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Abstract— Culverts, essential components of drainage sys-
tems, require regular inspection to ensure optimal functionality.
However, culvert inspections pose numerous challenges, includ-
ing accessibility, manpower, defect localization, and reliance on
superficial assessments. To address these challenges, we propose
a novel Culvert Autonomous Inspection Robotic System (CAIS)
equipped with advanced sensing and evaluation capabilities.
Our solution integrates an RGBD camera, deep learning, light-
ing systems, and non-destructive evaluation (NDE) techniques
to enable accurate and comprehensive condition assessments.
We present a pioneering Partially Observable Markov Decision
Process (POMDP) framework to resolve uncertainty in au-
tonomous inspections, especially in confined and unstructured
environments like culverts or tunnels. The framework outputs
detailed 3D maps highlighting visual defects and NDE condition
assessments, demonstrating consistent and reliable performance
in both indoor and outdoor scenarios. Additionally, we provide
an open-source implementation of our framework on GitHub,
contributing to the advancement of autonomous inspection
technology and fostering collaboration within the research
community. Source codes are available *.

I. INTRODUCTION

Culvert inspections play a vital role in ensuring the optimal
functionality of drainage systems. Serving as smaller coun-
terparts to bridges, culverts facilitate the passage of pedestri-
ans and vehicles over roads, rails, and waterways. However,
the inspection of culverts is fraught with challenges, which
can be categorized as follows:

1. Accessibility and Danger: Narrow and confined
culverts impede workers’ maneuverability, while posing
risks of collapse and potential exposure to hazardous
chemicals and gases.
2. Manpower and Speed: The extensive length of cul-
verts demands significant manpower, especially when
utilizing multiple inspection tools, leading to inefficient
resource utilization.
3. Defect Localization: In GPS-denied and poorly
lit environments, pinpointing defect locations within
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culverts is a tough task.
4. Superficial Info: Conventional culvert inspection
processes predominantly rely on visual inspections,
providing only surface-level information without a com-
prehensive condition assessment.

To solve problems 1 and 2, we develop an autonomous in-
spection robot specifically designed for culvert assessments.
To solve problem 3, our solution involves a combination of
lighting systems, deep learning methodologies, and RGBD
sensor. This synergy allows the robot to operate effectively
in GPS-denied and dark environments, pinpointing defect
locations accurately. Recognizing the limitations of visual
inspections, we integrate non-destructive evaluation (NDE)
methods [1], [2], widely employed in civil structure inspec-
tions [3]–[9] to assess the subsurface of culverts, solving
problem 4.

In recent years, the use of robots for comprehensive
inspections has surged due to their ability to access chal-
lenging environments and provide high-quality data in a
secure and cost-efficient manner [5], [10]–[15]. However,
the development of culvert inspection robots has lagged
behind. Existing research, such as [16]–[20], predominantly
focuses on surface-level visual assessments, and most current
culvert inspection robotic systems rely on manual operation
rather than autonomous functionality. For example, the study
in [20] primarily explores the deployment of robots for
external visual inspection of culverts using unmanned aerial
vehicles (UAVs), which are limited to shorter culverts and
provide superficial data as the UAVs do not conduct thorough
internal inspections. Similarly, [19] confines its inspections
to surfaces within a known environment, neglecting the
challenges posed by unknown environments. Consequently,
achieving autonomous inspection remains challenging due
to uncertainties in the robot’s localization using its onboard
sensors.

The challenge of autonomous culvert inspection involves
robots exploring unknown environments and searching for
defects without prior knowledge.

In terms of exploration, the frontier-based method stands
out as one of the earliest strategies. Its fundamental concept
involves identifying frontiers as the boundaries between
known and unknown spaces. The robot subsequently chooses
one of these frontiers as its next destination for movement
[21]–[23].

Conducting a search in a vast area involves taking actions
over various sources of uncertainty in a partially observable
environment. As a result, several studies have employed the
Partially Observable Markov Decision Process (POMDP) for
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object search [24]–[29]. The study [24] initially introduced a
3D Multi-Object Search (3D-MOS) formulated as a POMDP
in a volumetric observation space. The belief is repre-
sented in an octree-belief constructed with multi-resolution
voxels. Additionally, the SLOOP framework [26] for par-
tially observable decision-making employs a probabilistic
observation model for spatial language, which computes
the POMDP planner based on Monte Carlo Tree Search
[30]. Furthermore, the Correlational Object Search POMDP
(COS-POMDP) proposed in [27] introduces a framework for
searching small, hard-to-detect objects. It models correlations
while maintaining optimal solutions with a minimized state
space. The study [28] presents a system for multi-object
search (MOS) in a 3D region that is robot-independent and
environment-agnostic by taking the local point cloud, object
detection results, and the robot’s localization as input, and
outputting a 6D viewpoint for movement through online
planning.

Fig. 1. The flowchart of CAIS.

Inspired by previous research, we propose CAIS, an
autonomous inspection framework formulated as a POMDP
that addresses navigation, exploration, and detection of defect
areas in confined environments, such as culverts. The work-
flow is shown in Fig. 1. In this paper, our novel contributions
can be summarized as follows:

(a) We introduce a pioneering POMDP framework tailored
to resolve uncertainty challenges for autonomous inspections
within confined and unstructured environments.

(b) Our framework is designed to produce a three-
dimensional (3D) representation that outlines visual anoma-
lies, including cracks and spalls, along with a 3D NDE
condition assessment map, facilitating a detailed inspection
and analysis of structural integrity.

(c) We validate the efficacy of our framework through
extensive testing in diverse indoor and outdoor scenarios,
demonstrating its consistent and reliable performance across
varied environmental conditions.

(d) We enhance accessibility and foster collaboration by
making the source code openly available on GitHub.

The organization of the paper is as follows: Section II
discusses and analyzes the mechanical design of the robot.
Section III presents our POMDP navigational framework.
Section IV describes the experiment, its parameters, and

discusses the results. Section V provides concluding remarks
and suggests directions for future research.

Fig. 2. The overall design of the culvert inspection robot. The robot body
is a rover mobile robot. Super-LEDs provide needed light conditions for
working in the darkness of culverts. The camera collects visual and depth
data, and the Electrical Resistivity (ER) sensor [2] checks concrete quality
with physical contact.

II. CULVERT INSPECTION ROBOT MECHANICAL SYSTEM

The mechanical system of the robot shown in Fig.
2comprises two modules: the Mobile Module and the Sens-
ing Module. The Mobile Module features a conventional
four-wheel-drive robot equipped with chains on its wheels
to improve traction on challenging terrains, including sand,
mud, ice, and obstacles like debris and branches. In contrast,
the Sensing Module consists of visual and physical sensors
that facilitate inspection and data acquisition. Visual data
are captured by the ZED camera, which also provides the
robot’s poses. The ER sensor, a contact-based device, is
used to examine the condition of damaged areas [31]. A
3-DOF arm, shown in Fig. 2, is designed to hold the sensor
as an end effector to deploy the ER sensor. It has a full
extension range of 0.71 m. As a proof-of-concept, the ER
arm will be manually controlled. Additionally, two LEDs
are integrated into the robot to ensure adequate lighting in
the dark environment of culverts. An Intel NUC computer is
responsible for control and computing tasks, while a 20Ah
acid battery provides up to three hours of operating time.

III. POMDP-BASED AUTONOMOUS NAVIGATION

The robot is tasked with searching for unknown de-
fect areas within an unstructured environment containing
unknown obstacles. We conceptualize autonomous inspec-
tion as a POMDP, formulating it as a sequential decision-
making problem where the environment state is not fully
observable by the agent. Our formulation is presented as
a tuple (S,A,O, T,O,R,Def, C, γ), where S , A, and O
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represent the state, action, and observation spaces, respec-
tively. T , O, R, and γ denote the transition, observation
model, reward functions, and discount factor, respectively.
The state S and observation O are factored into a list
of defects Def = def0, ..., defn [29], where each defect
contains a class c ∈ C = crack, spall and a pose.
The task is to find a policy π (bt) that maximizes the
expected future discounted rewards, given by V π (bt) =
E
[∑∞

k=0 γ
kR (st+k, π (bt+k)) | bt

]
.

A. State Space:

A state is denoted as s = (sr, sd, sf ) ∈ S , where
sr, sd, and sf represent the state of the robot, the state
of unknown/known detection, and the state of the frontier,
respectively. The robot’s state is defined as sr = [pr, θr],
indicating its position and heading in the grid map. The state
of detection is denoted as sd = [pd, bd], which includes the
positions of the estimated defect areas and their bounding
boxes. The state of the frontier, sf = [pf , θf ], represents
the exploration position of the frontier and the difference in
heading between the robot’s current position and the search
point.

B. Action Space:

Autonomous inspection generally necessitates three funda-
mental capabilities: moving, searching, and declaring a defect
in the grid environment. Formally, the action space encom-
passes these three types of elementary actions: MOVE(sr, g)
moves the robot from the current position to the goal
g, where the robot can use the arm with ER sensor for
measurement defects d. The goal calculation is summarized
in Algorithm 1 where larm is the full extension length of the
robot’s arm, and α is the arm factor that avoids the defection
being out of range for measurement (0.5 ≤ α ≤ 1.0).
SEARCH(sf , g) changes the robot’s position and heading to
explore the environment and search for new defects using the
frontier points. DECLARE(sr, sd, od) consists of two main
tasks: First, it declares whether the belief distribution area
is high enough then deploy the ER to measure the belief
distribution area with the highest belief. Otherwise, this
action changes the current robot pose to confirm detection
and updates the belief. DONE(sr) action is used to stop the
robot or to mark the completion of a task. For each action
taken, the state will be updated as shown in Algorithm 2.

Algorithm 1 MOVE estimation
Require: gt : the pose of defect

git =

{
dit − α ∗ larm if ||dit − srqr || ≤ γ in y axis,
dit + α ∗ larm otherwise.

goTo(git)

It should be noted that the velocity vt associated with the
MOVE action is determined through the implementation of a
rudimentary control mechanism. This velocity varies at each
discrete time interval, ∆t, based on two primary factors: the
magnitude of the spatial displacement between the robot’s
current location and the designated target, and the angular

discrepancy between the robot’s present orientation and the
desired trajectory towards the goal. The latter is calculated
using the atan2 function. In the SEARCH action, the frontier
algorithm selects the best frontier points to update the robot’s
current pose. The set of frontiers is reset and updated at every
timestamp, ensuring there is no ’undefined’ relationship
between the current frontier and the next estimation.

Algorithm 2 Update state estimation
Require: s, at : The state and action at current frame.
Output: s′ : The state estimation

for current action at ∈ A do
if at ← MOVE then

s’ =


s′r ← sr + vt∆t, & vt is the velocity
s′d ← dt,
s′f ← Ø,

else if at ← SEARCH then

s’ =


s′r ← sf ,

s′d ← Ø,

s′f ← undefined,
else if at ← DECLARE then

s’ =


s′r ← sr,

s′d ←

{
od, if high belief
sd ∩ od, otherwise

s′f ← Ø,
else if at ← DONE then

RESET()
end if

end for

When the robot finishes inspecting a defect area, a function
RESET is used to reset the state and mark this spot as
”visited”.

C. Transition function:

For timestamp t, the agent takes an action a ∈ A, causing
the environment state to transition from s to s′ (s, s′ ∈ S).
In this case, the observation is the detection of static defects
in culverts, and the probability distribution to transition
is determined Pr(s′|s, a) = 1. After transitioning states
through an action, the agent receives an observation o ∈ O
from the environment.

D. Observation Space & Model:

The robot captures images of the search environment
through a mounted camera, and an observation o ∈ O is
generated. To address the uncertainty in observations, it is
crucial to define the probabilistic distribution Pr(oi|s′, at) of
observations given the previous state and action in the current
frame. The YOLOv8 model is employed for defect detection,
providing results in bounding boxes. An observation is then
denoted as ot = [qdj , wj , hj , pj ], where qdj represents the
center position of detection j in pixel coordinates, wj and
hj indicate the width and height of the bounding box, and
pj is the probability of the detection from YOLOv8. A
detection function classifies the observation into two statuses:
UNKNOWN and POTENTIAL.

In the context of our analysis, we define the image input
as I ∈ RW×H , where W and H denote the width and
height of the image, respectively. Utilizing YOLOv8 for
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defect detection, we obtain the center pixel position of
each identified defect area, represented by the coordinates
(r, c). The subsequent step involves localizing the pixel,
which is facilitated by aligning the detected pixel location
with the spatial mapping array xyz map ∈ RW×H . This
spatial mapping array is derived from the depth map, with
each element of xyz map corresponding to a 3-dimensional
coordinate (x, y, z) in physical space, as opposed to the pixel
values found in I .

For a pixel i ∈ I , located at the coordinates (r, c),
the corresponding spatial position, denoted as q, is directly
obtained from xyz map[r, c]. This direct correspondence
facilitates a precise matching process, enabling the accurate
localization of defect areas within three-dimensional space.
The relationship can be formally expressed as:

qdj = (x, y, z) = xyz map[r, c], (1)

where qdj signifies the 3-dimensional spatial position of the
jth detected defect within the image, thereby establishing
a foundational methodology for our bounding box local-
ization process within the three-dimensional domain. The

Algorithm 3 Autonomous Inspection
Require: st, at, bt : The current state, action, and belief at

time t
while t ≤ Tmax, and at ̸= DONE do

for ot ∈ Observations do
if oit /∈ Def then

declare def new
Def .append(def new)

end if
end for
if def ∈ Def not visited > 0 then

gc ← closestDefect(sr, def)
at ←MOV E(gc)
if MOV E is success & Max(bi) > β then

at ← DECLARE(sr, gc)
end if

else if def ∈ Def not visited = 0 then
gf max←MaxWeight(frontier)
at ← SEARCH(sfmax)

end if
UPDATE BELIEF(b, a, o)

end while
function UPDATE BELIEF(b, a, o)

for oi ∈ Def do
ϵi = 1

m

∑m
k=0 p

i
k

bit+1 = ηPr(oi|s′,i, a)ΣsPr(s′|s, a)bit
end for

end function

observations oi is consist of n defect-specific observations.
If defect is detected by the RGBD sensor using YOLO,
then the scenario is considered POTENTIAL, P . If not,
it is considered UNKNOWN, U . As such, Pr(oi|s, a) =
Σhi∈{Ui,P i}Pr(oi|hi, s)Pr(hi|s). In the P scenario, the
observation is normally distributed with µ as the true object
i position Pr(ot|P i, s) = ηf(ost |µ, S) where the covariance
matrix S = I3×3σ2 and η is the normalization factor.
Moreover, Pr(P i|s) = ϵi and Pr(U i|s) = 1−ϵi. In scenario
U , Pr(oi|U i, s) = 1, Pr(P i|s) = 1−ϵi, and Pr(U i|s) = ϵi.
The accuracy of the model is denoted as ϵi = 1

m

∑m
k=0 p

i
k

where p is probability generated by YOLOv8 and m is the
total defect-specific observation of i.

E. Reward function
It receives rewards only if it receives a set of detections

from the environment by transitioning from s to s’ ∈ S .
MOVE and DECLARE actions receive a reward Rmax(+100)
depending on the robot state and the current beliefs bt(s).
For example, the updated belief bt+1(s

′) could be higher than
the current one bt(s) if the defects are correctly confirmed by
the DECLARE action. Otherwise, the robot receives a reward
Rmin(-100).

F. Belief update
Given the inherent uncertainty in POMDPs about the state

of the environment, we represent the belief distribution for
each defect state as a sparse sphere of points (twenty-seven)
around the initial observation location. The belief of defects
can be update as follow:

bit+1 = ηPr(oi|s′,i, a)ΣsPr(s′|s, a)bit, (2)

where η is the normalization factor, Pr(s′|s, a) = 1 as
the transition probability, and Pr(o|s′, a) as the observation
probability.

The inspection algorithm is summarized in Algorithm 3.

IV. EXPERIMENT

The computer we are using is an Intel Mini NUC 11. A
flowchart of our framework and its hardware can be seen
in Fig. 1. The Zed camera and our defect detection system
utilize the computer’s GPU. The images are 960 × 540 for
W ×H , al = 0.71m, γ = 0.7, β = 0.8, and σ = 0.5. The
model can process the images at a rate of 65 FPS.

The experimental environment for our study is comprised
of two distinct settings: an indoor culvert, built for this
research using a combination of old and new concrete blocks,
and an existing outdoor culvert. These environments were
chosen to ensure a comprehensive evaluation of our system
under various conditions, encompassing both controlled and
natural settings. The indoor culvert facilitated a controlled
assessment of the system’s capabilities, while the outdoor
culvert provided insights into its performance in a real-world
scenario. The culverts are shown in Fig. 3.

A. Dataset

The dataset was collected in collaboration with the Nevada
Department of Transportation (DOT) from four culverts
within Nevada and from online sources to train, validate,
and test the performance of the Real-Time Culvert Defect
Detection System. As a result, 770 high-quality images
were obtained. To increase the size of our dataset, we
augmented each image ten times using various data aug-
mentation techniques, including vertical and horizontal flips,
random rotations, translation, shear, brightness adjustment,
super-pixel, and Gaussian blur. We then split the augmented
images into a 90%-10% ratio to validate the performance of
the Defect Detection System.
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B. Culvert inspection results

Given the unique challenges and specifications inherent to
culvert inspection endeavors, this study opts to undertake a
comparative analysis of our autonomous inspection system
against two methods: the pure exploration approach and
the manual inspection technique. The exploration approach
navigates the environment until all frontiers are explored,
while the manual approach employs the utilization of an
ER sensor, applying it at intervals of 0.3048 meters across
the culvert. It is imperative to emphasize that both methods
use the same 3D mapping and assessment protocol as our
approach.

Fig. 3. 3D map of the indoor culvert generated by RTAB-Map with crack
and spall labels, and ER condition map (bottom two) outputted by manual
and our proposed method. The condition metric ER unit is Ωm, where
120 < ER means good, 80 < ER < 120 means fair, and ER < 80
means poor. While manual inspection provides more information about
the condition of the culvert, the extra information is not relevant since
inspectors are only concerned with the poor regions.

Fig. 4. Trajectory and action of robot for indoor and outdoor culverts. The
robot takes actions MOVE (M), SEARCH (S), DECLARE (D) respectively.

We present an in-depth evaluation of CAIS, focusing
specifically on a comparative analysis regarding the effi-
ciency of the inspection process with discounted cumulative
reward, and the dimensional accuracy of the generated 3D
maps.

Table I shows the comparison between other inspection
methods—manual control and exploration approaches—and
CAIS. When the robot is manually operated, it achieves a
comprehensive inspection of the culvert with an average du-
ration of 556 seconds for indoor settings and 645 seconds for
outdoor environments. Conversely, the exploration method,
which involves solely visual data acquisition, is much faster,
completing the mission in approximately 49 seconds for
indoor and 67 seconds for outdoor scenarios.

Our inspection strategy, taking 167 seconds indoors and
237 seconds outdoors, is quicker than manual control but
slower than the exploration method. However, it provides a
partial ER condition map with essential assessment details
not found in the exploration method, avoiding the excess
data of manual inspection. As shown in Figure 3, examining
every segment is unnecessary, especially for non-defective
areas in good condition.

TABLE I
A COMPARISON BY APPLYING DIFFERENT APPROACHES

Methods Time(s) In-
door/Outdoor

Visual Condition (ER)

Manual 556/645 Yes Yes (defects & non-
defect)

Exploration 49/67 Yes N/A
Our approach 167/237 Yes Partial (only defects)

TABLE II
AN EVALUATION OF 3D MAP DIMENSION ERROR IN METERS

Length Entrance
Width

End
Width

Entrance
Height

End
Height

Indoor 0.029 0.089 0.078 0.066 0.054
Outdoor 0.033 0.093 0.092 0.076 0.059

TABLE III
AVERAGE DISCOUNTED CUMULATIVE REWARD (DCR)

Indoor Culvert Outdoor Culvert
DCR 378 342
Total defects 4 (2 spalls & 2 cracks) 4 (spalls)

In summary, our approach enables fast culvert inspection
while providing essential information. The manual method
takes more time and often yields additional, less relevant
data. Although our method is slower than the exploration
approach, it offers comprehensive insights, unlike the explo-
ration approach, which generally provides only surface-level
information.

Due to the difficulty in obtaining ground truth for a 3D
culvert map, we performed dimensional size comparisons
between our estimated 3D map and the real one, similar to
[32], as shown in Table II. The robot’s trajectory for indoor
and outdoor experiments is depicted in Fig. 4.

Initially, the robot performs a SEARCH action until
an observation is triggered by a detection, switching to
MOVE/DECLARE. The current robot pose and the inspection
goal are calculated in Algorithm I. Additionally, the belief
and pose of the agent are updated at every timestamp.
The maximum reward Rmax(+100) is achieved only when
defects are declared. The agent also receives a reward of
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+5 for transitions from SEARCH to MOVE and MOVE to
DECLARE, and -5 for transitions from MOVE to SEARCH.
The total discounted cumulative reward (DCR) is shown in
Table III. The optimal accumulated rewards should exceed
n × Rmax − Rmax (n is the total number of defects). Our
algorithm performs well since DCR > n× Rmax − Rmax,
indicating optimal results. DCR is not applicable for explo-
ration and manual approaches.

V. CONCLUSION AND FUTURE WORK

The paper introduces CAIS as a pioneering solution for
culvert inspections. CAIS employs a POMDP inspection
system for efficient traversal, ensuring thorough coverage,
and generates a detailed 3D map of the culvert, highlighting
defects such as spalls and cracks. It demonstrates reliability
by solving all four problems presented in Section I. While
CAIS represents a significant advancement, further improve-
ments are possible. These include integrating a high Degree
of Freedom (DoF) autonomous manipulator arm, developing
an auto-virtual boundary fence for exploration efficiency,
utilizing multiple vision sensors for enhanced 3D map quality
and localization accuracy, and conducting more quantitative
analysis by testing on additional culverts in the city.

REFERENCES

[1] N. Gucunski, “Advancing condition assessment of reinforced concrete
bridge elements through automation, visualization, and improved inter-
pretation of multi-nde technology data,” Materials Evaluation, vol. 81,
no. 1, pp. 56–66, 2023.

[2] H. M. La, N. Gucunski, S.-H. Kee, and L. Nguyen, “Data analysis
and visualization for the bridge deck inspection and evaluation robotic
system,” Visualization in Engineering, vol. 3, no. 6, pp. 1–16, 2015.

[3] H. M. La, N. Gucunski, S.-H. Kee, J. Yi, T. Senlet, and L. Nguyen,
“Autonomous robotic system for bridge deck data collection and
analysis,” in 2014 IEEE/RSJ Intern. Conf. on Intelligent Robots and
Systems, 2014, pp. 1950–1955.

[4] H. M. La, N. Gucunski, K. Dana, and S.-H. Kee, “Development of
an autonomous bridge deck inspection robotic system,” J. of Field
Robotics, vol. 34, no. 8, pp. 1489–1504, 2017.

[5] T. Le, S. Gibb, N. Pham, H. M. La, L. Falk, and T. Berendsen,
“Autonomous robotic system using non-destructive evaluation methods
for bridge deck inspection,” in 2017 IEEE Intern. Conf. on Robotics
and Automation (ICRA), 2017, pp. 3672–3677.

[6] N. Gucunski, S. Kee, H. La, B. Basily, and A. Maher, “Delamination
and concrete quality assessment of concrete bridge decks using a fully
autonomous rabit platform,” Structural Monitoring and Maintenance,
vol. 2, no. 1, pp. 19–34, 2015.

[7] H. Ahmed, H. M. La, and N. Gucunski, “Review of non-destructive
civil infrastructure evaluation for bridges: State-of-the-art robotic
platforms, sensors and algorithms,” Sensors, vol. 20, no. 14, 2020.

[8] L. Van Nguyen, S. Gibb, H. X. Pham, and H. M. La, “A mobile robot
for automated civil infrastructure inspection and evaluation,” in 2018
IEEE Intern. Symp. on Safety, Security, and Rescue Robotics (SSRR),
2018, pp. 1–6.

[9] S. Gibb, H. M. La, T. Le, L. Nguyen, R. Schmid, and H. Pham,
“Nondestructive evaluation sensor fusion with autonomous robotic
system for civil infrastructure inspection,” J. of Field Robotics, vol. 35,
no. 6, pp. 988–1004, 2018.

[10] H. Ahmed, S. T. Nguyen, D. La, C. P. Le, and H. M. La, “Multi-
directional bicycle robot for bridge inspection with steel defect detec-
tion system,” in 2022 IEEE/RSJ Intern. Conf. on Intelligent Robots
and Systems (IROS), 2022, pp. 4617–4624.

[11] H.-D. Bui, S. Nguyen, U.-H. Billah, C. Le, A. Tavakkoli, and H. M.
La, “Control framework for a hybrid-steel bridge inspection robot,”
in 2020 IEEE/RSJ Intern. Conf. on Intelligent Robots and Systems
(IROS), 2020, pp. 2585–2591.

[12] C. P. Le, A. Q. Pham, H. M. La, and D. Feil-Seifer, “A multi-robotic
system for environmental dirt cleaning,” in 2020 IEEE/SICE Intern.
Symp. on System Integration (SII), 2020, pp. 1294–1299.

[13] H. Ahmed, C. P. Le, and H. M. La, “Pixel-level classification for bridge
deck rebar detection and localization using multi-stage deep encoder-
decoder network,” Developments in the Built Environment, vol. 14, p.
100132, 2023.

[14] T. Yasmin, C. Le, and H. M. La, “Deep architecture based spalling
severity detection system using encoder-decoder networks,” in Interna-
tional Symposium on Visual Computing. Springer, 2022, pp. 332–343.

[15] C. P. Le, C. Ellison, S. Bunkley, H. La, and A. Netchaev, “A
real-time multi-camera auto-adjustment framework for infrastructure
inspections,” in 2024 IEEE/SICE Intern. Symp. on System Integration
(SII), 2024, pp. 681–686.

[16] C.-W. Ou, C.-J. Chao, F.-S. Chang, S.-M. Wang, J.-N. Lee, R.-D.
Hung, B. Chiu, K.-Y. Cho, and L.-T. Hwang, “Design of an adjustable
pipeline inspection robot with three belt driven mechanical modules,”
in 2017 IEEE Intern. Conf. on Mechatronics and Automation (ICMA).
IEEE, 2017, pp. 1989–1994.

[17] “The weasel 1: Full scope robotic inspection
crawler,” https://www.forbestusa.com/blogs/resources/
the-weasel-1-full-scope-robotic-inspection-crawler.

[18] H. Miura, A. Watanabe, M. Okugawa, and T. Miura, “Verification and
evaluation of robotic inspection of the inside of culvert pipes,” J. of
Robotics and Mechatronics, vol. 31, no. 6, pp. 794–802, 2019.

[19] A. Rumaksari, A. G. Sooai, G. S. Abimanyu, G. Dewantoro, H. K.
Wardana, B. Murtianta, and L. B. Setyawan, “Real world design and
implementation of pathfinding sewer inspection robot using a-star
algorithm,” Jurnal Mantik, vol. 7, no. 1, pp. 202–215, 2023.

[20] N. E. Serrano, “Autonomous quadrotor unmanned aerial vehicle for
culvert inspection,” Ph.D. dissertation, 2011.

[21] B. Yamauchi, “A frontier-based approach for autonomous explo-
ration,” in Proceedings 1997 IEEE Intern. Symp. on Computational
Intelligence in Robotics and Automation CIRA’97. ’Towards New
Computational Principles for Robotics and Automation’, 1997, pp.
146–151.

[22] A. Dai, S. Papatheodorou, N. Funk, D. Tzoumanikas, and S. Leuteneg-
ger, “Fast frontier-based information-driven autonomous exploration
with an mav,” in 2020 IEEE Intern. Conf. on Robotics and Automation
(ICRA), 2020, pp. 9570–9576.

[23] A. Batinovic, T. Petrovic, A. Ivanovic, F. Petric, and S. Bogdan,
“A multi-resolution frontier-based planner for autonomous 3d explo-
ration,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 4528–
4535, 2021.

[24] K. Zheng, Y. Sung, G. Konidaris, and S. Tellex, “Multi-resolution
pomdp planning for multi-object search in 3d,” in 2021 IEEE/RSJ
Intern. Conf. on Intelligent Robots and Systems (IROS), 2021, pp.
2022–2029.

[25] T. Nguyen, V. Hrosinkov, E. Rosen, and S. Tellex, “Language-
conditioned observation models for visual object search,” in 2023
IEEE/RSJ Intern. Conf. on Intelligent Robots and Systems (IROS),
2023, pp. 10 894–10 901.

[26] K. Zheng, D. Bayazit, R. Mathew, E. Pavlick, and S. Tellex, “Spatial
language understanding for object search in partially observed city-
scale environments,” in 2021 30th IEEE Intern. Conf. on Robot
Human Interactive Communication (RO-MAN), 2021, pp. 315–322.

[27] K. Zheng, R. Chitnis, Y. Sung, G. Konidaris, and S. Tellex, “Towards
optimal correlational object search,” in 2022 Intern. Conf. on Robotics
and Automation (ICRA). IEEE, 2022, pp. 7313–7319.

[28] K. Zheng, A. Paul, and S. Tellex, “A system for generalized 3d multi-
object search,” in 2023 IEEE Intern. Conf. on Robotics and Automation
(ICRA), 2023, pp. 1638–1644.

[29] A. Wandzel, Y. Oh, M. Fishman, N. Kumar, L. L. Wong, and
S. Tellex, “Multi-object search using object-oriented pomdps,” in 2019
International Conference on Robotics and Automation (ICRA), 2019,
pp. 7194–7200.

[30] D. Silver and J. Veness, “Monte-carlo planning in large pomdps, in
‘advances in neural information processing systems (nips)’,” 2010.

[31] S. Gibb, T. Le, H. M. La, R. Schmid, and T. Berendsen, “A multi-
functional inspection robot for civil infrastructure evaluation and
maintenance,” in 2017 IEEE/RSJ Intern. Conf. on Intelligent Robots
and Systems (IROS), 2017, pp. 2672–2677.

[32] S. Bunkley, C. Ellison, G. Glaspell, J. Klein, and A. Netchaev,
“Robotic localization in earth dam outlet works,” in 2024 IEEE/SICE
Intern. Symp. on System Integration (SII), 2024, pp. 816–820.

11749

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 01,2025 at 14:43:28 UTC from IEEE Xplore.  Restrictions apply. 


