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Abstract—Traditional crowd-counting networks suffer from
information loss when feature maps are reduced by pooling
layers, leading to inaccuracies in counting crowds at a distance.
Existing methods often assume correct annotations during train-
ing, disregarding the impact of noisy annotations, especially in
crowded scenes. Furthermore, using a fixed Gaussian density
model does not account for the varying pixel distribution of
the camera distance. To overcome these challenges, we pro-
pose a Scale-Aware Crowd Counting Network (SACC-Net) that
introduces a scale-aware loss function with error-compensation
capabilities of noisy annotations. For the first time, we simul-
taneously model labeling errors (mean) and scale variations
(variance) by spatially varying Gaussian distributions to produce
fine-grained density maps for crowd counting. Furthermore, the
proposed scale-aware Gaussian density model can be dynami-
cally approximated with a low-rank approximation, leading to
improved convergence efficiency with comparable accuracy. To
create a smoother scale-aware feature space, this paper proposes
a novel Synthetic Fusion Module (SFM) and an Intra-block
Fusion Module (IFM) to generate fine-grained heat maps for
better crowd counting. The lightweight version of our model,
named SACC-LW, enhances the computational efficiency while
retaining accuracy. The superiority and generalization properties
of scale-aware loss function are extensively evaluated for different
backbone architectures and performance metrics on six public
datasets: UCF-QNRF, UCF CC 50, NWPU, ShanghaiTech A,
ShanghaiTech B, and JHU. Experimental results also demon-
strate that SACC-Net outperforms all state-of-the-art methods,
validating its effectiveness in achieving superior crowd-counting
accuracy. The source code is available at https://github.com/
Naughty725.

Index Terms—Annotation error modeling, scale-aware crowd
counting network (SACC-Net), density map generation, low-rank
approximation.

I. INTRODUCTION

ROWD counting is an increasingly important technique
C in computer vision with applications in public safety and
crowd behavior analysis [1], [2]. Over the years, many CNN-
based crowd-counting methods have been developed to predict
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Fig. 1. Modeling uncertainty (including annotation errors) for crowd counting.
(a) Inaccurate annotations lead to biased mean (red dots deviate from the
center of human faces). (b) Different camera distances lead to a positively
skewed distribution of head sizes 8, characterizing the change in variance.

crowd density maps from a given image [3], [4], [5], [6], [7],
[8], [9], [10], [11]. The number of people in the image is then
calculated by adding up the predicted values on the density
map. In past methods, the image was passed directly through
a backbone network, where the last layer was used to predict
the density map. Most existing methods did not adequately
account for the scale problem when viewing people in the
3D space: people at the far end tend to look smaller than
those close to the camera. Existing counting methods have
difficulty generating fine-grained density maps to accurately
count people at the far end of an input image after it passes
through the pooling layer.

Moreover, many existing methods require precise annota-
tions from which a density map can be constructed using
the L2-norm [3], [12], [13] or Bayesian Loss (BL) [6].
Unfortunately, even for human annotators, labeling errors are
inevitable because ground-truth labeling might vary from sub-
ject to subject. As illustrated in Fig. 1, accurately pinpointing
the center of each individual’s head in an image is not a trivial
task, and the process can pose technical challenges, particu-
larly for people who appear small at a distance. As the crowd
size increases, the distance from a person to the camera is not
constant: individuals far away might only occupy a few pixels,
or even less than a pixel in the image, rendering annotation
more challenging and unreliable. Therefore, treating all pixels
equally in Bayesian Loss [6] will likely affect the accuracy of
crowd counting. How to handle scale variations and annotation
errors in crowd counting remains an open problem [14], to the
best of our knowledge.

The main motivation for this work is to improve crowd-
counting accuracy by addressing the scaling truncation
problem (caused by the pooling operations) as well as the
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Fig. 2. Details of the proposed Scale-Aware Crowd Counting Network (SACC-Net) architecture for scale-aware crowd counting. The VGG-19 backbone,
together with two newly designed feature fusion modules, namely the Synthetic Fusion Module (SFM) and Intra-Block Fusion Module (IFM) are
incorporated into the training using a new scale-aware loss function. CAN and ASPP are integrated into the regression model to obtain multiscale features.

issue of annotation errors across scales. The Feature Pyramid
(FP) can capture the visual features of objects from coarse
to fine scales, and FP has become the standard component
for most State-of-The-Art (S0TA) object counting frameworks
[31, [4], [5], (6], [71, [8], [9], [10], [11], [15]. However, the
adopted pooling operations in standard FP methods construct
feature maps into %, }1, or % of the input size, where the scale
truncation makes small objects disappearing. To address this
issue, we propose a novel Synthetic Fusion Module (SFM)
that constructs feature maps with finer scales of L % %, é,
i.e., not just the half-sizing intervals. A smoother scale space
can be obtained this way, to fit the ground truth whose scale in
fact changes continuously. We further design an Intra-block
Fusion Module (IFM) to fuse all feature layers within the
same convolution block, so that more fine-grained information
can be sent to the decoder for effective crowd counting.
Finally, most existing crowd-counting architectures [3], [4],
[51, [7], [8], [9], [16], [17], [18] do not meet the requirement
in operating speed for real-time crowd-counting. To this end,
our architecture can be easily converted to a lightweight
version that brings real-time efficiency and comparable
accuracy.

To address the problem of annotation errors, we propose a
novel scale-aware loss function that simultaneously considers
the annotation noise, head-to-head correlation, and adjustment
for variances at different scales. In [19], a multivariate Gaus-
sian distribution was used to handle this annotation problem;
however, their model is fixed and not scale-aware for all
objects of different sizes. In real images, the sizes of human
heads vary at different positions; see Fig. 1(b). Thus, we
argue that annotation error modeling should be scale-aware,
and capable of adapting to changes in head size. We derive a
multivariate Gaussian distribution with a full covariance matrix
of different scales to model the correlation between pixels at

different scales. To speed up computation, we adopt a low-rank
approximation method. Finally, our scale-aware loss function
is designed to compensate for human annotation errors and
thus greatly improves the trained model performance. Our
new architecture, Scale-Aware Crowd Counting Network
(SACC-Net) as described in Fig. 2, is integrated into VGG-19
and trained by a new loss function with scale-aware annotation
error modeling. SACC-Net achieves SoTA performance on five
popular crowd-counting datasets.

Our work presents the following key contributions:

e We design a scale-invariant loss function for crowd-
counting networks. Observing the typically skewed
distribution of head sizes in images, we develop a
novel scale-aware density model to effectively manage
to accommodate annotation errors and scale variations.
The introduction of new scale-aware loss function allows
concurrent handling of scale variations and annotation
errors, resulting in fine-grained crowd-counting density
maps.

e We propose the SACC-Net as the new SoTA for crowd-
counting. Our method integrates information across layers
and compensates for annotation errors across scales. A
synthetic fusion module (SFM) is proposed to generate
a smoother scale space to address the scale truncation
problem. An intra-block fusion module (IFM) is designed
to fuse all feature layers within the same convolution
block to generate finer-grained information for effective
crowd counting.

e We report comprehensive experimental results to jus-
tify the superiority and generalization properties of the
proposed scale-aware loss function. When combined
with recently developed STEERER [20] architecture,
our scale-aware loss function notably improves the
Mean Absolute Error (MAE)/Mean Square Error (MSE)
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performance on both backbones of VGG19 and HRNet.
The proposed SACC-Net outperforms all SOTA methods
on six popular crowd-counting datasets.

o A light-weight version of SACC-Net named SACC-LW,
employs a bifurcation design that divides the feature
map processing into two routes (a VGG block and a
Simple Convolution Block), improving the running FPS
by more than twice while retaining accuracy. In practical
applications, SACC-LW supports real-time tracking and
counting such as early warning of stampede accidents in
social gatherings.

II. RELATED WORKS

We survey literature covering various aspects of image-
based crowd counting.

A. Scale Variations

A key challenge in crowd counting methods relying on
summing density maps is the scale variation arising from
different distances between cameras and targets. A CNN with
a switching strategy is employed in [21] to address this, by
optimizing between density and count estimation for enhanced
generalizability. In [22], a multi-column CNN utilizes varied
convolution kernels for extracting multi-scale features, but [3]
observes redundancy in feature learning, hindering efficient
training with deeper layers. To tackle this, [3] adopts VGG16
for obtaining multi-scale features using convolutions with
different dilation rates. Alternatively, a multi-branch strategy
is employed in [8] to select fixed-size convolution filters in
each layer for consistent multi-scale feature extraction. The
Pan-Density Network in [16] effectively captures global and
local contextual features to count crowds with varying density.
To avoid redundant convolutional feature computations, multi-
resolution feature maps are generated in [7] by dividing dense
regions into sub-regions. To handle scale variations, multi-
scale contextual information is encoded into a regression
model [23]. In [9], a density attention network generates
various attention masks to focus on a particular scale. Multi-
scale information is maintained using a densely connected
architecture in [24]. Multiple kernels are adopted in [15] to
generate various density maps for a given image to count
crowds more accurately in a semi-supervised way. In [10], both
CAN [23] and ASPP [25] are integrated into the regression
model to obtain multiscale features. In [18], a hierarchical
mixture of density experts merges multi-scale density maps to
overcome problems such as perspective distortions and crowd
variations in crowd counting.

B. Annotation Deviation

Crowd-counting datasets commonly utilize point-wise or
dotted annotations to denote individual objects in an image.
Unlike bounding-box annotations, the lack of size information
leads to variations in subsequent deviation and performance
assessment. To address this issue, the average distance from
each head to its three neighbors is calculated in [22] to estimate
the head size using Gaussian standard deviation. The effect of
body structure on crowd counting was studied in [26]. Locally

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 34, 2025

connected Gaussian kernels are introduced in [27], replacing
convolution filters to relax pixel-level spatial invariance for
object counting. In [28], a decoupled two-stage crowd counting
was proposed to partially alleviate this problem. A recent study
in [29] explores location-agnostic crowd counting.

C. Loss Function

Traditionally, density-based crowd-counting approaches
employ pixel-wise Mean Square Error (MSE) loss for training.
However, recent developments have overcome the limitations
of MSE loss. For instance, [30] introduced a combinatorial
loss that incorporates spatial abstraction and correlation terms
to effectively reduce annotation deviation. The Bayesian Loss
(BL) in [6] leverages a density contribution probability model
to address deviation impact, although it struggles to reduce
false positives. The Density Map (DM)-count loss in [31]
gauges the similarity between predicted and ground-truth den-
sity maps. The multivariate Gaussian distribution-based loss
in [19] considers annotation noise and correlation but lacks
scale awareness in its design. In this paper, we recognize that
annotation pixel errors can significantly degrade the counting
of small objects (i.e., people far away). We thus derive a scale-
aware loss function to rectify such annotation error.

D. Network Architecture

The latest survey [14] indicates that CNNs remain the dom-
inant choice for crowd counting. However, recent literature
explores alternative designs, such as the adoption of a Multi-
Layer Perceptron (MLP) in CrowdMLP [32]. CrowdMLP
focuses on modeling global dependencies of embeddings and
regress total counts using a multi-granularity MLP regressor.
Attention-based enhancements have also become popular, with
works like Hierarchical Attention [17], Context Attention
Fusion Network [33], Dual Attention Network [34], and
Feature Pyramid Attention [35] being notable examples. Addi-
tionally, the influence of transformer architecture is evident,
with recent studies like [36] and [37] exploring the application
of vision transformers in crowd counting. Finally, an interest-
ing recent development is the integration of vision-language
models into crowd counting, as seen in [38]. Knowledge dis-
tillation has also been developed for efficient crowd counting
in [39].

E. Multi-Scale Feature Extraction

Recent advancements in crowd and object counting tackle
common challenges such as scale variation, background inter-
ference, and efficiency, particularly in dense and dynamic
environments. Several models have emerged with unique
solutions: the Ghost Attention Pyramid Network (GAP-
Net) [40] and Attentive Hierarchy ConvNet (AHNet) [41]
employ lightweight designs with attention mechanisms to
improve multi-scale feature extraction and operational effi-
ciency, making them well-suited for smart city applications.
The Scale-Context Perceptive Network (SCPNet) [42] and
Scale Region Recognition Network (SRRNet) [43] improve
both counting and localization accuracy by integrating con-
text and scale recognition modules. Meanwhile, the Group
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and Graph Attention Network (GGANet) [44] and Group-
Split Attention Network (GSANet) [45] leverage attention
mechanisms to minimize background noise. Additionally,
the Deep Spatial Prior Interaction (DSPI) [46] network
extends capabilities to zero-shot counting, enabling adaptabil-
ity in diverse applications. Together, these innovations signify
substantial progress in object counting, combining accu-
racy, adaptability, and computational efficiency across various
real-world scenarios.

The methods discussed above mainly emphasize improving
accuracy, often with limited focus on addressing annotation
errors across scales and efficiency. In contrast, our approach
makes a novel contribution by enhancing both accuracy and
efficiency. We propose a scale-aware loss function that tack-
les annotation noise, head-to-head correlations, and variance
adjustments across different scales to boost accuracy. Addi-
tionally, this paper introduces a bifurcation design that splits
feature map processing into two parallel paths, doubling the
running speed in frames per second (FPS) while maintaining
accuracy.

III. METHOD

This section describes the proposed network architecture
and how it is trained. § III-A starts with the basic formulation
of generating a density map for crowd counting. § III-B
introduces our Scale-Aware Crowd Counting Network (SACC-
Net), which generates the density map from an input image. §
ITI-C explains how we model uncertainty or noise introduced
by manual ground-truth annotation. § III-D elucidates the
representation of the scale-aware crowd density function as
a Gaussian normal distribution. Due to the large covariance
matrix in this Gaussian representation, § III-E outlines the
computation of a low-rank approximation using SVD. In § III-
F, we describe how this low-rank approximation is employed
to define the final loss function, incorporating regularization.
Finally, § III-G shows a lightweight version called SACC-
LW, with improved efficiency and only a slight degradation of
counting accuracy.

A. Crowd Counting Density Map Generation

Traditional methods treat the counting task as a density
regression problem [19], [47], [48]. Given an image Z with
N people to be counted, let H; denote the true position of the
head of the i person. For any pixel location x in the image
7, the crowd density y at x is modeled as a Gaussian kernel
centered at each annotation point. Let 8 denote the annotation
variance of the Gaussian kernel, and let Zf\il N (x|, T) denote
the Probability Density Function (PDF) for a multivariate
Gaussian with mean g and covariance matrix X. We calculate
the squared Mahalanobis distance as ||x||§ = XT2-1X, where X
is the feature vector of x extracted from a network backbone.
The crowd density y at position x is modeled as:

o Yoo llx = Hilly
Y(x)=ZN(X|Hi,ﬁI)=;@eXP ).

i=1
From data-driven learning, the density map y for all annotated
head positions H; in the image Z is estimated by a regressor
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Fig. 3. The Synthetic Fusion Module (SFM) produces a smoother scaling
space for crowd counting density map generation.

f(@), where the learning objective is typically defined using
the L, loss L(y, f(2)) = |y—f(I)|2 or a Bayesian loss [6].
The crowd count is obtained by summing up the values of the
density map y across all pixels in Z.

B. Scale-Aware Crowd Counting Network (SACC-Net)

Our scale-aware crowd-counting network features several
newly designed modules, leading to improved crowd-counting
density map estimation. Fig. 2 overviews our SACC-Net archi-
tecture. First, the Synthetic Fusion Module (SFM) is introduced
to produce a refined feature map interpolation across scales,
which effectively overcomes issues of uneven feature fusion
resulting from the typical stride-2 down-sampling. Secondly,
the Intra-block Fusion Module (IFM) eftectively fuses all
feature layers within the same convolution block, such that
more fine-grained information [49] can be sent to the decoder
for crowd counting. Finally, the ASPP [25] and CAN [23]
modules are adopted at the end of SACC-Net, to leverage
atrous convolutions with different rates to extract multiscale
features for accurate counting. More precisely, the ASPP
module is added to the last layer (Conv5-4) of the used
backbone and the CAN module follows the last IFM module
(see Fig. 2). Details of SFM and IFM are described as follows.

1) Synthetic Fusion Module (SFM): Unlike typical CNN
backbones that employ down-sampling through pooling or
stride-2 convolution to create feature maps of %, le’ % intervals,
our newly designed Synthetic Fusion Module (SFM) enhances
scale-aware crowd counting by offering denser scale space
samples. This is more aligned with the continuous scale
changes observed in reality. SFM achieves this by generating
synthetic layers between original layers, resulting in refined
density scales at %, 1, I, £, &, and beyond.

The input configuration of SFM varies depending on its
position within SACC-Net, as illustrated by the brown blocks
in Fig. 2. SFM can take two or three inputs in generating
the synthetic layers. Fig. 3 depicts how SFM works, which
involves down-sampling and up-sampling of feature scale
space. SFM initially performs linear scaling of the inputs,
followed by merging through a 1 x 1 convolution. The results
are further fused using a 3 x 3 convolution. This process
synthesizes a new feature layer from the two original adjacent
layers, contributing to a smoother scaling space for crowd
counting.

a) Down-Sampling: As shown in Fig. 4, the input feature
map of size W x H is first disassembled into regular 4 x 4
patches. Then, a convolution operation with kernel 2 x 2 and
stride 1 is applied to obtain a new feature patch with size
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Fig. 4. The Down-sampling process in SFM. A convolution kernel 2 x 2
(denoted by green) with stride 1 is used to convert a 4 X 4 patch to a new
3 x 3 feature map.
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Fig. 5. The Up-sampling process in SFM. Each 2 x 2 feature patch is up-
sampled to 4 X 4, followed by a convolution operation using a 2 X 2 kernel
and a stride of 1, resulting in a new 3 X 3 feature map.
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3 x 3. This process reduces the feature map dimensions from
C x4W x 4H to C x 3W x 3H.

b) Up-Sampling: As shown in Fig. 5, each 2 x 2 feature
patch is first up-sampled to 4 x4. Then, a convolution operation
with kernel 2 x 2 and stride 1 is applied to the 4 x 4 patch to
obtain a new 3 x 3 feature map. After that, the feature map
with dimension 2W x 2H is enlarged to dimension 3W x 3H.

2) Intra-Block Fusion Module (IFM): In traditional CNN
architectures like VGG, features are extracted through sequen-
tial convolutions, with only the feature maps from the last
layer of a convolution block transmitted to the next mod-
ule. Our newly designed Intra-block Fusion Module (IFM)
diverges from this approach by allowing all layers within
the convolution block to contribute fine-grained features for
precise density map generation. In contrast to the DenseNet
structure [50] depicted in Fig. 6(a), which employs a fully
connected structure linking all layers, potentially causing
training challenges and inefficiencies, our IFM design, shown
in Fig. 6(b), utilizes fewer connections than DenseNet and
ensures efficient generation of required feature maps. IFM
offers three advantages over DenseNet: (1) IFM requires less
memory usage, as it uses 1 x 1 convolution to directly obtain
the output; (2) IFM obtains more representative features by
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aggregating information from all layers within the convolution
block; (3) IFM contains fewer parameters, making it more
efficient compared to DenseNet.

C. Annotation Noise Modeling

We address uncertainty in manual annotations of the human
head position as the example shown in Fig. 1(a). These point-
wise annotation errors lead to inaccuracies in training the
data-driven model for image-based crowd density estimation
y defined in Eq. (1). We next derive a solution to address this
issue. Let H; denote the annotated head position of the i
person with potential annotation error, and &; denote its anno-
tation noise, H; = H; + ;. We assume the annotation noise is
independent and identically distributed (i.i.d), & " (0, o),
where @ is an annotation variance parameter. Recall that S
is the Gaussian annotation variance defined in Eq. (1). Let
gi = x — H; denote the position difference between the i
annotation and position x. Let ¢; denote a Gaussian kernel for
the i annotation. Considering the annotation noise, we model
the density D(x) at location x as the sum of the individual
Gaussian kernels:

N N
D) = Y NH;,BD = Y~ N(IH; + &, 81)

i]:vl i;l
=Y N@ilenph =Y _ ¢ )
i=1 i=1

In the literature, [19] did not distinguish the range of annota-
tion errors between small and large objects. It is a fixed-scale
model using the NoiseCC loss to rectify the annotation noise.
A common limitation in all state-of-the-art methods [19],
[47], [48] regarding Eq. (2) is the use of a fixed g with
constant value to model D(x) of the crowd density around each
head position. As mentioned earlier, head sizes vary based on
their distances relative to the camera. Therefore, our approach
makes S scale-aware and adaptive to the size of each head
present in the image.

D. Scale-Aware Gaussian Density Function

We observed a positively skewed distribution of people’s
head size 8 in the crowd counting datasets, with smaller heads
being more frequent, as shown in Fig. 1(b). We introduce a
scale-aware annotation error using mixed Gaussian distribu-
tions for density map generation. Assuming there are only
S scales utilized in modeling a person’s head with annotation
errors, we represent the density of a head as a mixed Gaussian
model. Eq. (2) can be rewritten as:

N

S N N
D(x) =Y Y wlN(glenBD =Y wd ¢, ()

i=1 s=1 s=1 i=1

where {w;} are weights and ZL ws = 1. In addition,

¢ = N(qgile;, BsD), i.e., the Gaussian kernel placed in the ith

annotation at the scale s and parameterized with the annotation
. N

error &; and the variance S3;. Let Dy = wy Zi:l ¢;. Then, Eq.(3)

can be rewritten as

S
D(x) = ) w,Dy(x). )

s=1
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Let Z; and J, be the scaled-down version of Z on scale s and
the number of pixels in Zj, respectively. For all pixels x; in
T, a multivariate random variable for the density map Dy(x)
is constructed as

Dy = [Ds(x1), - -+, Ds(x)), -+, D)) &)

1) Scale-Aware Probability Distribution: To calculate Dy
in a closed form, we approximate D; as a Gaussian function
using the scale-aware mean p; and the variance Z? as p(Dy) ~
N(DYLuS,E?). The mean u;y is calculated as:

N
py =EID,] =E | w, Y N(gilei. BI)

N - N
=ws Y N0, (@ + D =Y _uf, 6)
i=1 i=1

where pu} = wsN (g0, (@ + B5)I) and the annotation error &; ~
N(0]0, ). The variance Z? is calculated by:

¥? = var(D,) = E[D?] - E[D,]?

IR

K e
Zl [ G @10 (B:/2 + ) (1) } (7)

2) Gaussian  Approximation to  Scale-Aware  Joint
Likelihood D, We next calculate the covariance
Cov(D,(x;), Dg(x)) between locations x; and x;. This
term is modeled using a multivariate Gaussian approximation
of the joint likelihood Dy at scale s. Let g;(x;) = x; —H; be the
difference between the spatial location of the i annotation
and the pixel x; location. The density D,(x;) is calculated
using Eq. (3) as:

N N
Dy(x)) = wy »_ N(@iCxplen D) = we Y ¢i(x),  (8)
i=1 i=1
where ¢(x;) = N(qi(x))le;,BI) and the annotation noise
g is the same random variable across all ¢7(x;). Define
the Gaussian approximation to Dy as p(D;) = N (Djlus, Z,),
where u, and Z; are defined in Egs. (6) and (7). From Eq.
(6), the j™" entry in u, is E[Dy(x;)] = Zf\ilyf(xj). The
diagonal of the scale-aware covariance matrix is calculated
as Efc,-,x,- = Var(D,(x;)). The covariance term is then:
I3 = Cov(Dy(x)), Dy(xy))
N
=D [Wi (s 1) — 1 e ()] )
i=1

where Qf(x;, x¢) = E[¢}(x)¢p5 (x0)].

E. Low-Rank Approximation Using SVD

Due to the vast dimension of X} . that is J, x J;, we derive
a low-rank approximation with non-zero rows and columns
for efficiency improvement. Let £’ denote the approximation
to X° using Singular Value Decomposition (SVD), which is
calculated as:

IRESD R IR A A8 (10)

where U* is a J; x J; orthogonal matrix, Cj is a non-negative
Js x J; diagonal matrix with diagonal entries sorted from high
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TABLE I
DETAILED PARAMETERS USED FOR TRAINING

Dataset learning rate | batch size crop size
UCF-QRNF le-5 12 512 x 512
UCF CC 50 le-5 10 512 x 512

NWPU le-5 8 512 x 512
ShanghaiTech le-4 12 512 x 512

JHU le-4 10 512 x 512
TABLE II

ABLATION STUDY OF THE GAUSSIAN ANNOTATION VARIANCE (;.THE
BEST AND SECOND-BEST RESULTS ARE SHOWN IN RED AND BLUE

51 2 4 6 8 10 12 14 16
MAE | 187.4 179.2 1745 157.3 1683 177.6 189.2 198.1
MSE | 273.1 2654 2537 2359 246.6 2553 257.7 2604

TABLE III

PERFORMANCE ANALYSES OF THE THRESHOLD 7y IN EQ.(11) AMONG
DIFFERENT DATASET

UCF-QNRF NWPN JHU S.H.Tech-A

v MAE MSE | MAE MSE | MAE MSE | MAE MSE
0.2 95.6 1772 | 912 2775 | 82.1 2709 | 79.5 99.3
0.4 91.7 1558 | 87.6 266.7 | 743 2595 | 704  93.7
0.6 82.8 1389 | 794 2463 | 635 2234 | 619 89.4
0.7 79.4 133.1 762 2237 | 60.9 2275 | 59.7 86.5
0.75 | 75.8 1285 | 73.6 2164 | 57.7 2137 | 55.8 81.3
0.8 73.9 121.7 | 70.0 2114 | 53.6 2015 | 52.1 76.6
0.85 | 747 1263 | 732 2147 | 559 2099 | 53.8 80.4
0.9 75.1 1322 | 739 2192 | 56.7 2154 | 544 85.9

to low, and V" is a J; x J; orthogonal matrix. Let v = X} .
To obtain this low-rank approximation, each pixel x; is first
ordered by vi. Then, the top-M pixels whose percentages of
variance are larger than a threshold vy are selected from Z; for

this low-rank approximation:
M s
> =1Yj
Jos
21V J

Let the set of indices of the top M pixels be denoted by L,
ie, L =1{,b,....0n, ..., Iy} Then, only the elements in L
are selected to approximate X°. We ensure that the low-rank
approximation retains the majority of the informative structure
in the data while discarding less significant components. This
trade-off between dimensionality reduction and accuracy pre-
serves most of the useful information, aligning with our goal
of enhancing computational efficiency without compromising
the model’s performance in crowd density estimation, as illus-
trated in Eq. (11). Table III shows that optimal performance is
achieved when the threshold vy is set to 0.8. Approximation of
the matrix X° by a rank-M matrix requires a representation of
¥* as the sum of several terms ordered by their importance.
SVD achieves this by transforming X* into the sum of rank-1
matrices that is weighted by the corresponding singular values.
Namely, £° = U°C; V*7 is equivalent to:

J
s _ s s,sT
Y= E c;-uiv; e,
i=1

where the scale s = 1,...,§, ¢] is the jth singular value, and u}
and V[ST are the corresponding left and right singular vectors

> 7. (11)

(12)
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Scale-aware annotation error loss fuction

f— Conv1-2
Channel split
1/2 channels 1/2 channels
1
max pooling » SFM »> .'
v Conv2-2 >LIEM > —T
l D1 block
Downsamplin
i pling SC max pooling SFM >
Upsamplin D1-2 block
psampling 1/2
(U  Bilinear upsampling . > IFM > t ;.l .
- ¥ Conv3-4 D2 block
. Concatenation ¢
scB i SFM >
IFM  Intra-block Fusion Module max pooling % D2-3 block
SFM Synthetic Fusion Module R R
v Conv4-4 > IFM > |
D3 block
VGG19 block
scB .
max pooling % D3 block = Concatenate, Conv 1x1x256, Conv 3x3x256
.' Convix1l D2-3 block = Concatenate, Conv 1x1x256, Conv 3x3x256
. D2 block = Concatenate, Conv 1x1x128, Conv 3x3x128
) ) . — — (U D1-2 block = Concatenate, Conv 1x1x128, Conv 3x3x128
Simple Convolution Block Conv5-4 IFM & D1 block = Concatenate, Conv 1x1x64, Conv 3x3x64,

Conv 3x3x32

ScB

> U

Fig. 7. Architecture of the lightweight SACC-LW model. With the two-way feature branching approach, only half of the channels go through the VGG-19

backbone compared to the full version.

at the scale s, respectively. A straightforward idea is to keep
only the top M terms on the right-hand side of Eq. (12). For
Y¥ in Eq. (12) and a target rank M, the proposed rank-M
approximation is then:

IR

Cl?‘.uq

v (13)

(A A

i=1

where the singular values ¢ are sorted as ¢ > ¢§ > --- > ¢} >

0 . With £°, the rank-M approximate negative log-likelihdod
function is:

—log p(Dy) = —log N(Dylu, £ o D — g (14)

The time complexity to calculate the right-hand sides of
Egs. (13) and (14) take O(M?) and O(M?), in contrast to O(J?)
and O(Jf,) that are required to calculate the original matrix X°
and the distance ||D; — ,Lls”%s, respectively.

FE. Regularization and the Final Loss Term

We calculate the Gaussian approximation to D based on
Egs. (13) and (14). To ensure that the predicted density map
near each annotation satisfies the condition of density values
summing to 1, we define the regularizer R; for the i-th
annotation point as:

R: = |3 D) <o

— 7y, (15)
> PIPITHED)

where Dj(x;) is the j term of D. Let Dy = D — . The final
loss function is:

N S N
£L=Y"D{E) D+ Y D RS,
s=1 i=1

s=1

(16)

Input ==——p }.‘ p Output
Conv 3x3 Conv 1x1
with Stride 2

SCB (Simple Convolution Block)

Fig. 8. Convolutions in the Simple Convolution Block (SCB).

where the first term is the low-rank approximation from
Eq. (14) and the second term is the accumulation of regu-
larization terms from Eq. (15).

G. Light-Weight Version (SACC-LW)

Density-based crowd-counting methods demonstrate notable
counting accuracy, yet their efficiency for real-time applica-
tions remains a challenge. Note that the time complexities
for both SFM and IFM are O(W x H x C), where C is the
number of channels used, and W and H are the input width and
height. Such high computational complexity might become a
roadblock to support real-time applications such as the early
warning of stampede accidents in social gatherings.

To improve the efficiency of the original SACC-Net, we
employ a bifurcation design to effectively balance the compu-
tation load across layers and reduce memory demands. We
divide the feature map processing of the Conv-1-2 block
of Fig. 2 into two routes. The new light-weight architecture,
SACC-LW, has one processing branch going through a VGG
block and the other branch passing directly through the Simple
Convolution Block (SCB), as shown in Fig. 7. This design
is motivated by our observation that additional parameters
in heavier models often lead to the learning of redundant
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TABLE IV

ACCURACY COMPARISONS AMONG DIFFERENT LOSS FUNCTIONS WITH
VARIOUS BACKBONES ON UCF-QNRF

VGGI19 CSRNet MCNN
MAE MSE |[MAE MSE | MAE MSE
L2 98.7 176.1|110.6 190.1 | 186.4 283.6
BL [6] 88.8 154.8|107.5 184.3 | 190.6 272.3
NoiseCC [19] | 85.8 150.6| 96.5 163.3 | 177.4 259.0
DM-count [31]| 85.6 148.3|103.6 180.6 | 176.1 263.3
Gen-loss [560] | 84.3 147.5| 92.0 165.7 | 142.8 227.9
Ours 73.91 121.7 190.83 150.67 | 134.52 213.71

TABLE V

ACCURACY COMPARISONS AMONG DIFFERENT LOSS FUNCTIONS WITH
VARIOUS BACKBONES ON SHANGHAITECH PART-A

VGG19 CSRNet MCNN
MAE MSE | MAE MSE MAE MSE
L2 71.4 136.5 | 80.61  149.12 | 147.8 201.6
BL [6] 62.8 101.8 68.2 115.0 1102 1732
NoiseCC [19] 61.9 99.6 67.28  109.31 105.5  169.7
DM-count [31] 59.7 95.7 65.71 105.53 | 103.8 1654
Gen-loss [56] 61.3 95.4 63.42  102.51 102.3  162.9
Ours 52.19  76.63 | 60.39  96.83 95.7  160.1

TABLE VI

ACCURACY COMPARISONS AMONG DIFFERENT LOSS FUNCTIONS WITH
VARIOUS BACKBONES ON SHANGHAITECH PART-B

VGGI19 CSRNet MCNN
MAE MSE | MAE MSE | MAE MSE
L2 9.1 13.9 11.63  17.57 | 29.17 52.33
BL [6] 8.62 13.56 10.6 16.0 26.4 41.3
NoiseCC [19] 8.37 13.13 | 1047 15.69 | 2533 41.04
DM-count [31] 7.4 11.8 9.76 13.82 | 2391 35.49
Gen-loss [56] 7.3 11.7 9.51 13.66 | 22.89 33.77
Ours 6.16 9.71 9.38 13.23 | 20.51 31.26

TABLE VII

ACCURACY COMPARISONS AMONG DIFFERENT LOSS FUNCTIONS WITH
VARIOUS BACKBONES ON JHU

VGGI19 CSRNet MCNN
MAE MSE | MAE MSE | MAE MSE
L2 859  354.1 90.7 388.4 | 1043 4125
BL [6] 75.0  299.9 823 3642 914  399.6
NoiseCC [19] 67.7 2585 725 3341 83.4 3609
DM-count [31] 68.4 2833 756 3569 90.4 3782
Gen-loss [56] 59.9 2595 714 291.7 85.7 3572
Ours 53.6 2015 | 58.6 2314 | 703 @ 262.7

or unnecessary features, which do not significantly enhance
model accuracy. Consequently, we developed the architecture
illustrated in Fig. 7.

The SCB consists of two simple convolutions as in Fig. 8.
The separation can balance the computation load of each layer,
as well as reduce the memory traffic load. In contrast to the
original convolution on all channels, only half of the channels
are sent to the next block, providing efficiency improvement.
This design significantly reduces the model parameters without
compromising accuracy. As shown in Table X later, SACC-
LW can achieve nearly real-time counting (> 25fps) for 2K-
resolution videos.

IV. EXPERIMENTAL RESULTS

We evaluated our crowd-counting models (SACC-Net
and SACC-LW) and compared them with 20 State-of-The-
Art (SoTA) methods across six public datasets, namely
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UCF-QNRF [51], UCF CC 50 [52], NWPU-Crowd [53],
ShanghaiTech Parts-A [22], ShanghaiTech Parts-B [22], and
JHU-CROWD++ [54].

A. Model Training Parameters

Our method was pre-trained on ImageNet [55] using the
Adam optimizer. Given the varying image dimensions in the
datasets, we crop patches of a fixed size at random locations
and then augment the data by random horizontal flipping with
a probability of 0.5. The learning rates during training are set
to le™>, le™, le™, le™, and le™ for the UCF-QNRF, UCF
CC 50, NWPU, ShanghaiTech, and JHU datasets, respectively.
To stabilize the training loss change, we use batch sizes of
12, 10, 8, 12, and 10, respectively. The learning rates and
batch sizes were selected according to the complexity of each
dataset evaluated. For more complex datasets, larger updates to
the model’s weights are needed to ensure convergence during
training. In contrast, simpler datasets require smaller learning
rates to avoid overshooting the optimal point during gradient
descent. For the ShanghaiTech and JHU datasets, higher learn-
ing rates were chosen due to their greater complexities and
diversities. All training stage parameters are listed in Table I.
Similar to other state-of-the-art methods [3], [4], [5], [7], [8],
[9], [10], [11], performance is evaluated using mean absolute
error (MAE) and mean squared error (MSE).

B. Parameter Settings for B, ws, @, and 7y

The head size distribution Pj.qq(h) shown in Fig. 1(a) is
positive-skewed and can be derived by aggregating training
data. The variance S in Eq. (1) should be proportional to
the head size h. One option is to set the mean of & as
the initial value of B, ie., Bi = Y, hPreqa(h). However,
a more favorable approach is to treat @ and B as manual
hyperparameters. Learning them from data requires a large
amount of data and introduces dependence on the training
set, potentially impacting generalization capability. On the
contrary, treating them as hyperparameters makes the method
adaptable to different scenarios.

In a CNN backbone like VGG19, the pooling operation
reduces the feature map size by half, consequently decreasing
the head size in the feature map. Given g, the value of B,y
can be recursively obtained as ;4| = B,/2. This subsampling
operation also leads to the eventual disappearance of small
heads. Subsequently, w; is set t0 Ppeqa(Bs+i1-5)), Where S is
the largest scale used to model D(x) in Eq. (3), and we set
S = 3. After normalization, we ensure Zle wg = 1.

We conducted an experiment to examine the impact of
annotation variance « and annotation error variance 3; on
feature map generation. As illustrated in Fig. 9, an increase in
B results in a decrease in MAE. However, when 3, > 8, the
MAE begins to increase instead. Similarly, with small values
of a, the MAE is large, but when a > 8, the MAE decreases
and tends to stabilize. Consequently, we set @ = 8 and §; = 8.
In Table IT presents the results of an ablation study on the
Gaussian annotation variance parameter ;. As S, increases
from 2 to 10, both the mean absolute error (MAE) and mean
squared error (MSE) decrease, reaching their lowest values at
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TABLE VIII

PERFORMANCE COMPARISONS BETWEEN OUR METHOD AND STEERER [20] WITH/WITHOUT OUR LOSS FUNCTION. THE BEST AND SECOND-BEST
RESULTS ARE SHOWN IN RED AND BLUE

Methods UCF-QNRF NWPU S. H. Tech-A S. H. Tech-B JHU
Backbone MAE MSE | MAE MSE MAE MSE | MAE MSE MAE MSE
STEERER [20] VGG19 76.7 135.1 68.3 318.4 55.6 87.3 6.8 10.7 55.4 221.4
STEERER + Our Loss 74.8 127.5 65.7 234.7 53.9 83.4 6.2 9.5 54.6 207.1
SACC-Net + Our Loss 73.9 121.7 | 70.01 21143 | 52.19 76.63 6.16 9.71 150.66  201.5
STEERER [20] 74.3 128.3 63.7 309.8 54.5 86.9 5.8 8.5 54.3 238.3
STEERER + Our Loss | HRNet [57] 73.3 118.7 62.4 275.8 51.9 74.2 5.6 7.3 53.1 194.8
SACC-Net + Our Loss 73.2 1154 61.5 204.1 514 72.4 5.3 7.4 141.7 194.3
TABLE IX
PERFORMANCE COMPARISONS AMONG THE SOTA CROWD COUNTING METHODS. THE BEST AND SECOND-BEST RESULTS ARE SHOWN IN RED AND
BLUE
Methods Venue backbone UCF-QNRF NWPU S. H. Tech-A|S. H. Tech-B|UCF CC 50| JHU
MAE MSE MAE MSE MAE MSE [MAE MSE MAE MSE |MAE MSE
CSRNet [3] CVPR’18 | VGGI16 - - 121.3 522.7 68.2 115.0 {10.3 16.0 [266.1 397.5|121.3387.8
CAN [23] CVPR’19 | VGGI6 107 183 - - 623 100.0 | 7.8 12.2 |212.2243.7| - -
S-DCNet [7] ICCV’19 | VGGI6 104.4 176.1 - - 583 950 | 6.7 10.7 [204.2 301.3(90.2 370.5
SANet [13] ECCV’18 | MCNN - - 190.6 491.4 67.0 104.5| 84 13.6 [258.4334.9(190.6491.4
BL [6] ICCV’'19 | VGGI19 88.7 154.8 105.4 454.2 62.8 101.8 | 7.7 12.7 [229.3 308.2| - -
SFANet [11] Arxiv’'19 | VGGI16 100.8 174.5 - - 59.8 993 |69 109 - - - -
DM-Count [31] NeurIPS’20, VGG19 85.6 148.3 88.4 498.0 59.7 957 |74 11.8 [211.0291.5|88.4 388.6
RPnet [21] CVPR’15 | VGGI6 - - - - 612 969 |81 11.6 - - - -
AMSNet [58] ECCV’20 | VGGI9 101.8 163.2 - - 56.7 934 | 6.7 10.2 [208.4297.3| - -
M-SFANet [10] ICPR’21 VGGI19 85.6 151.2 - - 59.6 956 | 6.3 10.2 [162.3276.7| - -
TEDnet [30] CVPR’19 | VGGI19 113.0 188.0 - - 64.2 109.1 | 8.2 12.8 [249.4354.5| - -
P2PNet [59] ICCV’21 | VGGI16 85.3 154.5 77.4 362 527 850 | 62 99 [172.7256.1| - -
GauNet [27] CVPR’22 | ResNet50 81.6 153.7 - - 548 89.1 |62 99 [186.3256.5| - -
MAN [60] CVPR’22 | VGGI19 [77.3/83.4* 131.5/146*(76.5/76.6* 323.0/465.4*| 56.8  90.3 - - - - - -
HA-CCN [17] TIP’ 19 VGG16 118.1 180.4 - - 629 949 | 8.1 13.4 [256.23484| - -
PaDNet [21] TIP’19 VGG19 96.5 170.2 - - 59.2 98.1 | 81 12.2 |185.8278.3| - -
HMoDE+REL [18] TIP’22 VGG19 81.6 153.7 73.4 331.8 544 874 |62 9.8 [159.6211.2|55.7 214.6
ADM [61] TIP’23 | ResNet50 74.5 149.7 70.1 266.9 76.7 1273 | - - - - 729 279.7
MRL [15] TIP’23 VGG19 126.7 209.7 97.0 413.5 683 1119 [11.0 17.6 - - 1729 279.7
GGANet [44] TNNLS’23 - 91.9 158.6 - - 62.0 110.7 | 7.4 13.1 [189.0 288.7|69.6 277.4
GAPNet [40] FGCS’23 118.5 217.2 174.1 514.7 67.1 1104 | 9.8 152 [202.8246.9| - -
SRRNet [43] TITS’23 |HRNet [57]] 89.5 162.9 - - 60.8 103.0 | 7.4 13.6 [172.9 256.3|62.4 254.6
SCPNet [42] ToT’23 |HRNet [57]] 93.7 164.3 - - 573 102.1 | 7.5 13.8 [132.0 295.0|66.2 251.0
DKD [39] TIP’24 - 91.7 150.1 97.0 413.5 644 103.0 | 74 12.7 |210.3 283.8| - -
SACC-Net + Our Loss! - VGGI16 71.3 142.9 75.2 254.1 524 787 | 6.1 9.8 [156.4208.7]56.2 204.1
SACC-Net + BL Loss - VGG19 85.4 145.4 86.7 442.9 5528 903 | 6.5 10.6 |167.42354| - -
SACC-Net + Our Loss! - VGG19 73.9 121.7 70.0 2114 52.1 76.6 | 61 9.7 [150.6 187.8|53.6 201.5
SACC-LW + Our Loss - VGG16 83.8 149.2 88.2 304.8 543 90.8 | 6.2 10.7 [167.5231.6]58.7 253.1
SACC-LW + BL Loss - VGGI19 90.2 175.1 99.3 490.7 63.5 103.7 | 7.6 11.5 [175.12534| - -
SACC-LW + Our Loss - VGG19 81.4 144.5 85.3 288.4 537 889 | 6.2 10.1 [157.1 203.6|56.4 232.1

Symbol * denotes scores produced by running the original source codes provided by the authors.

TABLE X 240
EFFICIENCY COMPARISON OF OUR SCAA-NET AND SCAA-LW AGAINST 220
SOTA METHODS ON A SINGLE NVIDIA 2080T1 GPU
200
Frames per second (FPS) —— _
Methods 15— —3¢7 511)2 % 512]1280 x 720 180 MAE Betazs
CAN [23] 4156 33.42 13.05 5 ==8==MAE Beta=16
M-SFANet [10]| 4228 | 3145 12.45 £ 160 MSE Beta=8
SFANet [11] | 39.71 | 30.54 11.16 110 )
ADM [61] 43.96 33.14 12.91 MSE Beta=16
MAN [60] 40.16 31.82 11.30 120
SACC-Net 25.24 20.61 8.19
SACC-LW 57.37 45.16 25.07 100
80
. .. 4 6 8 10 12
B1 = 8, with MAE at 157.3 and MSE at 235.9. This indicates alpha

that setting B = 8 achieves the best performance. However, as Fig. 9. MAE varies with different values of annotation variance () and

B continues to increase beyond 8, both MAE and MSE start  Gaussian annotation variance variance (8;). The lowest MAE is observed

to rise again, suggesting that larger values of §; may lead to  When initial values are set to §1 = 8 and @ = 8.

decreased accuracy. This trend demonstrates that an optimal

choice of §; is crucial for minimizing errors in the model. setting v to 0.8 yields optimal performance across multiple
Regarding the parameter y, we conducted an additional datasets, including UCF-QNRF, NWPU, JHU, and S.H.Tech-

experiment to evaluate its effects on accuracy. In Table III, A. Specifically, in the QNRF and NWPU datasets, the MAE
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Fig. 10. Visualizations of the crowd counting heatmap generated using different loss functions on ShanghaiTech Part-A and Part-B. (a) The input image with
ground truth. (b-d) show the heaptmaps generated using (b) MSE loss, (c) Bayesian loss, (d) NoiseCC loss, and (e) our scale-aware loss.

and MSE reach their lowest values of 73.9 and 121.7 (QNRF)
and 70.0 and 211.4 (NWPU), respectively. Conversely, when
vy is set to 0.2, the MAE is the highest (worst) across
several datasets. As y increases, the MAE gradually decreases,
reaching its lowest point at y = 0.8, after which it begins to
rise again. This trend indicates that while increasing vy initially
improves performance, excessively high values (y > 0.8) may
lead to a slight degradation in accuracy.

C. Performance Comparisons w.R.T. Loss Functions and
Backbones

We assess the effectiveness of our proposed loss function
by comparing it with L2, BL [6], NoiseCC [19], DM-count
[31], and the generalized loss [56] using different backbones
on the UCF-QNRF dataset. The results in Table IV demon-
strate that our proposed scale-aware loss function consistently
outperforms other state-of-the-art loss functions across various
backbones. Recognizing the variability in human head sizes,
our scale-aware approach effectively addresses scaling issues,
an aspect not covered by NoiseCC. This leads to superior
performance on the UCF-QNRF dataset compared to other
loss functions. The comparisons on the SHANGHAITECH
PART-A and PART-B datasets among different backbones are
presented in Table V and Table VI, respectively, showcasing
the effectiveness of our proposed loss function across different
datasets. Table VII shows the accuracy comparisons among
different loss functions and backbones on the JHU dataset.
Clearly, our method outperforms other loss functions across
various backbones.

In addition to the backbones mentioned above, STEERER
[20] wutilized another dense backbone, HRNet [57], for
their performance evaluations. Table VIII shows comparisons
between STEERER and our SACC-Net using the same back-
bones, VGG19 and HRNet. This table indicates that our

architecture shows a clear advantage over STEERER across
five datasets. Furthermore, applying our proposed loss function
to STEERER results in a significant performance improve-
ment. This finding further validates that our loss function
not only enhances the effectiveness of our model but also
demonstrates versatility by improving the accuracy of other
models, such as STEERER.

D. Comparisons With SoTA Methods

To comprehensively evaluate the performance of our pro-
posed method, we compare it against twenty state-of-the-art
methods: CSRNet [3], CAN [23], S-DCNet [7], SANet [13],
BL [6], SFANet [11], DM-Count [31], RPnet [21], AMSNet
[58], M-SFANet [10], TEDnet [30], P2PNet [59], GauNet [27],
MAN [60], HA-CCN [18], PaDNet [21], HMoDE+REL [18],
ADM [61], MRL [15], and DKD [39]. Table IX presents
the comparative results across five benchmark datasets. Our
method consistently achieves the best MAE on all datasets,
particularly excelling on large-scale datasets such as UCF-
QNRF, NWPU-Crowd, and ShanghaiTech Part-A. In terms of
the MSE metric, our method outperforms all state-of-the-art
methods.

As shown in Table IX, VGG16 and VGG19 are two widely
used backbones for evaluating the performance of most state-
of-the-art (SoTA) methods. To ensure a fair comparison, we
adopted them in this ablation study as well. Our SACC-net
model consistently outperforms other models, particularly on
the ShanghaiTech Parts A and B datasets. With the VGG16
backbone, our model performs competitively with ADM [61]
on the UCF-CC50 dataset, even though ADM [61] employs a
more advanced backbone. Using VGG19, our model achieves
a notable performance advantage over other models, with
the exception of SCPNet [42]. While SCPNet [42] attains a
slightly lower MAE on UCF-CC50, due to its more sophis-
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Fig. 11.

(b)
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()

Visualization of the SACC-Net crowd counting heatmap on ShanghaiTech Part-A: (a) Input image with ground-truth 429 heads. (b-c) show the

generated heatmap, with (b) lacking IBF and (c) incorporating IBF. It is evident that (c) is visually and objectively superior to (b).

TABLE XI

COMPARISONS REGARDING THE PARAMETER SIZE, MAC AND FLOPS
OF OUR SACC-LW MODEL WITH VGG16 AND CAN ON THE UCF-
QNRF DATASET WITH INPUT DIMENSION 224 x 224

Methods Parameters (M) | MAC (G) | FLOPS (G)
VGG16 7.89 15.47 7.73
CAN [23] 18.1 21.99 10.99
M-SFANet [10] 28.62 25.08 12.5
SFANet [11] 17 19.94 9.9
ADM [61] 16.14 13.05 6.82
MAN [60] 30.9 58.2 29.0
SACC-Net (Light) 1.86 6.17 3.0

ticated HRNet backbone, our SACC-net achieves substantial
improvements in the MSE metric across all cases.

E. Additional Experimental Results

Table X illustrates the efficiency comparisons among differ-
ent backbones evaluated on a single 2080Ti GPU. Remarkably,
with comparable accuracies, the efficiency of our lightweight
version is double that of CAN [23], M-SFANet [10], and
SFANet [11].

Table XI shows the ablation study for model parameter size,
multiply accumulate (MAC), and floating point operations
per second (FLOPS) among our light-weight architecture and
other SoTA methods, respectively, where the input size is
3 x 224 x 224. For fair comparisons, VGG16 is used as a
baseline. The parameter size of our lightweight model is only
one-tenth of other SOTA methods with comparable accuracies.

Visualization of Crowd Counting Heat Maps: To validate the
effectiveness of our proposed loss function, Fig. 10 presents
three visualization examples, demonstrating how our method
generates a detailed heat map for counting small objects with
enhanced accuracy in crowd counting. Ground truth head
counts are shown in Fig. 10(a), while heat maps generated by
MSE loss, Bayesian loss [6], and NoiseCC [19] are displayed
in (b) to (d), respectively, along with their prediction results.
Among these, the MSE loss function performs the worst.
Bayesian loss [6] improves on MSE but does not address
annotation errors. While NoiseCC [19] tackles annotation
errors, it does not consider variations in head size due to

TABLE XII

ABLATION STUDY ON THE IMPACT OF VARIOUS FUSION MODULES ON
OUR MODEL WITH INPUT DIMENSION 512 X 512. SFM REFERS TO
THE SYNTHETIC FUSION MODULE AND IFM TO THE INTRA-BLOCK
FUSION MODULE

UCF-QNRF [S.H.Tech-A |S H.Tech-B
Methods |SFM |IFM MAE?\/ISE MAE MSE MAE MSE Params.
v |V 7391 121.70(52.19 76.63|6.16 9.71 |51.24 M
SACC-Net X |V |81.47 132.58|54.30 83.71|6.22 9.85 |44.04 M
v |X  [82.81 137.62|54.83 90.39|6.28 9.93 |32.61 M
X |X |84.16 149.81|57.50 98.12|6.35 10.05|28.61 M

TABLE XIII

ABLATION STUDY OF THE SACC-NET RUNNING SFM+IFM AT DIFFER-
ENT DENSITY SCALES ON UCF-QNRF

UCF-QNRF
SFM+IFM | Scalel  Scale2  Scale3 MAE MSE
v 85.45 145.74
v v 84.07 135.63
v v v 82.42  130.04
v 83.81 140.19
v v v 82.71  130.29
v v v 7391 1217

distance and camera angles. In Fig. 10(e), the results predicted
by our proposed loss function show a clear improvement in
accuracy compared to other loss functions. The red boxes
highlight our approach’s effectiveness in capturing extremely
small heads in distant regions.

E. Ablation Studies

We conducted ablation studies to analyze how the introduc-
tion of our synthetic and intra-block fusion approaches as well
as the number of scales used in the process can affect crowd
counting accuracy.

Impacts of SFM and IFM: Table XII presents the results
of the ablation study on the effects of the synthetic and intra-
block fusion approaches. It is evident that incorporating fusion
modules significantly improves performance. Furthermore,
IFM contributes more to counting accuracy improvement than
SFM. However, the combination of both fusion modules
results in the highest accuracy. For instance, our SACC-Net
with these modules reduces error rates significantly from 84.16
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Fig. 12. Visualizations of crowd counting from extremely sparse and dense cases. (a) Sparse cases. (b) Dense cases.

to 73.91 in MAE and from 149.81 to 121.7 in MSE for the
UCF-QNRF dataset.

Impact of Scale Numbers: We next evaluate the impact of
the number of scales on enhancing crowd count accuracy.
VGG19 incorporates five pooling layers, reducing the original
image to a 1/32 x 1.32 ratio. The feature map in the last
layer lacks sufficient information to calculate the required
covariance matrix, and the first layer is too basic for crowd
counting. Since three layers yield optimal performance, we set
S to three in Eq. (3). Table XIII presents accuracy comparisons
among three combinations of three scales (corresponding to
layer 2, layer 3, and layer 4). The three-scale scale-aware loss
function significantly enhances crowd-counting accuracy on
the UCF-QNRF dataset, particularly in the MAE metric.

Scale-Aware Loss Function: Table XIV presents the ablation
study of Bayesian loss and NoiseCC loss using our scale-
aware loss function on SACC-Net, with an input dimension
of 512 x 512 under various training epochs. We observe
that both BL and NoiseCC perform better with our proposed
scale-aware loss function compared to not using it. When
the number of epochs increases, the MAE and MES metrics
decrease more.

Fig. 11 provides visualizations generated by our method
with and without the IFM module. The finer heat map details
for smaller heads in (c) result in more accurate crowd counting,
demonstrating the effectiveness of IFM. Furthermore, the SMF

TABLE XIV

ABLATION STUDY ON THE BAYESIAN L0OSSs (BL) AND NOISECC LOSS
(NOISECC) USING THE SCALE-AWARE LOsS (SAL) oN SACC-NET,
WITH INPUT DIMENSION 512 X 512

UCF-QNRF|S. H. Tech-A|S. H. Tech-B|UCF-CC50
MAE MSE [MAE MSE |MAE MSE |MAE MSE
157.2 227.5|153.0 206.4 |86.7 129.3 |232.9 309.9
145.4 208.9137.8 181.3 |71.2 109.9 |198.6 273.5
107.2 154.3|97.1 138.7 |16.1 37.8 [166.4 243.5
181.8 252.9(174.3 254.0 [126.2 179.8 [290.6 345.0
169.8 239.4|162.8 238.6 |119.7 158.9 |263.4 317.8
138.7 193.1|128.6 186.3 |31.4 52.7 |226.1 273.1
1429 187.1|134.8 190.1 [69.2 99.9 [219.6 279.4
127.6 146.7|118.5 147.3 |63.8 87.2 |186.9 255.1
86.2 113.5(67.3 129.6 (94 19.7 |[178.2 2247
164.7 229.9[157.5 238.8 [96.3 150.7 [284.8 310.4
154.6 196.3|142.7 213.7 |79.5 137.0 |250.9 284.4
117.8 153.1/96.8 165.8 [18.7 43.5 [192.6 247.3

Methods | SAL |Epoch

300
v | 400
1000
300
X | 400
1000
300
v | 400
1000
300
X | 400
1000

BL

NoiseCC

module synthesizes multiple layers to create better density
maps for crowd counting. Finally, Fig. 12 illustrates the
results of crowd counting under extremely sparse and dense
conditions. Fig. 11(a) shows visualizations for sparse cases,
while Fig. 11(b) displays those for dense cases. Even under
these challenging conditions, our SACC-Net performs reliably,
demonstrating its robustness.

Failure Cases of Crowd Counting: Backlighting often
obscures or causes head features to disappear, creating chal-
lenges for crowd counting. Fig. 13 illustrates failure cases
caused by backlighting conditions. Similarly, Fig. 14 presents
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Fig. 14. Failure cases of due to blurred heads. The heads far from the cameras
(denoted by red rectangle) were seriously blurred.

another type of failure due to blurring. When heads are far
from the camera, their features become blurred, complicating
extraction and leading to errors in crowd counting.

V. CONCLUSION

We presented a scale-aware crowd-counting network named
SACC-Net, together with a new loss function that addresses
the annotation noise w.rf. scale for improving crowd counting.
To overcome the scale truncation issue, our proposed SFM
efficiently handles scale truncation problems, generating a
smoother scale space for accurate counting of large objects.
The IFM is developed to fuse feature layers within the

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 34, 2025

same convolution block, enhancing information granularity
for precise counting of small objects. The lightweight ver-
sion of SACC-Net, SACC-LW, is both efficient and accurate.
We evaluated the impacts of annotation variance «, the
threshold vy, and annotation error variance 8; on Mean Abso-
lute Error (MAE) and Mean Squared Error (MSE) metrics.
SACC-Net outperforms all SoTA methods on six datasets.
Furthermore, using the same architecture, our scale-aware loss
function surpasses several competing loss functions, including
BL, NoiseCC, DM-count, and Gen-loss, utilized in existing
methods.

Future Work: Future endeavors include exploring automatic
parameter selection for @ and S, through data-driven learning.
The underexplored domain of transfer learning or domain
adaptation in crowd counting [62] presents an avenue for
investigation. Further lightweight enhancements can enable
the deployment of SCAA-Iw for direct operation on drones.
Addressing the challenge of crowd counting under adver-
sarial conditions, such as inclement weather [63], represents
an intriguing extension. Additionally, extending this line of
research from human-centric crowd counting to the automatic
counting of other visually similar objects (e.g., vehicles, fruits,
fishes, birds) would contribute to the broader field of image
processing and computer vision. Generalizing the visual count-
ing problem from a human-centric to a nature-centric context
remains an unexplored research area with promising prospects.
While our approach effectively addresses annotation errors,
it still faces challenges with severe blurring and backlight-
ing, which are common in real-world environments. In the
future, we plan to incorporate noise reduction and diffusion
techniques to enhance image clarity. Additionally, exploring
scale and illumination invariance in crowd counting presents
another promising direction for further research.
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