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ABSTRACT Social group activity recognition is crucial for various applications including surveillance,
human-robot interaction, and behavioral analysis. Current approaches often require extensive manual
annotations and rely heavily on pre-trained detectors, limiting their practical applications. Additionally,
existing methods struggle to effectively model long-term spatiotemporal relationships in group activities.
This paper introduces a novel approach to Social Group Activity Recognition (SoGAR) using
Self-supervised Transformers network that can effectively utilize unlabeled video data. To extract spatio-
temporal information, we create local and global views with varying frame rates. Our self-supervised
objective ensures that features extracted from contrasting views of the same video are consistent across
spatio-temporal domains. Our proposed approach efficiently uses transformer-based encoders to alleviate the
weakly supervised setting of group activity recognition. By leveraging the benefits of transformer models,
our approach can model long-term relationships along spatio-temporal dimensions. Our proposed SoGAR
method achieves state-of-the-art results on three group activity recognition benchmarks, namely JRDB-PAR,
NBA, and Volleyball datasets, surpassing the current state-of-the-art in terms of F1-score, MCA, and MPCA
metrics.

INDEX TERMS Group activity recognition, self-supervised learning, behavioral analysis.

I. INTRODUCTION
Group activity recognition (GAR) has emerged as an
important problem in computer vision, with numerous
applications in sports video analysis, video monitoring,
and social scene understanding. Unlike conventional action
recognition methods that focus on identifying individual
actions, GAR aims to classify the actions of a group of people
in a given video clip as a whole. This requires a deeper
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understanding of the interactions between multiple actors,
including accurate localization of actors and modeling their
spatiotemporal relationships [1], [2], [3], [4]. As a result,
GAR poses fundamental challenges that need to be addressed
in order to develop effective solutions for this problem.
In this context, the development of novel techniques for group
activity recognition has become an active area of research in
computer vision.

Existing methods for GAR require ground-truth bounding
boxes and action class labels for training and testing [5],
[6], [7], [8], [9], [10], [11], [12], [13]. Bounding box labels
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FIGURE 1. Overview of conventional and proposed methods for social
activity recognition. The labels in the right image show the predicted
labels.

are used to extract actor features and their spatio-temporal
relations, which are then aggregated to form a group-level
video representation for classification. However, the reliance
on bounding boxes and substantial data labeling annotations
severely limit their applications.

To address these limitations, somemethods simultaneously
train person detection and group activity recognition using
bounding box labels [14], [15]. Another approach is weakly
supervised GAR (WSGAR) learning [16], [17], which does
not require individual actor-level labels for training and
inference.

Yan et al. [16] proposed WSGAR learning approach that
uses a pre-trained detector to generate actor box suggestions
and learn to eliminate irrelevant possibilities. However, this
method suffers from missing detections when actors are
occluded. Kim et al. [17] introduced a detector-free method
that captures actor information using partial contexts of token
embeddings, but this method can only learn when there is
movement in consecutive frames. Moreover, Kim et al. [17]
did not consider the consistency of temporal information
among different tokens. Hence, there is a need for a GAR
approach that can capture temporal information accurately
without the limitations of bounding box annotations or
detector-based methods.

A. CONTRIBUTIONS OF THIS WORK
In this paper, we propose a new approach to Social Group
Activity Recognition called (SoGAR). Our method is unique
in that it does not require ground-truth labels during pre-
training, and it doesn’t rely on an object detector. Instead, our
approach uses motion as a supervisory signal from the RGB
data modality. Our approach is able to effectively reduce the
extensive supervision present in the conventional methods,
as demonstrated in Fig. 1. In fact, our method outperforms
the DFWSGAR approach introduced by Kim et al. [17].
We also present the comparison of different properties
between our approach and other previous methods in Table 1.
To handle varying spatial and temporal details within the
same deep network, we use a video transformer-based

approach, as described in [18]. This approach allows us to
take advantage of varying temporal resolutions within the
same architecture. Additionally, the self-attentionmechanism
in video transformers can capture local and global long-range
dependencies in both space and time, providing much
larger receptive fields compared to standard convolutional
kernels [19].
The proposed SoGAR method differs from the pre-

vious methods by leveraging the correspondences from
spatio-temporal features which enables the learning of
long-range dependencies in both space and time domains.
To facilitate this, we introduce a novel self-supervised
learning strategy that does temporal collaborative learning
and spatiotemporal cooperative learning. This is achieved
through the proposed loss functions mentioned in III-B,
which match the global features from the whole video
sequence to the local features that are sampled in the latent
space. Additionally, we utilize the bounding box information
to localize the attention of the framework for better learning
to improve overall performance. Our proposed method
achieves State-of-the-Art (SOTA) performance results on the
JRDB-PAR [20], NBA [16] and Volleyball [5] datasets using
only the RGB inputs. We conducted extensive experiments
and will publish the code for our method.

II. RELATED WORK
A. GROUP ACTIVITY RECOGNITION (GAR)
In the field of action recognition, group action recognition
has become an increasingly popular topic of research due to
its wide range of applications in various fields, such as video
surveillance, human-robot interaction, and sports analysis.
GAR aims to identify the actions performed by a group of
individuals and the interactions between them.

Initially, researchers in the field of GAR used probabilistic
graphical methods and AND-OR grammar methods to
process the extracted features [21], [22], [23], [24], [25],
[26], [27], [28]. However, with the advancement of deep
learning techniques, methods involving convolutional neural
networks (CNN) and recurrent neural networks (RNN)
achieved outstanding performance due to their ability to learn
high-level information and temporal context [5], [14], [29],
[30], [31], [32], [33], [34], [35].

Recent methods for identifying group actions typically
utilize attention-based models and require explicit character
representations to model spatial-temporal relations in group
activities [6], [7], [8], [9], [10], [13], [16], [36], [37], [38],
[39], [40], [41]. For example, graph convolution networks
are used to learn spatial and temporal information of actors
by constructing relational graphs, and spatial and temporal
relation graphs are used to infer actor links. Clustered
attention is used to capture contextual spatial-temporal
information, and transformer encoder-based techniques with
different backbone networks are used to extract features
for learning actor interactions from multimodal inputs [8].
Additionally, MAC-Loss [42], a combination of spatial and
temporal transformers in two complimentary orders, has
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TABLE 1. Comparisons in the properties between our proposed approach and other methods. Actor Relation Learning (ARL), Convolutional Neural
Networks (CNN), Graph Neural Networks (GNN), Graph Convolutional Networks (GCN), Transformer (TF), TimeSformer (TSformer), Vision Transformer (ViT),
Space & Time (ST), Group Activity (G.A.), Individual Actions (I.A.), Bounding Boxes (B.B.)

FIGURE 2. Comparison of Actor Relational Learning (ARL) Modules.

been proposed to enhance the learning effectiveness of actor
interactions and preserve actor consistency at the frame and
video levels. Tamura et al. [43] introduces a framework
without using heuristic features for recognizing social group
activities and identifying group members. This information is
embedded into the features, allowing for easy identification.

Overall, these recent advancements in GAR have made
significant progress toward recognizing complex actions
performed by a group of individuals in various settings.

1) WEAKLY SUPERVISED GROUP ACTIVITY RECOGNITION
(WSGAR)
Various techniques have been developed to address the
problem of WSGAR with limited supervision, like training
detectors within the framework using bounding boxes.
WSGAR is one approach that does not rely on bounding
box annotations during training or inference and includes
an off-the-shelf item detector in the model. Traditional
GAR approaches require accurate annotations of individual
actors and their actions, which can be challenging and
time-consuming to obtain. Weakly supervised methods aim
to relax these requirements by learning from more readily
available data such as activity labels, bounding boxes,
or even video-level labels. Zhang et al. [44] proposed a
technique that employs activity-specific characteristics to
enhance WSGAR. It is not particularly designed for GAR.
Kim et al. [17] proposed a detector-free approach that uses

transformer encoders to extract motion features. We propose
a self-supervised training method specialized for WSGAR
and does not necessitate actor-level annotations, object
detectors, or labels. As shown in Fig. 2, different approaches
handle actor relationships in distinct ways. Graph-based
methods like ARG construct explicit relationship graphs,
while attention-based methods like AT use joint space-time
attention. Our approach, using divided space-time attention,
allows for more flexible modeling of actor relationships
across both spatial and temporal dimensions, enabling better
capture of group dynamics.

2) TRANSFORMERS IN VISION
The transformer architecture was first introduced by
Vaswani et al. [45] for sequence-to-sequence machine
translation, and since then, it has been widely applied to
various natural language processing tasks. Dosovitskiy et al.
[46] introduced a transformer architecture not based on
convolution for image recognition tasks. Several works [47],
[48], [49], [50] used transformer architecture as a general
backbone for various downstream computer vision tasks,
achieving remarkable performance progress. In the video
domain, many approaches [18], [51], [52], [53], [54], [55]
utilize spatial and temporal self-attention to learn video
representations effectively. Bertasius et al. [18] explored
different mechanisms of space and time attention to learn spa-
tiotemporal features efficiently. Fan et al. [54] usedmultiscale
feature aggregation to improve the learning performance
of features. Patrick et al. [55] introduced a self-attention
block that focuses on the trajectory, which tracks the patches
of space and time in a video transformer. While these
transformer-based approaches have shown promising results
in various vision tasks, they face several limitations when
applied to group activity recognition. Methods like [46]
focus primarily on static image understanding and don’t
effectively capture the temporal dynamics crucial for group
activities. Video-based approaches [18], [54] use joint space-
time attention, which can be computationally expensive
and may not effectively separate spatial relationships
between actors from temporal evolution of their interactions.
Additionally, existingmethods often struggle with long-range
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FIGURE 3. The proposed SoGAR framework adopts a sampling strategy that divides the input video into global and local views in temporal and
spatial domains. Since the video clips are sampled at different rates, the global and local views have distinct spatial characteristics and limited
fields of view and are subject to spatial augmentations. The teacher network takes in global views (xgt ) to generate a target, while the student
network processes local views (xlt & xls), where Kl ≤ Kg. We update the network weights by matching the student local views to the target teacher
global views, which involves both Temporal Collaborative Learning and Spatio-temporal Cooperative Learning. To accomplish this, we employ a
standard ViT-Base backbone with separate space-time attention [18] and an MLP that predicts target features from student features.

FIGURE 4. Video Transformer Block.

dependencies in group activities, where interactions between
actors may span across extended temporal sequences. Our
approach addresses these limitations by introducing divided
space-time attention mechanisms specifically designed for
group activity recognition, allowing more efficient and
effective modeling of both spatial and temporal relationships.

III. THE PROPOSED METHOD
The framework presented in this paper aims to recog-
nize social group activities in a video without depending

on a detector or person-bounding boxes. The proposed
method follows a self-supervised training approach within
the teacher-student framework for social group activity
recognition, as depicted in Fig. 3.
Our method for video representation learning for social

group activity recognition differs from other contrastive
learning approaches by processing two clips from the same
video while altering their spatial-temporal characteristics
without requiring memory banks. This approach allows us
to capture the intricate and ever-changing nature of group
activities where multiple individuals may be moving in
different directions and performing different actions simul-
taneously. Fig. 4 illustrates our Video Transformer Block
architecture, which processes spatiotemporal information
through separate spatial and temporal attention mechanisms.
This design allows our model to efficiently capture both
spatial relationships between actors and temporal evolution of
group activities, while maintaining computational efficiency
through divided attention.

To train our model, we propose a novel loss formulation
that matches the features of two distinct clips, thereby
enforcing consistency in spatial and temporal changes within
the same video. Our loss function encourages the model
to learn robust representations that can handle variations in
spatial and temporal contexts.

The proposed SoGAR framework is described in detail in
the following sections. We demonstrate the effectiveness of

33634 VOLUME 13, 2025



N. V. R. Chappa et al.: Self-Supervised Spatiotemporal Attention-Based SoGAR

our method on the newly proposed JRDB-PAR dataset [20]
along with NBA [16], and Volleyball [30] datasets.

A. SELF-SUPERVISED TRAINING
Videos of social group activities capture rich temporal
and spatial information, which is essential for accurate
recognition. However, this high temporal dimensionality also
makes it challenging to capture the various motion and spatial
characteristics of group activities, such as 2p.-fail. (from
NBA dataset [16]) or l-winpoint (fromVolleyball dataset [5]).
To address this challenge, we propose a novel approach
that involves predicting different video clips with varying
temporal characteristics from each other in the feature space.
This approach allows us to learn contextual information that
defines the underlying distribution of videos, making the
network invariant to motion, scale, and viewpoint variations.

Our self-supervised training framework for video represen-
tation learning is formulated as a motion prediction problem
consisting of three key components. First, we generate
multiple temporal views with different numbers of clips
with varying motion characteristics from the same video.
Second, we vary the spatial characteristics of these views by
generating local and global spatial fields of the sampled clips.
Finally, we introduce a loss function that matches the varying
views across spatial and temporal dimensions in the latent
space.

The proposed approach for social group activity recog-
nition involves predicting multiple video clips with varying
temporal and spatial characteristics from a single video.
This is achieved through a self-supervised motion prediction
problem with three key components: generating multiple
temporal views with different numbers of clips and varying
motion characteristics, varying the spatial characteristics of
these views by generating local and global spatial fields of the
sampled clips, and introducing a loss function that matches
the varying views across spatial and temporal dimensions
in the latent space. By learning contextual information and
making accurate predictions even in the presence of various
motion, scale, and viewpoint variations, the network becomes
invariant to these variations and can capture the complex and
dynamic nature of social group activities.

1) PREDICTION OF MOTION VIA SELF-SUPERVISED
LEARNING
The temporal dimension of a video is a crucial factor that
can significantly affect the motion context and perception of
actions captured in the content. For example, the frame rate
can capture subtle nuances of body movements and affect the
perception of actions, such as walking slowly versus walking
quickly. Traditionally, video clips are sampled at a fixed
frame rate, which may not be suitable for capturing different
motion characteristics of the same action.

Our proposed approach introduces the concept of ‘‘tem-
poral views,’’ which refers to a collection of clips sampled
at a specific video frame rate. By generating different views
with varying resolutions, we can capture different motion

characteristics of the same action and learn contextual infor-
mation about motion from a low frame rate input. To create
motion differences among these views, we randomly sample
them and process them using our ViT models. The number
of temporal tokens (T ) input to ViT varies in different views,
allowing us to handle variability in temporal resolutions with
a single ViT model.

In addition to varying temporal resolution, we vary the
resolution of clips across the spatial dimension within these
views. This means that the spatial size of a clip can be
lower than the maximum spatial size (224), which can
also decrease the number of spatial tokens. Using vanilla
positional encoding [45], our approach can handle such
variability in temporal resolutions with a single ViT model,
unlike similar sampling strategies used under multi-network
settings [56], [57].

2) ESTABLISHING CORRESPONDENCES ACROSS DIFFERENT
VIEWS
Our proposed training strategy seeks to establish the
interrelation between a given video’s temporal and spatial
dimensions. To achieve this, we introduce novel cross-view
correspondences by manipulating the field of view during the
sampling process. In particular, we generate global and local
temporal views from a given video clip to facilitate learning
these correspondences.

The global temporal views (xgt ) are generated by randomly
sampling Kg frames from a video clip with a fixed spatial
size of Wglobal and Hglobal . These views are then fed into
the teacher network, which produces an output represented
by ˜zgt .

On the other hand, the local spatiotemporal views (xlt and
xls ) cover a limited portion of the video clip along both
spatial and temporal dimensions. We generate these local
temporal views by randomly selecting several frames (Kl),
which is less than or equal to the number of frames in
the global temporal views (Kg), with a spatial size fixed to
Wlocal and Hlocal . These views are then fed into the student
network, which produces two outputs denoted by z̃lt and z̃ls ,
respectively.

We apply various data augmentation techniques to the
spatial dimension by applying color jittering and gray scaling
with probability 0.8 and 0.2, respectively, to all temporal
views. Moreover, we apply Gaussian blur and solarization
with probability 0.1 and 0.2, respectively, to global temporal
views.

Our approach is based on the idea that training the model
to predict a global temporal view of a video from a local
temporal view in the latent space can help the model capture
high-level contextual information. More specifically, our
method encourages the model to consider both the spatial
and temporal context of the video, where the spatial context
denotes the possibilities surrounding a given spatial crop, and
the temporal context denotes possible previous or future clips
from a given temporal crop. It is essential to note that spatial
correspondences also involve a temporal component, as our
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approach seeks to predict a global view at timestamp t = j
from a local view at timestamp t = i. To enforce these
cross-view correspondences, we use a similarity objective
that predicts different views from each other.

B. THE PROPOSED OBJECTIVE FUNCTION
Our model aims to predict different views of the same video,
capturing various spatial-temporal variations. To achieve this,
we train our model with an objective function that leverages
global and local temporal and spatial views.

Let X = xt T be a video consisting of T frames, where xgt ,
xlt , and xls represent global temporal views, local temporal
views, and local spatial views, respectively. Specifically,
xgt contains Kg frames, while xlt and xls both contain Kl
frames, where Kl ≤ Kg and Kg and Kl are the numbers
of frames for teacher and student (global and local) inputs.
We randomly sample Kg global and Kl local temporal views
as described in III-A2. The student and teacher models
process the temporal views to obtain class tokens or features
zg and zl . We then normalize these class tokens to facilitate
training with the objective function.

z̃(i) =
exp(z(i))/τ∑n
i=1 exp(z(i))/τ

, (1)

where τ is a temperature parameter used to control the
sharpness of the exponential function [58] and z(i) is each
element in ˜z(i) ∈ Rn.

FIGURE 5. Inference. We input the video sequence along with their
corresponding labels. The output from the model is fed to the
downstream task classifier.

1) TEMPORAL COLLABORATIVE LEARNING LOSS (TCL)
Our xgt have the same spatial size but differ in temporal
content because the number of clips/frames is randomly
sampled for each view. One of the xgt always passes through
the teacher model that serves as the target label. We map the
student’s xlt with the teacher’s xgt to create a global-to-local
temporal loss as in (2)

LTCL = −sg(z̃gt ) ∗ log(z̃lt ), (2)

where ˜zgt and z̃lt are the tokens of the class for xgt and xlt
produced by the teacher and student, and sg is the stochastic
gradient respectively.

2) SPATIO-TEMPORAL COOPERATIVE LEARNING LOSS (SCL)
The local temporal views xlt in our approach have a smaller
field of vision compared to the global temporal views xgt ,
both along the spatial and temporal dimensions. Despite this,

the number of local views is four times higher than that of
global views. The student model processes all the local views
xls , while the teacher model processes only the global views
xgt , which serve as the target. To create the loss function, the
local views are mapped to the global views using the teacher
model, as described in (3).

LSCL =

q∑
n=1

−sg(z̃gt ) ∗ log(z̃(n)ls ), (3)

where z̃ls are the tokens of the class for xls produced by the
student and q represents the number of local temporal views
set to sixteen in all our experiments. The overall loss to train
our model is simply a linear combination of both losses,
as in (2) and (3), given as in (4),

L = LTCL + LSCL (4)

C. INFERENCE
Our inference framework is depicted in Fig. 5. In this stage,
we perform fine-tuning of the self-supervised model that
was trained earlier. Specifically, we utilize the pre-trained
SoGAR model and fine-tune it with the available labels.
This is followed by a linear classifier, and the resulting
model is applied to downstream tasks to enhance the overall
performance.

IV. EXPERIMENTS
A. DATASETS
1) VOLLEYBALL DATASET
[5] is composed of 55 videos, containing a total of 4,830
labeled clips, including 3,493 for training and 1,337 for
testing. The dataset provides annotations for both individual
actions and group activities with corresponding bounding
boxes. However, in our WSGAR experiments, we only focus
on the group activity labels and exclude the individual action
annotations. To evaluate our model, we use Multi-class
Classification Accuracy (MCA) and Merged MCA metrics.
The Merged MCA metric merges the right set and right
pass classes into the right pass-set and the left set and left
pass classes into the left pass-set, as in previous works like
SAM [16] and DFWSGAR [17], to ensure a fair comparison
with existing methods.

2) NBA DATASET
Reference [16] used in our experiments contains a total of
9,172 labeled clips from 181 NBA videos, where 7,624
clips are for training and 1,548 for testing. The dataset
only provides annotations for group activities and lacks
information about individual actions or bounding boxes. For
evaluating the model, we use the Multi-class Classification
Accuracy (MCA) and Mean Per Class Accuracy (MPCA)
metrics. The MPCA metric is used to address the issue of
class imbalance in the dataset.

3) JRDB-PAR DATASET
Reference [20] containing 27 categories of individual actions
such as walking, talking, etc., 11 categories of social
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group activities, and 7 categories of global activities. The
dataset consists of 27 videos, which are split into 20 for
training and 7 for testing, following the training/validation
splitting in JRDB dataset [59]. In total, the dataset contains
27,920 frames with over 628k human bounding boxes. For
annotation and evaluation, uniformly sampled keyframes
(one keyframe in every 15 frames) are selected, which is
consistent with other group activity datasets like CAD [60]
and Volleyball [30]. The dataset uses multi-class labels for
activity annotation, with each individual/group/frame having
multiple activity labels. Following [20], we use the precision,
recall, and F1-score (denoted as Pg, Rg, Fg) for evaluation,
since social group activity recognition can be considered as a
multi-label classification problem.

B. DEEP NETWORK ARCHITECTURE
Our video processing technique employs a Vision Trans-
former (ViT) [18] to apply attention to both the spatial
and temporal dimensions of video clips. The ViT comprises
12 encoder blocks and can handle video clips of size (B ×

T × C ×W × H ), where B and C denote the batch size and
the number of color channels, respectively. The maximum
spatial and temporal sizes are W = H = 480 and T =

18, respectively, indicating that we extract 18 frames from
each video and resize them to 480 × 480. Our network
architecture (see Fig. 3) is designed to accommodate varying
input resolution during training, including differences in
frame rate, number of frames in a video clip, and spatial
size. However, each ViT encoder block processes a maximum
of 196 spatial and 16 temporal tokens, with each token
having an embedding dimension of Rm [46]. In addition to
these spatial and temporal input tokens, we include a single
classification token within the architecture as a characteristic
vector [61]. This classification token captures the standard
features learned by the ViT across the spatial and temporal
dimensions of a given video. During training, we use varying
spatial and temporal resolutions that satisfy W ≤ 480,
H ≤ 480, and T ≤ 18, resulting in different spatial and
temporal tokens. Finally, we apply a projection head to the
class token of the last ViT encoder [58], [62].

1) SELF-DISTILLATION
Our approach, depicted in Fig. 3, employs a teacher-student
setup for self-distillation based on the methodology proposed
in [58] and [62]. The teacher and student models share
the same architecture, consisting of a ViT backbone and a
predictor MLP. However, only the student model is directly
trained, while the teacher model is updated through an
exponential moving average (EMA) of the student weights at
each training step [58]. This design allows us to use a unified
network to process various input clips.

C. IMPLEMENTATION DETAILS
To prepare the JRDB-PAR, NBA and Volleyball datasets for
our analysis, we sampled frames at a rate of T (Kg) using

segment-based sampling. The choice of Kg was determined
by the characteristic temporal span of activities in each
dataset. For Volleyball, Kg=5 was selected as volleyball
group activities typically complete within 5 frames. For
NBA, Kg=18 was chosen to capture the longer sequences of
basketball plays involving multiple player interactions. For
JRDB-PAR, Kg=8 was selected based on the dataset’s frame
sampling rate of 15 frames per clip to maintain temporal
coherence of social group activities. Next, we resized the
frames to Wg = 480 & Hg = 480 for the teacher
input and Wl = 96 & Hl = 96 for the student input.
In the case of the Volleyball dataset, we set Kg to 5
(Kl ∈ 3, 5), while for the NBA dataset, we set Kg to
18 (Kl ∈ 2, 4, 8, 16, 18). For JRD-PAR dataset, we used
Kg to 8 (Kl ∈ 2, 4, 8, 16, 18). We initialized temporal
attention weights randomly, while spatial attention weights
were initialized using a ViT model trained self-supervised
over ImageNet-1K [63]. This initialization scheme facilitated
faster convergence of space-time ViT, as seen in the super-
vised setting [18]. We trained using an Adam optimizer [64]
with a learning rate of 5 × 10−4, scaled using a cosine
schedule with a linear warm-up over five epochs [65], [66].
Additionally, we applied weight decay scaled from 0.04 to
0.1 during training. For the downstream task, we trained
a linear classifier on our pretrained SPARTAN backbone.
During training, the backbone was frozen, and we trained the
classifier for 100 epochs with a batch size of 32 on a single
NVIDIA-V100 GPU using SGD with an initial learning
rate of 1e-3 and a cosine decay schedule. We also set the
momentum to 0.9. For datasets with available bounding box
annotations (JRDB-PAR and Volleyball), we utilized these
coordinates during pre-training to generate local views cen-
tered around actor locations, without using their correspond-
ing action labels. For NBA dataset, which lacks bounding
box annotations, random spatial crops were used for local
views.

D. COMPARISON WITH STATE-OF-THE-ART METHODS
1) JRDB-PAR DATASET
We conducted a comparative study to evaluate our proposed
approach alongside state-of-the-art methods in GAR and
WSGAR using the JRDB-Par dataset. We involved fully
supervised and weakly supervised settings to evaluate the
dataset. The comparison results are presented in Table 2.
In the fully supervised setting, our method outperforms
the existing social group activity recognition frameworks
significantly in all the metrics. In the weakly supervised
setting, our proposed method outperformed existing GAR
and WSGAR methods by a considerable margin, achieving
8.7 of Pg, 12.7 of Rg and 9.9 of Fg. Additionally,
we evaluated this dataset using ResNet-18 and ViT-Base
backbones, where ViT-Base proved to be better, which
is analyzed in the ablation study section. Despite their
impressive performance in WSGAR, our approach outper-
formed them all.
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TABLE 2. Comparative results of the social group activity recognition on
JRDB-PAR dataset [20].

TABLE 3. Comparisons with the State-of-the-Art GAR models and video
backbones on the NBA dataset [16].

2) NBA DATASET
Table 3 lists the outcomes of our comparison study on
NBA dataset. Our approach outperforms existing GAR and
WSGAR methods significantly, achieving 7.5% MCA and
2.3% MPCA. SAM’s results [16] from [17] are also listed.
RGB frames are exclusively used as input to ensure a
fair comparison across approaches and video backbones,
including ResNet-18 TSM [67] and VideoSwin-T [68].
Comparing our approach to these strong backbones, our
method prevails. Evaluating our proposed approach against
current video backbones and state-of-the-art methods in GAR
andWSGAR, our comparison study utilizes the NBA dataset.
Notably, results of SAM [16] are referenced from [17].

3) VOLLEYBALL DATASET
In the volleyball dataset, we reproduce results using only the
RGB input and ResNet-18 backbone, respectively, to ensure a
fair comparison. To have consistent comparison, we compare
our approach against the latest GAR and WSGAR methods
in two supervision levels: fully supervised and weakly
supervised. The results show that our ResNet-18 trained
model surpasses most fully supervised frameworks, showing
a remarkable enhancement in MCA and MPCA metrics.
The first and second sections display the outcomes of
earlier techniques in fully supervised and weakly supervised
contexts, respectively. Employing the ViT-Base backbone,
our approach excels in weakly supervised conditions,

outperforming all GAR and WSGAR models. By utilizing
the transformer architecture to leverage spatiotemporal
features, we achieve a significant lead of 2.4% in MCA
and 1.2% in Merged MCA. Notably, these levels differ in
their use of actor-level labels like ground-truth bounding
boxes and individual action class labels during training
and inference. In the weakly supervised setting, the group
action classification labels are substituted with ground-truth
bounding boxes of actors minus their corresponding actions.
Table 4 showcases the results. Additionally, our approach
fares better than current GAR methods employing less com-
prehensive actor-level supervision, such as [8], [9], [14], [32],
and [35].

TABLE 4. Comparison with the state-of-the-art methods on the Volleyball
dataset. [5].

E. ABLATION STUDY
We conduct a thorough analysis of the various components
that contribute to the effectiveness of our approach, which is
an extension of analysis from [70]. In particular, we assess
the impact of five distinct elements: a) Impact of different
backbone networks, b) Impact of knowledge distillation, and
c) Impact of ground-truth bounding box information

1) DIFFERENT BACKBONE NETWORKS
We investigated the effect of different backbone networks on
our framework. We conducted the experiments presented in
Table 5. Our results show that ResNet-18 performs better than
the other Convolutional Neural Network (CNN) backbones,
but overall performance is optimal with ViT-Base backbone
because the spatiotemporal features of the input video
with varying views are well leveraged by the transformer
architecture for videos [18]. Also, when both networks share
the same backbone, they perform better rather than having
distinct backbone networks.
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TABLE 5. Different backbones. The most optimal backbone for our
framework is ViT-Base outperforming the other backbones.

2) IMPACT OF KNOWLEDGE DISTILLATION (KD)
To evaluate the effect of knowledge distillation, we conducted
experiments as presented in Table 6. To be specific, we com-
pared the performance of our approach in the absence of KD,
i.e., the student and teacher networks learn independently,
and there is no transfer of information from the student to
teacher network. This shows very poor performance. Hence,
KD is determined to be one of the key factors in the optimal
performance of the proposed framework. This also proves
that exponential moving average (EMA) aids feature learning
across the networks to improve performance.

TABLE 6. Impact of Knowledge Distillation (KD): The framework is
proved to work better when there is knowledge distillation with EMA
which infers student-teacher network learns the spatiotemporal features
for different views on all the datasets.

3) IMPACT OF GROUND-TRUTH BOUNDING BOX (G.T. BB’S)
INFORMATION
To evaluate the impact of actor localization information,
we compared two approaches for generating local views:
(1) using ground-truth bounding box coordinates to create
local views centered around actors, and (2) using random
spatial crops without any prior location information. The G.T.
BB’s were only used during pre-training to guide the attention
mechanism, without utilizing their corresponding action
labels. During the pre-training step, the social group activity
recognition is highly leveraged by the actor localization
information. So, we perform experiments as shown in
Table 7 to evaluate the performance of our method on
this information. Specifically, we used random crops in the
initial experiment in all the input views, which yields poor
performance for JRDB-PAR and Volleyball datasets but the
NBA dataset performs well as there is no bounding box
information from the dataset. In contrast, we used the G.T.
BB’s exclusively without their corresponding labels for the
other experiment to prove the optimal performance of our
method.

F. QUALITATIVE RESULTS
We conducted an analysis to understand how our method
aggregates feature for various social group activities.

TABLE 7. Impact of ground-truth bounding box information (G.T.
BB’s)): When we provided the bounding box information during the
pre-training, it is proved that the performance is optimal rather than
using random crops.

We visualized the attention locations of the transformer
encoder in Fig. 6 and Fig. 7 for JRDB-PAR and Volleyball
datasets, showing locations with the top five and top
four attention weights in the last layer of the encoder.
The yellow circles represent the attention locations. The
size of the yellow circles denotes whether the locations
are in the high or low-resolution feature maps, giving a
rough indication of the image areas affecting the generated
features. Our findings reveal that features are generally
aggregated from low-resolution feature maps when group
members are situated in broader areas, and the opposite is
true. These results indicate that the proposed framework
can effectively aggregate features based on the distribution
of group members, thereby contributing to improving the
performance of social group activity recognition. While we
present qualitative results for JRDB-PAR and Volleyball
datasets here, future work will extend this analysis to the
NBA dataset to provide a comprehensive understanding of
our model’s attention mechanisms across different sports
scenarios.

FIGURE 6. Visualization of the attention locations on the JRDB-PAR
dataset. We show the locations of the top five attention weights from the
transformer heads.

G. LIMITATIONS
While our method achieves state-of-the-art performance,
it has several limitations:

• The self-supervised training phase requires a large
amount of unlabeled video data for optimal performance.

• The current approach may struggle with very crowded
scenes where multiple group activities occur
simultaneously.

• Performance can be affected when there are extreme
lighting changes or severe occlusions.
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FIGURE 7. Visualization of the attention locations on the Volleyball
dataset. We show the locations of the top four attention weights from the
transformer heads.

• The method assumes relatively stable camera views
and may need adaptations for highly dynamic camera
movements.

V. CONCLUSION AND FUTURE WORK
Our paper presents a new self-supervised video model
named SoGAR, which is based on a video transformer
architecture. The method entails generating multiple views
of a video, which differ in terms of their spatial and temporal
characteristics. To capture the motion characteristics and
cross-view relationships between the clips, we define two
sets of correspondence learning tasks. The self-supervised
objective is to reconstruct one view from another in the latent
space of both the teacher and student networks. Furthermore,
our SoGAR model can capture long-term spatio-temporal
dependencies and perform dynamic inference within a single
framework.We evaluate SoGAR on three benchmark datasets
for social group activity recognition and demonstrate its
superior performance over existing state-of-the-art models.

Future works including extensive qualitative analysis
across all datasets, including visualization of attention
patterns for basketball plays in the NBA dataset, to provide
deeper insights into how the model handles different types of
group activities and sports scenarios. Also, providing com-
prehensive computational analysis comparing the runtime
efficiency of our approach with existing methods, providing
insights into the practical deployment considerations of
different group activity recognition approaches will benefit
the research community.
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