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Abstract. Image Manipulation Detection (IMD) is becoming increas-
ingly important as tampering technologies advance. However, most state-
of-the-art (SoTA) methods require high-quality training datasets featur-
ing image- and pixel-level annotations. The effectiveness of these methods
suffers when applied to manipulated or noisy samples that differ from the
training data. To address these challenges, we present a unified frame-
work that combines unsupervised and weakly supervised approaches for
IMD. Our approach introduces a novel pre-processing stage based on a
controllable fitting function from Implicit Neural Representation (INR).
Additionally, we introduce a new selective pixel-level contrastive learn-
ing approach, which concentrates exclusively on high-confidence regions,
thereby mitigating uncertainty associated with the absence of pixel-level
labels. In weakly supervised mode, we utilize ground-truth image-level
labels to guide predictions from an adaptive pooling method, facilitating
comprehensive exploration of manipulation regions for image-level detec-
tion. The unsupervised model is trained using a self-distillation training
method with selected high-confidence pseudo-labels obtained from the
deepest layers via different sources. Extensive experiments demonstrate
that our proposed method outperforms existing unsupervised and weakly
supervised methods. Moreover, it competes effectively against fully su-
pervised methods on novel manipulation detection tasks.

Keywords: Image Manipulation Detection · Implicit Neural Represen-
tation · Weakly Supervised Learning · Unsupervised Learning

1 Introduction

The emergence of diverse media tampering tools, such as Photoshop and AI
editing and generation methods [10, 49, 61, 64, 70, 73], has made it increasingly
convenient to manipulate media content. However, this accessibility also brings
forth the concerning issue of widespread misinformation, which can precipitate
serious security implications. Therefore, the development and implementation of
robust tampering detection technology, namely, Image Manipulation Detection
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Fig. 1: We conducted experiments using three widely-used evaluation datasets con-
taining both authentic and tampered samples. Performance are compared with six
SoTA fully supervised IMD methods. The pixel-level F1 score is calculated using tam-
pered images, while image-level accuracy is computed using authentic images. The blue
and orange bars represent the original datasets and reconstructed datasets via Implicit
Neural Representation, respectively. It is evident that there is a significant performance
decrease in all methods when applied to reconstructed images in pixel-level detection
compared with the original dataset. On the other hand, performance using authentic
images shows less change. The scores are averaged across CASIAv1 [11], Coverage [57],
and Columbia [24] datasets.

(IMD) methods, are imperative to mitigate these risks effectively. The funda-
mental manipulation operations that previous methods typically address are as
follows: (1) Splicing, which involves taking content from one image and pasting
it onto another image, (2) Copy-move, in which parts of an image are duplicated
and relocated to another location within the same image, (3) Inpainting, which
entails erasing parts of an image and replacing them with synthesized content.

Despite significant advances in fully supervised IMD methods, they encounter
several notable challenges. First, these methods often perform poorly when con-
fronted with unseen manipulation types. Second, extension of them towards
unseen manipulation types faces challenges due to their reliance on high-quality
training datasets with either image-level and pixel-level annotations. Acquiring
such datasets is costly and in many cases, impractical, especially considering the
myriad varieties of real-life tampering methods. Third, while some language-
guided datasets may lack pixel-level labels, they hold advantages handling real-
world scenarios. These datasets can potentially enhance the generalization ca-
pability of IMD models.

To address the limitations of fully supervised IMD methods and enhance
the generalization ability toward real-world use, we propose to integrate unsu-
pervised and weakly supervised approaches into a unified IMD framework. Our
framework allows training with solely image-level labels or even without any la-
bels, aligning with many unsupervised and weakly supervised tasks [14, 30, 48,
52, 56, 72, 74]. Compared to the fully supervised methods, our approach comes
with superior generalization capabilities and can be trained using datasets with-
out annotations. Our method begins with the observation that tampered regions
exhibit differences from authentic regions in most cases, such as the variations
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Fig. 2: Examples of Reconstruction Error Maps computed between original and recon-
structed images are presented. The first two rows depict the data samples and their
corresponding ground-truth masks, respectively. The first three columns showcase tam-
pered image examples, while the last three columns display authentic images, where
the ground-truth masks are all black. Apparently, the reconstruction process fails to
properly reconstruct the tampered pixels, resulting in activations in the error map.
Conversely, less change is observed in the authentic samples.

in color and lighting, which pose challenges for the fitting function that needs to
model regions accurately. It is shown in [63] that the controllable fitting function
of Implicit Neural Representation (INR) tends to learn an average representation
of the training images. Motivated by this insight, we raise the following question
as our hypothesis: if we train an INR solely on authentic images, can the fitting
function effectively represent the characteristics of tampered regions?

To obtain the answer to this question, we first train an INR using only pristine
images from CASIAv2 [12] and use it to reconstruct three mainstream datasets.
We then apply fully supervised SoTA methods to evaluate the reconstructed
datasets, as shown in Fig. 1. Surprisingly, the evaluation results of these meth-
ods exhibit a significant decrease when using INR-reconstructed samples, while
there is less performance change in the authentic image samples. This outcome
leads us to an initial assumption that the INR may not effectively capture the
characteristics of tampered regions. To validate this assumption, we compute
the reconstruction error map between the reconstructed and original images in
Fig. 2. Remarkably, we observe activation in the tampered regions of the tam-
pered samples, while there is no discernible difference in the authentic samples.
This observation inspires us to incorporate the INR as a pre-processing method
and concatenate the reconstruction error map with the input RGB images before
feeding them to the backbone. We name this pre-processing method as Neural
Representation Reconstruction (NRR).

Following the success of the pre-processing using INR, we further explore
our findings and leverage it fully in our framework. Drawing inspiration from
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Contrastive Learning [22], we utilize NRR as a contrastive sample generator and
introduce selective pixel-level contrastive learning, focusing solely on highly con-
fident regions. This approach effectively mitigates uncertainty associated with
the absence of pixel-level labels and further enhances weakly supervised perfor-
mance. We further extend our method to a fully unsupervised approach trained
with selected high-confidence pseudo-labels using a self-distillation [69] train-
ing strategy. Finally, previous SoTA methods widely apply Global-Max Pooling
(GMP) or Global-Average Pooling (GAP) for image-level detection. However,
GMP can hinder training and cause inaccurate predictions, as only the most
discriminative response is back-propagated, neglecting the entire tampered con-
tent. Conversely, GAP is susceptible to inaccuracies due to weakly activated
pixels. To overcome this limitation, we propose an adaptive global-average pool-
ing that focuses on the high-confidence tampered regions. Our method can thus
produce more comprehensive and robust image-level predictions.

Experimental evaluations are conducted on seven datasets, including five
mainstream datasets featuring general manipulation types and two novel datasets
containing unseen tampered samples. The results demonstrate that our methods
outperform SoTA weakly and unsupervised methods. Furthermore, our method
achieves competitive results compared to fully supervised methods in novel ma-
nipulation detection tasks. Finally, our method can be easily extended to the
datasets without pixel-level labels, which shows enhanced generalizability.

The contribution of this paper includes the following: (1) We propose a
novel method that achieves plausible weakly and unsupervised IMD results. Our
method can be easily adapted to images without labels or only with image-level
labels. (2) To our knowledge, we are the first to investigate the potential of
Implicit Neural Representation (INR) in the IMD task. The pre-process step
utilizing INR demonstrates effectiveness in handling tampered cases. (3) We in-
troduce selective supervision, which mitigates uncertainty associated with the
absence of labels and further improves detection performance. (4) Extensive ex-
periments validate the efficacy of our proposed methods, showcasing superior
performance on both standard and novel manipulation types compared to SoTA
methods.

2 Related Work

2.1 Image Manipulation Detection

Most traditional unsupervised IMD methods [1, 8, 9, 17, 38] detect manipulation
via low-level tampering artifacts including camera fingerprint, double compres-
sion, color filter array, etc. The weakly supervised method of [65] applies self-
consistency learning from multiple inputs. Most fully supervised IMD [5,20, 21,
25, 26, 33, 54, 58–60, 62] methods aim at detecting anomalous features. The two-
branch architecture [29, 75] detects both image-editing and double-compression
manipulation traces.

Unlike previous methods, we propose combining weakly and unsupervised
IMD in a single framework. Meanwhile, most SoTA methods apply high-pass fil-
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ters such as SRM [18] and Bayar [62] to suppress low-frequency information and
detect noise inconsistency, but they are not adaptive to all manipulation types,
especially when the tampered pixels are from the same source as authentic ones.
Additionally, noise filters are very sensitive to high-frequency information such
as edges, whether manipulated or not, making them ineffective and inefficient.
We thus propose a novel pre-processing method using INR, which applies re-
construction error to address this limitation. Our pre-process via reconstruction
error can effectively provide a good prior to the model and is non-sensitive to
authentic images, as shown in Fig. 2.

2.2 Image Neural Representation

Image Neural Representation (INR) has become increasingly popular for image
representation. The controllable fitting ability of INR is widely utilized in various
applications such as continuous image/video super-resolution [6,7], video/image
compression [13, 28], continuous shape representation [16, 66], medical image
analysis [40,67], etc. Recently, [63] utilized INR for low-light image enhancement.
However, the capability of INR on distinguishing pristine from tampered images
has not been documented in the open literature.

2.3 Contrastive Learning

The basic idea of contrastive learning [22] is to repel negative sample pairs while
attracting positive pairs. The most popular architecture using contrastive learn-
ing is the Siamese network [27], which accepts two inputs simultaneously and
the process is supervised by their similarity. This method has been widely ap-
plied in unsupervised and self-supervised applications [4, 36, 53, 71]. Traditional
unsupervised contrastive learning approaches commonly apply simple image aug-
mentation operations, which may not be easily applicable to IMD due to model
uncertainty [26]. Furthermore, image-level similarity, which is commonly used
in contrastive learning, cannot be directly applied to IMD as it is unrelated to
objects. To apply contrastive learning in un-/weakly supervised IMD, we utilize
INR-reconstructed images as counter samples and employ a feature matching
process in the final feature space. Building on the potential ability of INR men-
tioned in Section 1, authentic features tend to have higher matching scores, while
tampered features have lower matching scores.

3 Proposed Method

3.1 Overall Architecture

Fig. 3 illustrates the overall architecture of our IMD framework. The basic
architecture comprises two branches with shared weights. Given an RGB im-
age I ∈ RH×W×3 where H and W are its height and width, respectively, we
first apply Neural Representation Reconstruction (NRR) to reconstruct it as
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Fig. 3: An overview of the proposed two-branch framework. The first branch accepts
concatenated inputs as the main branch, while the NRR reconstructed image is fed
into the second branch as a complementary branch. Selective contrastive learning is
applied only to the pixels that have high confidence of being authentic or tampered.
The classification results conducted by global-average pooling on both the result of the
main branch using Otsu’s method and intersected tampered pixels from clustering are
used for loss computing. In the weakly supervised setting, ground-truth image-level
labels are applied for supervision. In the unsupervised setting, high-confidence pseudo-
labels from the deepest layers are used to guide the shallow outputs.

IR ∈ RH×W×3 and generate a reconstruction error map IE ∈ RH×W×1 between
IR and I. We then concatenate I and IE , feeding them into the first branch,
which serves as the main branch. Similar to most IMD methods, the main branch
generates a mask using a simple upsampling and Sigmoid activation function on
the final feature map. We then apply Otsu’s method to adaptively select the
activated region for image-level prediction, as done in [65]. The reconstructed
image IR is fed into the second branch, acting as a complementary branch for
feature matching. After processing with the backbone, we obtain two feature
maps F and FR. We next compute the feature matching scores M between the
two feature maps via a dot product, where authentic pixels tend to have higher
matching scores and vice versa. For the two-class classification of manipulation
detection, unsupervised clustering is applied to F and M . We then intersect
the two clustering results and exclusively apply pixel-level contrastive learning
to the intersected features that exhibit higher confidence in being either au-
thentic or tampered. The image-level classification result is conducted using the
proposed adaptive global average pooling, which focuses on the high-confidence
tampered regions for comprehensice image-level prediction. In a weakly super-
vised manner, the ground-truth image-level label is applied to supervise the
prediction. In an unsupervised manner, a selected set of high-confidence pseudo-
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labels from the deepest layer are utilized to supervise the shallow prediction
via self-distillation [69] training strategy. The high-confidence pseudo-labels are
chosen by comparing predictions derived from Otsu’s method and clustering
technique, opting solely for those consistently identified by both sources.

3.2 Neural Representation Reconstruction

Inspired by [63] and the observation from our experiment in Fig. 1 2, we apply
NRR to reconstruct the input image. The reconstruction error can highlight the
manipulation trace, thereby furnishing an indispensable prior to the subsequent
IMD model. In INR, the input image is first converted to a feature map FN ∈
RH×W×C using an image encoder, where H and W are height and width, C is
the number of feature channels. The coordinate set of input can be expressed
using X ∈ RH×W×2. We proceed by concatenating FN and X, subsequently
feeding them into a Multi-Layer Perceptron (MLP) for decoding. The NRR is
formulated as:

IR[x, y] = MLP (FN [x, y], X[x, y]), (1)

where IR is reconstructed RGB pixel values from I, [x, y] is each pixel location.
The main goal of NRR is to reconstruct the RGB values of I, with loss function
formulated as:

LNRR = ∥I − IR∥1 . (2)

Note that such reconstruction can not depict the high-frequency pixels prop-
erly. We therefore apply the positional encoding from [39] to map X to a higher-
dimensional space. Such positional encoding is expressed as:

X
′
=

(
sin(20πX), cos(20πX), · · ·, sin(2L−1πX), cos(2L−1πX)

)
, (3)

where L is a pre-setting constant to control the fitting ability of NRR. Normally,
larger L results in a more accurate fitting. In our task, we aim to avoid outputs
from NRR that mirror the inputs; instead, we desire NRR to faithfully preserve
information in normal (authentic) content while introducing unfaithfulness in
extreme (tampered) pixels. We empirically choose L = 8 as the optimal trade-
off.

3.3 Selective Contrastive Learning

After obtaining IR from NRR, we calculate the reconstruction error map between
I and IR using IE = (IR − I)2. Then, we concatenate IE and I, enhancing the
input to the backbone’s first (main) branch. For the input of the second (com-
plementary) branch, we send IR for feature matching. We employ ResNet50 [23]
as a backbone, which consists of four stages that match previous weakly super-
vised methods. The weights of two branches are shared. After processing by the
backbone, we obtain 2 feature outputs F and FR from different input sources.
We then compute the feature matching scores M using the dot product as:

Mx,y = σ

(
P (F x,y

R ) · P (F x,y)√
C

)
, (4)
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where Mx,y is the similarity score at the spatial location (x, y). The project head
P (·) contains 2 convolutional layers and ReLU activation. The σ(·) denotes the
sigmoid activation function, and

√
C provides normalization.

Due to the ability of NRR to properly reproduce only authentic pixels (and
not tampered ones), the high matching scores in M tend to correspond to the
authentic parts of the image. In contrast, low scores tend to correspond to manip-
ulated regions of the image. Due to the lack of ground-truth masks to supervise
the final features, we apply unsupervised clustering for forged/pristine classi-
fication similar to [3, 37, 41, 44, 47, 58] and assume that the cluster with fewer
elements is the tampered cluster. This assumption aligns with the real-world
situation of current manipulation datasets. The reason is that, in most cases,
the tampered region is usually much smaller than the authentic ones.

Ideally, we can apply pixel-level contrastive learning through InfoNCE [22]
on M and F as [58]. However, we found that this method does not work well in
our experiments, as clustering may come with low confidence due to the lack of
ground-truth masks. To address this issue, we intersect on the clustering results
of M and F , and denote the intersected clustering as CI . After the intersection,
we will have 2 clusters with higher confidence in being either authentic or tam-
pered with, since they come from the same prediction from 2 different sources.
We thus apply InfoNCE only to intersected pixels for contrastive learning, leav-
ing the ambiguous pixels unchanged. This selective contrastive learning loss is
formulated as:

LSCL = − log

1
J

∑
j∈[1,J] exp(q · k

+
j /τ)∑

i∈[1,K] exp(q · k
−
i /τ)

, (5)

where q is an encoded query; J and K are the number of selected positive and
negative keys, respectively; τ is a temperature hyper-parameter. We set positive
keys k+j as pixels associated with pristine regions, whereas negative keys k−i
correspond to pixels linked to tampered regions.

3.4 Adaptive Global Average Pooling

Many existing methods use Global-Max Pooling (GMP) and Global-Average
Pooling (GAP) for image-level prediction to determine if the input is authentic
or tampered. However, GMP can hinder training and cause inaccurate predic-
tions as only the most discriminative response is back-propagated, neglecting
the entire tampered content. Global-Average Pooling (GAP) is susceptible to
inaccuracies due to weakly activated pixels.

To tackle these challenges, we introduce Adaptive Global Average Pool-
ing (AGAP), which focuses on the high-confidence tampered regions for com-
prehensive image-level prediction. Leveraging the intersection of two cluster-
ing results (discussed in Section 3.3), we initially apply Global Average Pooling
(GAP) exclusively to intersected tampered regions from a clustering perspective.
However, relying solely on unsupervised clustering may not guarantee optimal
performance and robustness across all input types without ground-truth labels.
As discussed in [32], Otsu’s method performs well when the image histogram
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exhibits a bimodal distribution, whereas clustering provides flexibility and the
ability to handle more complex histograms. Therefore, we combine Otsu and
clustering to enhance image-level prediction and training robustness. Specifi-
cally, GAP is applied to the tampered responses from both Otsu and intersected
clustering results for loss computation with image-level labels. Further details
on Otsu’s method and clustering can be found in their respective papers [15,43].

3.5 Weakly-supervised and Unsupervised IMD

In the weakly-supervised IMD setting, we utilize ground truth image-level labels
to supervise the prediction training using a binary cross-entropy (BCE) loss,
which is:

LBCE(g, ĝ) = −(1− g) log(1− ĝ)− g log(ĝ), (6)

where g and ĝ are the ground-truth and prediction scores, respectively. The final
classification loss in a weakly supervised manner is the sum of two BCE losses,
comparing two pooling results with g.

In the unsupervised IMD setting, where no labels are used, we employ a self-
distillation training strategy [69], using pseudo-labels from the deepest layers as
a teacher to supervise the shallow outputs.

To streamline prediction results from shallow layers and mitigate computa-
tional overhead, the classification head following each middle stage of the back-
bone uses spatial-average pooling in the channel dimension, reshaping it into
a one-channel feature map. This is followed by a sigmoid function and global-
max pooling. In traditional self-distillation methods, combining ground truth
loss and self-distillation enhances overall performance, but this approach is not
applicable in an unsupervised context. Our experiments revealed that relying
solely on self-distillation did not yield satisfactory results, as the outputs from
the deepest layers may lack accuracy, hindering the training process and overall
performance.

Drawing inspiration from the selective-supervised method [31], proven effec-
tive in handling noisy label datasets, we leverage its concept of selecting train-
ing examples based on the alignment between feature representation and given
labels. However, in our unsupervised setting, the absence of labels poses a chal-
lenge. To overcome this hurdle, we compare predictions obtained from Otsu and
clustering methods, choosing only those consistently predicted by both sources
as pseudo-labels for self-distillation training.

In pseudo-label selection, predictions exceeding 0.5 are considered as tam-
pered samples. Similar to weakly supervised setting, we employ BCE loss be-
tween selected pseudo-labels and shallow predictions for supervision. During
inference, all classification heads in shallow layers are excluded to avoid unnec-
essary parameters.

Training objective. We first apply trained NRR through LNRR as a pre-
trained model, with all its weights frozen during IMD training. For simplicity,
we use the symbol Lcls to denote the loss functions for classification in both



10 Z. Zhang et al.

unsupervised and weakly supervised approaches, albeit with slight differences as
described above.

The total loss for our proposed IMD, denoted as Ltotal, is a weighted sum of
both classification losses using BCE loss and the selective pixel-level contrastive
learning loss:

Ltotal = αLcls + βLSCL, (7)

where α and β are weighting hyperparameters.

4 Experiments

Dataset: Our model is trained using CASIAv2 [12] exclusively, which comprises
7,491 authentic samples and 5,063 tampered images. For the evaluations of the
standard IMD task, we employ widely-used benchmarks, including CASIAv1 [11],
Coverage [57], Columbia [24], IMD2020 [42], and NIST16 [19]. CASIAv1 [11] con-
sists of both splicing and copy-move images. Coverage [57] contains only copy-
move samples with some post-processing approaches. Columbia [24] comprises
363 uncompressed images with an average resolution of 938× 720. NIST16 [19]
and IMD2020 [42] contain only tampered images, suitable for pixel-level eval-
uation. These datasets cover traditional manipulation types including splicing,
copy-move, and removal. For evaluations involving novel or more complex ma-
nipulation types, we utilize IEdit [51] and MagicBrush [68], which are two
language-driven datasets containing various novel manipulation types, such as
action change and light change.

Evaluation Metrics: We utilize IOU and F1 scores, including P-F1 for
pixel-level F1, I-F1 for image-level F1, and C-F1 for combined F1. The C-F1 score
accounts for both pixel-level and image-level performance through the harmonic
mean, providing an overall performance comparison. All F1 scores and IOU
scores are computed using 0.5 as the fixed threshold. Due to the lack of pixel-
level masks in IEdit [51], we include image-level ACC for additional evaluation.

Implementation Details: We employ ResNet50 [23] as the backbone and
the model is implemented using PyTorch [45], with parameters initialized ran-
domly. We apply AdamW [35] as the optimizer. The Multi-Layer Perceptron
(MLP) in NRR follows a three-hidden-layer architecture. NRR is trained for 120
epochs with an initial learning rate of 2 × 10−4 and weight decay is applied.
The IMD model in weakly supervised mode is trained for 50 epochs with an
initial learning rate of 0.0005 and weight decay. For the unsupervised model, we
train for 20 epochs with an initial learning rate of 0.0001, applying weight decay.
Image augmentation is limited to random flipping and cropping. We use a fixed
threshold of 0.5 to extract binary masks from the feature map, consistent with
previous methods. Hyperparameters α and β are set to 1.0 and 0.1, respectively,
for weakly supervised training, and 1.0 and 0.3 for unsupervised training. For
the clustering algorithms, we used K-means [34].



IMD With INR and Limited Supervision 11

Method CASIAv1 Columbia Coverage NIST16 IMD2020
IOU P-F1 IOU P-F1 IOU P-F1 IOU P-F1 IOU P-F1

NOI [38] 0.075 0.132 0.152 0.236 0.122 0.210 0.048 0.074 0.091 0.126
CFAl [17] 0.081 0.134 0.175 0.275 0.103 0.185 0.076 0.105 0.068 0.103
MCA [1] 0.049 0.089 0.085 0.148 0.078 0.136 0.049 0.074 0.044 0.079
NoisePrint [9] 0.074 0.130 0.085 0.320 0.098 0.176 0.062 0.106 0.054 0.104
IVC [8] 0.056 0.101 0.085 0.164 0.070 0.127 0.038 0.068 0.048 0.086
Ours 0.097 0.166 0.216 0.344 0.131 0.217 0.080 0.129 0.079 0.136

Table 1: Evaluation results of unsupervised methods for Standard Manipulation
task.

Method CASIAv1 Columbia Coverage NIST16 IMD2020
IOU P-F1 I-F1 C-F1 IOU P-F1 I-F1 C-F1 IOU P-F1 I-F1 C-F1 IOU P-F1 IOU P-F1

FCN [46] 0.078 0.122 0.561 0.200 0.062 0.098 0.524 0.165 0.072 0.122 0.424 0.190 0.032 0.052 0.052 0.086
WSCL [65] 0.100 0.163 0.679 0.263 0.220 0.321 0.720 0.444 0.102 0.171 0.571 0.263 0.047 0.078 0.093 0.152
Ours 0.124 0.199 0.703 0.310 0.248 0.365 0.695 0.479 0.140 0.221 0.667 0.332 0.079 0.131 0.124 0.204

Table 2: Evaluation results of weakly supervised approaches for Standard Manip-
ulation task.

4.1 Comparison with SoTA Methods

For a fair comparison with SoTA methods, we selected approaches for which the
source code is publicly available. Among the unsupervised methods applied for
comparison are NOI [38], CFAl [17], MCA [1], NoisePrint [9], and IVC [8], while
the weakly supervised methods include FCN [46] and WSCL [65].

Additionally, we conducted experiments using two novel manipulation datasets
and compared our approach with fully supervised methods, including RRU-
Net [2], Mantra-Net [60], SPAN [25], PSCC-Net [33], Trufor [20], CAT-Net [29],
Hifi-Net [21], CR-CNN [62], ObjectFormer [54], and MVSS-Net [5].

Comparison with SoTA unsupervised methods: Due to the assump-
tion of unsupervised methods that all images contain manipulated parts, they
will classify all test images as tampered. Thus, they are not suitable for image-
level evaluation. We conduct pixel-level experiments to compare their abilities
to localize the manipulated region, as shown in Table 1. We can observe that
our proposed method in the unsupervised setting achieves the best detection
performance compared to other unsupervised methods across five widely used
standard manipulation benchmarks.

Comparison with SoTA weakly supervised methods: Table 2 shows
experimental results comparing weakly supervised SoTA approaches. Except for
the F1 (I-F1) score at the image level in the Columbia [24] dataset, our method
performs better than SoTA methods in all other metrics. Regarding the relatively
lower I-F1 score in Columbia compared to WSCL [65], we believe the reason is
that Columbia does not have post-processing, so our method may not be very
sensitive to manipulation. However, despite this issue, our method achieves the
best localization performance in the Columbia dataset.
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Fig. 4: Visualization results using different methods. The images are displayed in the
following order from top to bottom: tampered images, ground truth masks, prediction
results from CR-CNN [62], Mantra-Net [60], NOI [38], WSCL [65], and our method.

Comparison using novel manipulation dataset: In order to show the
generalization ability of our method. We conduct evaluations using fully su-
pervised and weakly supervised methods on two novel manipulation detection
datasets in Table 3. We can see that the fully supervised methods cannot adapt to
the novel manipulation types, resulting in low detection performance even if they
utilize a very large synthesis training dataset with both image-level and pixel-
level labels. In contrast, our method achieves competitive performance while
using extremely few training data with only image-level labels.

Visualization Results: We present some visualization results compared to
SoTA methods in Figure 4. Our method can better localize the tampered region,
even without the use of pixel-level labels. However, due to the lack of pixel-level
labels, our model cannot accurately detect tampered edges. These results of our
method are generated from the weakly supervised model.

4.2 Ablation Study

We conducted several ablation studies to evaluate the effectiveness of each pro-
posed component. For these studies, we utilized the CASIAv1 [12] and NIST16 [19]
datasets.
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T
yp

e

Method Training Data Size IEdit MagicBrush
ACC I-F1 IOU P-F1 I-F1 C-F1

Fu
ll

Su
pe

rv
is

io
n

RRU-Net [2] 4.2K 0.482 0.651 0.093 0.153 0.667 0.249
Mantra-Net [60] 64K 0.499 0.665 0.058 0.105 0.667 0.181
SPAN [25] 96K 0.528 0.210 0.011 0.002 0.585 0.004
PSCC-Net [33] 100K 0.524 0.206 0.132 0.210 0.710 0.324
Trufor [20] 858K 0.505 0.665 0.216 0.304 0.670 0.418
CAT-Net [29] 858K 0.488 0.567 0.025 0.033 0.766 0.063
Hifi-Net [21] 1,710K 0.531 0.460 0.089 0.151 0.677 0.247
CR-CNN [62] 12.5K 0.531 0.530 0.025 0.042 0.593 0.078
ObjectFormer [54] 12.5K 0.497 0.427 0.029 0.047 0.430 0.085
MVSS-Net [5] 12.5K 0.526 0.487 0.045 0.072 0.675 0.130

W
ea

k FCN [46] 12.5K 0.481 0.220 0.020 0.035 0.360 0.064
WSCL [65] 12.5K 0.511 0.475 0.075 0.122 0.572 0.201
Ours 12.5K 0.535 0.664 0.165 0.264 0.690 0.382

Table 3: Evaluation results on Novel Manipulation task for both fully supervised
and weakly supervised methods. For the methods that are trained on a dataset with
a size of 12.5K, they all utilize CASIAv2 [12] as the training set. For the methods not
utilizing CASIAv2, except for RRU-Net, they utilize their synthesis datasets. The best
and second-best performances are highlighted using bold and underline, respectively.

Method CASIAv1 NIST16
P-F1 I-F1 C-F1 P-F1

Baseline [46] 0.122 0.561 0.200 0.052
Baseline+NRR 0.159 0.572 0.249 0.070
Baseline+NRR+SCL 0.166 0.681 0.267 0.119
Baseline+NRR+SCL+AGAP 0.199 0.703 0.310 0.131

Table 4: Ablation study of proposed components us-
ing CASIAv1 and NIST16 on Weakly Supervised setting.
The baseline in this table is FCN [46].

Method CASIAv1 NIST16
P-F1 P-F1

w/o PLS 0.132 0.082
w/ PLS 0.166 0.129
Table 5: Ablation on
pseudo-label selection.

Effectiveness of proposed components: We introduced three novel com-
ponents: pre-processing stage using Neural Representation Reconstruction (NRR),
Selective Pixel-wise Contrastive Learning (SCL), and Adaptive Global-Average
Pooling (AGAP) for both un-/weakly supervised IMD. The ablation study con-
ducted in weak mode is shown in Table 4. It is evident that with the progressive
integration of our proposed modules, the model’s overall ability to detect tam-
pering consistently improves.

Pseudo-Label Selection (PLS): In our unsupervised method, we intro-
duce PLS, which exclusively leverages high-confidence pseudo-labels from two
sources to supervise shallow predictions in the self-distillation training process.
The impact of PLS is examined in Table 5. In experiments without PLS, we
use image-level predictions in the main branch as pseudo-labels to guide shallow
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Method CASIAv1 NIST16
P-F1 I-F1 C-F1 P-F1

Global-Max Pooling 0.033 0.570 0.062 0.058
Global-Average Pooling 0.158 0.256 0.195 0.081
Generalized Mean Pooling [50] 0.067 0.626 0.121 0.072
Global Smooth Pooling [55] 0.076 0.627 0.136 0.080
Adaptive Global-Average Pooling (Ours) 0.199 0.703 0.310 0.131

Table 6: Comparisons using different pooling methods.

predictions. The proposed PLS proves to be effective in enhancing unsupervised
performance.

Adaptive Global-Average Pooling: To demonstrate the superiority of
the proposed AGAP, we conduct an ablation study in weakly supervised setting
using different pooling methods, including Global-Max Pooling (GMP), Global-
Average Pooling (GAP), Generalized Mean Pooling (GeM) [50], and Global
Smooth Pooling (GsM) [55]. The results are shown in Table 6. Similarly, the
proposed AGAP achieves the best performance, highlighting its superiority.

5 Conclusion

We present a novel framework that integrates unsupervised and weakly-supervised
approaches for Image Manipulation Detection (IMD). Our approach features
a groundbreaking pre-processing step utilizing a controllable fitting function
derived from Implicit Neural Representation, providing a prior for manipula-
tion regions. Additionally, we propose a selective pixel-level contrastive learning
technique that prioritizes regions with high confidence, mitigating uncertainty
stemming from the absence of pixel-level labels. For image-level prediction, we
introduce adaptive global average pooling to thoroughly explore manipulation
regions for detection and robust training. In unsupervised mode, we imple-
ment pseudo-label selection, choosing high-confidence predictions from deeper
layers as pseudo-labels to supervise predictions in shallower layers via a self-
distillation training method. Extensive experiments validate our method’s ef-
fectiveness, demonstrating superior performance compared to existing unsuper-
vised and weakly supervised methods. Notably, our approach competes effec-
tively against fully supervised methods in detecting novel manipulations, show-
casing its robustness in real-world scenarios. Limitation of this work includes
inaccurate localization of tampered region edges, resulting in larger prediction
masks than the ground truth. Future work involves developing more powerful
models and effective pre-filters to enhance pixel-level detection performance.
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