

What should we do with Emotion AI? Towards an Agenda for the Next 30 Years

Nazanin Andalibi
andalibi@umich.edu
University of Michigan
Ann Arbor, USA

Rosalind Picard
Massachusetts Institute of Technology
Cambridge, USA
picard@media.mit.edu

Luke Stark
Western University, Canadian
Institute for Advanced Research
Toronto, Canada
cstark23@uwo.ca

Jonathan Gratch
University of Southern California
Los Angeles, USA
gratch@ict.usc.edu

Daniel McDuff
Google, University of Washington
Seattle, USA
dmcduff@google.com

Noura Howell
Georgia Institute of Technology
Atlanta, USA
noura.howell@gmail.com

ABSTRACT

What should we do with emotion AI? Should we regulate, ban, promote, or re-imagine it? Emotion AI, a class of affective computing technologies used in personal and social computing, comprises emergent and controversial techniques aiming to classify human emotion and other affective phenomena. Industry, policy, and scientific actors debate potential benefits and harms, arguing for polarized futures ranging from panoptic expansion to complete bans. Emotion AI is proposed, deployed, and sometimes withdrawn in collaborative contexts such as education, hiring, healthcare, and service work. Proponents expound these technologies' benefits for well-being and security, while critics decry privacy harms, civil liberties risks, bias, and shaky scientific foundations, and gaps between technologies' capabilities and how they are marketed and legitimized. This panel brings diverse disciplinary perspectives into discussion about the history of emotions—as an example of 'intimate' data—in computing, how emotion AI is legitimized, people's experiences with and perceptions of emotion AI in social and collaborative settings, emotion AI's development practices, and using design research to re-imagine emotion AI. These issues are relevant to the CSCW community in designing, evaluating, and regulating algorithmic sensing technologies including and beyond emotion-sensing.

CCS CONCEPTS

- Human-centered computing → Human computer interaction (HCI).

KEYWORDS

Emotion recognition, Emotion Artificial Intelligence, Artificial Intelligence, Affective Computing

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

CSCW Companion '24, November 9–13, 2024, San Jose, Costa Rica

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1114-5/24/11

<https://doi.org/10.1145/3678884.3689135>

ACM Reference Format:

Nazanin Andalibi, Luke Stark, Daniel McDuff, Rosalind Picard, Jonathan Gratch, and Noura Howell. 2024. What should we do with Emotion AI? Towards an Agenda for the Next 30 Years. In *Companion of the 2024 Computer-Supported Cooperative Work and Social Computing (CSCW Companion '24)*, November 9–13, 2024, San Jose, Costa Rica. ACM, New York, NY, USA, 4 pages. <https://doi.org/10.1145/3678884.3689135>

1 INTRODUCTION

Emotion AI is deployed in impactful social and collaborative contexts, such as workplaces, social media, education, and security [27]. For example, MeetingCoach uses emotion AI techniques to analyze sentiment in video calls aiming to encourage more inclusive, effective meetings [37]. Emotion AI is also used for monitoring call center workers [21, 33], evaluating job candidates [2, 4, 13, 20, 34], assessing workplace stress and productivity [3], and monitoring students in schools [26, 27]. Overall, Emotion AI is proposed for and deployed in a range of collaborative contexts underscoring its relevance to the CSCW community.

Broadly, “emotion AI is a subset of artificial intelligence... that measures, understands, simulates, and reacts to human emotions” [40]. Affective computing [31] laid the foundation for emotion AI. With nearly 30 years since Picard’s foundational book *Affective Computing*, this panel will discuss, ***what should we do with emotion AI now?***, and work toward crafting an agenda for emotion AI going forward.

CSCW scholars investigate emotion AI from diverse angles, both advancing and critiquing it. Prior CSCW work explores emotion AI's potential benefits for social and collaborative activities including caregiving [39], psychotherapy [45], coping with discrimination [38], or visualizing a nation's mood during crisis [46]. In contrast, emerging CSCW scholarship in collaborative computing settings including work, healthcare, and social media critiques emotion AI's potential harms as threatening subjects' agency [19], lacking morality [35], unfairly excluding or exploiting subjects [36], amplifying bias and stigma against subjects [15], and advancing data colonialism [12]. Others call for banning emotion AI for extending a legacy of racist pseudoscience [44] by misinterpreting conjecture as truth [43], creating social media ‘empires of feeling’ that can contribute emotional manipulation and misinformation [42], and disempowering children in education through surveillance and classification

[16]—highlighting the impact of emotion AI in diverse collaborative settings such as social media and education. Meanwhile, design scholars propose alternative lenses for reimagining emotion AI to be more social and collaborative [11, 22]. Debate continues, while the Emotion AI industry is projected to reach 42.9 billion USD by 2027 [5].

Grounded on panelists' expertise, we will explore provocation such as the following: what futures do we (not) want for the role(s) of emotion and other affective phenomena in social computing? How might those futures impact diverse groups of people? What revolutionary ideas do we need to propel affective computing for the next decades? With its commitment to both building and critiquing sociotechnical systems, CSCW is an apt venue for this discussion – as such, this panel will not only be relevant to those interested in this domain but also those who think critically and reflectively about system and AI design and use. This panel takes emotion AI as an exemplar of collaborative and social computing that engages sensitive data, engaging discourses of privacy, ethics, (subject like worker) surveillance, and policy relevant to a wide range of the CSCW community membership.

2 BACKGROUND ON EMOTION AI IN CSCW AND BEYOND

Terminology for emotion AI varies. Sometimes emotion AI and related techniques are referred to as emotion recognition [7], emotional biosensing [22], algorithmic psychometrics [41], or physiognomic AI [44]. Emotion AI is at a turning point. The EU AI Act of June 2023 bans emotion AI at work and school [30] and regulates AI according to risk level [1, 6]. Picard, who founded affective computing, commented in an interview that, *“The way that some of this technology is being used... worries me so deeply, that it's causing me to pull back myself on a lot of the things that we could be doing...if we're going to go forward with that, how can we do it in a way that puts forward safeguards that protect people?”* [32].

Ekman's 'Basic Emotion Theory' (BET) proposed that universal emotions could be inferred by facial expressions [17]. BET has been adopted in emotion AI systems, and widely critiqued. Critiquing BET, Feldman Barrett and colleagues' review of scientific affect studies revealed scientific weaknesses [8], cautioning against overblown knowledge claims made in popular press about emotion AI [14]. HCI design researchers draw from cultural anthropology to critique BET as culturally reductive, and offer design tactics for leveraging the complexity and ambiguity of emotions as assets enriching the design of computational systems [9–11].

Overall, CSCW scholars, computer scientists, psychologists, advocacy organizations, and policy experts debate emotion AI's benefits and harms. Proponents argue emotion AI can help improve education, customer service, security, hiring practices, productivity, and safety. Critics raise ethical concerns of unfairly labelling people as inattentive students, under-performing workers, security threats, undesirable job candidates, etc. Critics decry risks to privacy and civil liberties as well as cultural, racial, ableist, and gender bias along with privacy harms and imposed emotional labor [8, 15]. While ethical guidelines for Emotion AI (e.g., [28]) are important to consider, responsibility for algorithmic harm is a matter of ongoing discussion among AI ethics experts [18], and open questions remain

about what we ought to do about and with emotion AI: this panel's focus.

3 ATTENDEES AND PANEL FORMAT

This panel will attract a wide range of attendees across CSCW's interdisciplinary audiences, both academia and industry, both proponents and critiques of emotion AI, and those interested in reflective and critical approaches in system design. We anticipate lively debate across diverse epistemological viewpoints.

Panel Format. The panel will be a moderated discussion among panelists in conversation with the audience. Each panelist will speak for 3–5 minutes to share their expertise and perspective on emotion AI at a high level. The moderator will balance audience questions, their own prepared questions, and drawing emergent connections across the discussion.

Encouraging audience interaction. Emotion AI and its surrounding discourse is contentious – with some believing in its revolutionary power and some calling it “fundamentally dubious” “AI snake oil” that does not and cannot work [29]. As such, we expect that the panel will spark conversation and audience questions from across this continuum. To encourage audience interaction, we will create a comfortable atmosphere using the following tactics: (i) the moderator will prompt panelists to say a few words about their journeys, not only their academic accomplishments and expert perspective, (ii) the moderator will prepare and select (audience) questions showing a range of epistemological leanings, and (iii) fostering an expectation that respectful polyvocality and lack of consensus are desirable attributes of discussion. The moderator's prepared questions will set the example that a range of questions are acceptable, whether simply asking for more explanation, asking about potential ethical benefits or harms of an approach, or drawing tentative links in the discussion, are all acceptable to bring forward. In doing so, the panel can host fearless cross-disciplinary discussion, in which epistemological disagreements become sparkling points of debate. To engage the audience, we will take questions from in-person and online participants, and include a slide link that affords anonymous and identified question asking and an upvote feature so attendees can vote on questions they want asked the most.

Accessibility and technical requirements. We will host the panel in-person with a possible online panelist, but also panelists' audio mic'd into a video call that their speech can be auto-transcribed for deaf or hard-of-hearing participants, and this transcription will be displayed for the audience. If panelists use slides, we will ensure that they are accessible. Our tactics described in 4.1 will ensure that neurodivergent attendees will have opportunities to equally participate. We have ample experience hosting hybrid sessions to support this, and will work with the Accessibility and Hybrid Chairs to achieve an accessible experience depending on the venue and what will technically be feasible there. We need a setting that allows one possibly remote panelist and afford accessibility plans.

4 PANELISTS

Our carefully convened selection of panelists represents the full spectrum of emotion AI perspectives, from pioneers advancing emotion AI to the staunchest critiques calling for complete bans.

Nazanin Andalibi is a CSCW and HCI scholar working at the intersection of marginality and technology. She examines emotion AI's ethical, privacy, and justice implications across contexts (e.g., workplace, hiring, healthcare). This research has been funded by the National Science Foundation including a CAREER award and published at venues like CHI and CSCW.

Luke Stark is a historian and media studies scholar who has published extensively at ACM conferences including FAccT, CHI, and CSCW. His current book project, a history of emotion and affect in the history of computer science and artificial intelligence, is currently under advance contract with the MIT Press.

Rosalind Picard is often considered the godmother of affective computing, which laid the foundation for emotion AI. She wrote the book *Affective Computing* [31] and co-founded two startups, Affectiva and Empatica, pioneering the cutting edge of emotion AI and analyzing physiological data.

Jonathan Gratch investigates emotion recognition and modeling to yield insight into the role of emotion in human collaboration and conflict. He will discuss the role of automatic methods within the domain of conflict resolution, including predicting when team or customer interactions are escalating into conflict, and exploring automated tutoring methods to help individuals manage conflict. He is head of the Affective Computing Group at USC and founding Editor-in-Chief (retired) of IEEE's Transactions on Affective Computing.

Daniel McDuff is a Staff Research Manager at Google and an Affiliate Professor at the University of Washington. Daniel's research contributions include novel forms of sensing and AI that support health and wellbeing. Daniel's research is applied in consumer products used by millions of people on a daily basis. He has published over 200 peer reviewed research articles on the topics of affective computing, machine learning, AI and human computer interaction.

Moderator Noura Howell is a design researcher investigating emotion AI. Her work critiques sociocultural implications of emotion AI, builds interactive displays of algorithmically estimated emotion and studies people's experiences with these displays through qualitative methods, and offers design tactics for critically reimagining emotion AI [22–25].

5 ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation (Awards: 2335974 and 2236674).

REFERENCES

- [1] [n. d.]. Briefing: EU Legislation in Progress: Artificial Intelligence Act. [https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_BRI\(2021\)698792_EN.pdf](https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_BRI(2021)698792_EN.pdf)
- [2] [n. d.]. HireVue. <https://www.hirevue.com/products/video-interviewing>
- [3] [n. d.]. Humanize: Workplace Analytics Software: Unlock Your Business Potential. <https://humanize.com/>
- [4] [n. d.]. VCV Online Recruitment Automation Software: Virtual Staffing Solutions. <https://vcv.ai>
- [5] 2023. *Emotion Detection and Recognition Market Size, Statistics & Global Forecast - 2027*. Technical Report. <https://www.marketsandmarkets.com/Market-Reports/emotion-detection-recognition-market-23376176.html>
- [6] 2023. EU AI Act: First Regulation on Artificial Intelligence. <https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence>
- [7] Nazanin Andalibi and Justin Buss. 2020. The Human in Emotion Recognition on Social Media: Attitudes, Outcomes, Risks. In *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems*. ACM, Honolulu HI USA, 1–16. <https://doi.org/10.1145/3313831.3376680>
- [8] Lisa Feldman Barrett, Ralph Adolphs, Stacy Marsella, Aleix M. Martinez, and Seth D. Pollak. 2019. Emotional Expressions Reconsidered: Challenges to Inferring Emotion From Human Facial Movements. *Psychological Science in the Public Interest* 20, 1 (July 2019), 1–68.
- [9] Kirsten Boehner. 2009. Reflections on representation as response. *interactions* 16, 6 (Nov. 2009), 28. <https://doi.org/10.1145/1620693.1620700>
- [10] Kirsten Boehner, Rogério DePaula, Paul Dourish, and Phoebe Sengers. 2005. Affect: from information to interaction. In *Proceedings of the 4th decennial conference on Critical computing: between sense and sensibility (CC'05)*. ACM Press, 59–68. <https://doi.org/10.1145/1094562.1094570>
- [11] Kirsten Boehner, Rogério DePaula, Paul Dourish, and Phoebe Sengers. 2007. How emotion is made and measured. *International Journal of Human-Computer Studies* 65, 4 (April 2007), 275–291. <https://doi.org/10.1016/j.ijhcs.2006.11.016>
- [12] Karen L. Boyd and Nazanin Andalibi. 2023. Automated Emotion Recognition in the Workplace: How Proposed Technologies Reveal Potential Futures of Work. *Proceedings of the ACM on Human-Computer Interaction* 7, CSCW1 (April 2023), 95:1–95:37. <https://doi.org/10.1145/3579528>
- [13] Mike Butcher. [n. d.]. The robot-recruiter is coming – VCV's AI will read your face in a job interview. <http://social.techcrunch.com/2019/04/23/the-robot-recruiter-is-coming-vcv-s-ai-will-read-your-face-in-a-job-interview/>
- [14] Angela Chen and Karen Hao. 2020. Emotion AI researchers say overblown claims give their work a bad name. A lack of government regulation isn't just bad for consumers. It's bad for the field, too. *MIT Technology Review* (Feb. 2020). <https://www.technologyreview.com/2020/02/14/844765/ai-emotion-recognition-affective-computing-hirevue-regulation-ethics/>
- [15] Shanley Corvite, Kat Roemmich, Tillie Ilana Rosenberg, and Nazanin Andalibi. 2023. Data Subjects' Perspectives on Emotion Artificial Intelligence Use in the Workplace: A Relational Ethics Lens. *Proceedings of the ACM on Human-Computer Interaction* 7, CSCW1 (April 2023), 124:1–124:38.
- [16] Nathalie DiBerardino and Luke Stark. 2023. (Anti-)Intentional Harms: The Conceptual Pitfalls of Emotion AI in Education. In *Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency (FAccT '23)*. <https://doi.org/10.1145/3593013.3594088>
- [17] Paul Ekman and Wallace F. Friesen. 1971. Constants across Cultures in the Face and Emotion. *Journal of Personality and Social Psychology* 17, 2 (1971), 124–129. <https://doi.org/10.1037/h0030377>
- [18] Trystan S. Goetze. 2022. Mind the Gap: Autonomous Systems, the Responsibility Gap, and Moral Entanglement. In *2022 ACM Conference on Fairness, Accountability, and Transparency (FAccT '22)*.
- [19] Gabriel Grill and Nazanin Andalibi. 2022. Attitudes and Folk Theories of Data Subjects on Transparency and Accuracy in Emotion Recognition. *Proceedings of the ACM on Human-Computer Interaction* (April 2022). <https://doi.org/10.1145/3512925>
- [20] Drew Harwell. 2019. Rights group files federal complaint against AI-hiring firm HireVue, citing 'unfair and deceptive' practices. *Washington Post* (Nov. 2019). <https://www.washingtonpost.com/technology/2019/11/06/prominent-rights-group-files-federal-complaint-against-ai-hiring-firm-hirevue-citing-unfair-deceptive-practices/>
- [21] Javier Hernandez, Rob R. Morris, and Rosalind Picard. 2011. Call Center Stress Recognition with Person-specific Models. In *Affective Computing and Intelligent Interaction (ACII'11)*. Springer-Verlag, Berlin, Heidelberg. <http://dl.acm.org/citation.cfm?id=2062780.2062798>
- [22] Noura Howell, John Chuang, Abigail De Kosnik, Greg Niemeyer, and Kimiko Ryokai. 2018. Emotional Biosensing: Exploring Critical Alternatives. *Proceedings of the ACM on Human-Computer Interaction* 2, CSCW (Nov. 2018), 69:1–69:25. <https://doi.org/10.1145/3274338>
- [23] Noura Howell, Laura Devendorf, Rundong Tian, Tomás Vega Gálvez, Nan-Wei Gong, Ivan Poupyrev, Eric Paulos, and Kimiko Ryokai. 2016. Biosignals as Social Cues: Ambiguity and Emotional Interpretation in Social Displays of Skin Conductance. In *Designing Interactive Systems (DIS '16)*.
- [24] Noura Howell, Laura Devendorf, Tomás Alfonso Vega Gálvez, Rundong Tian, and Kimiko Ryokai. 2018. Tensions of Data-Driven Reflection: A Case Study of Real-Time Emotional Biosensing. In *CHI (CHI '18)*. New York, NY, USA, 1–13. <https://doi.org/10.1145/3173574.3174005>
- [25] Noura Howell, Greg Niemeyer, and Kimiko Ryokai. 2019. Life-Affirming Biosensing in Public: Sounding Heartbeats on a Red Bench. In *Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI '19)*.
- [26] Vidushi Marda and Shazeda Ahmed. 2021. *Emotional Entanglement: China's emotion recognition market and its implications for human rights*. Technical Report. Article 19. <https://www.article19.org/wp-content/uploads/2021/01/ER-Tech-China-Report.pdf>
- [27] Andrew McStay. 2020. Emotional AI and EdTech: serving the public good? *Learning, Media and Technology* 45, 3 (July 2020), 270–283. <https://doi.org/10.1080/17439884.2020.1686016> Publisher: Routledge _eprint: <https://doi.org/10.1080/17439884.2020.1686016>

[28] Andrew McStay and P. Pavliscak. 2019. *Emotional Artificial Intelligence: Guidelines for Ethical Use*. Technical Report. https://drive.google.com/file/d/1frAGcvCY_v25V8ylqgPF2brTK9UVj_5Z/view

[29] Arvind Narayanan. 2021. How to recognize AI snake oil. <https://www.cs.princeton.edu/~arvindn/talks/MIT-STS-AI-snakeoil.pdf>

[30] Lisa O'Carroll. 2023. EU Moves Closer to Passing One of World's First Laws Governing AI. *The Guardian* (June 2023). <https://www.theguardian.com/technology/2023/jun/14/eu-moves-closer-to-passing-one-of-worlds-first-laws-governing-ai>

[31] Rosalind Picard. 1997. *Affective Computing*. The MIT Press.

[32] Rosalind Picard. 2019. Interview with Rosalind Picard on June 17, 2019: Affective Computing, Emotion, Privacy, and Health. <https://www.media.mit.edu/articles/rosalind-picard-affective-computing-emotion-privacy-and-health-artificial-intelligence-podcast/>

[33] Winifred Foster. 2019. Racialized Surveillance in the Digital Service Economy. In *Captivating Technology: Race, Carceral Technoscience, and Liberatory Imagination in Everyday Life*, Ruha Benjamin (Ed.). Duke University Press, Durham, 133–170. <https://www.dukeupress.edu/captivating-technology>

[34] Manish Raghavan, Solon Barocas, Jon Kleinberg, and Karen Levy. 2020. Mitigating Bias in Algorithmic Hiring: Evaluating Claims and Practices. *Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency* (Jan. 2020). <https://doi.org/10.1145/3351095.3372828>

[35] Kat Roemmich and Nazanin Andalibi. 2021. Data Subjects' Conceptualizations of and Attitudes Toward Automatic Emotion Recognition-Enabled Wellbeing Interventions on Social Media. *Proceedings of the ACM on Human-Computer Interaction* (Oct. 2021). <https://doi.org/10.1145/3476049>

[36] Kat Roemmich, Tillie Rosenberg, Serena Fan, and Nazanin Andalibi. 2023. Values in Emotion Artificial Intelligence Hiring Services: Technosolutions to Organizational Problems. *Proceedings of the ACM on Human-Computer Interaction CSCW1* (2023). <https://doi.org/10.1145/3579543>

[37] Samiha Samrose, Daniel McDuff, Robert Sim, Jina Suh, Kael Rowan, Javier Hernandez, Sean Rintel, Kevin Moynihan, and Mary Czerwinski. 2021. MeetingCoach: An Intelligent Dashboard for Supporting Effective & Inclusive Meetings. In *CHI (CHI '21)*. <https://doi.org/10.1145/3411764.3445615>

[38] Yasaman S. Sefidgar. 2023. Tools to Support Health and Well-being with Personal Data. In *Companion Publication of the 2023 Conference on Computer Supported Cooperative Work and Social Computing (CSCW '23 Companion)*.

[39] Diva Smriti and Jina Huh-Yoo. 2023. Bringing Emotions into Practice: A Framework for AI Design to Support Emotion Work. In *CSCW Companion (CSCW '23 Companion)*. Association for Computing Machinery, New York, NY, USA, 293–297. <https://doi.org/10.1145/3584931.3606988>

[40] Meredith Somers. 2019. Emotion AI, Explained.

[41] Luke Stark. 2018. Algorithmic Psychometrics and the Scalable Subject. *Social Studies of Science* (2018). <https://doi.org/10.1177/0306312718772094>

[42] Luke Stark. 2020. Empires of Feeling: Social Media and Emotive Politics. In *Affective Politics of Digital Media*. Routledge.

[43] Luke Stark. 2023. Artificial Intelligence and the Conjectural Sciences. *BJHS Themes* 8 (Jan. 2023), 35–49. <https://doi.org/10.1017/bjt.2023.3>

[44] Luke Stark and Jevan Hutson. 2021. Physiognomic Artificial Intelligence. <https://doi.org/10.2139/ssrn.3927300>

[45] Xin Sun, Emiel Krahmer, Jan De Wit, Reinout Wiers, and Jos A. Bosch. 2023. Plug and Play Conversations: The Micro-Conversation Scheme for Modular Development of Hybrid Conversational Agent. In *CSCW Companion (CSCW '23 Companion)*.

[46] Akhila Sri Manasa Venigalla, Sridhar Chimalakonda, and Dheeraj Vagavolu. 2020. Mood of India During Covid-19 - An Interactive Web Portal Based on Emotion Analysis of Twitter Data. In *CSCW Companion (CSCW '20 Companion)*. 65–68. <https://doi.org/10.1145/3406865.3418567>