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Scattered waves fuel emergent activity
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Active matter taps into external energy sources to power its own processes. Systems of passive particles
ordinarily lack this capacity, but can become active if the constituent particles interact with each other nonre-
ciprocally. By reformulating the theory of classical wave-matter interactions, we demonstrate that interactions
mediated by scattered waves generally are not constrained by Newton’s third law. The resulting center-of-mass
forces propel clusters of scatterers, enabling them to extract energy from the wave and rendering them active.
This form of activity is an emergent property of the scatterers’ state of organization and can arise in any
system where mobile objects scatter waves. Emergent activity flips the script on conventional active matter
whose nonreciprocity emerges from its activity, and not the other way around. We combine theory, experiment,
and simulation to illustrate how emergent activity arises in wave-matter composite systems and to explore the
phenomenology of emergent activity in experimentally accessible models. These preliminary studies suggest
that heterogeneity is a singular perturbation to the dynamics of wave-matter composite systems, and induces
emergent activity under all but the most limited circumstances.
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I. INTRODUCTION

Active matter harvests energy from its environment and
reuses that energy for its own purposes—for example, to
power its own motion [1–4]. Familiar examples include the
molecular motors within cells [5], synthetic colloidal swim-
mers [6], bacterial swarms [7], and flocks of birds [8]. The
individual entities that make up such systems are “active par-
ticles” in the sense that they independently transduce energy.

An alternative form of activity can arise when otherwise
passive particles interact through nonreciprocal forces. The
imbalance in these forces enables groups of particles to trans-
late and rotate even when the individual particles have no
mechanism to acquire the necessary energy. Hallmarks of
this form of activity have been observed in simulations of
two-component interdiffusing fluids [9], dispersions of cat-
alytically active particles [10], and robotic metamaterials [11],
all of which display transitions between passive and active
states enabled by nonreciprocal interactions. These disparate
systems exemplify a broad category of compositions of matter
that display “emergent activity” in the sense that their ac-
tivity is an emergent property of their state of organization.
Whereas previous studies have focused on simulations of
specialized model systems, we demonstrate that emergent ac-
tivity arises ubiquitously in any context where mobile objects
scatter waves. More specifically, we demonstrate, perhaps
counterintuitively, that the wave-mediated interactions that
bind scatterers into clusters need not be reciprocal. Figure 1
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illustrates how the interplay of reciprocal and nonreciprocal
wave-mediated interactions can organize independent passive
scatterers into active clusters.

We develop the principle of emergent activity in Sec. II
by focusing on sound and light as archetypal waves. In both
cases, we derive analytic expressions for the wave-mediated
interactions between dissimilar particles, and identify con-
ditions under which the pair interaction is nonreciprocal.
Experimental observations in Sec. III and simulations in
Sec. IV reduce the theory to practice, illustrating how un-
balanced acoustic forces give rise to emergent activity in
monolayers of acoustically levitated granular matter. These
studies reveal that heterogeneity in the particles’ scattering
properties constitutes a singular perturbation to the system’s
dynamics, which means that emergent activity should be a
generic feature of any system composed of particles that
scatter waves. We conclude in Sec. V with a discussion
of the general consequences of emergent activity for self-
organization in natural and synthetic many-body systems.

II. THE PRINCIPLE OF EMERGENT ACTIVITY

Active particles are self-propelled and so can move au-
tonomously through their environment. Passive particles, by
contrast, lack the ability to transduce energy on their own.
They therefore relax into equilibrium configurations unless
driven by external forces. Emergent activity provides a mecha-
nism for certain configurations of passive particles to develop
the capacity to move autonomously. This kind of collective
self-propulsion arises in systems of passive particles that in-
teract with each other through nonreciprocal forces.

The two-particle system depicted in Fig. 2 illustrates the
physical basis for emergent activity and helps to clarify the
distinction between conventional activity, simple driving, and
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FIG. 1. Emergent activity in a wave-matter composite system.
Individual particles scatter a wave symmetrically and so experience
no net force. Scattered waves mediate interactions that coalesce
groups of particles into pairs, trios, and larger rafts. Unless the
particles have identical scattering properties, the net wave-mediated
interaction transfers energy from the wave into the clusters’ transla-
tional and rotational kinetic energy.

emergent activity. A passive particle located at ri experiences
a force, F i j (ri j ), due to its interaction with its neighbor at
r j . This force depends on the interparticle separation, ri j =
ri − r j , as well as the two particles’ properties. The same cou-
pling mechanism also mediates a force, F ji(r ji ), on particle
j that is obtained from F i j (ri j ) by exchanging the particles’
labels. Newton’s third law leads us to expect these forces to
be reciprocal in the sense that F i j (ri j ) = −F ji(r ji ). If the
interparticle interaction is nonreciprocal, however, then the

FIG. 2. Geometry for computing sound-mediated forces and in-
teractions. Particle j scatters a portion of the incident pressure wave,
p0(r), to its neighbor at ri. The scattered wave, pj (ri j ), contributes
to the force experienced by particle i. Formulating this influence
is facilitated by defining a spherical coordinate system centered on
particle i and aligned with the separation between the particles,
ri j = ri − r j .

net force,

!F i j (ri j ) = F i j (ri j ) + F ji(r ji ), (1)

acting on the pair’s center of mass need not vanish.
To show how such nonreciprocity can arise, we refer again

to Fig. 2 and consider what happens when passive particles
interact with an incident wave, p0(r, t ), that acts as a reservoir
of energy, momentum, and angular momentum. In scattering
the incident wave, each particle experiences a primary time-
averaged force, F i(ri ), that could be used to drive its motion.
Instead, we assume that the particles come to mechanical
equilibrium on manifolds where F i(ri ) = 0. In that sense, the
wave does not drive the particles.

In addition to the primary force, particle i also experiences
a secondary force, F i j (ri j ), due to the wave, p j (ri j, t ), that
is scattered by its neighbor. Particle j experiences an analo-
gous secondary force mediated by pi(r ji, t ). In the next two
sections, we formulate the time-averaged secondary interac-
tions, F i j (ri j ), for particles scattering either sound or light and
demonstrate that those interactions are nonreciprocal unless
the particles have identical scattering properties. Analytical
expressions for the net center-of-mass force, !F i j (ri j ), reveal
how scattering enables pairs of passive particles to propel
themselves autonomously through the wave. The pair of scat-
terers therefore is active even though the individual particles
are not.

For clarity, we focus on the time-averaged forces ex-
erted by harmonic waves [12]. We restrict our attention to
spherical particles whose scattering patterns are readily ex-
pressed as multipole expansions. We furthermore work in
the Rayleigh limit, considering particles that are substantially
smaller than the wavelength λ of the incident wave, and in-
voke the first Born approximation, limiting the analysis to
first-order scattering. The interaction then is conveniently ex-
pressed in orders of the dimensionless size parameters, kai
and ka j , where ai and a j are the radii of the two spheres and
k = 2π/λ is the wave number. These simplifying assumptions
are not required for wave-mediated interactions to display
nonreciprocity. They are useful because they clarify the origin
and nature of nonreciprocal interactions in model systems that
lend themselves to detailed analysis.

A. Nonreciprocal interactions mediated by sound

The force landscape created by a general acoustic wave
includes both nonconservative driving forces and conservative
trapping forces [13]. To avoid confusion between driving and
activity, we specialize to the case of a planar standing wave
that exerts no driving forces. A pair of particles levitated in
such a standing wave experiences a pressure field,

p0(r) = p0 sin(kz), (2)

that we take to be aligned in the vertical direction ẑ. As
discussed in Appendix A, a particle that is denser and less
compressible than the medium experiences a primary scatter-
ing force, F i(ri ), that localizes it at a node of the pressure
field, where the primary force vanishes. In formulating the
interaction between a pair of levitated spheres, we assume that
both are localized in the same nodal plane at z = 0. Referring
to Fig. 2, this corresponds to scattering angle α = π/2. The
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corresponding scattering-mediated interaction between par-
ticles i and j is derived in Appendix B 2 and has the
leading-order form,

FK
i j (ri j ) = −2π F0 %(kri j ) ηiη j r̂i j, (3a)

which historically has been called the König interaction [14].
The overall scale of the König interaction is set by the inten-
sity of the incident wave,

F0 = p2
0

ρ0ω2
. (3b)

Its dependence on particle separation,

%(x) = 1
x4

[(
1 − x2

3

)
cos(x) + x sin(x)

]
, (3c)

is shaped by the scattered wave’s interference with the inci-
dent wave. The particles’ properties enter into FK

i j (ri j ) through
dimensionless coupling constants of the form

ηi = ρ0 − ρi

ρ0 + 2ρi
(kai )3, (3d)

each of which depends on the mismatch between the particle’s
density ρi and that of the medium ρ0 and is proportional to the
particle’s volume. Equation (3) includes all contributions up
to O{(kai )3(ka j )3} in the reduced particle sizes and is recip-
rocal under exchange of the labels i and j. Surprisingly, the
expression in Eq. (3) for the leading-order König interaction
between dissimilar spheres appears not to have been reported
previously.

The König interaction is attractive for small separations
[15,16] and so tends to draw monolayers of levitated particles
together into close-packed rafts [17–22]. The pair interaction
is a central force because the two-particle system is symmetric
and the wave itself carries no angular momentum [23].

Whereas the leading-order König interaction is recipro-
cal, the multipole expansion in Appendix B 2 reveals that
next-order contributions to the interparticle force break that
symmetry:

F i j (ri j ) =
(
1 + χK

i j

)
FK

i j (ri j ), (4a)

where the additional factor,

χK
i j = αi j + βi j (ka j )2 + γi j (kai )2, (4b)

includes all contributions up to O{(kai )5} and O{(ka j )5}.
The coefficients of χK

i j depend on the densities and compress-
ibilities of the two particles and are reported in Eq. (B8).
These corrections to the leading-order König interaction are
nonreciprocal unless the two particles have identical prop-
erties. A pair of acoustically levitated spheres therefore
experiences a center-of-mass force,

!FK
i j (ri j ) =

(
χK

i j − χK
ji

)
FK

i j (ri j ), (5)

that the individual spheres would not have felt.
The analogous formulation of the wave-mediated pair in-

teraction between bubbles is presented in Appendix B 3.
Nonreciprocal effects tend to be much weaker for spheres that
are less dense and more compressible than the medium.

B. Nonreciprocal interactions mediated by light

Pair interactions can be mediated by scattered electro-
magnetic waves in a phenomenon known as optical binding
[24,25]. In this case, the role played by the pressure wave,
p0(r), in Fig. 2 is played instead by the light’s electric
field, E0(r). Transverse optical binding occurs when the in-
terparticle separation is perpendicular to the light’s axis of
propagation, α = π/2. This interaction recently has been for-
mulated for metallic nanoparticles [26] and has been shown
to be nonreciprocal if the particles have different dipole po-
larizabilities. Here, we report the complementary result for
a pair of dielectric spheres when E0(r) is linearly polarized
perpendicularly to the interparticle separation ri j . This form of
transverse optical binding is analogous to the acoustic König
interaction. Appendix C adapts the Green function formalism
of Ref. [27] to obtain the leading-order optical binding force,

F i j (ri j ) = − 3
2 F0ℜ{%(kri j ) αiα

∗
j } r̂i j, (6a)

whose overall scale,

F0 = k|E0|2, (6b)

is proportional to the light’s intensity. As in the acoustic case,
the dependence on particle separation,

%(x) =
(

−1
3

x2 + ix + 1
)

eix

x4
, (6c)

is structured by interference between the scattered wave and
the incident wave. Assuming again that the particles are
smaller than the wavelength, their leading-order coupling to
the field is set by dimensionless dipole polarizabilities [28,29],

αi = α(0)
i

1 − i α(0)
i

6πϵ0n2
0

, (6d)

where ϵ0 is the permittivity of space, n0 is the refractive index
of the medium, and

α(0)
i = 4πϵ0 n2

0
n2

i − n2
0

n2
i + 2n2

0
(kai )3 (6e)

is the Clausius-Mossotti polarizability for a sphere of ra-
dius ai and refractive index ni. Equations (6d) and (6e) are
suitable for dielectric particles in the Rayleigh limit, kai ≪ 1.
In that limit, the leading contribution to the light-mediated
interaction is proportional to (kai )3(ka j )3 and is reciprocal
under exchange of the particles’ labels [27].

Retaining contributions to next order in the reduced size
parameters, kai and ka j , yields an expression,

F i j (ri j ) = ℜ
{(

1 + iχO
i j

)
FO

i j (ri j )
}
, (7a)

that can be separated into reciprocal and nonreciprocal
components, where the real part of

FO
i j (ri j ) = − 3

2 F0 %(kri j ) (α′
iα

′
j + α′′

i α′′
j ) r̂i j (7b)

agrees with the standard expression for the transverse optical
binding force [27]. Single and double primes in Eq. (7b)
refer to the real and imaginary parts of the polarizabili-
ties, respectively. The leading nonreciprocal corrections are
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FIG. 3. Emergent activity displayed by three EPS particles levitated in an acoustic trap. (a) Photograph of the experimental system. A
trio of millimeter-scale particles is trapped in a single node of a standing-wave acoustic trap at 40 kHz. (b) Schematic representation of the
unbalanced forces acting on the three pairs of particles due to nonreciprocal wave-mediated interactions. The resultant torque causes the cluster
to rotate about its center of mass. The cluster also would translate were it not held in place by the trap. (c) Reversing the chirality of the cluster
reverses the direction of rotation. (d) Light-obscuration measurement of the cluster’s rotation. A collimated laser beam is partially blocked
each time a particle passes through the optical axis. The transmitted light is filtered by a pair of pinholes and its intensity is recorded with
a photodiode. (e) Typical time traces of the recorded intensity for the two chiral configurations show the three particles moving through the
beam in the sequence predicted in (b) and (c). The same rotation rate, - = 11(1) Hz, is recorded for both rotation directions.

given by

χO
i j =

α′
iα

′′
j − α′

jα
′′
i

α′
iα

′
j + α′′

i α′′
j
. (7c)

For dielectric particles in the Rayleigh limit, the leading-order
nonreciprocal corrections,

χO
i j = 2

3

n2
j − n2

0

n2
j + 2n2

0
(ka j )3 − 2

3
n2

i − n2
0

n2
i + 2n2

0
(kai )3, (7d)

depend on the particles’ sizes and refractive indexes and
vanish appropriately if the particles are identical. The obser-
vation that χO

i j ̸= χO
ji confirms that light-mediated interactions

generally are nonreciprocal. This complements the analogous
result for metallic nanospheres reported in Ref. [26]. As for
the acoustic interactions discussed in Sec. II A, the expression
in Eq. (7) appears not to have been reported previously and
predicts behavior that should be observable experimentally.
Most significantly, Eq. (7) and the predictions of Ref. [26]
together demonstrate that emergent activity should arise natu-
rally in systems of particles that scatter light.

III. EXPERIMENTAL OBSERVATIONS
OF EMERGENT ACTIVITY

Figure 3(a) depicts a simple experimental demonstra-
tion of emergent activity in a trio of acoustically levitated
spheres. The system consists of three millimeter-scale beads
of expanded polystyrene (EPS) [30] with a measured mass
density [31] of ρ j = (30.5 ± 0.2) kgm−3 levitated in a

standing-wave acoustic trap. The levitator is based on the
standard TinyLev design [32] and consists of two banks of
piezoelectric transducers (MA40S4S, Murata) operating at
40 kHz. Each bank of 36 transducers is driven harmonically
at 12 Vpp by a software-defined function generator (ARDUINO
TEENSY 4.0) and projects a traveling wave into a spherical
volume of air 12.5 cm in diameter. Interference between the
counterpropagating waves creates a standing wave with pres-
sure nodes along the instrument’s vertical axis ẑ.

The focused acoustic trap is more highly structured than
the plane standing wave used to develop the theory of non-
reciprocal wave-mediated interactions in Appendix B. Never-
theless, the experimental system shares essential features with
the idealized model. An individual bead experiences one of
the TinyLev’s pressure nodes as a three-dimensional Hookean
potential energy well [32] with a measured [31] stiffness of
5 µNmm−1V−1 for a 1.5 mm-diameter EPS bead. The well
associated with one node is large enough to contain at least
three such particles. The trio in Fig. 3(a) is held in contact
by a combination of the trap’s primary restoring force and
the beads’ secondary wave-mediated interaction. The balance
of forces keeps the cluster of particles rigidly trapped in the
instrument’s x − y plane even when the instrument is inclined
relative to gravity. Interference among incident and scattered
waves gives rise to interparticle forces that should at least
qualitatively resemble predictions of Eq. (4).

We approximate the three-particle interaction by the su-
perposition of pairwise forces depicted in Fig. 3(b). Each
of these nonreciprocal contributions is directed along one
of the pair separation vectors, and therefore contributes to a
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torque around the cluster’s center. Of these, the unbalanced
interaction between the largest and smallest beads, !F31, is
predicted by Eq. (4) to be weaker than the combined influence
of the other two contributions. As a result, the cluster should
experience a net torque in the ẑ direction that causes it to rotate
counterclockwise, as drawn. Indeed, the cluster is observed
to rotate rapidly within its acoustic trap in the anticipated
direction.

Exchanging any two beads, as illustrated in Fig. 3(c), re-
verses the cluster’s chirality and therefore should reverse its
direction of rotation. This also is observed in the experimental
system. A typical realization of this experiment is presented
in Supplemental Material Video 1 [33].

We measure the cluster’s rotation rate using the light ob-
scuration system depicted in Fig. 3(d). This eliminates the
possibility of temporal aliasing in camera measurements due
to the cluster’s rapid rotation. The collimated beam from a
2 mW modular diode laser is aligned so that it is at least
partially occluded when one of the particles rotates into the
beam. The beam has a diameter of 2 mm, which is comparable
to the diameters of the particles. Particles of different sizes can
be distinguished by the proportion of the beam they block. The
transmitted light passes through two coaxial 250-m-diameter
pinhole apertures separated by 20 mm before being recorded
by a photodiode. The photocurrent is digitized with a storage
oscilloscope (TDS2002, Tektronix) at 5000 samples/s.

Typical time traces of the recorded laser intensity are plot-
ted in Fig. 3(e) and confirm that the sense of rotation places the
smallest particle in the lead, followed by the midsized particle
and then the largest. For the specific trio of particles captured
in Fig. 3(a), the measured rotation rate is - = 11(1) Hz. The
cluster rotates at the same rate in either chiral configuration,
which confirms that the torque results from the particles’
configuration and is not somehow encoded into the structure
of the acoustic trap. The cluster’s rotation therefore is an
example of emergent activity.

IV. EMERGENT ACTIVITY IN SIMULATED
MANY-BODY SYSTEMS

To gain insight into the bulk behavior of emergently active
matter, we simulate large ensembles of acoustically levitated
particles. We first simulate a trio of dense spheres to con-
firm that the pairwise approximation at least qualitatively
accounts for the experimental observations in Sec. III. We
then explore larger systems to understand how nonreciprocal
forces affect many-body dynamics. We simulate the dynamics
of dense spheres stably levitated in an acoustic plane wave
using the analytic expression for wave-mediated pair interac-
tions, FK

i j (ri j ), from Eq. (4). Each particle moves in the plane
according to the equation of motion

mir̈i = −γi ṙi +
∑

j ̸=i

FK
i j (ri j ) + ε

σi j

(
1 − ri j

σi j

)α−1

, (8)

with a Stokes drag coefficient, γ j = 6πη0 ai, that depends on
the viscosity of air, η0 = 1.8 × 10−5 Pas [34], and where the
last term describes a soft-sphere steric repulsion that prevents
particle overlap (ϵ = 1 × 105, σi j = ai + a j , and α = 4). The
simulations employ a velocity Verlet integrator based on the

FIG. 4. Simulated trajectory of a three-particle cluster of dense
spheres, translating as it rotates in the nodal plane of an acoustic
standing wave. The particles’ sizes and density are chosen to resem-
ble the experimental system in Sec. III, as is the force scale F0.

integrator in the JAX-MD molecular dynamics engine [35].
We maintain accuracy up to single precision. We set the
overall force scale to F0 = 10 µN, which is strong enough to
rigidly confine the spheres to the plane. This drive-to-drag
ratio is consistent with the forces estimated [31] for the ex-
periments in Sec. III, with typical König interactions of 3 µN
and Stokes drag per unit velocity of 0.5 N s/m. Analogous
simulations of nonreciprocal optical binding in systems of
dielectric spheres interacting through FO

i j (ri j ) from Eq. (7)
display emergent activity with similar phenomenology.

A. Three particles

To make contact with the experiments from Sec. III, we
simulate a cluster of three particles that are composed of
the same material but differ in size, with reduced radii of
ka1 = 0.3, ka2 = 0.5, and ka3 = 0.8. For consistency with the
experimental observations, we set the density of the particles
to be 30 times that of the medium [31].

Without the confining potential of the experimental acous-
tic trap, the simulated trio of particles translates across the
nodal plane as it rotates. Figure 4 shows a typical example,
and an animation rendered in INJAVIS [36] is presented in
Supplemental Material Video 2 [33]. The trio’s coupled ro-
tations and translations qualitatively resemble the meandering
trajectories observed in simulations of larger clusters of iden-
tical spheres [37] and experiments on self-propelled bubble
pairs [38]. Both of those systems, however, rely on viscous
streaming to break spatiotemporal symmetry. Motion in the
present case, by contrast, unambiguously emerges from linear
superposition of nonreciprocal pair interactions mediated by
scattered waves.
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FIG. 5. Snapshots from a simulation of 100 acoustically levitated spheres with a polydispersity of X = σ/µ = 0.25. The mean radius
kµ = 0.4 and force scale F0 are chosen to reflect experimental conditions from Sec. III. (a) Particles are randomly initialized in a triangular
lattice. The simulation then evolves over 107 time steps with a step size of 10−3 s. (b) Clusters rapidly coalesce under the influence of the
wave-mediated König interaction. (c) Clusters display emergent activity by translating, rotating, colliding, and internally restructuring.

While the center-of-mass trajectory plotted in Fig. 4 is
circular, other examples can be elliptical because the viscous
drag on the cluster depends on its orientation relative to the
direction of motion. Circular trajectories emerge when the
rotation rate is phase locked to the center-of-mass translation.

B. Many-particle systems

The bulk behavior of emergently active systems is tuned
by the heterogeneity of the particles’ properties. Heterogene-
ity appears to be a singular perturbation to the dynamics of
particle pairs. Larger ensembles may behave differently if
they coalesce into configurations where nonreciprocal forces
cancel and activity consequently vanishes.

We investigate collective effects in emergently active sys-
tems through simulations of acoustically levitated particles
in ensembles with particle number ranging from N = 49 to
N = 400. To facilitate comparison with experiments, we con-
sider spherical particles that all have the same composition
and differ only in size. We randomly draw the particles’ radii
from a normal distribution with a mean radius µ that we fix
relative to the wavelength of sound at kµ = 0.4. We vary the
standard deviation of the distribution σ to study the effects
of polydispersity. The system is initialized by arranging the
particles in random order on a triangular lattice with lattice
constant 3(µ + σ ), as shown in Fig. 5. The particles rapidly
coalesce into clusters under the influence of the attractive part
of the König interaction. After this initial transient, the free-
floating clusters continue to translate and rotate because of
unbalanced nonreciprocal interactions. A typical realization
is presented in Supplemental Material Video 3 [33].

One measure of such a system’s activity is provided by its
rate of energy dissipation,

P(t ) = 6πη0

N∑

i=1

ai v
2
i (t ), (9)

where vi(t ) is the translation speed of particle i at time t . This
can be compared with the maximum possible dissipation rate,

P0 ≡ NF0v0, (10)

for a system of N particles all moving at terminal velocity,

v0 = F0

6πη0µ
, (11)

under the influence of acoustic forces. The result is a dimen-
sionless activity metric,

A(X, t ) ≡ P(t )
P0

= 1
N

N∑

i=1

ai

µ

[
vi(t )
v0

]2

, (12)

that should depend on the polydispersity, X = σ/µ, but
should be independent of system size for sufficiently large N .
Once the system reaches steady state, this metric gauges the
rate at which the system extracts energy from the sound wave
and deposits it as heat in the fluid medium. Our activity metric
thus tracks the rate of entropy production by the wave-matter
composite system.

Because emergent activity is a consequence of nonrecip-
rocal interactions, A(X, t ) vanishes in systems composed of
identical particles (X = 0). Figure 6(a) shows how the activity
evolves in time for systems with N = 289 particles and three
representative values of polydispersity. In each case, the sys-
tem undergoes an initial transient from a high-activity state as
the particles coalesce into clusters. Once clusters have formed,
each system settles into a configuration with a steady-state ac-
tivity, AS (X ), that depends on its polydispersity. Fluctuations
in the long-time activity reflect rearrangements within clusters
and collisions between clusters. The horizontal dashed lines in
Fig. 6(a) are estimates for AS (X ) in each of these realizations.
Simulations for each value of X are repeated 15 times with
different particle ensembles and system sizes to obtain esti-
mates for the mean steady-state activity at each value of the
polydispersity.

Figure 6(b) shows how the ensemble-averaged steady-state
activity varies with polydispersity for acoustically levitated
particle rafts of different system size N . As expected, AS (X )
increases with increasing polydispersity by an amount that is
independent of N for the system sizes considered. We estimate
the limit of sensitivity for AS (X ) by simulating systems of
monodisperse particles and find it to be 10−14.

013055-6



SCATTERED WAVES FUEL EMERGENT ACTIVITY PHYSICAL REVIEW RESEARCH 7, 013055 (2025)

FIG. 6. (a) Simulated time evolution of the activity, A(X, t ), of
rafts of N = 289 particles of mean radius kµ = 0.4 in the nodal plane
of an acoustic standing wave. Trajectories represent typical realiza-
tions in systems three values of polydispersity. Steady-state activities
are represented by horizontal dashed lines. Time is measured in units
of the viscous relaxation time τ = 9

2
η0
µ2 . (b) Steady-state activity as a

function of polydispersity. Error bars reflect the standard deviation in
independent realizations. Polydisperse systems with X > X ∗ display
AS (X ) ∼ X 2, as depicted by the gray dashed line. The two-particle
prediction from Eq. (D6) is shown as a solid black curve. Insets are
representative configurations for X < X ∗ (ordered) and for X > X ∗

(disordered).

Rafts of attractive spheres form triangular lattices at
low polydispersity. The resulting sixfold symmetry favors
cancellation of nonreciprocal forces and therefore tends to
suppress emergent activity. Polydispersity disrupts crystalline
order above X ∗ ≈ 0.08 [39,40] by creating topological de-
fects. Each such defect serves as a center for unbalanced
nonreciprocal forces. The order-disorder transition therefore
should enhance emergent activity for X > X ∗. We observe
this transition from a low-activity regime to a high-activity
regime in Fig. 6(b), where there is a marked change in scal-
ing at X ≈ X ∗. This transition is qualitatively similar to the
dynamical phase transition between passive and active states
observed in random organization models [41].

We model the activity of the emergently active state
by computing the ensemble-averaged activity of pairs of

dissimilar particles. Such a pair is a minimal model for the
unbalanced nonreciprocal force acting on a topological defect
in a close-packed raft of particles. The expectation value of
the steady-state pair activity is computed in Appendix D and
is expected to scale with polydispersity as

AS (X ) ∼ X 2 (13)

for X < 1. We compare this prediction for the ensemble-
averaged pair activity with the observed activity, AS (X ), of
simulated particle rafts in Fig. 6(b), up to an overall multi-
plicative factor that is fit to the data. To leading order, the
activity in the disordered phase scales as X 2. The analyti-
cal model agrees with simulations for X > X ∗. Below X ∗,
the acoustically bound raft forms a triangular lattice without
topological defects, and the residual activity is dominated by
incomplete cancellation of unbalanced forces at the clusters’
irregularly shaped edges.

V. DISCUSSION

We have introduced the concept of emergent activity as
an organizing principle. Emergently active particles are in-
dividually passive, but become collectively active because of
their nonreciprocal interactions. Nonreciprocity is known to
emerge in conventionally active systems as a consequence of
the individual particles’ activity [42–45]. Emergent activity,
conversely, is a consequence of passive particles’ nonrecipro-
cal interactions.

We have shown that nonreciprocal interactions arise nat-
urally in systems of particles that interact by exchanging
scattered waves. These nonreciprocal interactions enable the
particles to exchange energy and momentum with an external
field, such as a sound wave or a beam of light. Other suitable
mechanisms for inducing emergent activity include stream-
ing flows around acoustically driven bubbles [38,46,47] and
wake-field interactions in dusty plasmas [48–50].

Wave-mediated interactions have the additional feature of
drawing particles together into cohesive rafts without the in-
tercession of other forces. In other systems, such as dusty
plasmas, that are characterized by repulsive pair interactions,
emergent activity dissipates unless an external force maintains
the density of particles. In all of these cases, the degree of
activity is enhanced by increasing the degree of heterogeneity
in the particles’ properties. For wave-mediated interactions
in particular, the activity represented by the rate of entropy
production appears to be proportional to the variance in the
particle diameter.

In developing the phenomenology of emergent activity, we
have focused on systems of particles coupled to monochro-
matic plane standing waves. Nonreciprocal interactions also
can be fueled by more general superpositions of waves and
configurations of particles. Emergent activity therefore should
arise ubiquitously in any system where particles scatter waves,
perhaps in combination with simple wave-mediating driving.
These observations suggest that the collective motion powered
by emergent activity was available to guide natural self-
organization in the epoch before biological activity evolved
and so could have played a role in the emergence of life.

013055-7



ELLA M. KING et al. PHYSICAL REVIEW RESEARCH 7, 013055 (2025)

ACKNOWLEDGMENTS

This work was supported by the National Science Founda-
tion under Award No. DMR-2104837. E.M.K. acknowledges
support from a Simons Foundation Junior Fellowship under
Grant No. 1141499. We thank Marc Gershow, Jasna Bru-
jic, Sarah Kostinski, Ankit Vyas, Mathias Casiulis, and Paul
Demidov for helpful conversations.

APPENDIX A: SOUND-MEDIATED FORCES

To formulate the forces and interactions mediated by
sound waves, we first introduce a multipole expansion of the
Reynolds stress tensor, whose normal component quantifies
the force per unit surface area exerted by a sound wave on a
particle. Using this stress tensor, we first calculate the acoustic
radiation force on a single spherical particle immersed in a
standing wave and then the acoustic interaction force between
two spheres. We use this framework to formulate the inter-
actions between solid particles in Appendix B 2 and between
bubbles in Appendix B 3.

Our system consists of discrete particles immersed in a har-
monic sound wave at frequency ω whose spatial structure is
described by the pressure field, p0(r). An analogous formula-
tion can be provided for objects scattering light, water ripples,
or any other harmonic wave. The total acoustic pressure field,
p(r), is the superposition of p0(r) and the waves scattered
by particles in the system. The pressure serves as the scalar
potential for the sound’s velocity in a medium of density ρ0,

v(r) = − i
ρ0ω

∇p, (A1a)

in the approximation that the fluid’s viscosity may be ne-
glected [13,51–53].

Both the pressure and the velocity fields contribute to the
time-averaged stress tensor in the fluid medium [53,54],

σ (r) = 1
2 [κ0|p(r)|2 − ρ0|v(r)|2]I + ρ0 v∗ ⊗ v, (A1b)

where I is the identity tensor and where κ0 = (ρ0c2
0 )−1 is the

isentropic compressibility of the medium given its density and
speed of sound c0. The first term on the right-hand side of
Eq. (A1b) accounts for the Lagrangian energy density of the
sound. The second is the Reynolds stress [51,55]. Integrating
the normal component of the stress over the surface Si of the
ith particle yields the time-averaged force experienced by that
particle:

F i(ri ) = −1
2
ℜ

{‹
Si

σ (r) · n̂ d2r
}
, (A1c)

where n̂(r) is the unit normal to the particle’s surface, and
where Si is referenced to the particle’s position ri. In practice,
F i(ri ) is most conveniently obtained by setting p(r) = 2i(r)
in Eq. (A1), where 2i(r) is the pressure inside the ith particle.
We obtain an expression for this interior field by matching
boundary conditions in a multipole expansion.

Referring to Fig. 2, the pressure wave incident on particle
i can be expressed as

p0(si ) = p0

∞∑

ℓ=0

ℓ∑

m=−ℓ

aℓm(kri ) jℓ(ksi )Y m
ℓ (θi,φ), (A2)

in a spherical coordinate system, si = (si, θi,φ) = r − ri, cen-
tered on the particle and oriented along the pressure wave’s
wave vector k̂. Distances in Eq. (A2) are scaled by the wave
number in the medium, k = ω/c0. The incident wave’s ge-
ometry is expressed in terms of spherical Bessel functions of
the first kind, jℓ(kr), and spherical harmonics, Y m

ℓ (θ ,φ). Its
structure is encoded in the beam shape coefficients, aℓm(kri ),
computed in the particle’s frame of reference.

The wave scattered by particle i similarly can be expressed
as a multipole expansion [56],

pi(si ) = p0

∞∑

ℓ=0

ℓ∑

m=−ℓ

b(i)
ℓm(kri ) h(1)

ℓ (ksi )Y m
ℓ (θi,φ), (A3)

in terms of spherical Hankel functions of the first kind,
h(1)

ℓ (kr). The scattered wave’s beam shape coefficients,

b(i)
ℓm(kri ) = aℓm(kri ) B(i)

ℓm, (A4)

are obtained from the incident wave’s beam shape coefficients
by applying the particle’s scattering coefficients B(i)

ℓm. These,
in turn, are obtained by requiring the pressure and the normal
component of the velocity to be continuous at the particle’s
surface. The same boundary conditions also yield the trans-
mission coefficients D(i)

ℓm that establish the interior pressure,

2i(si ) = p0

∞∑

ℓ=0

ℓ∑

m=−ℓ

d (i)
ℓm(kri ) jℓ(kisi)Y m

ℓ (θi,φ), (A5)

where the interior beam shape coefficients are

d (i)
ℓm(kri ) = aℓm(kri ) D(i)

ℓm. (A6)

Distances within the particle are scaled by ki = ω/ci, where
ci is the interior speed of sound.

1. Scattering by spheres

For simplicity and clarity, we consider the special case in
which the particles are spheres, each with its own radius ai,
density ρi, and interior speed of sound ci. Continuity of the
pressure at the ith sphere’s surface requires

p0(si ) + pi(si )|si=ai
= 2i(si )|si=ai

. (A7a)

Continuity of the normal component of the velocity re-
quires

ρ0
∂

∂si
[p0(si ) + pi(si )]

∣∣∣∣
si=ai

= ρi
∂

∂si
2i(si )

∣∣∣∣
si=ai

. (A7b)

In agreement with previous studies [57], we find these
boundary conditions are satisfied by the scattering and trans-
mission coefficients,

B(i)
ℓm =

λi jℓ(kai ) j′ℓ(kiai ) − j′ℓ(kai ) jℓ(kiai )

h(1)
ℓ

′
(kai ) jℓ(kiai ) − λi h(1)

ℓ (kai ) j′ℓ(kiai )
, (A8)

D(i)
ℓm = ρ0

ρi

jℓ(kai ) h(1)
ℓ

′
(kai ) − j′ℓ(kai ) h(1)

ℓ (kai )

h(1)
ℓ

′
(kai ) jℓ(kiai ) − λi h(1)

ℓ (kai ) j′ℓ(kiai )
, (A9)

respectively, where primes denote derivatives with respect to
arguments and where λi = ρ0c0/(ρici ) is the specific acoustic
impedance of the particle relative to that of the medium.

013055-8



SCATTERED WAVES FUEL EMERGENT ACTIVITY PHYSICAL REVIEW RESEARCH 7, 013055 (2025)

2. The force on a sphere

Substituting Eq. (A9) into Eq. (A5) yields the pressure
within the ith sphere. The force on that sphere then follows
from Eq. (A1),

F i(ri ) = F0 ℜ

⎧
⎨

⎩

∞∑

ℓ=0

ℓ∑

m=−ℓ

J (i)
ℓm d (i)

ℓm d (i)∗
ℓ+1,m

⎫
⎬

⎭ k̂. (A10)

The magnitude of the force is set by a prefactor,

F0 = p2
0

ρ0 ω2
, (A11)

that depends on properties of the sound wave in the medium.
Coupling between multipole moments mediated by scattering
at the sphere’s surface is described by the coefficients

J (i)
ℓm = 1

2

(
ρi

ρ0

)2
√

(ℓ − m + 1)(ℓ + m + 1)
(2ℓ + 3)(2ℓ + 1)

{

[m2 − (kai )2] jℓ(xi ) jℓ+1(xi )

+ ρ0

ρi
xi[ℓ jℓ(xi ) j′ℓ+1(xi ) − (ℓ + 2) j′ℓ(xi ) jℓ+1(xi )] −

(
ρ0

ρi
xi

)2

j′ℓ(xi ) j′ℓ+1(xi )

}

, (A12)

where xi = kiai. Equation (A12) differs from previously re-
ported expressions [51,54,56] for the coupling coefficients
J (i)
ℓm, which only include terms with m = 0. The additional

terms in the complete expression are required for waves that
lack azimuthal symmetry, including the scattered waves ex-
changed by pairs of particles. Equation (A12) is analogous to
Eq. (2.32) in Ref. [57], but projects the force along k̂ rather
than ẑ, which is more useful for computing interactions.

3. A sphere in a standing wave

As an illustrative example, we use this formalism to eval-
uate the force exerted on the ith sphere by a plane standing
wave,

p0(r) = p0 sin(kz), (A13)

whose axis is aligned in the vertical direction ẑ. The incident
field’s beam shape coefficients [53,56],

a(0)
ℓm (kri ) = 4π (−1)ℓ−m sin

(
kzi − ℓ

π

2

)
Y −m

ℓ (α, 0), (A14)

depend on the particle’s height zi above the nodal plane at
z = 0. Referring to the coordinate system from Fig. 2, the
ẑ-oriented incident wave has α = 0. In the absence of other
particles, we can use Eq. (A10) to compute the force on
particle i due to the incident field:

F i(ri ) = π

3
F0 (kai )3

(
κi

κ0
− 3ρi

ρ0 + 2ρi

)
sin(2kzi ) ẑ. (A15)

Equation (A15) includes only terms at monopole order (ℓ =
0) in the multipole expansion, and agrees with the standard
Gor’kov expression [57] for the leading-order acoustic trap-
ping force. Contributions from higher multipole terms, ℓ ! 1,
appear at order (ka j )5 in the dimensionless particle size and
therefore can be neglected for spheres that are smaller than the
wavelength of sound, ka j < 1.

The Gor’kov force vanishes at both nodes and antinodes
of the incident pressure wave. The prefactor of F i is negative
for dense spheres (ρi < ρ0 and κi > κ0). Such particles are
stably trapped at pressure nodes. Bubbles, by contrast, are
stably trapped at antinodes. This distinction qualitatively dif-
ferentiates the acoustic force landscape experienced by dense

spheres and bubbles. It also establishes qualitatively different
contexts for their wave-mediated interactions.

APPENDIX B: SOUND-MEDIATED PAIR INTERACTIONS

1. Acoustic forces on a pair of particles

As illustrated schematically in Fig. 2, the wave scattered
by particle j interferes with the external wave incident on
particle i,

p(r) = p0(r) + p j (r − r j ), (B1)

and therefore contributes to the force experienced by particle
i. In principle, the second particle scatters a portion of p(r)
back to the first, giving rise to a hierarchy of exchanged waves.
For simplicity, we invoke the first Born approximation and
consider only the first exchange of scattered waves.

Computing the force on particle i requires an expression for
the interior pressure, 2i(r), and thus an expression for the first
particle’s scattered wave, p j (r − r j ), in spherical coordinates
si centered on ri. To facilitate the projection, we align the
axis of the coordinate system along ri j = ri − r j , as shown
in Fig. 2, and set the angle α in Eq. (A14) accordingly. In this
coordinate system, the pressure wave scattered by particle j,

p j (si ) = p0

∞∑

ℓ=0

ℓ∑

m=−ℓ

a(i j)
ℓm jℓ(ksi )Y m

ℓ (θi,φ), (B2)

is incident on particle i with beam shape coefficients,

a(i j)
ℓm =

∞∑

n=0

Knℓm(kri j ) b( j)
nm(kr j ), (B3a)

that are projected from the scattered wave’s coefficients
with a projection kernel [58],

Knℓm(kri j ) =
ℓ+n∑

s=0

√
2s + 1

4π
C(nm|s0|ℓm) h(1)

s (kri j ), (B3b)

that accounts for the particles’ separation, ri j = |ri j |. The
projection coefficients are expressed in terms of Wigner 3-j
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symbols through

C(nm|s0|ℓm) = i−n+s+ℓ(−1)m
√

4π (2ℓ + 1)(2s + 1)(2n + 1)

×
(

n s ℓ
0 0 0

)(
n s ℓ

−m 0 m

)
. (B3c)

The upper limit of the sum in Eq. (B3b) reflects selection rules
for the Wigner 3-j symbols [59].

Both the incident and scattered waves contribute to the
beam shape coefficients for the wave inside particle i,

d (i j)
ℓm =

(
a(0)

ℓm + a(i j)
ℓm

)
D(i)

ℓm. (B4)

The particle’s size and properties influence the interior wave
through the transmission coefficients from Eq. (A9). The
net wave-mediated force on particle i then follows from
Eq. (A10). The complementary force on the neighboring par-
ticle is obtained by exchanging labels i and j.

The total force experienced by particle i includes con-
tributions from the incident wave, the scattered wave, and
their interference. To clarify the nature of the interparticle
interaction, we assume that both particles are stably trapped
in the same nodal plane of the planar standing wave described
by Eq. (A13). The primary Gor’kov force therefore vanishes
identically and a(0)

ℓm (kr) from Eq. (A14) is evaluated at z = 0
and with α = π/2 for both particles. The acoustic force on
particle i therefore can be attributed entirely to its wave-
mediated interaction with particle j,

F i j (ri j ) = F0 ℜ

⎧
⎨

⎩

∞∑

ℓ=0

ℓ∑

m=−ℓ

J (i)
ℓm d (i j)

ℓm d (i j)∗
ℓ+1,m

⎫
⎬

⎭ r̂i j . (B5)

For this much-studied model system [14,16,51,54,60,61], the
wave-mediated force depends on the particles’ separation
through the beam-shape coefficients d (i j)

ℓm .
The pair interaction in this geometry historically has been

dubbed the König force for dense spheres [14] and the
secondary Bjerknes interaction for bubbles [60]. For simplic-
ity, we formulate this force in the Rayleigh approximation,
kai, ka j < 1, so that we may reasonably truncate the multi-
pole expansion at quadrupole order, ℓ = 2.

2. König interaction: Dense spheres in a standing plane wave

Spheres that are denser than the fluid medium will be
localized in one of the nodal planes of the standing wave.
The leading-order expression for the wave-mediated force on
particle i due to particle j,

FK
i j (r) = −2π F0 %K (kr) ηiη j r̂, (B6a)

is the König interaction [14]. Its dependence on the parti-
cles separation,

%K (kr) =
[
1 − 1

3 (kr)2
]

cos(kr) + kr sin(kr)

(kr)4
, (B6b)

shows that the wave-mediated interaction is attractive when
the particles are near contact and changes sign at larger sepa-
rations. The particles’ coupling constants [62],

ηi = ρ0 − ρi

ρ0 + 2ρi
(kai )3, (B6c)

depend on their density mismatch with the medium, but not
on their compressibilities. This is reasonable because dense
particles principally scatter the dipolar velocity field.

Equation (B6) reduces to the previously published form for
the pair interaction [16] in the special case of identical parti-
cles. The asymmetric case appears not to have been reported
previously.

Most previous studies of sound-mediated pair interactions
go no further than the dipole approximation and conclude that
wave-mediated interactions are reciprocal in general [56,57].
References [16] and [37] note the existence of nonreciprocal
acoustic interactions between pairs of bubbles but suggest
they are too small to be significant. In fact, the nature of
the pair interaction changes qualitatively when higher-order
multipole contributions are taken into account. These changes
are present even in the first-scattering approximation, and take
a surprisingly elegant form.

The leading quadrupole-order correction to the König
force,

F i j (r) = FK
i j (r) (1 + χK

i j ), (B7)

breaks the reciprocity of the pair interaction with a term,

χK
i j = αK

i j + βK
i j (kai )2 + γ K

i j (ka j )2, (B8a)

that identifies roles for the spheres’ sizes and compositions
through the coefficients

αK
i j = −2

3
ρ0

ρi
(B8b)

βK
i j = − 3

10

(
1 − κ j

κ0
+ 3

2
ρ0

ρ j
− 2

3
ρ0

ρi

)
(B8c)

γ K
i j = −19

18
+ 127

210
κi

κ0
− 67

108
ρ0

ρi
. (B8d)

Equation (B8) establishes the conditions under which
acoustically levitated spheres experience nonreciprocal inter-
actions. Because αK

i j ̸= αK
ji , spheres with different densities

interact nonreciprocally even if they have the same size. The
different functional forms of βK

i j and γ K
i j have the consequence

that spheres of different sizes interact nonreciprocally even
if they are made of the same material. Equation (B8) further
reveals that nonreciprocal effects should be most prominent
for particles that are comparable in size to the wavelength
of sound, kai ! 1, and are nearly density-matched to the
medium, ρi " ρ0.

3. Bjerknes interaction: Bubbles in a standing plane wave

Bubbles are less dense than the medium (ρi < ρ0) and
more compressible (κi > κ0) and so are localized at antin-
odes of the pressure wave. The wave-mediated force between
acoustically levitated bubbles is commonly known as the sec-
ondary Bjerknes interaction [60] and broadly resembles the
König interaction between dense spheres from Eq. (B6). To
leading nontrivial order in the small parameters kai, ρi/ρ0, and
κ0/κi, Eq. (B5) predicts that the wave-mediated interaction
between two bubbles separated by distance r in an antinodal
plane of a standing wave is

FB
i j (r) = −2π

9
F0 %B(kr) ηiη j r̂, (B9a)
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with coupling constants of the form [62]

ηi =
(

1 − κi

κ0

)
(kai )3. (B9b)

The Bjerknes interaction is longer-ranged than the König in-
teraction,

%B(kr) = cos(kr) + kr sin(kr)
(kr)2

, (B9c)

and is attractive at short ranges. Bubbles’ coupling con-
stants depend on their compressibilities rather than their
densities because bubbles principally scatter the pressure
field, with a leading contribution from monopole scattering.
Equation (B9) includes terms up to dipole order (ℓ = 1) in
the multipole expansion and agrees with previously reported
expressions [54,57] for this interaction at the same level of
approximation. Reference [51] proposes a different numerical
prefactor because its derivation imposes axisymmetry on the
pressure field, which is not appropriate for multipole contribu-
tions with m ̸= 0. As for the König interaction between dense
spheres, the leading-order Bjerknes interaction is reciprocal,
FB

21(r) = −FB
12(r), even for bubbles of different sizes and

compositions.
The quadrupole-order expression,

F i j (r) = FB
i j (r)

(
1 + χB

i j

)
, (B10)

introduces a correction,

χB
i j = αB

i j + βB
i j (ka j )2 + γ B

i j (kai )2, (B11a)

that depends on the bubbles’ compositions and sizes. Ad-
ditional terms and higher multipole contributions all appear
at O{(ka j )3} or O{(kai )3} and so can be neglected in the
Rayleigh approximation. Expressing the coefficients to lead-
ing nontrivial order yields

αB
i j = −3

2
κ0

κi

ρ2
i

ρ2
0

(B11b)

βB
i j = −2

3
+ 1

3
κ j

κ0

(
1 + 1

5
ρ j

ρ0

)
(B11c)

γ B
i j = −2

3
+ 1

3
κi

κ0

(
1 + 1

5
ρi

ρ0

)
, (B11d)

from which we conclude the wave-mediated interactions
between pairs of bubbles are reciprocal unless the bub-
bles are composed of different materials. Size-dependent
nonreciprocity emerges at higher orders in the small param-
eters, ρi/ρ0, ρ j/ρ0, κ0/κi, and κ0/κ j . Comparing Eq. (B11b)
with Eq. (B8b) suggests that αB

i j ≪ αK
i j , which means that

composition-dependent nonreciprocity should be significantly
weaker for bubbles than for dense particles. This is consistent
with earlier reports [16,37]. Nonreciprocal effects should be
most evident in systems such as emulsions where the “bub-
bles” are nearly density matched to the medium and have
comparable compressibility. The nature of the pairwise non-
reciprocity reported in Eqs. (B8) and (B11) complements a
recent report of nonreciprocal wave-mediated interactions that
arise from the viscosity of the medium thanks to streaming
effects that we do not consider [38].

APPENDIX C: LIGHT-MEDIATED PAIR INTERACTIONS

The electric field acting on a dielectric particle at position
ri is the superposition of the incident field, E0(r), and the field
scattered by its neighbor at r j :

E i(ri ) = E0(ri ) + α j E j (r j ) G(ri j ), (C1)

where α j is the scattering coefficient for particle j, E j (r j ) is
the total field incident on particle j, and ri j = ri − r j is the
interparticle separation. The tensorial Green function [27],

G(r) = [λ(r) − µ(r)] r̂ ⊗ r̂ + µ(r) I, (C2)

expresses propagation of the components of the scattered
wave from j to i in terms of the partial waves

λ(r) = eikr

r3
(1 − ikr) (C3)

and

µ(r) = eikr

r3
[(kr)2 − 1 + ikr]. (C4)

For simplicity, we assume that the incident field is uniform,
E0(r) = E0. When the incident field is linearly polarized ei-
ther transverse or parallel to ri j , the magnitude of the field
incident on particle i can be expressed self-consistently as

Ei(ri ) = E0
1 + α j Gi j

1 − αiα j G2
i j (ri j )

, (C5)

where Gi j is the transverse or longitudinal component of
G(ri j ), respectively.

The total force on particle i due to particle j follows from
the field [63]

F i(ri ) = 1
2

3∑

n=1

ℜ
{
α∗

i E∗
i,n

∂Ei,n

∂r

}
ên, (C6)

where the subscript n refers to the Cartesian coordinates. This
expression includes the pair interaction,

F i j (ri j ) = 1
2

E2
0 ℜ

{
α∗

i α j (1 + 2αiGi j + α∗
j G

∗
i j )

∂Gi j

∂r

}
r̂i j + O

{
αiα jG2

i j

}
, (C7)

which we express in the limit of weak scattering, |α jGi j | ≪ 1. Specializing to the case of transverse polarization, Gi j = λ(ri j ),
we obtain an expression for the pair interaction,

F i j (ri j ) = −3
2

E2
0 ℜ

{
α∗

i α j

[
− (kri j )2

3
+ ikri j + 1

]
eikri j

}
r̂ + O

{
k6α3

i

}
. (C8)
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Factoring the separation dependence into %(kr) yields the
expression for the optical binding force presented in Eq. (6).
The reciprocal part of the interaction is obtained by noting that
the product of particle polarizabilities can be written as

α∗
i α j = α′

iα
′
j + α′′

i α′′
j + i(α′

iα
′′
j − α′′

i α′
j ) (C9)

and taking the real part. The nonreciprocal component comes
from the imaginary part. We can then write the optical binding
force in the form of Eq. (7b). The final expression is obtained
by applying Eqs. (6d) and (6e) and neglecting terms of higher
order than O{k6a6

i }.

APPENDIX D: ACTIVITY AS A FUNCTION
OF POLYDISPERSITY

The steady-state velocity of a pair of acoustically levitated
particles arises from the competition between unbalanced
center-of-mass forces and viscous drag. Hydrodynamic cou-
pling reduces the drag on a pair of spheres [64] relative to the
sum of Stokes contributions, which means that

vi j = χi j − χ ji

6πη0 (ai + a j )
F K

i j (ai + a j ) r̂i j (D1)

is an underestimate for the pair velocity due to emergent
activity. Equations (12) and (B8b) then suggest that two dense
spheres composed of the same material have an emergent
activity that depends on their composition and sizes as

AS (ai, a j ) ≈ 3
2
π2 f 4

1 kµ (kai )7 ξ 6 (1 − ξ )2

(1 + ξ )7
, (D2)

where

f1 = ρ0 − ρi

ρ0 + 2ρi
(D3)

is the dipole polarizability of a sphere of density ρi and ξ =
a j/ai is the spheres’ size ratio.

We compute the ensemble-averaged pair activity by as-
suming that the spheres’ radii are drawn from a Gamma

distribution,

p(a) = 1
a

(µa
σ 2

) µ2

σ2 e− µa
σ2

8
(

µ2

σ 2

) , (D4)

with mean µ and variance σ 2. Under this assumption, ξ is
an independent random variable that is drawn from the Beta
prime distribution with probability density

p(ξ ) = ξ−1+ µ2

σ2 (1 + ξ )−2 µ2

σ2

B
(

µ2

σ 2 ,
µ2

σ 2

) . (D5)

Averaging Eq. (D2) over ai ∈ [0,∞] and over ξ ∈ [0, 1]
yields the mean pair activity,

AS (X ) = A0X 14 8
(
6 + 1

X 2

)
8

(
7 + 1

X 2

)
8

( 2
X 2

)

8
(
9 + 1

X 2

)
83

( 1
X 2

)

× −6 + 1
X 2

, 7 + 2
X 2

; 9 + 1
X 2

; −1, (D6a)

as a function of the polydispersity, X = µ/σ . The activ-
ity is expressed in terms of the gamma function, 8(n), and
the Gauss hypergeometric function, −a, b; c; z. The overall
activity scale,

A0 ≈ 3
2

π2 f 4
1 (kµ)8, (D6b)

depends strongly on the mean particle size µ relative to the
wavelength.

We obtain the leading-order scaling of emergent activity as
a function of polydispersity through a mean field approxima-
tion. We assume that the radius of each particle differs only
slightly from the mean, ai = µ(1 + ϵi ), and that ϵi is drawn
from a normal distribution with width σ/µ. The emergent
activity of two dense spheres is then

AS (ai, a j ) = A0
(1 + ϵi )6 (1 + ϵ j )6 (ϵi − ϵ j )2

(2 + ϵi + ϵ j )7
. (D7)

Applying the binomial expansion to the denominator under
the assumption that ϵi + ϵ j ≪ 2, and averaging the resulting
polynomial expression over ϵi and ϵ j then yields the leading-
order behavior

AS (X ) = A0(X 2 + O{X 4}) (D8)

that appears in Eq. (13).
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