􏽢Cprelim
β,n+j is fully determined by Xn+j and η. 
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We can thus express any selection rule through L : X × R 7! {0, 1}, where L(Xn+j, η) = 1 means 
selecting the unit and L(Xn+j, η) = 0 otherwise. An example is selecting based on prediction 
interval lengths: following Sokol et al. (2024), suppose that we use CQR (Romano et al., 2019) 
in the first stage, i.e. S(x, y) = max {􏽢qL(x) − y, y −􏽢qU(x)}, where 􏽢qL(x) and 􏽢qU(x) are estimates 
of some lower and upper conditional quantiles. Selecting prediction intervals shorter than a 
threshold λ gives L(x, η) = 1{􏽢qU(x) −􏽢qL(x) + 2η ≤ λ}. As another example, for a binary outcome 
Y, we might want to select units whose prediction set is a singleton, leading to 
L(x, η) = 1{S(x, 1) ≤ η < S(x, 0) or S(x, 0) ≤ η < S(x, 1)}.

Having determined the selection rule L, the selection set is thus S(Dcalib, Dtest) = 􏽢S ps = {j ∈ 
[m] : L(Xn+j, η) = 1}. We are to derive a computationally efficient but slightly conservative version 
of the JOMI prediction set, which nevertheless has tight coverage in all our numerical experiments 
(see Section 6). Define

􏽢Cps
α,n+j := {y : η− ≤ S(Xn+j, y) ≤ η+} ∪ {y : V(Xn+j, y) ≤ qj,1 and S(Xn+j, y) < η−}

∪ {y : V(Xn+j, y) ≤ q j,2 and S(Xn+j, y) > η+},
(16) 

where η+ and η− are the (K + 1)th and (K − 1)th smallest element in {Si}
n
i=1, respectively, and

q j,1 := Quantile 1 − α; Vi : i ∈ [n], Si ≤ η−, L(Xi, η) = 1, {ℓ ∈ [m] : L(Xswap(i,j)
n+ℓ , η) = 1} ∈ S

􏽮 􏽯􏼐

∪ Vi : Si > η−, L(Xi, η−) = 1, {ℓ ∈ [m] : L(Xswap(i,j)
n+ℓ , η−) = 1} ∈ S

􏽮 􏽯􏼑
;

q j,2 := Quantile 1 − α; Vi : i ∈ [n], Si ≤ η, L(Xi, η+) = 1, {ℓ ∈ [m] : L(Xswap(i,j)
n+ℓ , η+) = 1} ∈ S

􏽮 􏽯􏼐

∪ Vi : Si > η, L(Xi, η) = 1, {ℓ ∈ [m] : L(Xswap(i,j)
n+ℓ , η) = 1} ∈ S

􏽮 􏽯􏼑
.

(17) 

We prove the validity of 􏽢Cps
α,n+j in (16) below, whose proof is in online supplementary material 

Section S4.6.

Proposition 5 For any selection rule L, any j ∈ [m] and any selection taxonomy S such 
that j ∈ 􏽢S ps and 􏽢S ps ∈ S, 􏽢Cps

α,n+j is a superset of the JOMI prediction set 
􏽢Cα,n+j defined in (7), and

􏽢Cps
α,n+j\

􏽢Cα,n+j ⊆ y ∈ Y : η− ≤ S(Xn+j, y) ≤ η+􏼈 􏼉
.

By Proposition 5, the conservativeness of 􏽢Cps
α,n+j is quite limited, as η− and η+ are usually very 

close to each other. We also verify its tight empirical coverage in Section 6.
The procedure is summarized in Algorithm 3. For each j, the computation cost of 􏽢Cps

α,n+j is 
O(m + n), and therefore the overall computation cost is O(m(m + n)).

Algorithm 2 JOMI for selection based on conformal p-values

Input: Calibration data Dcalib; test data Dtest; miscoverage level α; selection taxonomy S; selection rule S; 
nonconformity score function V(·, ·).

Compute 􏽢S = S(Dcalib, Dtest).

for j ∈ 􏽢S do

Compute τ( j)(k, ℓ) as in (14), for (k, ℓ) ∈ {0, 1}.

Compute 􏽢Rcp,0
n+j and 􏽢Rcp,1

n+j as (13).

Compute 􏽢qk = Quantile(1 − α; {Vi : i ∈ 􏽢R
cp,k
n+j } ∪ {∞}), for k = 0, 1.

Compute 􏽢Cα,n+j = {y ∈ Y : y > cn+j, V(Xn+j, y) ≤ 􏽢q0} ∪ {y ∈ Y : y ≤ cn+j, V(Xn+j, y) ≤ 􏽢q1}.

Output: {􏽢Cα,n+j}
j∈􏽢S

.
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Remark 2 We note that it is possible that the prediction interval produced by Algorithm 3
does not satisfy the constraints on the preliminary prediction sets. This is, how
ever, a desired feature in our setting where the selection rule is given and the 
inference step is decoupled from the selection step; the selection-conditional 
prediction sets should be used as tools for informing further decisions/analysis. 
Otherwise, we may need to take an orthogonal strategy: change the selection 
algorithm, for which ideas from Jin and Candès (2023) and Gazin et al. 
(2025) may be useful.

5 Application to drug discovery
In drug discovery, powerful prediction machines are increasingly used to guide the search of prom
ising drug candidates. For such high-stakes decisions, it is important to quantify the uncertainty in 
the predictions (Jin & Candès, 2023; Laghuvarapu et al., 2024; Svensson et al., 2017). Meanwhile, 
selection issues naturally arise as scientists may only focus on seemingly promising drugs.

In this section, we apply JOMI to several application scenarios in drug discovery with a selective 
nature. In some cases, JOMI yields shorter prediction intervals than vanilla conformal prediction 
when the latter is under-confident; in others, it makes the just right inflation of the prediction inter
val to provide exact selection-conditional coverage.

Application scenarios. In the main text, we focus on drug property prediction (DPP), a classifi
cation problem where the binary outcome indicates whether a drug candidate binds to a pre- 
specified disease target, and the covariates are the (encoded) chemical structure of the drug com
pound. Due to limited space, we defer the results for several selection scenarios in 
drug-target-interaction prediction (DTI) to online supplementary material Section S3.4. DTI is 
a regression problem where each sample is a pair of drug and disease target. The outcome of inter
est is a real-valued variable indicating the binding affinity of that pair. The covariates are the (con
catenated) encoded structure of both.

Selection rules. We consider three types of realistic selection rules S: 

1. Covariate-dependent top-K selection: selecting drugs with highest predicted binding 
affinities.

(i) Top-K among test data. When the scientist has a fixed budget of investigating K drug can
didates in the next phase, one may select K test samples with the largest 􏽢μ(Xn+j).

(ii) Top-K among mixed data. When the scientist is to investigate other properties for prom
isingly active drug candidates in the next phase, they may select K units in Dcalib ∪ Dtest 

with the highest predicted affinities.
(iii) Calibration-referenced selection. The scientist may use the Dcalib as reference and select 

test samples whose predicted activities are greater than the Kth highest in {􏽢μ(Xi)}i∈I calib
.

2. Conformal selection. The scientist might also obtain a subset of active drugs while controlling 
the FDR below some q ∈ (0, 1). In this case, S(Dcalib, Dtest) is the set of test drugs picked by 
Conformal Selection in Jin and Candès (2023) at FDR level q ∈ (0, 1).

Algorithm 3 JOMI for selection based on preliminary prediction sets

Input: Calibration data Dcalib; test data Dtest; selection taxonomy S; selective miscoverage level α; first-stage 
miscoverage level β; selection rule S; first-stage score function S(·, ·); nonconformity score function 
V(·, ·).

􏽢S = S(Dcalib, Dtest).

Compute η+ as the (K + 1)-th order statistic of {Si}
n
i=1, where K = ⌈(1 − β)(n + 1)⌉.

Compute η+ as the (K − 1)-th order statistic of {Si}
n
i=1.

for j ∈ 􏽢S do

Compute qj,1 and q j,2 as in (17).

Compute 􏽢Cps
α,n+j as in (16).

Output: {􏽢Cα,n+j}
j∈􏽢S

.
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3. Selection with constraints. The cost of developing a drug is a variable Cn+j, and one wants to 
select as many drugs with the highest predictions 􏽢μ(Xn+j) as possible while ensuring the total 
cost is below some constant C, or maximize the total reward while controlling the costs.

Evaluation metrics. We evaluate the selection-conditional (mis)coverage via the consistent estima

tor 􏽤Miscov =
􏽐m

j=1
􏽢P(j∈􏽢S, Yn+j∉􏽢Cα,n+j)
􏽐m

j=1
􏽢P(j∈􏽢S)

, where 􏽢P is the empirical probability over all repeats. The size 

of prediction sets is evaluated by averaging the cardinality of 􏽢Cα,n+j for classification or 
length of 􏽢Cα,n+j for regression over selected test units in all repeats. We also evaluate (but do 

not show in figures for brevity) the false coverage rate via 􏽤FCR = 􏽢E
􏼔􏽐m

j=1
1{j∈􏽢S, Yn+j∉􏽢Cα,n+j}

1∨|􏽢S|

􏼕

, where 
􏽢E is the empirical mean over all repeats.

Data and prediction models. We use the HIV screening data in the DeepPurpose library (Huang 
et al., 2020) with a total sample size of ntot = 41,127. The numerical features X ∈ X are encoded 
by Extended-Connectivity FingerPrints (Rogers & Hahn, 2010, ECFP) which characterize topo
logical properties of the drug candidates. A small-scale neural network 􏽢μ : X → [0, 1] is trained 
on randomly sampled 20% of the entire dataset. Then, the remaining is randomly split into two 
equally sized folds Dcalib and Dtest. The exchangeability among Dcalib and Dtest is thus satisfied. 
Sampling of the training data and model training is independently repeated 10 times; within 
each, we randomly split calibration/test data for 100 times. This leads to N = 1,000 runs in total.

5.1 Top-K selection
We first consider the selection rule (i) top-K with test data. For a trained predictor 􏽢μ, we select (a) 
the highest K values of 􏽢μ(Xj) and (b) the lowest K values of 􏽢μ(Xj) among all test data. The results for 
(ii) top-K selection with both test and calibration data, as well as (iii) calibration-referenced selec
tion are deferred to online supplementary material Section S3.1, showing similar patterns.

For a confidence level α ∈ (0, 1), we apply the vanilla conformal prediction and JOMI (both de
terministic and randomized) to the selected units at level α, with S = 2[m]. Since |􏽢S| is fixed, 
selection-conditional coverage implies FCR control at level α due to Proposition 2. In addition, 
we include the BY procedure (Benjamini & Yekutieli, 2005) as a heuristic baseline. We vary α ∈ 
{0.1, 0.2, . . . , 0.9} and K ∈ {20, 100, 1,000, 2,000, 5,000, 10,000, 15,000}, and set V as the APS 
score (Romano et al., 2020). The results with another binary score are in online supplementary 
material Section S3.2.

Figure 3 shows the empirical selection-conditional miscoverage in the left panel and the average 
prediction set size in the right panel, both at nominal levels α ∈ {0.1, 0.8}. The solid (resp. dashed) 
lines show the results when we select units with the highest (resp. lowest) predicted affinities.

The orange curves (Vanilla_CP) show that vanilla conformal prediction with APS scores is 
over-confident for units with the lowest predicted affinities while under-confident for units with 
highest predicted affinities. In contrast, the purple (JOMI) and blue (JOMI_rand) curves both 
show valid coverage for our proposed methods. Also, using the APS score introduces visible 
gap between the actual coverage and 1 − α for JOMI due to discretization, which is made exact 
by its randomized version. Finally, while BY has lower-than-nominal miscoverage which shows 
its validity as a heuristic method, it is overly conservative, leading to much larger prediction sets.

Interestingly, vanilla conformal prediction with the APS score yields zero-cardinality prediction 
sets for units with the lowest predicted affinities with α = 0.8 (the orange dashed line in the right 
panel of Figure 3). This is because vanilla CP covers other test units with very high rate, and thus 
marginal coverage is guaranteed even with empty prediction sets for the selected units. Of course, 
this is worrying if one cares more about these units at the bottom.

The behaviour of these methods also depends on the choice of the nonconformity score V. online 
supplementary material Section S3.2 shows the results for selection rules (i)–(iii) with the binary 
score V(x, y) = y(1 −􏽢μ(x)) + (1 − y)􏽢μ(x). With the binary score, JOMI consistently achieves valid 
coverage for selected units, and the coverage gap of JOMI due to discretization is less visible. For 
vanilla CP, opposite to the situations here, it is over-confident for units with the highest predicted 
affinities yet under-confident for units with the lowest predicted affinities.
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5.2 Conformal selection
We then consider conformal selection, where the focal test units are those believed to obey Y = 1 
with false discovery rate control at level q ∈ (0, 1). This problem was investigated in Bao et al. 
(2024) with no exact finite-sample coverage guarantees in theory (though their heuristic method 
performs reasonably in their empirical studies). We apply conformal selection (Jin & Candès, 

2023) at FDR level q ∈ {0.2, . . . , 0.9} and cn+j ≡ 0.5 to determine 􏽢S, and construct prediction in

tervals for units in 􏽢S using both the APS score and the binary score. Experiments are repeated for 
N = 1,000 independent runs.

Figure 4 depicts 􏽤Miscov and prediction interval lengths with nominal miscoverage level α ∈ 
{0.1, 0.8} under various FDR levels q and two choices of nonconformity score V.

Vanilla CP is not calibrated for selected units: it is over-confident with both scores for α = 0.1, 
while being over-confident with binary score and under-confident with APS score at α = 0.8. In 
contrast, JOMI and JOMI_rand achieves valid selection-conditional coverage in all scenarios. 
There is some gap for JOMI with the APS score due to discretization, but not for JOMI_rand 
or the binary score. We observe an even lower empirical FCR than the conditional miscoverage 
for our methods (so they achieve valid FCR control); this is because the selection set can sometimes 
be empty for small values of FDR level q (recall Proposition 3). Compared with the heuristic meth
ods of Bao et al. (2024), our method usually achieves smaller prediction set sizes whereas their 
method seems overly conservative. We conjecture that this is due to a more delicate choice of 
the reference set. Finally, BY is also overly conservative despite valid empirical coverage.

5.3 Selection with constraints
We now consider selecting units with the highest predicted binding affinities within a total budget 
of subsequent development. In this case, S(Dcalib, Dtest) = {j ∈ [m] :􏽢μ(Xn+j) ≥ μ̅}, where 
μ̅ = max {μ :

􏽐m
j=1 Ln+j1{􏽢μ(Xn+j) ≥ μ} ≤ C}, and {Ln+j} j∈[m] are the costs.

We create semi-synthetic datasets since the original HIV data does not contain the cost informa
tion. Specifically, for each i ∈ [n + m], we generate Li = exp (3􏽢μ(Xi)) + 2| sin (􏽢μ(Xi))| + ϵi, where 
􏽢μ(Xi) is the predicted binding affinity, and ϵi ∼ Exp(1) are i.i.d. random variables that capture oth
er cost-related information. Setting 20% of the data aside as the training set, we randomly sample 
the data without replacement so that n = 2,500 and m = 2,500.

The average miscoverage, prediction set size, and reference set size are reported in Figure 5. 
Interestingly, after adding cost constraints, vanilla conformal prediction is over-confident with 
the binary score and under-confident with the APS score. In contrast, our methods always yield 
near-exact coverage. From the right-most plot, we see that |􏽢Rj| is positively correlated with the 
number of selected test units. As usual, BY is overly conservative.

Finally, we report the empirical FCR in the three tasks in online supplementary material Section 
S3.3. Consistent with our theory in Section 2.2, selection-conditional coverage implies FCR con
trol in top-K selection, and the empirical FCR is also close to the nominal coverage level under 

Figure 3. Empirical selection-conditional miscoverage (left) and prediction set size (right) in drug property prediction 
for vanilla conformal prediction (Vanilla_CP), BY correction (BY), JOMI and randomized JOMI (JOMI_rand) for 
test units whose 􏽢μ(Xn+j ) are top-K (highest, solid line) or bottom-K (lowest, dashed line) among test units. The 
nominal miscoverage level α ∈ {0.1, 0.8}. The results are averaged over N = 1,000 runs.
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conformal selection where the selection size is stable. However, in the constrained optimization 
task, we find that the empirical FCR of vanilla CP is much lower than the selection-conditional 
coverage. Similar to the ideas in Proposition 1, this is because the FCR is defined as zero when 
the selection set is empty. This shows the limitation of FCR as an error metric: even if it is con
trolled, on the ‘interesting’ event that the selection set is non-empty, the actual coverage can be 
lower than anticipated.

6 Application to health risk prediction
Prediction machines are also widely used in healthcare for guiding clinical decision-making. These 
decisions may come from complicated underlying processes such as clinical resource optimization 
(Ahmadi-Javid et al., 2017; Master et al., 2017) or preliminary uncertainty quantification (Olsson 
et al., 2022). Accounting for selections from complicated decision processes is necessary for reli
able and informative uncertainty quantification. In this section, we demonstrate the application of 
our framework to health risk prediction settings. We will consider three selection rules: 

1. Selection with constraints. Clinical decision makers may optimize a performance measure 
subject to certain constraints such as budget, capacity, or fairness (Castro & Petrovic, 
2012; Gocgun & Puterman, 2014; Kemper et al., 2014), and send patients to different care 
categories. In Section 6.1, we consider a stylized example where we minimize the total pre
dicted ICU stay subject to total cost budget, where the selected units can be viewed as patients 
sent to a certain category.

2. Selecting small conformal prediction sets. Based on preliminary conformal prediction, one 
may suggest human intervention for units with large set sizes (Olsson et al., 2022; Sokol 
et al., 2024) while leaving those with small prediction sets unattended. In Section 6.2, we re- 
calibrate predictive inference for those whose preliminary prediction sets are shorter than a 
threshold.

3. Selection based on upper prediction bounds. Practitioners may also focus on units whose prelim
inary prediction intervals lie below a threshold (Levitskaya, 2023). In Section 6.3, we study se
lected test units whose preliminary prediction intervals have upper bounds below a threshold.

Among the above, rule (1) is covariate-dependent, while rules (2) and (3) can depend on the out
comes. All of them are efficiently tackled by the computation tricks in Section 4.

Our experiments use the ICU-stay data in the MIMIC-IV dataset (Johnson et al., 2023). Data 
(and features in X) are pre-processed using the pipeline provided by Gupta et al. (2022), with 
the outcome Y being the length of ICU stay. We use random forests in the scikit-learn 
Python package to train a point prediction model 􏽢μ(·) and two quantile regression models 
􏽢q1−β/2(·) and 􏽢qβ/2(·) using a holdout training set. Calibration and test data are randomly split 
with n = 3, 000 and m = 2,000. As the discretization issue is minimal in this regression problem, 
we only present results for JOMI without randomization.

Figure 4. Empirical selection-conditional miscoverage (left) and prediction set size (right) in drug property prediction 
for test units selected by conformal selection at target FDR levels q ∈ {0.2, . . . , 0.9} when applying vanilla conformal 
prediction (Vanilla_CP), BY (BY), JOMI (JOMI), randomized JOMI (JOMI_rand), and the method of Bao et al. 
(2024) (Heuristic). Results with the APS score are in solid lines, while those with the binary score are in dashed 
lines. Details are otherwise the same as Figure 3.
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6.1 Selection with constraints
We first study the case where test units are selected by minimizing the total predicted ICU stay time 
subject to a budget constraint. Formally, for each patient i ∈ [m + n], we let 􏽢μ(Xi) be its predicted 
ICU stay length, and Li > 0 be the budget needed for them. Then, S(Dcalib, Dtest) aims to solve the 
following optimization problem:

maximize
S⊆[m]

􏽘

j∈S

􏽢μ(Xn+j)

subject to
􏽘

j∈S

Ln+j ≤ L̅,
(18) 

where L̅ = 200 is a budget limit. Again, as the dataset does not come with drug development costs, 
we generate Li = ⌈exp (3􏽢μ(Xi)/μ̅) + | sin (􏽢μ(Xi))| + ϵi − 1 + εi⌉, where μ̅ = maxi∈Dtrain |􏽢μ(Xi)|, and 
ϵi ∼ Exp(1), εi ∼ Unif([0, 1]) are independent random variables.

The optimization problem (18) is known as the Knapsack problem which is NP-hard. 
Nevertheless, there are efficient approximate solvers and we note that the validity of JOMI does 
not rely on exactness of the results; in our experiments, we use the Python package 
mknapsack (mknapsack, 2023). Existing methods such as Bao et al. (2024) cannot deal with 
such a complicated selection process. In contrast, our framework tackles this problem with a com
putation complexity that is polynomial in m, n, and the complexity of the subroutine S( · , · ).

Figure 6 shows the empirical miscoverage, length of prediction interval, and sizes of the selection 
set and reference sets. While vanilla conformal prediction is over-confident and BY is overly con
servative, our method achieves exact coverage for selected test units despite the complexity of the 
selection process. We also see a slightly positive correlation of |􏽢Rn+j| and |􏽢S|.

Figure 5. Empirical miscoverage rate (left), average length of prediction interval (middle), and scatter plots for 
averaged reference set size {|􏽢Rj |}

j∈􏽢S
vs. |􏽢S| (right), across N = 500 independent runs of Vanilla_CP, BY, JOMI, and 

JOMI_rand. The x-axis of left and middle plots is the nominal miscoverage level α ∈ {0.1, 0.2, . . . , 0.9}.

Figure 6. Empirical miscoverage rate (left), average length of prediction interval (middle), and scatter plots for the 
averaged reference set size vs. |􏽢S| (right), across N = 500 independent runs of Vanilla_CP, BY, JOMI, and 
JOMI_rand. The x-axis of left and middle plots is the nominal level α ∈ {0.1, 0.2, . . . , 0.9}.
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6.2 Selecting small-sized prediction sets
We then consider the second selection rule, where we first build preliminary conformal prediction 
intervals 􏽢Cprelim

α,n+j via the score function S(x, y) = |y −􏽢μ(x)|/􏽢σ(x) (Lei et al., 2018); both the point pre
diction function 􏽢μ(·) and the conditional standard deviation are estimated via random forests. We 
then select those test units with |􏽢Cprelim

α,n+j | ≤ 5, i.e. the upper and lower bounds of the preliminary 
prediction intervals are less than 5 days apart. This mimics the ideas in (Ren et al., 2023; Sokol 
et al., 2024) where small-sized prediction sets are ‘certified’ as confident.

After selection, we leverage the method in Section 4.3 to construct 􏽢Cps
α,n+j for all selected test 

units. Since 􏽢Cps
α,n+j is a superset of the exact output 􏽢Cα,n+j, we evaluate its empirical coverage to in

vestigate whether it is over-conservative. Also, note from (16) that it is the union of three subsets; 
we also evaluate the number of disjoint segments in 􏽢Cps

α,n+j.
The miscoverage and length of prediction sets are reported in the left and middle plots in 

Figure 7. We observe that selectively certifying short prediction intervals can lead to under- 
coverage (orange curve), while JOMI achieves exact coverage (purple curve) by inflating the pre
diction sets, meaning that the superset 􏽢Cps

α,n+j is effectively quite tight. The average number of dis
joint segments in the right plot of Figure 7, which shows that 􏽢Cps

α,n+j is almost always one single 
interval.

6.3 Selecting prediction sets below a threshold
Finally, we study selection rule (iii) which is also based on a preliminary prediction set constructed 
in the same way as Section 6.2. We imagine that practitioners select a test unit n + j if the upper 
bound of 􏽢Cpre

α,n+j is below 6, i.e. it appears the patient will stay in ICU less than 6 days.
The miscoverage rate, length of prediction sets, and number of disjoint segments averaged over 

N = 500 independent runs of JOMI (Section 4.3) and vanilla conformal prediction are 

Figure 7. Empirical miscoverage rate (left), average length of prediction interval (middle), and average number of 

segments in 􏽢Cps
α,n+j (right), across N = 500 runs of Vanilla_CP and JOMI when test units with short preliminary 

prediction sets are selected. The x-axis is nominal levels α ∈ {0.1, 0.2, . . . , 0.9}.

Figure 8. Empirical miscoverage rate (left), average length of prediction interval (middle), and average number of 

segments in 􏽢Cps
α,n+j (right), across N = 500 independent runs of Vanilla_CP and JOMI. The nominal miscoverage 

levels on the x-axis are α ∈ {0.1, 0.2, . . . , 0.9}.
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summarized in Figure 8. We see that preliminary prediction sets with low upper bounds tend to 
under-cover for small α, while JOMI achieves exact coverage despite that we construct a superset 
of 􏽢Cα,n+j. However, JOMI may produce multiple segments for large values of α.

Finally, we present in online supplementary material Section S3.7 the tight empirical FCR con
trol of JOMI in the above three tasks, since the size of the selection set is stable and nonzero.
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