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Abstract: Due to the geostrophic balance, horizontal divergence-free is often assumed when
analyzing large-scale oceanic flows. However, the geostrophic balance is a leading-order
approximation. We investigate the statistical feature of weak horizontal compressibility
in the Gulf of Mexico by analyzing drifter data (the Grand LAgrangian Deployment
(GLAD) experiment and the LAgrangian Submesoscale ExpeRiment (LASER)) based on
the asymptotic probability density function of the angle between velocity and acceleration
difference vectors in a strain-dominant model. The results reveal a notable divergence at
scales between 10 km and 300 km, which is stronger in winter (LASER) than in summer
(GLAD). We conjecture that the divergence is induced by wind stress with its curl parallel
to the Earth’s rotation.

Keywords: homogeneous turbulence; isotropic turbulence; oceanic surface flow; ocean
surface drifter; skewness of horizontal divergence

1. Introduction

In large-scale oceanic flows, the Coriolis effect and the pressure gradient dominate the
horizontal momentum balance [1,2]. When the Coriolis parameter is a constant, geostrophic
flow is horizontally non-divergent. This horizontal non-divergent condition simplifies
many theoretical analyses. For instance, the third-order structure function theory with
the incompressible condition can be used to study the direction of energy cascades in the
atmosphere [3] and ocean [4,5].

Geostrophic balance describes the oceanic mesoscale to the leading order of small
Rossby number, while at submeso and smaller scales, horizontal divergence can be of
leading order [6] and even mesoscale motion can have weak horizontal divergence. Second-
order structure functions can be constructed to detect the amplitude of this compressibil-
ity [7], but the sign of horizontal velocity divergence is unknown.

We go beyond the velocity structure function and study the combined information
from the velocity difference vector δu and acceleration difference vector δa. In three-
dimensional (3D) turbulence, the ensemble average of their dot product, denoted as
⟨δu · δa⟩, is found to be a constant under a fixed energy cascading rate with its sign
corresponding to the direction of cascade in the inertial range, which is justified by experi-
ments [8]. Thus, it is natural to study the angle θ between δu and δa. In a simple model
with constant strain rates and without rotation, the probability density function (p.d.f.)
of cos θ is related to the ratio of the eigenvalues of the velocity strain rate tensor [9]. The
p.d.f. of cos θ under this model fits well with the p.d.f. from experiments [9]. Therefore, it
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is possible to obtain information about the eigenvalues of the strain rate tensor from the
p.d.f. of cos θ, which has not been realized in former studies.

This paper treats the oceanic surface flow as a projection of 3D flow. In this sense,
the eigenvalues of the strain rate tensor reveal the compressibility of the surface flow. By
analyzing drifter data in the Gulf of Mexico, we aim to detect the amplitude and sign
of the horizontal divergence in oceanic surface flow. This will be realized through an
asymptotically derived relation between the p.d.f. of cos θ and the ratio of eigenvalues of
the strain rate tensor.

The structure of the rest of this paper is as follows: Section 2 introduces the theoretical
background and methods for analyzing the drifter data. Then we show the main results
in Section 3. Finally, we discuss the phenomenon found from the results and propose the
possible physics in Section 4. Details of data processing and error estimation will be shown
in Appendices A and B. More fitting results are displayed in Appendix C.

2. Theories and Methods

We built a model that captures the relation between the angle of acceleration and
velocity difference vectors and the divergence at a certain scale, which is inspired by
Gibert et al. (2012) [9]. Since drifters may be distributed at strain-dominant regions
around vortices in a diffusion process [10], we consider that at each scale, random strains
dominantly impact pair separation. Thus, we keep the model to be irrotational.

2.1. Random Strain Model

We can start from a simple case where the flow has constant strain rates and does not
rotate. Consider a 3D incompressible flow, then the velocity gradient tensor M is constant
and symmetric with zero trace:

Mij =
∂ui

∂xj
=

∂uj

∂xi
= Mji = const. (1)

In general, the velocity can be integrated from its gradient tensor M, which is u = u0 +
∫

M ·dr.
Additionally, the acceleration can be derived from velocity, i.e., a = ∂u/∂t + u · ∇u [1], where
∂u/∂t-related terms are zero in a statistically steady flow. For simplicity, we consider a
linear velocity profile and the corresponding acceleration can be expressed as follows [9]:

ui = Mijxj, (2a)

ai = uj
∂ui

∂xj
= Mijuj. (2b)

Here, we chose the Cartesian coordinates O-xyz, where the x-axis points to the East, the y-
axis points to the North and the z-axis is vertically upwards. The indices i, j range from 1
to 3, and each pair of repeating indices represents the corresponding summation from 1 to
3. The velocity is also denoted as u = ui + vj + wk, where i, j, k represent the unit vectors
of the axes x, y, z, respectively.

We can perform an orthogonal diagonalization since M is assumed symmetric. Choos-
ing the principal coordinates O-ξηζ, we obtain the following:

M =






λ1

λ3

λ2




 = λ1






1
−(1 + α)

α




, (3)
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where λ1 ≥ λ2 ≥ λ3 are the eigenvalues of M. Here, we applied the incompressibility
condition as follows [9]:

∇ · u = trM =
3

∑
i=1

λi = 0, (4)

and α = λ2/λ1.
For the large-scale oceanic flow, due to the dominant geostrophic balance, the principal

axes ξ and η lie close to the x-y plane. Therefore, it is reasonable to assume |α| ≪ 1 and the
ζ-axis is parallel to the z-axis. Under these assumptions, the horizontal velocity divergence
is not zero:

∇z · u =
∂u

∂x
+

∂v

∂y
= −∂w

∂z
= −λ2, (5)

where ∇z := i∂x + j∂y is the horizontal gradient.
Thus, a divergent flow would correspond to a negative λ2 and a negative α, and a

convergent flow would correspond to a positive λ2 and a positive α.
Considering two-dimensional (2D) drifter pair dispersion in the ocean, the relative

position vector between two drifters can be expressed as follows:

δr = r0(eξ cos δϕ + eη sin δϕ), (6)

where eξ and eη are the unit vectors of the axes ξ and η, r0 is the distance between the
drifters, and δϕ represents the angle between δr and eξ . When δr is fixed, the velocity and
acceleration difference vectors can be expressed as follows:

δu =






λ1

λ3

λ2




 · δr = r0λ1






cos δϕ

−(1 + α) sin δϕ

0




, (7)

and

δa =






λ2
1

λ2
3

λ2
2




 · δr = r0λ2

1






cos δϕ

(1 + α)2 sin δϕ

0




. (8)

Let θ be the angle between δu and δa. We can obtain the exact expression of cos θ:

cos θ =
δu · δa

|δu||δa| =
cos2 δϕ − (1 + α)3 sin2 δϕ

√

cos2 δϕ + (1 + α)2 sin2 δϕ
√

cos2 δϕ + (1 + α)4 sin2 δϕ
, (9)

which is independent of r0 and λ1.
Oceanic flows can be different when the scale changes. To apply the model to real

oceanic flows, we assume λi (i = 1, 2, 3) and α to be functions of the scale, i.e., functions of
r0 in a 2D drifter pair dispersion. We further assume that the angle δϕ is a random variable
(r.v.), to capture the changing direction of the principal axes and drifter pairs. When the
flow is assumed isotropic, α is independent of δϕ. Considering Equation (9), for a fixed
scale, the quantity cos θ as a function of δϕ is also a r.v. Our aim is to obtain α from the
distribution of cos θ under different scales.
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2.2. Probability Distribution of cos θ

The exact expression of cos θ as a function of δϕ (9) has a complicated form which is not
easily applicable to data analysis. As has been discussed above, the dominant geostrophic
balance implies |α| ≪ 1, so we can expand cos θ into a series of α through Taylor expansion:

cos θ =
∞

∑
k=0

αk fk(δϕ). (10)

At the first order, we obtain the following:

cos θ = cos 2δϕ +
3
2

α(cos2 2δϕ − 1). (11)

It is reasonable to reset cos 2δϕ instead of δϕ to be the independent variable. We introduce
the following notations for convenience:

x := cos 2δϕ, y := cos θ. (12)

The reverse function of (11) exists when |α| ≤ 1/3, and the 1st-order relations become

y = x − 3
2

α(1 − x2), (13a)

x = y +
3
2

α(1 − y2). (13b)

To the second order, these relations become

y = x − 3
2

α(1 − x2) + α2(1 − x2)

(
3
4
− 19

8
x

)

,

x = y +
3
2

α(1 − y2)− α2(1 − y2)

(
3
4
+

17
8

y

)

,
(14)

where the inverse function x = x(y) here can be derived by the matching of expansions in
a perturbative method. The results of our study will show that α is on the order of 10−2 for
oceanic surface flow, making the 1st-order expansion a good approximation.

The probability distribution of cos θ can be expressed by the distribution of δϕ (or
cos 2δϕ) in an asymptotic form. Consider a simple case when δϕ is uniformly distributed
over [0, 2π]. The p.d.f. of x = cos 2δϕ was derived in the 2D incompressible case with
α = 0 [9]:

P(x) =
1

π
√

1 − x2
, x ∈ (−1, 1). (15)

To the 1st order of α, we derive the expression of p.d.f. of cos θ as follows:

P̃(y) =
1 − 3

2
αy

π
√

1 − y2
, y ∈ (−1, 1). (16)

This expression introduces an asymmetric part with α as the leading order, which inspires
us to describe the influence of non-zero α by even-odd decomposition.
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2.3. Procedure for Analyzing Oceanic Surface Flow

Hinted by (16), we decompose the p.d.f.s into the even and odd parts

Peven(x) =
P(x) + P(−x)

2
, P̃even(y) =

P̃(y) + P̃(−y)

2
,

Podd(x) =
P(x)− P(−x)

2
, P̃odd(y) =

P̃(y)− P̃(−y)

2
.

(17)

The analysis will be based on the following assumptions:

Assumption 1. Assuming that in the even-odd decomposition P(x) = Peven(x) + Podd(x),

Peven(x) ≫ Podd(x). So we can introduce a bookkeeping parameter ϵ to mark the smallness of the

odd part of the p.d.f., i.e.,

P(x) = Peven(x) + ϵPodd(x), 0 < ϵ ≪ 1. (18)

Assumption 2. α = λ2/λ1 is small in oceanic flows, i.e., |α| ≪ 1. Hence the discussion in

Section 2.2 holds valid.

Assumption 3. |α| ≫ ϵ, i.e., the odd p.d.f. of cos θ is dominated by α instead of ϵ. Thus, α

measures the skewness of p.d.f. of the angular distribution of drifter pairs.

The p.d.f. of y = cos θ can be derived through a simple relation: P̃(y) =

P(x(y))|dx/dy|, where dx/dy = 1 − 3αy always holds non-negative under Assumption 2.
Denoting x = x0(y) + αx1(y) with x0(y) = y and x1(y) = 3(1 − y2)/2, we obtain
the following:

P̃(y) = P(x(y))
dx

dy
= P(x0 + αx1)

(
dx0

dy
+ α

dx1

dy

)

=
[
P(x0) + αx1P′(x0)

]
(

dx0

dy
+ α

dx1

dy

)

= P(x0)
dx0

dy
+ α

d
dy

[x1(y)P(x0(y))]

= P(y) +
3
2

α
d

dy
[(1 − y2)P(y)],

(19)

where we omitted the second-order term. Combined with Assumption 1 and Assumption 3,
we obtain the even-odd decomposition for P̃(y):

P̃(y) = Peven(y)
︸ ︷︷ ︸

even

+
3
2

α
d

dy

[

(1 − y2)Peven(y)
]

︸ ︷︷ ︸

odd

, (20)

where the skewness of p.d.f. of the angular distribution is captured by α.
Considering the decomposition in Equation (20), we can use the even part to express

the odd part, thus obtaining the α by fitting. Here, we use the least square method for fitting.
After obtaining the odd and even parts of the p.d.f. from data, we introduce the loss

function as follows:

L(α) =
1
n

n

∑
i=1

[
3
2

αq′(yi)− p(yi)

]2

, (21)

where

p(y) = P̃odd(y), (22a)

q(y) = (1 − y2)P̃even(y), (22b)



Symmetry 2025, 17, 136 6 of 14

then we obtain α by minimizing L(α):

α =
2 ∑

n
i=1 p(yi)q

′(yi)

3 ∑
n
i=1[q

′(yi)]
2 . (23)

Here, the sequence {yk}n
k=1 represents the data points, and it is chosen to be a finite

arithmetic sequence with a common difference in ∆y.
In our model, α is closely related to horizontal compressibility by Equation (5). If α

itself is a r.v. with its p.d.f. denonted as f (α), assuming that f (α) is negligible when
|α| > 1/3, then the relation between x and y is 1-to-1; therefore, the α in Equation (20) can
be understood as its expectation

∫
α f (α) dα. Thus, we may expect to obtain a statistical

average of horizontal velocity divergence, i.e., the asymmetry towards divergence or
convergence, by the sign of α.

3. Results

In this study, we analyze two data sets of drifter motion from the Grand LAgrangian
Deployment (GLAD) experiment and the LAgrangian Submesoscale ExpeRiment (LASER).
Drifters were deployed in the Gulf of Mexico in Summer, July to August 2012 (GLAD), [11]
and in Winter, January to February 2016 (LASER) [12]. The locations of drifters are tracked
using the Global Positioning System (GPS) within a nominal position error less than
10 m [5]. We think these two sets of data can reflect the velocity of oceanic surface flows
precisely at the scales studied here.

The p.d.f. of cos θ to the zeroth order is (15) when δϕ is uniformly distributed over
[0, 2π]. Therefore, we can do a rough comparison between the actual p.d.f. of cos θ and
(15). Choose the data in LASER and |δr| around 33 km as an example, and the result is
shown in Figure 1. Details of data processing are written in Appendix A. We find that
Equaiton (15) can already qualitatively describe the p.d.f. of cos θ, i.e., cos θ distributing
around ±1 has the maximum probability, while the p.d.f. changes little and lies below 0.5
around cos θ = 0. The dimensionless quantity α, which may represent the compressibility
by Equation (5), appears in the first-order expansion. Then, a rough estimation of α can be
conducted according to Equation (16).

-1 -0.5 0 0.5 1

0

0.5

1

1.5

Figure 1. Comparison between the actual p.d.f. of cos θ and Equation (15) in LASER, at the scale
around 33 km.
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Section 2.3 provides a method to obtain α with a weaker assumption to the distribution
of δϕ, and we can take an example to show the whole process. Figure 2 shows the fitting
process and its performance for |δr| around 33 km in LASER. We first decompose the p.d.f.
of cos θ into the even and odd parts, as shown in Figure 2a and c, respectively. Note that in
Figure 2a, q relates to the even part of p.d.f. of cos θ through (22b). Then, using the discrete
format in Appendix A, we take the derivative of q, shown in Figure 2b. Thus, we fit p using
q′ to obtain α following the least-square procedure shown in Equations (21)±(23). The red
fitting curve in Figure 2c well captures p. Figure 2d shows the comparison between the
p.d.f. of cos θ obtained from data and the theoretical expression (20) obtained from our
fitting procedure.

-1 -0.5 0 0.5 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

-0.04

-0.02

0

0.02

0.04

-1 -0.5 0 0.5 1

0

0.5

1

1.5

(a) (b)

(c) (d)

Figure 2. Fitting process in LASER at the scale around 33 km. (a) The even part of the p.d.f. of cos θ

multiplied by (1 − cos2 θ), denoted as q(cos θ). (b) The derivative of q, using the discrete format
in (A1). (c) The odd part of the p.d.f. of cos θ, denoted as p(cos θ), and its fitting curve 3

2 αq′(cos θ),
where α is obtained by (23). Here, α = −0.0123. (d) The comparison between the original data and
fitting of p.d.f. of cos θ.

The above process can be carried out in other scales of |δr|, in GLAD and LASER.
More fitting results are shown in Appendix C. Then we can obtain α as a function of scale,
which is shown in Figure 3. Details of data processing and error estimation are written
in Appendices A and B, which will tell us that Figure 3 is reliable when the scale is above
3 km. We can find that α is on the order of 10−2 in general, and stays negative when the
scale ranges from about 10 km to about 300 km. This range of scale is larger in LASER than
in GLAD, and so is the amplitude of negative α.
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10
-2

10
-1

10
0

10
1

10
2

10
3

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

GLAD

LASER

Figure 3. The obtained α-|δr| curve. Blue lines and red lines are used for GLAD and LASER,
respectively. α is of O(10−2) or less in general. The value of it is significantly negative at scales
between 10 km and 300 km, and this phenomenon is more prominent in LASER than in GLAD. Note
that the data in very small scales (less than 500 m) and very large scales (larger than 800 km) may be
subject to insufficient data with a probably large error.

4. Discussion

Figure 3 shows that α is negative (implying an average divergent flow) at most of
the scales and positive (convergent flows) at some scales around 1±10 km. The negative
α is more prominent in LASER than in GLAD. This at least verifies that the surface flow
is weakly compressible, as α is small and non-zero, and may involve some patterns in 3D
flows. Additionally, compared with theories of 3D homogeneous isotropic turbulence [13]
with ⟨λ1λ2λ3⟩ < 0, which may imply a positive α). Here, λi refers to the eigenvalues of the
symmetric part of the velocity gradient tensor, and the negative α implies the uniqueness
of oceanic flow. We do not know the exact reason behind this negative α, but we propose
two possible explanations in the following sections.

4.1. Kinematics: Drifter Concentration Caused by Mesoscale Vortices and Surface Compressibility

Cressman et al. (2004) [14,15] analyzed the motion of small particles on the surface of
water in a square tank, and simulated the velocity distribution numerically. They claimed
that the surface flow is a compressible flow with low speed (lower than the speed of sound).
Structures of source and sink will exist on the surface, as the motion is still 3D in essence.
Particles will be trapped in narrow convergent regions (with negative 2D divergence of
velocity) and will distribute around vortices with a larger scale.

For oceanic flows, the leading-order vortices are mesoscale eddies (with scales rang-
ing from several kilometers to several hundreds of kilometers). It is possible that these
mesoscale vortices are accompanied by narrow convergent fronts, so that the drifters will
accumulate around these vortices [12]. Meanwhile, the vortices correspond to divergent
regions due to mass conservation. This qualitative view agrees with the suggestion of
divergence (negative α) at mesoscales (∼10±100 km), with some suggestion of convergence
(positive α) at submesoscale fronts (∼1±10 km). We further speculate that the negative α

seen at even smaller scales may correspond to the divergent zones of Langmuir cells.
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4.2. Dynamics: Weak Compressibility Caused by Ekman Pumping

The Coriolis force is non-negligible for large scales in oceanic flows. The balance
between the Coriolis force and internal friction force is significant near the surface, resulting
in the boundary layer between the ocean and the atmosphere, which is called the Ekman
layer. For the Ekman layer on the surface of the ocean, friction at the bottom is zero (from
definition), and wind stress τT will happen at the top. The z-component w of the velocity
stays zero at the top, but non-zero at the bottom [1]:

wB =
1
ρ0

(

curlz
τT

f
+∇ · Mg

)

. (24)

where curlz denotes the z-component of the curl, Mg =
∫

Ek ρ0ugdz, and ug is the hor-
izontal component of the velocity under geostrophic balance. The term ∇ · Mg =

−(β/ f )Mg · j represents the divergence of geostrophic transport, which is relatively small
in Equation (24) [1].

Therefore, wind stress with a curl consistent with the rotation of the Earth (i.e., positive
curl in the northern hemisphere) will cause the up-welling and surface divergence, which
is likely to contribute to the negative α. The Gulf of Mexico is a region associated with
negative wind stress curl on average [16], which could not explain the observed negative α

(divergence) at scales between 10 km and 300 km. However, this region is also subject to
hurricanes, which are cyclones with a positive wind stress curl. In particular, the LASER ex-
periment experienced a strong hurricane, which may explain the more negative α detected
in the LASER dataset.

5. Conclusions

We constructed a pure-strain model with a parameter α to analyze the drifter data,
where α can reflect the existence of compressibility in a 2D flow, and the horizontal di-
vergence asymmetry in 2D turbulence. We find that α stays negative at the mesoscales,
representing a divergent flow, and we conjecture that mesoscale eddies interspersed with
convergent fronts or a wind stress with a cyclonic wind stress curl arising from hurricanes
may explain this observed divergence. Since particles and pollution tend to concentrate in
regions with negative horizontal divergence, our results potentially lead to better models
for pollution transports.

This study analyzed two data sets, and our model better matches LASER than GLAD
(shown in Appendix B). This difference may be caused by the difference in data volume,
or our assumptions, such as homogeneity and isotropy, are better satisfied in LASER than
in GLAD. The inhomogeneity and anisotropy in GLAD were already discussed in other
studies [17].

A major caveat of this work is that we assumed the flow to be pure-strain but oceanic
flows are known to have comparably strong vorticity as well [18]. Thus, this strong assump-
tion on our flow model may impact some of the results and conclusions. Also, our model is
probably invalid when the velocity gradient tensor changes significantly with time, and the
assumption of linearity is restrictive. Regardless, we provide an interesting and novel proof
of concept for analyzing ocean observations, which is worthy of further investigation.
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Appendix A. Details of Data Processing

The data used in this research covers the time period from day 10 to day 52 in GLAD
and LASER experiments. The positions (latitudes and longitudes) and velocities of the
drifters are contained in the original data. Acceleration is computed by the central differ-
encing scheme, and the time interval between neighbouring data points is 15 min originally.
The actually used data takes 30 min as the time interval.

The p.d.f. of cos θ (defined by the first equals sign in Equation (9)) is generated at
different scales of |δr| (i.e., the distance between drifters). We choose a sequence {rk} as
the representative scales in advance. This is a geometric sequence with a ratio of 1.5, so
it is equidistant in the logarithmic coordinate and is consistent with a former study [5].
Meanwhile, we tolerate a relative error of 0.2 when categorizing each actual |δr| into a
certain rk, i.e., |δr| is considered on the scale of rk if and only if ||δr| − rk|/rk < 0.2. Then
almost all the data can be used without repetition when the scale is between the first and the
last term of {rk}. The first term is set as r1 = 10 m and the last term is about 852 km, so there
are 29 terms of {rk} in total, all consistent with [5]. The examples in Figures 1, 2, and A1,
where the scale is chosen as 33 km, correspond to r21 to be precise.

As is mentioned in Section 2.3, we choose a sequence {yk} with a common difference
in ∆y to represent different values of cos θ when generating the p.d.f. of cos θ. To obtain
the p.d.f., we compute a discrete probability mass function (p.m.f.) of the event sequence
{cos θ ∈ [yk − ∆y/2, yk + ∆y/2)}, where

⋃n
k=1[yk − ∆y/2, yk + ∆y/2) = [−1, 1). The ex-

treme case cos θ = 1 will fall under the last interval. Divide the p.m.f. by ∆y, and we can
obtain the p.d.f. for analysis. In the main text, ∆y is set as 0.02 by default.

The function q(y) in Section 2.3 is also defined on discrete points {yk}. The derivative
of q(y) can be defined by a discrete format with second-order accuracy, i.e.,

q′(yi) :=







4q(y2)− 3q(y1)− q(y3)

2∆y
, i = 1,

q(yi+1)− q(yi−1)

2∆y
, 2 ≤ i ≤ n − 1,

3q(yn)− 4q(yn−1) + q(yn−2)

2∆y
, i = n.

(A1)

Appendix B. Error Estimation of the Fitting

Appendix B.1. Noise in the Generated p.d.f.

We generated p.d.f. of cos θ from drifter data directly. But these functions are not
smooth, and contain irregular oscillation, which is called noise. The existence of noise will
reduce the effect and reliability of our fitting. Observation tells us that noise will probably
decrease (i.e., Signal to Noise Ratio (SNR) will increase) as the scale and data volume
increase. For instance, there are more valid drifters in LASER (956) than in GLAD (297),
and accordingly, the p.d.f.s appear smoother in LASER than in GLAD.

Moreover, SNR will also increase when ∆y appropriately increases. An example is
taken for 33 km in LASER, shown in Figure A1. Obvious oscillations can be seen when
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∆y = 0.02, and this phenomenon vanishes gradually as ∆y grows up. However, changes in
∆y will result in changes in the obtained α, and the amplitude of this change also depends
on the scale and data volume.

We can plot the α-|δr| curves at different values of ∆y, which are shown in Figure A2.
There should not be big changes in α if our method is proper enough. According to
Figure A2, small scales correspond to a bigger amplitude of change in α and thus, a lower
reliability compared with the larger scales. The demarcation approximately locates at 3 km.
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Figure A1. Odd part of the p.d.f. and the fitting curve when ∆y equals (a) 0.02, (b) 0.05 and (c) 0.1,
at the scale around 33 km in LASER.
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Figure A2. The α − |δr| curves at different values of ∆y in (a) GLAD and (b) LASER. The values of
∆y are set as 0.02, 0.05, and 0.1, plotted in blue, red and black, respectively.

Appendix B.2. Root Mean Square Error

In the former section, we found that the fitting is effective and reliable at mesoscale
and large scale. But we have not checked whether the fitting matches the p.d.f. well enough,
and this is independent from the existence of noise. Therefore, we set ∆y = 0.1 to increase
SNR, and define the bias of fitting as follows:

σBias =

√
√
√
√ 1

n′
n′

∑
i=1

[
p(y′i)− pfit(y′i)

]2, (A2)

where n′ denotes the number of data points y′i when ∆y = 0.1, p(y′i) and pfit(y′i) =
3
2 αq′(y′i)

denote the odd part of the p.d.f. of cos θ and the fitting curve. Figure A3 shows the σBias-|δr|
curves. The value of σBias reduces to a stable platform when the scale is over 500 m.
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Figure A3. σBias − |δr| curves in (a) GLAD and (b) LASER.

In addition, the amplitude of the odd part of the p.d.f. of cos θ will vary as the scale
changes. A quantity describing the relative error needs to be introduced, i.e.,

eBias =
σBias

√
1
n′ ∑

n′
i=1 p2(y′i)

. (A3)

The eBias − |δr| curves are shown in Figure A4. We can find that the fitting matches better
in LASER than in GLAD, and the error is indeed smaller in larger scales (roughly larger
than 3 km). The difference between the two data sets may be resulted by the difference in
data volume, or GLAD is less likely to accord with our model.
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Figure A4. eBias − |δr| curves in (a) GLAD and (b) LASER.

Appendix C. More Fitting Results

Here, we select more fitting results in GLAD and LASER, as are shown in
Figures A5 and A6. The value of ∆y is set as 0.02. In GLAD, obvious oscillations of data
and the fitting curve appear when the scale is small (Figure A5a). The fitting curves are
approximately horizontal at mesoscale (Figure A5b±d). This is consistent with the result
that the amplitude of α is smaller in GLAD than in LASER at mesoscale, as can be seen
in Figure 3. Large scales have a better fitting result (Figure A5e). The oscillation of the
fitting curve around cos θ = 0 in Figure A5e may be a result of insufficient data volume. In
LASER, oscillation is less obvious than in GLAD when the scale is small, while the curves
appear horizontal and capture little features of the data (Figure A6a,b). The fitting is fine
for mesoscale and large scale (Figure A6c±e).
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Figure A5. Fitting results of p.d.f. of cos θ at different scales, using the data from GLAD. Five cases
are shown here at scales around (a) 51 m, (b) 577 m, (c) 6.6 km, (d) 50 km and (e) 568 km. Each single
case contains two sub-figures, plotting the whole and the odd part of the p.d.f. (blue circles) and the
fitting curve (red curve).
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Figure A6. Fitting results of p.d.f. of cos θ at different scales, using the data from LASER. Five cases
are shown here at scales around (a) 51 m, (b) 577 m, (c) 6.6 km, (d) 50 km and (e) 568 km. Each single
case contains two sub-figures, plotting the whole and the odd part of the p.d.f. (blue circles) and the
fitting curve (red curve).
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