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Z1G-ZAG MODULES: COSHEAVES AND K-THEORY
RYAN GRADY AND ANNA SCHENFISCH

ABSTRACT. Persistence modules have a natural home in the setting of stratified spaces and
constructible cosheaves. In this article, we first give explicit constructible cosheaves for
common data-motivated persistence modules, namely, for modules that arise from zig-zag
filtrations (including monotone filtrations), and for augmented persistence modules (which
encode the data of instantaneous events). We then identify an equivalence of categories
between a particular notion of zig-zag modules and the combinatorial entrance path category
on stratified R. Finally, we compute the algebraic K-theory of generalized zig-zag modules
and describe connections to both Euler curves and K of the monoid of persistence diagrams
as described by Bubenik and Elchesen.
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1. INTRODUCTION

In this article we aim to demonstrate the utility of viewing persistent phenomena from
the perspective of constructible (co)sheaves. In particular, we demonstrate how cosheaves
provide a convenient interpretation of augmented descriptors of persistence modules and
how cosheaves are a convenient setting for constructing invariants via algebraic K-theory.
The present is in the same spirit of the program we first employed in [15], namely, applying
stratified mathematics and higher algebra to topological data analysis (TDA).

The use of cosheaves in TDA goes back at least to Curry [13]. The work of Curry and
collaborators (e.g., work with Patel [12]), serves as an inspiration for our own perspectives.
The key idea interpolating between persistence modules and constructible cosheaves is that
of a stratified space. A persistence module {V;};c; is obtained by sampling (or otherwise
selecting a discrete subset of) a larger parameter space. For concreteness, consider I C Rxg
as a selection of “instances” in our one-dimensional ray of “time.” As our persistence module
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only changes at elements of I, it is locally constant on R\ I, which is the defining property
of a constructible cosheatf.

Constructible cosheaves are particularly nice mathematical objects for several reasons,
chief among them is their equivalence to representations of the so called entrance path cat-
egory; this is known as “the” Exodromy Theorem. Any stratified space has an associated
entrance path category and in good cases (e.g., when the space is a combinatorial manifold),
the entrance path category is a straightforward combinatorial object — in many cases it’s
simply a poset. The idea of exodromy goes back to MacPherson and proofs in different set-
tings appear in work of Curry and Patel [12], Treumann [24], Lurie [19], and Barwick with
Glasman and Haine [3].

Given a parameter space (and a choice of sampling instances), exodromy allows us to
consider all persistence modules/constructible sheaves on that space as a category of func-
tors. Such categories of functors then inherit desirable properties from the target category.
For instance, if we consider modules valued in vector spaces, the category of persistence
modules is naturally an Abelian category. Abelian categories are the home of homological
and homotopical algebra, so we are free to apply the tools of algebraic topology/homotopy
theory, e.g., algebraic K-theory. The combinatorial nature of the entrance path category
makes K-theory computations tractable and allows us to consider connections with other
persistent invariants such as Euler curves and persistence diagrams.

In the present article, we are mainly concerned with one-dimensional parameter spaces.
The resulting persistence modules are the zig-zag persistence modules of Carlsson and de
Silva [10], which includes the more typically seen monotone (standard) modules.

Readers familiar with the persistent homology transform (PHT) may be interested to note
that the PHT is a special type of persistence module itself. Our computation of K-theory
for zig-zag persistence modules has an interpretation in the setting of the PHT where the
sphere of directions is S'. Thus, the results of this paper may be useful for future work
in the computation of other invariants of the PHT. See [25] for further background on the
PHT.

1.1. Why K-theory? In the later part of this article, we compute the K-theory of the
category of zig-zag modules. Here, we briefly overview why K-theory is a useful invariant.

K-theory began as simply as group completion of a monoid. Indeed, let (M,®) be a
commutative monoid and define Ky(M, @) to be the unique (up to isomorphism) Abelian
group, equipped with a monoid homomorphism from M, satisfying the universal property:
for any Abelian group A and homomorphism (of monoids) ¢: M — A, there exists a unique
group homomorphism factorization through Ko(M, @). This universal property is described
as the universal Fuler characteristic and is conveyed diagrammatically as follows:

(M, &) ——A.

7
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Ko(M,®)

For instance, let V be the isomorphism classes of finite dimensional vector spaces over the

field R (with direct sum) and ¢ : V — Z the rank function, then we have an induced
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map Ky(V) — Z, which happens to be an isomorphism. Expanding this example to com-
plexes, let € denote isomorphism classes of bounded complexes of R-vector spaces. The nat-
ural extension of the rank function is the Euler characteristic, which again factors uniquely
through Ky(C). (In the topological setting, the Chern character of a vector bundle is an ex-
ample of such an additive map.) The universal property of K, extends to categories equipped
with a symmetric monoidal structure, as isomorphism classes of objects in such a category
form a commutative monoid.

K-theory is more than just a single Abelian group, but rather a spectrum, K(€), associ-
ated to a category (equipped with additional structure). Recall that spectra are the central
objects of homotopy theory. The homotopy groups of K(C) define the K-groups of C, i.e.,
K,(@) := m,(K(€)). To first approximation, spectra can be thought of as the objects that
parametrize cohomology theories. As such, they, so K-theory in particular, admit a wealth of
computational tools, refined structures, and interpretations from algebraic topology. Coho-
mology theories are also the natural home for obstruction/anomaly theory and in this way,
K-theory has become a central tool in topology (index theory, finiteness obstructions) and
algebraic number theory (class field theory).

When refined to the level of spectra, K-theory has a remarkable additive structure with
respect to split short exact sequences of categories. (We discuss this in Appendix A, see
also [7].) Combined with its property as the universal Euler characteristic, K-theory is the
universal additive invariant of (Waldhausen) categories.

1.1.1. Flavors and History of K-theory. There are several flavors and constructions of K-
theory; we trace here the history to the two we use in the present article: Waldhausen’s
construction and Zakharevich’s theory of assemblers. See the canonical texts of Rosenberg
[21] and Weibel [27] for historical references and more details on the development of K-theory.

The genesis of K-theory came in the late 1950’s and early 1960’s through the work of
Grothendieck in complex (algebraic) geometry and Atiyah and Hirzebruch in topology. Al-
gebraic K-theory—the kind relevant to the present work—is an extension of Grothendieck’s
ideas to build a family of functors from rings to Abelian groups K; : Ring — Ab. While
Grothendieck only defined K, suitable definitions for K; and K, were found by the mid
1960’s; the contributions of Bass, Schanuel, and Milnor are most notable. (Bass and Karoubi
also gave definitions of negative K-theory, K_,(R).) Definitions of higher K-groups was a
major open problem in the early 1970’s, which was first solved by Dan Quillen: the +-
construction. (Milnor had given a definition of higher K-groups as well, though this Milnor
K-theory is only a summand of the now accepted definition of higher K-theory.) Given a
ring, R, Quillen produced a space, BGL(R)", whose homotopy groups recovered/defined
the K-theory of R.

Quillen quickly followed his +-construction with the Q)-construction. The )-construction
takes as input an exact category, C, e.g., the category of finitely generated projective modules
for a ring, and outputs a space, QBQC, whose homotopy groups define K-theory. Quillen used
the QQ-construction to prove many fundamental results in algebraic K-theory that restricted
to those for rings, as he also proved that + = @), that is, the Q)-construction is a strict
generalization of +-construction for rings.

The next revolution in algebraic K-theory came through Waldhausen’s work in manifold
topology [26]. Published in 1985, Waldhausen gave a construction that takes as input cate-

gories with structure that generalizes that of exact categories—nowadays called Waldhausen
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categories—and outputs a spectrum (the basic building block of homotopy theory) whose
homotopy groups define the corresponding K-groups. (Segal some 15 years earlier used
his T-objects to produce a K-theory spectrum in certain cases.) Waldhausen’s construction
is often referred to as the S,-construction and we give a brief overview in Appendix A.
The S,-construction is a strict extension of the ()-construction. Perhaps most significantly,
the S,-construction satisfies an additivity result for split short exact sequences; this result
has become a central tool in algebraic K-theory.

Finally, we note that there has been an extension of K-theory to the higher categori-
cal/homotopical algebraic setting as well. The work of Blumberg, Gepner, and Tabuada [7]
proves that K-theory satisfies certain universal properties, such as additivity, (and hence is
essentially uniquely defined by such properties) in this setting.

1.1.2. K-theory and persistence. Through the work of Patel, Bubenik and collaborators, K-
theoretic considerations have started to appear in the TDA literature. Patel considered the
Grothendick group, i.e., Ky, of one-dimensional persistence modules valued in symmetric
monoidal categories [20].

Subsequently, in [9], Bubenick and Mili¢evi¢ show that the category of persistence modules
over any preorder is Abelian. The key idea—which we use below as well—is that functor
categories inherit many of the properties of the target category, so if the target is Abelian or
Grothendieck, i.e., AB5 with a generator, then the functor category with domain a preorder
(or any small category) is Abelian or Grothendieck. It would be interesting to apply Quillen’s
(Q-construction to these categories of persistence modules and compare the resulting K-
theories to our computations below. (We note that [9] contains much more than we just
outlined, e.g., the authors prove an embedding theorem in the vein of the Gabriel-Popescu
Theorem.)

More relevant for us is the recent article [8] by Bubenik and Elchesen. In this work, the
group completion of the monoid of persistence diagrams is described, i.e., Ky(Diag) is defined
(semi-)explicitly. Points in diagrams are counted with multiplicity, so the binary operation
is simply induced by +: Ny x Ng — Ny. The input data for the construction of Bubenik and
Elchesen is pretty flexible, so one can talk about diagrams (and their group completions)
indexed by the entire first quadrant, the integers, etc. We make contact with this work in
Section 5.2 below.

1.2. What we do. We have aimed to illustrate the connection between persistence modules
and cosheaves and the utility of this interplay. To this end, we accomplish the following.

1.2.1. coSheaves from filtrations. The relevance of cosheaves in TDA has been advocated
by Curry and others for a number of years. In Section 3, we give explicit constructions of
constructible cosheaves associated to persistence modules. We are particularly interested in
persistence modules arising from index filtrations of spaces. In Section 3.2.3, we describe
the augmented filtration cosheaf, which records both non-instantaneous and instantaneous
events. (We flag the recent work of Berkouk, Ginot, and Oudot [5] where level-set persistence
is recast in terms of sheaves over R.)

1.2.2. Equivalence Theorem. We prove an equivalence of categories between a localization
of the category of zig-zag modules a la Carlsson and de Silva and constructible cosheaves

on R. The explicit statement of the result is Theorem 3.3.5. This result is stated in passing
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(Example 6.3) in the recent work of Curry and Patel [12], and we make it explicit with proof.
We hope the proof is as interesting to the reader as the result, though it uses techniques
that are different from the rest of the paper so we relegate it to Appendix B.

One motivation for this result is to argue that our K-theoretic computations which follow
deserve to be called the K-theory of zig-zag modules.

1.2.3. K-theory of Zig-Zag Modules. In Section 4, we define and compute K-theory of per-
sistence modules, viewed as constructible cosheaves on a stratified parameter space. We
use Waldhausen’s S, construction of K-theory. A key input is additivity, in this case with
respect to strata. For instance, in the case that our parameter space is one-dimensional,
e.g., monotone or zig-zag persistence, the group Kj is the free abelian group on the strata
of parameter space (Theorems 4.1.6 and 4.2.3). This result is true for both Vect valued
modules and modules valued in pointed sets.

The higher K-groups do not vanish but rather are given by the algebraic K-theory of fields
and /or the sphere spectrum. In forthcoming work, we aim to interpret these higher K-groups
as arising from data.

The constructions and techniques we present apply to parameter spaces of arbitrary di-
mension.

1.2.4. Fuler Curves and Virtual Diagrams. We conclude the body of the paper by connecting
our K-theoretic work back to some recent work in TDA. First, we show how the Euler curve of
a persistence module has a natural interpretation as a class in K-theory. (This is as expected,
e.g., Kashiwara and Schapira [18] prove that Kj is isomorphic to constructible functions via
a local Euler index.) With this observation, we define an Euler class for arbitrary persistence
modules regardless of dimension; this is Definition 5.1.3. Lastly, Section 5.2 builds a group
homomorphism from K of persistence modules to Bubenik and Elchesen’s Abelian group of
virtual persistence diagrams.

Conventions. We assume the reader has some familiarity with algebraic topology, and
freely use concepts from Hatcher’s standard text [16].

Throughout, we will let Vecty be the category of finite dimensional vector spaces over the
field F and linear maps. Much of our work doesn’t depend on making a choice of field and
we simply use the notation Vect.

Unless otherwise noted, we will assume all stratified spaces are combinatorial manifolds
equipped with their native stratification, notions we define in the next section.

Acknowledgements. We thank David Ayala for many discussions related to the content of
this and other articles. We also thank Peter Bubenik for several discussions related to zig-zag
persistence and other mathematical topics in TDA. Finally, we thank the anonymous referee
for feedback and suggestions which have greatly enhanced the readability of the manuscript.

2. CONSTRUCTIBLE COSHEAVES

This section is a terse introduction to terminology and notation we will use throughout

the sequel. Examples and further details are abundantly available, e.g., [12] or [15].
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2.1. Stratified/Constructible Basics.

Definition 2.1.1. Let (P, <) be a poset. The upward closed topology on (P, <) is defined
as follows: U C P is open if and only if for all u € U, Py :={p € P | u <p} CU.

The upward closed topology is also known as the Alexandrov topology.

Definition 2.1.2. A stratified topological space is a triple (X RA P) consisting of

e a paracompact, Hausdorff topological space, X,
e a poset P, equipped with the upward closed topology, and

e a continuous map X 2P,

Note that any topological space is stratified by the terminal poset consisting of a singleton
set. Moreover, the simplices of a simplicial complex, K, come equipped with the structure

of a poset, and we call the resulting stratification of K the native stratification which will
denote by Nat(K).

Definition 2.1.3. Given a stratified topological space ¢ : X — P, and any p € P, the
p-stratum, X, is defined as

Xp = (/bil(p)'

Example 2.1.4. For n € N, let [n| denote the totally ordered set {0 < 1 < --- < n}.
Consider a stratified circle, S' — [1], stratified by v, a single vertex, and «, the arc which is
the complement of v. This example is illustrated in Figure 2.1. (So the map ¢ : St — [1] is
given by v — 0 and a := S'\ {v} — 1.) The O-stratum is the vertex v and the 1-stratum is
the arc a, i.e., S; = {v} and S} = S*\ {v} = a.

0 < 1

FIGURE 2.1. A stratified circle, S* — [1] as in Example 2.1.4, where v 5 0
and o — 1.

Definition 2.1.5. A map of stratified topological spaces (¢: X — P) to (¢: Y — Q) is a
pair of continuous maps (f1, f2) making the following diagram commute.

x-Ioy
¢l lw
p_ 9

A map of stratified spaces is a stratified homeomorphism if it admits a two-sided (stratified)

mverse.
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Definition 2.1.6. Let X — P be a stratified space and x € X, C X a point. The space
X is conically stratified at x if there exists an open neighborhood, U,, of x and a stratified
homeomorphism U, = Z x C'Y where Z is a topological space and C'Y is the cone on a
space Y stratified by P~,. A space is conically stratified if it is conically stratified at all of
its points.

Definition 2.1.7. Let L be a polyhedron, so every point admits a neighborhood which is
a finite union of simplices. Recall that a map f: L — R" is piecewise linear (PL) if there
exists a triangulation of L such that restricted to each simplex f is linear.

Definition 2.1.8. A piecewise linear (PL) manifold is a topological manifold which admits
an atlas where transition functions are piecewise linear®.

Completely analogously to smooth manifolds, PL. manifolds form a category with mor-
phisms being PL. maps and isomorphisms being PL. homeomorphisms.

Definition 2.1.9. A combinatorial manifold X is a triangulated PL manifold. That is, a
combinatorial manifold is a PL manifold X along with a simplicial complex K and a PL
homeomorphism K — X. The manifold X inherits a native stratification from the simplicial
complex K.

Remark 2.1.10. As discussed in [2], every Whitney stratified manifold is conically stratified.
In particular, a combinatorial manifold X is conically stratified.

For further details on PL and combinatorial manifolds, see [22] or Section 3.9 of [23].

Definition 2.1.11 ([15]). Let (S 2 Q) be a stratified space, S < X a topological embed-
ding, and mo(X \ S) = A. Define the poset, Q" as the set Q IT.A, subject to the following
generating relations:

(1) The relations of Q;
(2) For £ € Q and a € A, ¢ < a if and only if ' (¢) C @, i.e., the (-stratum is in the
closure of the connected component indexed by «.
There is an obvious extension of the map ¢, ¥g: X — Q™ and we call this stratification the
connected ambient stratification. We often denote this stratified space by (X, S)".

A typical (easy) example of the preceding is considering a discrete subset I C R. The
resulting stratified space, (R, I)*, is a combinatorial manifold.

Definition 2.1.12. Let X be a topological space, Op(X) the poset of open sets in X, and
V' a category. A precosheaf on X wvalued in V is a functor F: Op(X) — V. A precosheaf is a
cosheaf if for each open U C X and any open cover of U, {U; — U}, there is an equivalence
(in V)

colim (]_[ FUNU;) = H&"(UJ) = FU).

Y] i

For what remains, we will assume V is a nice category, so that cosheafification exists.

(Cosheafification is quite subtle, even compared to its dual notion of sheafification.) In
particular, we will later focus on the case that V' = Set or V' = Vect.

! Admiting a PL atlas is equivalent to specifying a class of trangulations of the underlying manifold which
is stable under subdivision.
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Lemma 2.1.13. Let B be a basis for the topology of the space X and let F be a cosheaf
on the poset determined by B. There is a unique (up to isomorphism) extension of F to a
cosheaf on X.

The idea of the lemma can be thought of in terms of a Kan extension diagram:

g7 v,

Op(X)

Definition 2.1.14. Let M — P be a stratified space (not nec. conical or simplicial) and J a
cosheaf on M. The cosheaf, F, is constructible if it is locally constant when restricted to any
stratum of M — P, i.e., given p € P and x € M, there exists a neighborhood p € U C M,
such that JF|y is constant.

Definition 2.1.15. Let F be a (pre)cosheaf on X and p € X. The costalk of F at p is
defined by
F, =1limFU).
p = lim F(U)
2.2. Operations on coSheave§. Given a continuous map &: X — Y, there is in an induced
functor on the posets of opens £: Op(Y) — Op(X) given by preimages with respect to .

Definition 2.2.1. Let £&: X — Y be a continuous map and F a (pre)cosheaf on X. The
pushforward of F, £,F, is the (pre)cosheaf on Y given by .5 := Fo .

There is a contravariant functor as well associated to a map £&: X — Y: the pullback
&*: coShv(Y) — coShv(X). As a continuous map is not necessarily an open map, £* is
(slightly) more involved to define: it is the limit over opens containing {(U) for U C X an
open. Only pushforwards appear below.

Example 2.2.2. Let p € X be a point in the topological space X and i: p — X the
inclusion map. Let J be a cosheaf on X, then :*JF is the costalk at p of &, F,. Let W be a
cosheaf on p, then i, W is a skyscraper cosheaf on X.

Example 2.2.3. Let £: (¢: X — P) — (¢¥: Y — Q) be a stratified map and F a con-
structible cosheaf on X. Although the pullback of a constructible cosheaf is always con-
structible, it is not necessarily the case that £,J is constructible on Y.

e Consider the inclusion ¢: [0,1/2) < [0,1) and let V. be a nonzero constant cosheaf on
[0,1/2). Further stratify [0,1/2) and [0, 1) with zero-stratum {0} and one-stratum
(0,1/2) (resp. (0,1)). The cosheaf ¢,V is not locally constant on (0,1) as

t,V(0,1/4) =V, while 4V (3/4,1)=0.

e Constructibility is preserved by pushforwards in certain cases. Let C': [0,4] — [0, 3]
be the “elementary collapse” of the interval [2, 3], i.e.,

t,  fo<t<?2
Ct)y={2  if2<t<3

t—1,if3<t<4
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The map C'is a stratified map with respect to the (connected) ambient stratifications
induced by {0,1,2,3,4} C [0,4] and {0,1,2,3} C [0,3]. Let F be any constructible
cosheaf on [0,4]. It is straightforward to verify that C.F is constructible on [0, 3].

2.3. Entrance Paths and Their Representations. Given a stratified space, M — P, an
entrance path is a continuous path in M such that it for all time it stays in a stratum or
enters into a deeper (with respect to P) stratum.

Definition 2.3.1. Let M — P be a stratified space. The entrance path category of M — P,
Ent(M, P) has objects the points of M and morphisms (elementary) homotopy classes of
entrance paths.

Exodromy Theorem (Theorem 6.1 of [12]). Let M — P be a conically stratified space and
V' a category. There is an equivalence of categories

cShv, (M, P) = Fun(Ent(M, P),V)
between constructible cosheaves on M and representations of its entrance path category.

Definition 2.3.2. Let M — P be a combinatorial manifold. The combinatorial entrance
path category, Enta(M, P) has as objects the strata of M and a morphism o — 7 whenever
7 is a face of o.

Proposition 2.3.3. Let M — P be a combinatorial manifold. There is an equivalence of
categories Ent(M, P) = Enta (M, P).

Proof. Define a functor F' : Ent(M,P) — Enta(M,P), where the image of a point = €
Ob(Ent(M, ?)) is unique simplex o containing x, and the image a morphism = — y is the
combinatorial entrance path from F(z) — F(y) (well-defined since the simplex containing
y must be a face of the simplex containing z in order to be an entrance path). We claim
that F' is fully faithful and essentially surjective. Again, let = € o, y € 7, so that 7 is a face
of 0. Since 7 and o are face-coface pairs of a non-degenerate triangluation, the subspace
7 U o deformation retracts onto 7, meaning there is a unique homotopy class of entrance
paths x — y. Furthermore, there is a unique morphism o — 7 in Enta (M, P), i.e., F is fully
faithful. Next, we observe that, for any simplex o € Ob(Enta(M, P)), we can always find a
point z so that F'(x) = o (for example, let x be the barycenter of o). That means we have
shown F' is also essentially surjective, and thus gives an equivalence of categories. 0]

Remark 2.3.4. One might hope that there is an equivalence of entrance and combinatorial
entrance path categories for a larger class of stratifications. However, even when a space
is stratified by a “degenerate” triangulation, this equivalence does not generally hold. For
instance, consider the stratified space shown in Figure 2.1, S* — [1], stratified by v, a single
vertex, and its complement «, an open arc. Let x € a. Then there are two distinct homotopy
classes of entrance paths from x — v in Ent(M, P), but only one combinatorial entrance path
given by the face relation in Enta (M, P).

One useful interpretation of the preceding proposition is that the data of a constructible
cosheaf on a combinatorial manifold is just a specification of costalks on the stratifying poset

and linear maps between them.
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3. PERSISTENCE MODULES, PERSISTENCE COSHEAVES, AND FILTRATIONS

We now introduce our main actors: persistence modules and persistent cosheaves. To
start, we consider constructible cosheaves that arise from common types of persistence mod-
ules and/or filtrations. We construct these cosheaves in a way that is compatible with
traditional models of the specific filtration or module in question. We finish the section with
an equivalence result relating zig-zag modules to one-dimensional constructible cosheaves.

3.1. Persistent Definitions.

Definition 3.1.1. A persistence module is a functor P: P — €, where P is some poset
category. Specifically, we may refer to these as P-indexed persistence modules. P-indexed
persistence modules define a category: the functor category, whose morphisms are natural
transformations between the functors.

Hereafter, we take € to be Vecty, the category of vector spaces over a field IF, and by F?,
we mean a vector space of dimension ¢ in Vecty.

The previous definition is general — in what follows, we will mostly restrict our attention
to single-parameter persistence modules. There are two flavors of such modules common in
the literature: zig-zag [10] and monotone (standard) persistence modules [30]. We note that
monotone persistence modules are most commonly called simply ‘persistence modules;” we
have added the word ‘monotone’ to emphasize their distinction from more general modules.

To any poset there is an associated undirected graph: its Hasse diagram. Properties of
the Hasse diagram, e.g., if a Hasse diagram is planar, are used in order theory as they are
often more accessible than the abstract poset. We will find it useful to consider the Hasse
diagram of a poset as a one-dimensional simplicial complex.

Definition 3.1.2. Let P be a poset.

e The poset P is z1g-zag if its Hasse diagram is homeomorphic to the closed interval,
half-closed interval, or R.

e A representation of a zig-zag poset P: P — Vect is a zig-zag persistence module.

o If P is a linear order, then a representation P: P — Vect is a monotone persistence
module.

Consider a zig-zag persistence module P: I — Vect, where the objects of I are a discrete
subset of real numbers (with potentially non-standard ordering). This, in turn, defines
a stratification of R, the connected ambient stratification (R, )" (where we have a zero-
stratum for every object of I and a one-stratum for every connected component of R\ I, as
in [15]). To define a cosheaf on R, it suffices to define its values on a basis of the topology
on R.

First, we give a cosheaf theoretic interpretation of the notion of zig-zag modules found
in [10]. We call this cosheaf propagated because the functor is entirely determined by the
ordering of and assignments to zero strata; the value over a one-stratum is propagated from
either endpoint depending on the ordering of the relevant poset.

Construction 3.1.3 (The Propagated Persistence Cosheaf on R). Given P : I — Vect with
I C R discrete, we define the the propagated persistence cosheaf Fp: Opens(R) — Vect as

follows. Let B, C R be a metric e-ball so that 2¢ > 0 is less than the distance between any
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pair of zero-strata. Then B, either contains a single zero-stratum or no zero-stratum, and
we assign values for Fp as follows:

P(i), if1 € B, withi e [ orif B. C (—o0,i) fori e[
FP<B€>:{ (0 (~00,1)

P(k), if B. C (i,7) for i # j € I U{oo} and k = min,{i, j}
Next, we describe the assignment of morphisms. If B, contains a zero-strata, ¢, or if B! is
entirely contained in some one-strata (i, j), then Fp(B, < B!) = Idp(p,) . Suppose instead
that B! contains the vertex ¢ but B. C (¢,7). Then Fp(B. < B!) = (P(i) — P(j)) ifi < j
(or (P(j) — P(i)) if j <1i). See Figure 3.1.4.

The cosheaf Fp is locally constant on strata, so it defines a constructible cosheaf on the
stratified space (R, I)™.

Bq B B
- //BIQ \\ (3| )84\\ | /5I /B6\\>
A NS, i R
k i j ¢

F1GURE 3.1. Examples of open intervals occurring in Construction 3.1.3.

Example 3.1.4. Suppose that I is the poset £ > ¢ > j < [, where k, 1, 7, and [ are ordered
with the standard ordering on R as in Figure 3.1.4. Then Fp(By — B1) = Idp,(,) = Idp),
Fp(By = Bs) = (P(j) = P(1)), and Fp(Bs — Bs) = Idp().

3.2. Filtered Spaces and Cosheaves. Next, we discuss how persistence-modules and per-
sistence module cosheaves relate to filtrations of spaces.

Definition 3.2.1 (Filtration). Let K be a simplicial complex. A filtration of K is a sequence
of subcomplexes {K;}ic; such that, for every i, there is an inclusion of spaces K; — K,
and so that Ko = 0 and Kyaxpeny = K.

Example 3.2.2. If we take I C R to be the indexing set of a filtration, then there is a natural
way to view [ as a poset with the standard ordering of R. Passing to homology in degree
n defines an associated monotone persistence module via the assignment i — H,(K;). The
propagated persistence cosheaf on R (see Construction 3.1.3) is easy to describe. Indeed, for
a single one-stratum, we have F(i,j) = H,(K;) and that the costalk of F' at a zero-stratum
iis H,(K;).

3.2.1. Monotone and Index Filtrations. Let f : K — R be a monotone function on simplices.
That is, whenever 7 is a face of o, we have f(7) < f(0). Let m; < my < ... < m, be the
ordered set of minimum values in R for which each f~!(—o0,m,] is a distinct non-empty
simplicial complex. Setting K,,,—o = ) and K,,, = f~!(—00, m;], we define the (monotone)
filtration of K by f as
0=Kn CKnpn C...C Ky, =K.

Notice that, by construction, all inclusion maps are in the direction of increasing index.
Furthermore, if K has n non-empty simplices, p < n + 1.

Next, suppose that } = g < 01 < 03 < ... < 0, is a total order of the simplices of K so
that if either f(o;) < f(0;), or if 0; is a face of o;, then i < j. Letting K} = {o; | i < j},

11



the increasing sequence of n + 1 subcomplexes { K[} is an indezx filtration compatible with the
monotone filtration.

In what follows, we will use n to denote the number of non-empty simplices in a simplicial
complex K and p to denote the number of steps in a monotone filtration.

Remark 3.2.3. Index filtrations are themselves monotone. Index filtrations are compatible
with themselves, but to no other index filtrations.

3.2.2. From Index to Monotone. Suppose that { K, }m ;e is @ monotone filtration with filter
function f and {K]};cp ) is a compatible index filtration. Then for every m; € M \ {my},
there is some maximum interval [¢,r) for ¢,r € {1,2,...,n} U {£oo} such that f(o,) =
f(o,) = m; (where, whenever r = oo or r = —o0, we define 0, := 0, and o_ = 0y,
respectively). These intervals cover R, and every interval corresponds to a unique m; € M.
Then we define a map of stratified spaces, C' : (R, Nat([1,n])") — (R, Nat(M\ {mg})") that
maps intervals with a particular value under the filter function f to intervals with that same
value under f.

Definition 3.2.4. Suppose that a € [¢,r), where [¢,r) is the associated interval for some
m; € M. Three cases arise: if —oo < £,r < 0o, we assign

my, ifa<r—1
Cla) = {mj(r—a)—l—mjﬂ(a— (r—1), fazr—1 W

if [¢,7) = [—00, 1), we assign
C(a) = am, (2)

and if [¢,r) = [n, 00), we assign

-

A

Lo NN Db
@ . P .

my my m3

\J

A

FicURE 3.2. An example of the map C. The relevant interval for the point,
e.g., my is [2,7), since the image of each simplex added in that interval under
the filter function f is my. Then [2,6) is mapped to my and [6,7) is mapped
to [mg, ms).

12



3.2.3. Augmented Descriptors via Index Filtrations. Let { Ky, }m,enr, f, and {K]}icjo,n) be a
monotone filtration and compatible index filtration, respectively (as in the previous section).

Given a monotone filtration, we are perhaps interested in the so-called instantaneous
events that are captured in augmented topological descriptors, a remnant of the fact that
many standard algorithms to produce descriptors for monotone filtrations are often actually
employing compatible index filtrations. For example, an instantaneous n-dimensional ho-
mology event at time m; records the presence of an n-boundary that was not mapped from
a boundary or cycle in the inclusion K., | < Kp,;.

Note that many applications of TDA, such as the classic application of manifold learning
through a Vietoris-Rips filtration, discard events with a short lifespan because they may
be attributed to noise, so non-augmented persistence diagrams are the traditional tool of
choice (see [11]). However, recent developments in areas such as shape comparison and
inverse TDA problems (see, e.g., [4]) rely on instantaneous events for efficient representation
of simplicial or cubical complexes, particularly when the filtration used is directional (e.g.,
height filtration, lower-star filtration, etc.)

We aim to track both instantaneous and non-instantaneous events at every step of a
monotone filtration. We introduce A,, to account for instantaneous events (the extra data
of an augmented module). Let 3, denote the free group on n-dimensional boundaries of
K,,; and let k,,, , denote the kernel of the map on n-dimensional homology induced by
the inclusion K,,, , — K. Since Km,_, corresponds to all cycles of K;_, that become
boundaries in K,,, i.e., all cycles of K, , that map to elements of 3,,,, the subgroup x,,_,
can naturally be identified with a subgroup of ,,;. Furthermore, since boundaries of K,,,_,
are mapped injectively to boundaries of K, , the subgroup 3,,,_, is also naturally identified
with a subgroup of 3,,;. Then, we define:

An(Km]) = 5mj/(ﬁmg>1 + Rm]‘q)' (4)

Note that, since A, (kK,,) is a quotient of free groups, and since the generators of 3, , and
Km;_, are subsets of the generators of 3, An(ij) is free. It may be helpful to think of
An(Kp,) as the free group on n-boundaries of K, that are not the images of boundaries
or cycles in K,,, ,. An instantaneous event in a monotone filtration is the appearence of an
n-boundary that was not a boundary or cycle in the previous step of the filtration, meaning
the rank of A,,(K,y;) is the number of points (counting multiplicity) on the diagonal (m;, m;)
in the corresponding standard n-dimensional augmented persistence diagram. We can also
view A,, as a repackaging of the “entire” information in index filtrations, independent of the
choice of compatible index filtration. The connection to compatible index filtrations is made

explicit in the following lemma.

1

1

Lemma 3.2.6. Suppose that {Ky, }m,enm 15 a monotone filtration corresponding to a filter
function f and {K]}icpn is any compatible index filtration. Let x} denote the kernel of the
map induced on homology in degree n by the inclusion K| — Kj . Furthermore, let k_,
denote the kernel of the map induced on homology in degree n by the composition of inclusions
I]{}élmincl(mj))—l . Kr’naxc,l(m]_), where C' is as in Definition 3.2.4 and Figure 3.2.
en:

An(Kp,)

I

max C~1(m;)
(@ e 5)
i=(minC~1(m;))—1
13



Proof. Recall that A, as defined in Equation 4 is a free group, so we first show the right
side of Equation 5 is also a free group, and then show the desired isomorphism through a
counting argument.

We observe that generators of k., correspond to cycles of K (’min c-1( that become

mj))—1
boundaries somewhere along the composition of inclusions. Consider sucﬁ))a cycle and sup-
pose that K] is the last subcomplex in the filtraton where this cycle is still not a boundary
— then the cycle is naturally identified with a generator of &}, since the cycle becomes a
boundary in Kj < Kj ;. This is true for each generator of x_,, so we may view k_, as a
subgroup of the sum in Equation 5. Since the right side of Equation 5 is a quotient of free
groups, where the generators of k., are a subset of generators of the sum, the right side of
the equation is a free group. We may therefore proceed by showing the left and right side of
Equation 5 have equal rank.

Each step in an index filtration adds a single simplex, so either x; = FY (if the simplex
added does not fill in any n-cycle) or s} = F! (if the simplex added in K] — K|, fills
in an n-cycle). Thus, the direct sum in the equation above has nontrivial terms only for
values of 7 such that K] — K , witnesses the death of n-cycles in the index filtration.
Recall that [min C~'(m;), max(C~'(m;)) + 1) is the maximum interval whose image under

the filter f is m;. This means that, shifting to the left, we can identify KEminC*l(mJ))—l =
Ky, and K . C-1(my) = Kyn;. Thus, every boundary of K,,; that was not present as a
boundary in K, , is introduced or becomes a boundary in some step of the index filtration
between the values (min C~'(m;)) — 1 and max C~'(m;), which means terms of the direct
sum above are nontrivial only when boundaries are created. This is exactly the count of
boundaries introduced in the inclusion K,,;, , < Ky, i.e., it is 8, /Bm,_,, using the notation
previously introduced in the paragraph above and Equation 4. However, recall that A, (K, )
does not account for boundaries that fill in a cycle from a previous step in the filtration.
Thus, we quotient out by the kernel of the composition of maps between min C~!(m;) and
max(C~'(m;)) + 1. This kernel is generated by boundaries and cycles of K,, , that are
mapped to boundaries in K,,,. Since KEminC_l(mj))fl = Ky, , and Kr/naXC_l(mj) = K, and
since the index filtration is compatible with the monotone filtration, we see that ki, = Ky, _, .
Thus, the rank of the right side of Equation 5 is exactly the rank of the A, as defined in

Equation 4, and as both are free groups, we have shown the desired isomorphism. 0]

Example 3.2.7. Suppose that {K,,, } and { K[} are monotone and index filtrations as in the
bottom and top of Figure 3.2. Then Ao(Kpmy) = By /By + bimy) = F?/FY = F2. Computed

using the identification of Lemma 3.2.6, we see that this is the same as @, k}/r., =
(F' ¢ F' @ F'/F,) = F2.

The following cosheaf organizes the information of both instantaneous and non-instantaneous
events.

Definition 3.2.8 (Augmented Filtration Cosheaf on R). Let {K,, }m,en be a monotone
filtration of a simplicial complex K, and suppose R is stratified by Nat(M \ {mg})". We

define the augmented filtration cosheaf on R, F4 : Opens(R) — Vect, on metric e-balls as
14



follows.
Hn(Km> D An(ij>, if mi_1 € U

J

Fa(U) = Hy(Koy,) if U C (my,mjq1) or U C (m; = my, 00)
H,(K,,) if U C (—o0,my)

Observe that the above definition implies that the costalk at a zero-stratum m;_; of
(R, Nat(M\ {mo})") is Hy,(Kpm,_,) © An(Km,).

Remark 3.2.9. For an index filtration { K };cr, any new n-cycles introduced through the map
K] | — K] are not n-boundaries, since the boundaries and interiors of simplices are added
at distinct filtration events. Thus, A, (K]) is trivial, i.e., the augmented filtration cosheaf
that arises from an index filtration is equivalent to its (non-augmented) filtration cosheaf.

An instance of the previous remark is illustrated by following example.

Example 3.2.10. Let {K!} be the index filtration in the top of Figure 3.2. Notice that the
one-dimensional costalk of the non-augmented filtration cosheaf at 7 is H;(K?%) = F°, which
is isomorphic to Hy(K%) @ A;(K}) 2 F° @ F!/F! = FO.

The stratified map C' define above provides a clean interpolation between the augmented,
non-augmented, and index cosheaves associated to a filtration.

Proposition 3.2.11. Let Fy; and F 4 be the non-augmented and augmented filtration cosheaves
for some monotone filtration { Ky, }m;en and let Iy be the filtration cosheaf for a compatible
index filtration {K;}icpn. Let C : (R,Nat([1,n]))") — (R,Nat(M \ {mo})") be the map of
stratified spaces as above. Then,

(i) We have an isomorphism of cosheaves C.Fy = Fpy;
(ii) Let U C R be open such that U N M =0, then Fp(U) = F4(U).

Proof. That ), and F4 agree on one-strata follows directly from their definitions (they can
differ at zero-strata). In claim (i), there are two parts: that C.JF; is constructible and that
C,J7 is isomorphic to Fy;. To prove the first, note that C' is a composition of “elementary
collapses” as described in Example 2.2.3, so by functoriality C,F; is constructible. The
second part of (i) is an explicit unwinding of the definition of the pushforward. 0

3.3. An Equivalence Result. In this subsection we make explicit the relationship between
zig-zag modules as put forth by Carlsson—Zamorodian and representations of the entrance
path category of R stratified by the natural numbers. In the process we will need to equip
our zig-zag modules with additional structure, which we call “markings.”

Let Poset; be the category of posets with Hasse diagrams homeomorphic to the interval,
half-closed interval or R and whose underlying set is at most countable. Morphisms in Poset;
are surjective maps of posets. So from above, the category of zig-zag modules is the category
of pairs (P, p) with P € Poset; and p: P — Vect a representation of P.

Definition 3.3.1. Define the poset ZZy to have objects %N with non-identity morphisms
1 -1
C o2t 4<
2 2 2

The poset ZZy arises naturally when considering R stratified (ambiently) by the natural

numbers.

for all @ € N, with a odd.
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Lemma 3.3.2. There is a canonical isomorphism of categories
ZZN = EntA(]R, Nat(N)“\)

We wish to “mark” our posets by passing to the under category of ZZy, Poset%ZN/ , le.,
we will consider posets equipped a map from ZZy. Passing to marked objects/the under
category has the effect of replacing a given poset by all possible labelings of that poset by
the natural numbers. (The notion of marking persistence modules is not at all unusual. For
instance, in most applications, the passage from persistence modules to barcodes or diagrams
depends on an explicit marking, e.g., the event times/parameters.) Morphisms in the under
category are commutative triangles. As we will use later, passage to the under category
introduces an initial object: Id : 22y — ZZy. Note that the under category is an example
of a comma category and are also known as coslice categories.

Definition 3.3.3. Define the category of marked zig-zag modules, ZZmod, to be the category
of pairs (ZZy — P, p) with ZZy — P € Poset%ZN/ and p: P — Vect a representation. A
morphism is a pair (f,¢): (ZZy — P,p) — (ZZy — Q,n) with f: P — Q defining a
morphism in the under category and ¢: p = f*n a natural transformation.

It turns out that isomorphism in ZZmod is too strong to capture our preferred notion of
“sameness,” so we introduce a notion of weak equivalence. An example of an operation that
creates a weakly equivalent module is “subdividing” a vertex in a poset into several vertices
provided that all of the new maps in the corresponding representation are isomorphisms.

Definition 3.3.4. A morphism (f,): (2Zy - P,p) — (ZZy — Q,n) in ZZmod is a weak
equivalence if ¢: p = f*n is a natural isomorphism. Let W denote the collection of weak
equivalences.

We caution the data-analytically oriented reader here; notice that weakly equivalent ob-
jects of ZZmod do not generally have the same indices of “events,” i.e., vertices at which
the corresponding image of the representation changes. That is, the standard map from
ZZmod to persistence diagrams (as described in [10]) does not factor through ZZmod[W™1].
However, the order and number of events is preserved.

Theorem 3.3.5. The category of (marked) zig-zag modules localized at weak equivalences is
equivalent to the category of constructible cosheaves on R stratified by the natural numbers.
That is, we have an equivalence of categories

ZZmod[W'] 2 Fun(Enta (R, Nat(N)"), Vect) =~ cShv )5 ((R, N)™).

The second equivalence is just an example of the exodromy equivalence. The first equiv-
alence, which is actually an isomorphism of categories, is proved in Appendix B. There are
some technicalities in proving the previous theorem, but the main idea of the equivalence is
as follows. Let ¢: P — Vect be a representation of P. Pullback ¢ along the map 22y — P
to obtain a representation of ZZy so that, via Lemma 3.3.2, we have a representation of the
corresponding entrance path category, i.e., a constructible cosheaf.

4. K-THEORY OF ZI1G-ZAG MODULES

We now shift gears and compute the K-theory of the category of zig-zag modules. The
category in which our modules take values plays a central role and we consider two differ-

ent constructions: one for modules valued in vector spaces and one for set-valued modules
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To begin, we work with an arbitrary combinatorial manifold as parameter space and
only later specialize to the case where it is one-dimensional. When our parameter space is
one-dimensional, it’s combinatorial entrance path category is a zig-zag poset and hence a
representation is a zig-zag module.

Motivated by the Exodromy Theorem and our equivalence result above, we make the
following definition.

Definition 4.0.1. Let (X LN P) be a combinatorial manifold with its native stratification,
Enta (X, P) its combinatorial entrance path category, and V' any category. The category of
V -valued persistence modules parameterized by X, pMod¥ (X), is given by

pMod" (X) := Fun(Enta(X,P), V).

Hence, the K-theory of V' walued persistence modules (parametrized by X ) is the K-theory
spectrum (whenever it exists) of the category above: K(pMod" (X)).

4.1. K-Theory of Vect-Valued coSheaves. The category of finitely generated modules
for a commutative ring is an Abelian category, so we define/compute K-theory using the
work of Quillen and Waldhausen. (If our ring is a field, we recover our old friend Vect). In
this section we will freely use the material of Appendix A.

Lemma 4.1.1. Let R be a commutative ring, M the associated Waldhausen category of
finitely generated modules, X a combinatorial manifold, and vy € X a connected zero-
dimensional stratum, i.e., a point that is a stratum. The following sequence is split short
exact sequence of Waldhausen categories

sk

J Tx

Fun(Enta (X \ x9), M) — Fun(Enta (X), M) ——= Fun(Enta (o), M),

where i: xg — X and j: X \ xg — X are the inclusion maps.

Proof. The content of Lemma A.0.2 is precisely that the three categories appearing are
Waldhausen. We next observe that the inverse and direct image functors (in this setting)
are compatible with the equivalences and cofibrations, so indeed we have a sequence of exact
functors.
It is standard that 7, is right adjoint to ¢* and in this case, the counit of the adjunction is
a natural isomorphism. Because our domain categories are discrete (finite even), j, is indeed
left adjoint to j* and the unit is a natural isomorphism; j, is the extension by zero map.
The composition i* o j, is manifestly the zero functor and i* presents Fun(Enta(zo), M) as
the cokernel of j,. In summary, the sequence is short exact and the adjointness properties
we observed further show it is split.
OJ

Remark 4.1.2. The preceding lemma is straightforward as we are considering constructible
cosheaves on the complement of a point (which is open). One could try to prove a ver-
sion of the lemma above where x( is replaced by an arbitrary stratum and at the level of
non-combinatorial entrance path categories, but—in general—this fails as j* will not have
the appropriate adjointness properties. There is, however, a corresponding lemma for an

arbitrary closed/open complement decomposition that is compatible with the stratification.
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Lemma 4.1.3. The split short exact sequence of Lemma 4.1.1 is standard.

Proof. Condition (3) of Definition A.0.4 holds for categories of modules (see Remark 2.18 of
[14]) and by the same reasoning, our category of functors valued in M.

Let F € Fun(Enta(X),M). Each component of the natural transformation (j. o j*) (F) —
JF is an isomorphism, except for the component corresponding to xy. The component corre-
sponding to z is the inclusion of zero, which is a cofibration. Therefore, (j. 0 7*) (F) — F
is a cofibration in the functor category.

Finally, let ¢: F — F be a cofibration in Fun(Enta (X), M). We need to check that unique
map

v F [ dugd = F
J=J*F
is a cofibration. By definition, we must check this condition componentwise. For a component
corresponding to zg # S C X, the kernel of ¢ is exactly the submodule of F(S) & F'(S)
by which we quotient when constructing pushouts in categories of modules; that is, the S
component of ¢ is a monomorphism. For the xq component, the pushout is identified with
F (o) and 1y, = @4y, S0 by hypothesis it is a monomorphism. O

We require one final observation/lemma before assembling the proof of Theorem 4.1.6.
From the definition of entrance paths and the fact that K-theory preserves colimits, it im-
mediately follows that K-theory is addivitive with respect to connected components of our
parameter space. That is:

Lemma 4.1.4. Let X = X, 11X, be a stratified space, then there is an equivalence of spectra
K(pMod™ (X)) = K (pMod™ (X)) v K (pMod™(X,)).

Although the strata of a one-dimensional stratified space are not generally disjoint, we
still have an additivity result similar to the previous lemma, as we will now show.

Lemma 4.1.5. Let X be a one-dimensional combinatorial manifold. There is an equivalence
of spectra

K(pMod™(X)) = \/ K(pMod™(z0)) v \/ K(pMod(zy)).
ro€Xo r1€X1
where X; is the set of i-strata of X.

Proof. We proceed by induction over the number of zero-strata. As our base case, note that
when there are no zero-strata, we have Xy = () and z; = X; = X, so the claim holds. Now
suppose that the claim holds whenever X contains n — 1 zero-strata, for all n —1 > 0. Then
consider the case that X contains n zero-strata. For an arbitrary zero-stratum zj € Xy, we
know by Lemma 4.1.1 that

Fun(Enta (X \ z§), M) — Fun(Enta(X), M) — Fun(Enta (z{), M)

is a split short exact sequence of Waldhausen categories. Then by Theorem A.0.5, we see
that there is an equivalence of spectra

K(pMod™ (X)) 2 K(pMod™ (X \ z5)) V K(pMod™ (7))
18



Since X \ xj is itself a one-dimensional combinatorial manifold with n — 1 zero-strata, our
inductive hypothesis allows us to write

K(pModWX))%( \ K(pModM<xs>>vK<pModM<X1>>)

1‘075$8€X0
v K(pMod™ (7).

Since the zero-strata are disjoint, by Lemma 4.1.4, we may reindex by absorbing the last
term into the first and we have the desired result. 0

Utilizing the preceeding lemma, we now prove the following theorem which computes the
K-theory of zig-zag modules parametrized by a given 1-manifold.

Theorem 4.1.6. Let X be a one-dimensional combinatorial manifold. There is an equiva-
lence of spectra

K(pMod"*** (X)) = \/ K(F) v \/ K(F),

where X; is the set of i-strata of X and where K(F) denotes the K-theory spectrum of the
field IF.

Proof. First, we identify the K-theory of components of the stratification, i.e., we identify
K(pMod"et(z4)) and K(pMod*(z,)) for 2y € Xy and x; € X, respectively. We begin with
the former.

By Definition 4.0.1, we have K(pMod"¢* (1)) = K(Fun(Enta (), Vectr)). Since Enta (o)
is the terminal category (a single object and an identity morphism), Fun(Enta(zg), Vectr)
is isomorphic to the category of Vecty itself. Thus, K(pModpet(zo)) = K(Vect). Now,
the category of finite dimensional vector spaces over F is exactly the category of finitely
generated projective modules over F (considered as a ring). Hence, K(Vecty) is just the
algebraic K-theory of F.

We observe that Enta (1) is also a single object category, so the proof that K(pModyet(x;)) =2
K(IF) is identical. Thus, we have shown the K-theory of each strata is a copy of K(F). We
know by Lemma 4.1.5 that K(pMod"e?# (X)) is additive over strata, so the result follows. [J

Remark 4.1.7. An alternative approach to proving the preceding theorem could be to use
Serre subcategories and Abelian Localization. This approach has a number of its own sub-
tleties so we have presented the proof above.

Corollary 4.1.8. For X a one-dimensional combinatorial manifold, we have

Ko(pMod™ (X)) = (P z e (P2,
Xo X1

and
K (pMod " (X)) = (P F* & (P F*,
Xo X1

where X; is the set of i-strata of X and F* is the group of units of IF.

The higher K-theory of fields contains interesting torsion and other phenomena. We refer

the reader to Chapter IV of [27] for an in-depth description.
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4.2. Pointed Set Valued coSheaves. While persistence modules are most often assumed
to take values in vector spaces, there are interesting modules/cosheaves that take values in
other categories. Of particular interest to us is the Leray-Reeb cosheaf, £y, associated to
amap f:Y — X, see [12]. Let us consider a simple situation: let f: ¥ — R be a Morse
function on a closed manifold Y. Now, given U C R, let £;(U) := mof~*(U). It is standard
that the critical values of f stratify R and that £ is constructible with respect to this
stratification. So the Leray—Reeb cosheaf defines a persistence module taking values in the
category of finite sets Set.

For technical convenience we prefer our sets to be pointed/based. Let us consider Set,,
the category of finite pointed sets and base point preserving functions. The category Set,
is Waldhausen (cofibrations are injections and weak equivalences are bijections), so given a

combinatorial manifold (X LN P) we can compute the K-theory of the associated (Wald-
hausen) category of persistence modules pMod®®™ (X).

Note that the proof Lemma 4.1.1 goes through for Set, valued functors mutatis mutandis.
Similarly, Lemma 4.1.4 is easily adapted to the case at hand. The following version of Lemma
4.1.3 requires only slightly more care.

Lemma 4.2.1. Let X be a combinatorial manifold and xq € X a connected zero-dimensional
stratum, i.e., a point that is a stratum. The following split short exact sequence of Wald-
hausen categories is standard

. .
J Tx
< <

Fun(Enta(X \ x¢), Set.) — Fun(Enta (X), Set.) — Fun(Enta (o), Set.),

where i: xg — X and j: X \ xg — X are the inclusion maps.

Proof. Condition (3) of Definition A.0.4 is inherited from Set, where a cofibration is an
injection and a cofiber sequence of finite pointed sets S < T° — * requires a bijection
S=T.

Let F € Fun(Enta(X),Set,). As before, each component of the natural transformation
(s 05%) (F) — F is an isomorphism, except for the component corresponding to xy. The
component corresponding to zy is the inclusion of zero (the singleton set %), which is a
cofibration. Therefore, (j. o j*) (F) — F is a cofibration in the functor category.

Finally, let ¢: F — F be a cofibration in Fun(Enta(X),Set.). We need to check that
unique map

v F [ dui™d = F

J=J*F

is a cofibration. The same (componentwise) argument works as before. That is, for the

stratum xy the pushout is identified with F(zg) and 1., = @,. Let xg # S € Enta(X), we
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are left to consider the commutative diagram below, where the square is a pushout,

F(S) —=—~ F(9)

“ | N\

F(S) —F(9 11, F(5)

Ps
©s

F(S).

Hence, as ¢g is injective, so is 9.

Arguing as in the preceding subsection, we deduce the following.

Lemma 4.2.2. Let X be a one-dimensional combinatorial manifold. There is an equivalence
of spectra

K(pMod®** (X)) = \/ K(pMod**(z0)) v \/ K(pMod**" (z1)).
ro€X0 r1€X1
where X; is the set of i-strata of X.

The Barratt—Priddy—Quillen—Segal Theorem (see Chapter 4 of [27]) proves that there is
an equivalence of spectra
S = K(Set,) = K(pMod*>*™ (xy)),
for xg € X a connected zero stratum in a combinatorial manifold X, and where S is the
sphere spectrum. Recall that the homotopy groups of S are the stable homotopy groups of
spheres. Consequently, by assembling our work to this point, we have proven the following.

Theorem 4.2.3. Let X be a one-dimensional combinatorial manifold. There is an equiva-
lence of spectra

K(pMod®* (X)) = \/sVv /s,
Xo X,
where X; is the set of i-strata of X and where S denotes the sphere spectrum. In particular,

Ko(pMod™™ (X)) = Pz e Pz
Xo X1

and

Ki(pMod** (X)) = (P z/2 & (P z/2.

As it is the central object in homotopy theory, much is known about S, though mysteries
remain. A remarkable theorem of Serre implies that m,(S) is finite for n > 0 and these
groups are known up to around n = 100.

Remark 4.2.4. If one wants to avoid using pointed sets/basepoints, one can consider the
plain old category of sets Set and functions. This category does not have a zero object as
the initial object is the empty set, while a final object is a singleton set. Hence, Set does not
define a Waldhausen category in a straightforward manner. If one considers the subcategory

Set; consisting of the same objects, but where a morphism must be injective, one can define
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K(pMod®®(X)). Indeed, Set; and the resulting functor category can be equipped with the
structure of an assembler and Zakharevich defines K-theory for assemblers in [28] and [29].
It is again a consequence of the Barratt—Priddy—Quillen—Segal Theorem that for each n we
have an isomorphism

K, (pMod®>® (X)) = K, (pMod®** (X)).

5. EULER CURVES AND VIRTUAL DIAGRAMS

In this section, we give two applications of our K-theoretic work.

5.1. Euler Curves and Kj. Let {V;} be a monotone persistence module of vector spaces,
with indexing set I. We choose an embedding I — N and—in what follows—identify I with
its image in the natural numbers. The propagated persistence cosheaf, Fy, is constructible
on R stratified by N.

Definition 5.1.1. The (scaled) Euler curve of {V;} is the constructible function xy: R — Z
given by x(z) = rank(Fy),, the rank of the costalk at = € R. If {V;} is a module of graded
vector spaces, then yy is the alternating sum of the ranks of the graded vector space that is
the costalk.

Note that any constructible Z-valued function on R naturally defines a class in Ky. As
noted in the proof of Theorem 4.1.6, the class in Ky of a cosheaf only depends on its dimen-
sion, so we have the following.

Proposition 5.1.2. Let V, be a standard, finite persistence module of vector spaces and R
stratified ambiently by its subset N. Then,

[Fv] = [xv] € Ko(pMod"**(R)).

While the statement of the proposition feels obvious, it does contain content. Indeed, one
of the classical motivations for simplicial homology is fixing the functoriality of the Euler
characteristic. In general, a map of complexes f: X, — Y, does not induce a map between
X(Xe) and x(Ys); only if f is covering map is there a multiplicative relationship between
Euler characteristics. The categorification of the Euler characteristic to homology fixes this
functoriality issue. Given any (co)homological setting there is an analogue of Euler class (in
topology, this can be achieved by considering orientations for cohomology theories). The
preceding proposition witnesses a K-theoretic Euler class.

One consequence of realizing Euler curves/classes K-theoretically is that there is an obvious
extension to arbitrary (finite) persistence modules: zig-zag, higher dimensional, etc. (As
before, we only see the scaled/standardized curve/class.) This construction is an explicit
realization of the yoga that K-theory is the universal Euler characteristic.

Definition 5.1.3. Let X be a combinatorial manifold, V' a category, and F € pMod" (X) a
persistence module. The Euler class, x(F), of F is the K — class

X(F) =[] € 2fgo(pl\/lodV(X)).



5.2. Virtual Diagrams. In [8], Bubenik and Elchesen describe the group completion of a
monoid of persistence diagrams. The resulting equivalence classes are called virtual persis-
tence diagrams and can be realized by extending the diagrams to include arbitrary points
in the (extended) first quadrant, i.e., not just points above the diagonal. We will denote
Bubenik and Elchesen’s Abelian group of virtual persistence diagrams by Ky(Diag). We now
describe a homomorphism (and its image)

§: Ko(pMod s (R) — Ko(Diag),

where R is stratified by its subset N, i.e., the parameter space is (R, N)™.

To begin, let pMod}Zf;t(R) denote the category of Vect-valued constructible cosheaves on
our stratified R that are eventually constant, i.e., there exists N € N such that beyond N
the cosheaf is constant. This category has a monoidal structure induced by & in Vect, so
the objects in the category form a (commutative, unital) monoid.

We require a small tweak to the category Diag from [8]. As we allow features to persist
for all future time, our persistence diagrams are built from the extended real line R U {oo};
this is a minor point and we suppress it from notation.

Now, as noted above, we have an identification of Enta (R, Nat(N)") with the poset ZZy.
Hence, an object F € pMod)f;fbt(]R)) is simply a representation of ZZy (which is eventually
finite). Following [10], we use indecomposables of the associated representation of ZZy to
associate a diagram to F. More explicitly, we have the following assignment of a multi-set
of points to a cosheaf

0: pMod (s (R) — Diag C Ko(Diag), F +— {(b;,di)},

where each b; and d; correspond to the left and right indices (respectively) of an indecom-
posable element of the associated representation of ZZy.

Note that 6 can easily be adapted to be a map into barcodes, where, instead of a point
(b, d), we draw a bar between b and d. This map ¢ (and the adaptation to signed barcodes)
is nearly identical to the one described in Definition 2.6 of [10] with two notable differences.
Firstly, the diagrams of ibid have points only on the integer lattice, whereas our diagrams
have points on the 1/2-integer lattice. This is a consequence of us additionally considering
edges of the stratification rather than only vertices, and of our convention to then index
vertices by non-integers. Furthermore, the diagrams of ibid contain on-diagonal points only
when the maps to a particular vertex both have a nontrivial kernel. Our diagrams allow
for these type of on-diagonal points, but additionally allow for on-diagonal points when the
maps from an edge to its endpoints both have a nontrivial kernel.

In general, these differences may be attributed to begining with persistence modules (the
starting place for the map in [10]) or begining with persistence module cosheaves (the starting
place for our map 5). When one begins with persistence modules, the resulting cosheaf is
a specific type — importantly, each edge has an identity morphism to at least one of its
endpoints (see Construction 3.1.3). This allows ibid to only consider a poset on vertices,
which may be otained from our poset of vertices and edges by collapsing these identity
morphisms. The language of ibid is therefore more compatible with an explicit connection
to filtrations, whereas our setting is generalized.

Returning to our primary goal, we note that our diagram map ¢ takes direct sums to sums

of multisets.
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- /I F! | F2 1 F2 | F : >
(a) (a,b) (a,b,c) (a,d) (a,d)
(@ (a.b) (a.b) (a,d,¢)
- | | 1 1 1 1 >
1 2 3 4 4.5 5
5 L]
4 o
3
2
1

1 2 3 4 5

FiGure 5.1. The result of applying o to the cosheaf shown on the top of
the figure is the persistence diagram shown on the bottom. In the middle,
we have drawn the associated barcode. In the spirit of [10], we have shown
all bars as closed intervals to emphasize that they do not necessarially arise
from a monotone filtration. Note the presence of length-zero barcodes and
on-diagonal points, corresponding to indecomposable elements with a single
vector space.

Lemma 5.2.1. The map )
§: pMod s (R) — Ko (Diag)
18 a monotd homomorphism.
By the universal property of Ky we obtain our desired homomorphism.
Corollary 5.2.2. There is a homomorphism of Abelian groups
§: Ko(pMod st (R)) — Ko(Diag)
such that the following diagram commutes

)

pMod - (R) Ky(Diag) .
L /
Ko(pMod5(R))

Because we have scaled/standardized our modules—as reflected by the parameter space
(R,N)"—the map ¢ has zero chance of being surjective (let alone an isomorphism). Fol-

lowing [8], let Diag <(%Z)2 , (%Zzo)2> be monoid of (classical) persistence diagrams with
half-integer (or infinite) coefficients. This monoid is a submonoid of the monoid of all (clas-

sical) persistence diagrams, Diag, and we let G < Ky(Diag) denote the subgroup it generates.

The following is clear from construction.
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Proposition 5.2.3. The subgroup G < Ky(Diag) is isomorphic to the image of the homo-
morphism
§: Ko(pMod i (R)) — Ko(Diag).

APPENDIX A. WALDHAUSEN’S K-THEORY

In this appendix we outline Waldhausen’s construction of algebraic K-theory. In par-
ticular, we build to a fundamental additivity result: Waldhausen Additivity. The work of
Waldhausen was first published in 1985 [26]. Our notation follows the much more recent
article of Fiore and Pieper [14].

Definition A.0.1. A Waldhausen category, C, is a category equipped with a subcategory
of weak equivalences, w(C), a subcategory of cofibrations, co(C), and a distinguished zero
object. Further, the triple (C, co(C),w(C)) must satisfy

(1) Every isomorphism in C is a cofibration;

(2) Each object ¢ € C is cofibrant, i.e., the unique map 0 — ¢ is a cofibration;
(3) Cokernels exist and define cofibration sequences; and

(4) Weak equivalences glue along cofibrations.

Waldhausen categories are a more general setting for algebraic K-theory than Abelian and
exact categories. In particular, if R is a commutative ring and M is the category of finitely
generated modules, then declaring weak equivalences to be isomorphisms and cofibrations to
be monomorphisms makes M into a Waldhausen category. The following is straightforward
verification.

Lemma A.0.2. Let A be a Waldhausen category and D a small category. The category of
functors Fun(D, A) is a Waldhausen category where
(z) The zero object Z € Fun(D, A) is the constant functor to the distinguished zero object
n A;
(w) A natural transformation n: F = G is a weak equivalence if and only if for each
de D, ng: F(d) — G(d) is an isomorphism; and
(c) A natural transformation o: F' = G is a cofibration if and only if for each d € D,
ag: F(d) — G(d) is a monomorphism.

Given a Waldhausen category C, there is an associated simplicial Waldhausen category
denoted S,C and the subcategory, wS,C, of weak equivalences. The K-theory spectrum of C
is defined to be the Q2-spectrum whose nth space is given by

K(C), := |w SeSe - -+ Se C|,
—_——
n iterates

i.e., the realization of the subcategory of weak equivalences of the n-fold (degreewise) appli-
cation of the S, construction.

Definition A.0.3. Let A, E, and B be Waldhausen categories. A sequence of exact functors
ALELB
is exact if

(1) The composition f o7 is the zero map to B;

(2) The functor ¢ is fully faithful; and
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(3) The functor f restricts to an equivalence between E/A and B.?

A sequence, as above, is split if there exist exact functors
ALELB

that are adjoint to ¢ and f and such that the unit of the adjunction, Idy = j o ¢, and the
counit of the adjunction, f o g = Idg, are natural isomorphisms.

Definition A.0.4. A split short exact sequence of Waldhausen categories

J g
VRN
A—Z,>E—>B,

is standard if

(1) For each e € E, the component of the counit, (i o j)(e) — e, is a cofibration;
(2) For each cofibration e < ¢’ in E, the induced map

e W(iojye) (10 5)(€) — €

is a cofibration; and
(3) If a — o’ — 0 is a cofiber sequence in A, then the first map is an isomorphism.

The following is one of the fundamental theorems of algebraic K-theory. It is known as
Waldhausen Additivity.

Theorem A.0.5. Let
J g

A——~E——B,

be a standard split SES of Waldhausen categories. Then the functors ¢ and g induce an
equivalence of spectra

K(i) VK(g): K(A) v K(B) 5 K(E).
APPENDIX B. PROOF OF THEOREM 3.3.5

The key ideas we use in the proof of the theorem go back to Grothendieck (and Verdier),
specifically SGA4 Exposé VI [1]. The key observation—which we make precise—is that the
category of zig—zag persistence modules is a localization of the Grothendieck construction on
the (psuedo)functor that sends a poset to its category of representations: R: Poset” — Cat.
As we will explain, the Grothendieck construction is the lax colimit of R. Our domain cat-
egory has an initial object, ZZy, hence, the colimit of ® is isomorphic to the evaluation
®(ZZy). Finally, in Lemma 3.3.2 we recognized ZZy as the poset underlying the (combina-
torial) entrance path category of R stratified with respect to the subset of natural numbers.

Throughout this appendix we will work with bicategories. Recall that any category can
be considered as a bicategory with the only 2-morphisms being identities. The bicategory
of categories, Cat, consists of (small) categories, functors, and natural transformations. A
reader who finds this appendix terse may find the recent book of Johnson and Yau [17] of
great use.

2Here, E/A is the full subcategory of E on objects e such that for all a € A the hom set E(i(a), e) is a
point.
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B.1. Psuedo and lax (co)limits. When going from 1-categories to 2-categories there is
more flexibility in definitions. This is already apparent when considering the notion of 2-
functor and extends to limits and colimits as well. Many details of (co)limits in 2-categories
were explicated in the 1980’s by Ross Street and collaborators, for instance [6]. As an
orienting exercise, let us recall the definition of lax and pseudo functors.

Definition B.1.1. Let A and B be bicategories. A lax functor P: A — B consists of
e A function P: Obj(A) — Obj(B);
e For each hom-category A(X,Y) in A, a functor
PX’yi .A(X, Y) — B(Px,Py),

e For each object X € A a 2-cell Py, : idp, = Px x(1x);
e For each triple of objects and morphisms f: X — Y and ¢g: Y — Z , a natural (in f
and g) transformation

Prg: Pyz(g) o Pxy(f) = Pxz(gof).

This data satisfies a sequence of coherence diagrams specifying unity and associativity.

A lax functor is a psuedofunctor if the 2-cells/natural transformations in the definition
above are invertible. So a pseudofunctor is more strict than a lax functor, but not yet a
strict 2-functor, which would require all higher morphisms to be identities. Correspondingly
we have variable notions of colimit. For details see Chapter 5 of [17] and/or [6].

Definition B.1.2. Let &: A — B be a lax functor.

o A lax colimit of ® is an initial object in the category of lax cocones under ®;
o A psuedocolimit of @ is an initial object in the category of psuedococones under ®.

The lax colimit of ® is unique up to equivalence, while the psuedocolimit is unique up to
isomorphism. We will use the notation colim ® for “the” psuedocolimit of ®.

Lemma B.1.3. Let ®: A — B be a lax functor, A an honest I-category and ¥ € A a
terminal object. Then, we have an isomorphism

colim® = ¢(%).

Correspondingly, if V: A°? — B is a lax functor, A an honest 1-category and J € A is
iiatial, then
colimW¥ = (7).

B.2. The Grothendieck Construction.

Definition B.2.1. Let C a category and ®: C? — Cat be a lax functor. The Grothendieck
construction, [ @, is the following category:
e An object of [ @ is a pair, (A, X), with A € C and X € ®(A);
e A morphism (f,p): (4, X) — (B,Y) consists of
— A morphism f: A — B in the category C; and
— A morphism p: X — ®(f)(Y) in ®(A).

There are (reasonably) clear composition and identities in [ ® and it is standard to ver-
ify that [ ® actually defines a category. The symbol “[” is meant to convey that the
Grothendieck construction is amalgamating the data of ® “over” the domain category C.

Indeed, projection defines a functor [ ® — C that is a fibration.
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Proposition B.2.2 (Theorem 10.2.3 of [17]). Let C a category and ®: C? — Cat be a lax
functor. The Grothendieck construction, [ ®, is a lax colimit of .

Let U: E — C be a functor and ¢: e — ¢’ a morphism in E. Recall that ¢ is cartesian if
every commutative triangle in C involving U(y) with a chosen lift of a 2-horn has a unique
filler. (This definition is a bit colloquial, see Section 9.1 of [17].)

Corollary B.2.3. After localizing [ ® at the collection of cartesian morphisms (with respect
to projection [ ® — C) we obtain a pseudocolimit of ®, i.e., if Cart denotes the class of
cartesian morphisms in [ ®, then [ ®[Cart™'] = colim ®.

B.3. Proving the Theorem. Let R: Poset?ZN/ — Cat be the psuedofunctor of linear rep-
resentations, i.e.,

R(ZZyn — P) := Fun(P, Vect).

By design, the Grothendieck construction of R recovers the category of marked zig-zag
modules.

Lemma B.3.1. For R defined above, [ R = ZZmod.

Lemma B.3.2. A morphism (f,¢): (Z2Zy — P,p) — (ZZny — Q,n) in ZZmod is cartesian
if and only if p is a natural isomorphism.

Proof. Let (f,¢): (Z2Zn — P,p) — (ZZy — Q,7n) be a morphism and (g,v¢): (Z2Zy —
R,a) — (ZZy — Q,n) a morphism such that h: (ZZy — R) — (ZZy — P) defines
a commutative triangle in Poset%ZN/ . We need to find a (unique) natural transformation
X: a = h*p such that (h,y) fills the 2-horn upstairs in ZZmod. This is possible precisely
when ¢: p = 7 is an isomorphism. Indeed, g* = h* o f* and ¥: a = g*n, so if ¢ is an
isomorphism we define

X = a= g = ht(¢'n) = hp.

Lemma B.3.3. The object (22n — 22y) is initial in Poset>™"

Proof. Let (¢: 22y — P) € Poset?Z’N/. A map in the under category from (ZZy ELN 22y)
is a commutative diagram in Poset;

By commutativity of the triangle, the map ¢ = ¢, so there is indeed a unique map in the
under category. 0

The precedings lemmas assemble to a proof of Theorem 3.3.5. More precisely, we have
shown that

ZZmod[W™'] = [ R[Cart™'] 2 colim R = R(2Zy — 22Zn) = Fun(ZZy, Vect).
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