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Abstract— This work presents a comprehensive LiDAR-
inertial odometry framework featuring robust smoothing and
mapping capabilities, effectively correcting LiDAR feature point
skewness using an inertial measurement unit (IMU). While
the Extended Kalman Filter (EKF) is a common choice for
nonlinear motion estimation, its complexity grows when han-
dling maneuvering targets. To overcome this challenge, a new
framework that incorporates the Iterated Interactive Multiple
Models of Kalman Filter (IMMKF) is given, providing a
solution for reliable navigation in dynamic motion and noisy
conditions. To ensure map consistency, an ikd-tree that facili-
tates continuous updates and adaptive rebalance is employed,
preserving the map’s integrity. To guarantee the robustness
of our approach, it undergoes extensive testing across diverse
scales of indoor and outdoor environments. This testing scenario
simulates absolute GPS denial. In terms of estimated motion,
the new algorithm demonstrates superior accuracy compared
to existing approaches. The implementation is openly accessible
on GitHub4 for further exploration.

I. INTRODUCTION

The integration of mobile robots into search, inspection,
and rescue operations in unstructured environments has seen
remarkable growth over recent decades. Conventional manual
approaches in structural inspection tasks suffer from several
limitations, including risks to workers, time inefficiency,
high labor hours, and susceptibility to human errors. In this
context, the precise estimation of a mobile robot’s location
becomes crucial [1], with a dense 3D map providing essential
environmental insights, such as identifying free spaces and
obstacles. This information is pivotal for effective path
planning toward desired goals. Nevertheless, ground robots
encounter challenges in environmental perception, especially
in hazardous conditions characterized by a lack of GPS
signals, absolute denial, and low visibility.

Light Detection and Ranging (LiDAR) stands out as one
of the possible solutions to overcome these challenges, pro-
viding precise long-range estimation. However, the temporal
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misalignment of laser points during scanning, influenced by
dynamic models, introduces motion distortions, compromis-
ing localization and map registration. In traditional methods,
the fusion of LiDAR and camera [2]–[4] data addresses
the estimation problem and enhances visual localization.
Inertial measurement units (IMUs) are often employed to
enhance odometry estimation due to their higher frequency.
Nevertheless, IMU measurements are prone to drift over
time, necessitating the estimation of additional states, such
as bias and extrinsic parameters.

Over the past decade, many lidar-based state estimation
and mapping methods have been proposed, categorized into
two strategies: loosely-coupled [5]–[9] and tightly-coupled
[10]–[18] LiDAR-Inertial Odometry (LIO). In a loosely cou-
pled LiDAR-inertial odometry method, LiDAR and inertial
measurements are processed independently at first and then
integrated at a later stage. In the LOAM [5], they first
introduced the use of IMU data to de-skew LiDAR scans and
provide a prior for scan-matching. Planar and edge feature
points are then extracted from target clouds using an Iterated
Closest Point (ICP) [19] for registration. The Lego-LOAM
[9] adopts a framework akin to the LOAM, distinguishing
ground points from the raw source and subsequently match-
ing their correspondences through Euclidean clustering. A
commonly adopted method for loosely-coupled fusion in-
volves integrating measurements from lidar and IMU using
variants of Extended Kalman Filters (EKF) [6], [7], [20] such
as error-state EKF or a Multi-State Constraint Kalman Filter
(MSCKF) for state estimation. In contrast, tightly-coupled
LiDAR-inertial odometry methods typically integrate the
LiDAR point cloud with IMU data, formulating 3D SLAM
as a non-linear state estimation problem. The LIOM [10]
stands as the first open-source offering implementation and
dataset for tightly coupled LiDAR-inertial odometry. They
introduce a slicing local window to generate a local map, and
a rotation constraint is introduced to enhance the alignment
of the local map with the global map. The LIO-SAM [11]
presents a real-time method that is user-friendly, leveraging
edge and planar features for scan mapping, akin to the
LIOM. The incorporation of loop closures and GPS factors
is optional, aiming to alleviate the accumulated drift in
LiDAR inertial odometry over extended durations. The LINS
[18] introduces a filter-based approach in tightly-coupled
LiDAR pose optimization using the iterated Kalman Filter
and a formula within the odometry. The FAST-LIO [12]
extends the framework of the LINS to address linearization
errors and decrease computational costs by introducing a
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new formulation of the Kalman gain in state dimensions,
rather than measurement dimensions. This eliminates the
need for downsampling feature points in measurements,
preventing information loss in the point clouds. The FAST-
LIO2 [13] enhances the FAST-LIO framework with a new
data structure, the ikd-Tree, which facilitates incremental map
updates for dynamically inserted points. This improvement
leads to better performance compared to state-of-the-art data
structures for kNN. We introduce a tighly-coupled Iterated
Interactive Multiple Models of the Kalman Filter (IMMKF),
and the LiDAR-inertial odometry (LIO), called IMMKF-
LIO, to enhance the accuracy of robot displacement estima-
tion. The main contributions of our work can be summarized
as follows:

• To the best of our knowledge, our paper introduces the
first framework enabling the fusion of multiple models
for LiDAR-inertial odometry.

• We introduce a streamlined prediction pipeline that re-
duces computational costs while preserving the accuracy
of state estimation.

• The algorithm undergoes verification through various
indoor and outdoor tests across various scales and en-
vironments, demonstrating superior performance com-
pared to state-of-the-art LiDAR-inertial algorithms

• The code and dataset are open-sourced.

Fig. 1: The system workflow of IMMKF.

II. METHODOLOGY

A. System Overview

The workflow of the IMMKF-LIO is shown in Fig. 1. The
LiDAR raw points are initially accumulated and then passed
through the feature extraction module to obtain planar and
edge features. The feature points and IMU measurements
are simultaneously input into the IMMKF for map point
registration. Global map points within the extensive local
map are structured using an incremental k-d tree, denoted
as ikd-Tree. This updated map is then utilized to map new
feature points in the subsequent timestamp.

Assuming the IMU frame conveniently aligns with the
body frame, and the extrinsic transformation between the
LiDAR frame (L) and the IMU frame (I), T I

L = (RI
L, p

I
L)

where RI
L ∈ SO(3) and pIL ∈ R3 are the rotation matrix

and translation vector of T I
L, is known. During initialization,

the first IMU frame is aligned as the world frame (W). The
system state x can be written as follow:

x = [pWI
T
, vWI

T
, φW

I

T
, aWI

T
, ωW

I

T
], (1)

where pWI = [px, py, pz]
T , vWI = [vx, vy, vz]

T , aWI =
[ax, ay, az]

T , ωW
I = [ωx, ωy, ωz]

T , and φW
I = [ϕ, θ, ψ]T

are the position, velocity, acceleration, angular velocity and
orientation with the body frame to the world frame.

B. Iterated Interactive Multiple Models of Kalman Filter

The concept of the IMMKF can be outlined in the follow-
ing steps: Model Interaction, Model Conditioned Filtering,
Model Probability Update, and State Estimation.

1) Model Interaction: The process involves predicting
the mode probability of an active Kalman Filter within
the IMMKF framework from the last timestamp tk−1 to
the current timestamp tk in response to a LiDAR scan.
The interaction and mixing probability can be predicted as
follows:

µi
tk|tk−1

= Σjπijµ
j
tk−1

, (2)

µ
j|i
tk−1

=
πijµ

j
tk−1

µi
tk|tk−1

, (3)

where (∀i, j ∈ M), and M is the number of models in
the IMMKF. For example, we use three models: constant-
velocity (CV), constant-acceleration (CA), and constant-
turning rate (CT) in this paper, then M = 3. Initially,
the model probability shares a uniform distribution as µ =
[ 1
M , ..., 1

M ]T ∈ RM×1. πij ∈ RM×M presents to the
transition probability matrix to shift mode j to mode i.

Assuming the optimal state estimate after fusion at the last
LiDAR scan tk−1 is represented by x̄tk−1

, with the corre-
sponding covariance matrix denoted as P̄tk−1

. The mixing
estimates x̂itk−1

and mixing covariances P̂ i
tk−1

are combined
by each filter at time tk−1 using the mixing interaction
probability:

x̂itk−1
= Σj x̄

j
tk−1

µ
j|i
tk−1

, (4)

P̂ i
tk−1

= Σj [P̄
j
tk−1

+(x̂itk−1
− x̄jtk−1

)(x̂itk−1
− x̄jtk−1

)T ]µ
j|i
tk−1

.
(5)

2) Model Conditioned Filtering: The estimate prediction
is carried out upon the arrival of an IMU measurement.
IMUs typically provide a higher rate than LiDAR; hence, the
sampling time corresponding to an IMU arrival is denoted
as tτ ∈ [tk−1, tk) ∆t = tτ − tτ−1. Each model i of the
IMMKF is linked to a Kalman filter, which is described by
the following prediction:

x̄itτ+∆t|tτ = F i
tτ x̂

i
tτ +Gi

tτ δ
i
tτ , (6)

P̄ i
tτ+∆t|tτ = F i

tτ P̂
i
tτF

i
tτ

T
+Gi

tτQ
i
tτG

i
tτ

T
. (7)

Here, F i represents the transition matrix of model i in
the IMMKF. In this paper, F i is equal to Fcv , Fca, and
Fct, respectively. Gi

tτ is the control input matrix, and Qi
tτ

is the matrix representing the system noise. The raw LiDAR
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points Ptτ , introduced with motion distortion under different
sampling timestamps, are compensated by projecting all
points Ptτ to Ltτ by T Itτ +∆t

Itτ
, obtaining the relative motion

of the IMU frame through the predicted state:

Ptτ+∆t = T I
L

T
T

Itτ +∆t
Itτ

T I
LPtτ . (8)

Subsequently, the projected point Ptτ+∆t is utilized to
construct a residual measurement. In existing filter-based
LiDAR-inertial odometry [12] [14] [21], a common strategy
is the adoption of nearest correspondence matching, with
the point-to-plane distance calculated as the residual. This
approach entails projecting the feature point with motion
compensation onto the world frame:

PW
tτ+∆t = TW

Itτ+∆t
T I
LPtτ+∆t. (9)

It’s important to note that the transformation matrix TW
I is

included in the state vector x. Let utτ+∆t denote the normal
vector of the corresponding plane, obtained by searching the
five nearest points in the map PW

tτ+∆t represented by the
ikd-Tree, where the feature point qWtk is centroid.

z̄itτ+∆t = utτ+∆t
T (PW

tτ+∆t − qWtk ) ≈ −Hix̃itτ+∆t|tτ − vtk ,
(10)

S̄i
tτ+∆t

= HiP̄ i
tτ+∆t|tτH

iT +Rtk−1
, (11)

where x̃itτ+∆t|tτ = x̄itτ+∆t|tτ − x̄tk , vtk is the measurement
noise, and Hi is the measurement matrix of each model
i. R is the covariance matrix of measurements with R ∈
Rm×m (m numbers of the feature points). We offer detailed
formulations of the involved transition F i and measurement
Hi matrices in the supplementary material [22].

We utilize the formulation outlined in [12] to compute the
Kalman Filter gain. This approach, proven effective [23],
provides a solution in the state dimension rather than the
measurement dimension, resulting in reduced computation
costs:

Ki
tτ+∆t

= (HiTR−1Hi + P i
tτ+∆t|tτ

−1
)−1HiTR−1

tk
. (12)

The updated estimation and covariance are calculated as
follows:

x̄itτ+∆t|tτ+∆t = x̄itτ+∆t|tτ +Ki
tτ+∆t

z̄itτ+∆t, (13)

P̄ i
tτ+∆t|tτ+∆t = (I −Ki

tτ+∆t
Hi)P̄ i

tτ+∆t|tτ . (14)

3) Model Probability Update: Estimating the likelihood
of each model involves evaluating the distribution of the
residual error z̄itτ+∆t, the difference between current mea-
surements and estimated states, relative to S̄i

tτ+∆t
the residual

covariance:

L̄i
tτ+∆t

=
1√

2π|det(S̄i
tτ+∆t

)|
exp(−1

2
z̄i

T

tτ+∆tS̄
i−1

tτ+∆t
z̄itτ+∆t).

(15)
The likelihood is assessed at zero, then L̄i

tτ+∆t

assume
=

N (z̄itτ+∆t; 0, S̄
i
tτ+∆t

). The mode probability update assesses
the likelihood of each model i relative to the cumulative
probabilities of all potential models:

µi
tτ+∆t =

µi
tτ+∆|tτ L̄

i
tτ+∆t

Σjµ
j
tτ+∆|tτ L̄

j
tτ+∆t

. (16)

4) State Estimation: In conclusion, the overall estimation
and covariance are updated based on the new mode proba-
bility and the current estimated states:

x̄tτ+∆t
= Σix̄

i
tτ+∆t|tτ+∆tµ

i
tτ+∆t, (17)

P̄tτ+∆t
= Σi[P̄

i
tτ+∆t|tτ+∆t + x̌tτ+∆t

x̌Ttτ+∆t
]µi

tτ+∆t, (18)

where x̌tτ+∆t = x̄tτ+∆t − x̄itτ+∆t|tτ . The estimated state
x̄tτ+∆t

and covariance P̄tτ+∆t
will serve as inputs for the

next IMU measurement arrival. The optimal estimation at
tτ+∆t, represented as x̄tτ+∆t

, is attained if and only if the
projected point PW

tτ+∆
, corresponding to x̄tτ+∆t , is accurately

mapped to the true correspondence in the world frame satis-
fies the condition (||z̄tτ+∆t

tk−1
+ Σ

tτ+∆t

tk−1
Hx̃

tτ+∆t

tk−1
||2Rtk−1

) < ψ.
The optimal estimation in the current LiDAR x̄tk scan is
obtained by minimizing the difference between the residual
measurement and the residual mapped from the state space
to the observation space:

argmin
x̃
tk
tk−1

(||z̄tktt−1
+Σtk

tk−1
Hx̃tktk−1

||2Rtk−1
). (19)

C. Global map update

With the optimal estimation x̄tk , the transformation T̄W
Itk

=

[R̄W
Itk
, pWItk

] (R̄W
Itk

the matrix represents a rotation whose roll,
pitch, and yaw φW

Itk
angles) of each feature point to the global

frame is performed:

PW
tk

= T̄W
Itk
T I
LPtk . (20)

For initialization, the first LiDAR scan is considered as
the global frame.

III. EXPERIMENTS

We elaborate on a set of experiments conducted in both
indoor and outdoor environments, designed to provide both
qualitative and quantitative insights into our proposed frame-
work. All experiments are performed using a computer
equipped with Intel Core i7-8700 CPU 3.20Hz and 32GB
RAM using the robot operating system (ROS-Noetic) [24]
in Ubuntu 20.04 Linux.

Fig. 2: Datasets from the University of Nevada, Reno (UNR)
campus were collected using a custom handheld device and
an unmanned ground robot.
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A. Quantitative Analysis

In this section, we assess the proposed framework in
terms of accuracy and computational complexity compared
to state-of-the-art LiDAR-inertial odometry algorithms. To
ensure a fair comparison, we utilize open-source datasets
from [25], and [26]. These extensive datasets [25] were
collected at New College, Oxford, using an OS1-64 LiDAR
with a scan rate of 10Hz, coupled with a built-in 6-axis IMU
sampled at 100Hz. These datasets are referred to as”nse ”
and ”nle ”, corresponding to ”01 short experiment” and
”02 long experiment”, respectively, offering different tra-
jectories and time durations. Additionally, [26] provides a
localization dataset gathered in Urban Canyons, character-
ized by high-rising buildings and numerous dynamic objects.
This dataset was collected using an HDL-32E Velodyne
LiDAR with an 80m range at 10Hz, coupled with a 9-axis
Xsens Mti IMU operating at 400Hz, referred to ”ubhk ”.
As recommended by the dataset authors, all datasets provide
accurate ground truth trajectories and well-calibrated data
from multiple sensors.

Name Duration Trajectory
(min:sec) Length (meters)

ubhk 01 UrbanNav-HK TST-
20210517 sensors

13:05 3640

ubhk 02 UrbanNav-
HK Whampoa-
20210521 sensors

25:36 4510

nle 01 rooster 2020-03-10-
12-15-49 14

2:47 193

nle 02 rooster 2020-03-10-
12-13-02 13

2:47 195

nle 03 rooster 2020-03-10-
12-10-15 12

2:47 195

nle 04 rooster 2020-03-10-
12-18-36 15

2:47 190

nse 01 rooster 2020-03-10-
10-47-39 4

2:47 160

nse 02 rooster 2020-03-10-
10-44-52 3

2:47 175

nse 03 rooster 2020-03-10-
10-42-05 2

2:47 168

nse 04 rooster 2020-03-10-
10-39-18 1

2:47 173

TABLE I: Details of all the data sequences.

1) Evaluation of Odometry Accuracy: We assess odom-
etry accuracy through absolute RMSE in translation and
rotation errors, comparing our results with advanced algo-
rithms: the FAST-LIO2 [13], DLO [27], and LIO-SAM [11].
For unbiased results, the GPS and loop closure factors are
disabled in all frameworks. As the LIO-SAM necessitates a
9-axis IMU for attitude data, it is not applicable to the New
College dataset. The LIO-SAM requires precise manual cal-
ibration and initial bias estimation for optimal performance.
Despite our efforts to provide the closest possible calibration
parameters for comparison, achieving the finest performance
with LIO-SAM remains challenging.

A variant of the proposed system, IMMKF-va, is tested
by removing the constant-turn (CT) model, compensating
for sensor movement when facing a large change in sensor
heading. As shown in Table II, IMMKF-va still produces

reliable results (beating the LIO-SAM and the DLO) for
the ’ubhk 01’, and ’ubhk 02’ sequence when the car mostly
drives in a straight line with constant velocity or accel-
erates with a slight change in acceleration. However, its
performance degrades compared to the original framework
for all sequences of the New College dataset, where the
sensor undergoes frequent turns. The LIO-SAM and DLO
exhibit significant drift in extended duration and distance
data ’ubhk 01’, and ’ubhk 02’. When LIO-SAM encoun-
ters failure in graph optimization without GPS factors and
loop closures, it is unable to reset or compensate for the
growing IMU noise. On the other hand, the accuracy of
DLO relies on keyframe selection and adaptive thresholds for
mapping with GICP. In cases of motion drift, obtaining an
optimal instantaneous guess for the correct correspondence
and keyframe becomes challenging. Table II illustrates that
IMMKF consistently produces optimal results across various
sequences chosen for this analysis. A key contributing factor
to this success is the IMMKF’s ability to mitigate IMU noise-
induced drift through the use of multiple filters. Each filter
incorporates individual estimations for state and covariance
in different motions, mitigating dependence on raw IMU
data for motion compensation. Fig. 3 illustrates the mapping
results of all algorithms compared in Table II. The first image
depicts the ground truth trajectory aligned with a Google
map. The DLO exhibits drift after 345 seconds of running, as
indicated by the red part in the image, where only the ground
is detected. The LIO-SAM displays significant drift in both
position and orientation, as seen in the white box where the
lane is split into two. The mapping results of the FAST-
LIO2 and our IMMKF appear similar. For a more detailed
comparison, we will delve into qualitative results to assess
performance on a smaller scale.

2) Evaluation of Computational Complexity: To assess
computational efficiency, we compare the IMMKF to the
FAST-LIO2 [13], utilizing their built ikd Tree for our frame-
work. The primary difference between these two approaches
lies in the filter-based method. Our analysis focuses on ex-
amining the impact of computational complexity on ikd-tree
construction, specifically on incremental updates, ikd Tree
size, and pre-processing time shown in Table III. Incremental
updates involve efficiently integrating new points into the
existing tree structure without rebuilding the entire tree.
Pre-process time represents the consumption of the process
of accumulating feature points at a certain time into a
LiDAR scan, which remains consistently around 1.10 ms.
On average, the mapping procedure in the IMMKF achieves
a 10% reduction in computational time compared to [13].
The primary reason for this improvement is that the IMMKF
does not require Jacobian matrix calculations, unlike the
FAST-LIO2, which needs to repeatedly compute them for
estimation using EKF. This complexity increases as the
number of feature points grows. We attain faster convergence
with fewer nodes in the ikd Tree when utilizing the nse and
nle datasets.
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Fig. 3: The mapping results of the FAST-LIO2, the DLO, the LIO-SAM, and the IMMKF in bird’s eye view in a typical
urban canyon of HongKong ’ubhk 01’. The first map is the trajectory ground truth aligning with a Google map. The mapping
results of our framework and the FAST-LIO2 are quite similar in a large-scale environment. Additionally, in the DLO map,
the red color represents the ground, while other colors indicate key features. The white box in the LIO-SAM shows the drift
of the lane, which is split into two.

ubhk 01 ubhk 02 nle 01 nle 02 nle 03 nle 04 nse 01 nse 02 nse 03
FAST-LIO2 12.58/0.053 14.56/0.050 0.48/0.046 0.16/0.029 0.31/0.022 0.65/0.047 0.68/0.021 1.43/0.046 0.97/0.049
DLO 16.18/0.166 17.24/0.178 1.02/0.039 0.54/0.043 1.49/0.048 1.55/0.089 0.47/0.026 1.74/0.038 1.03/0.057
LIO-SAM 19.49/0.209 16.79/0.184 - - - - - - -
IMMKF-va 13.24/0.055 14.32/0.067 0.41/0.049 0.29/0.045 0.29/0.039 1.28/0.061 0.74/0.065 1.37/0.054 0.83/0.054
IMMKF 10.37/0.044 12.04/0.047 0.24/0.035 0.27/0.037 0.26/0.018 1.02/0.033 0.33/0.017 1.07/0.035 0.57/0.055

TABLE II: The absolute translation RMSE [m] and rotation errors RMSE [rad] with precise ground-truth. Since the datasets
’nse ’ and ’nle ’ captured by a 6-axis IMU do not include attitude quaternion data, LIO-SAM, which relies on a 9-axis
IMU, is incompatible with all sequences denoted as ”-”.

Fig. 4: The mapping results were collected using handheld
devices and an unmanned ground robot on the UNR campus.

B. Qualitative Analysis

In this section, we evaluate the real-time performance
of the IMMKF using a handheld platform shown in Fig.
2, equipped with a VLP16-PuckLITE LiDAR and a Zed-
mini stereo camera. The real-time map generated by the
IMMKF is showcased in Fig. 4, illustrating a bridge that
poses challenges due to the lack of distinctive features in
the bridge joints. The second scenario in Fig. 3 captures the
indoor hall of the SEM building at UNR, covering a total
traveling distance of approximately 200m, with a drift of
approximately 0.12m observed in an end-to-end evaluation.

As mentioned earlier, we conducted a comparison be-
tween the IMMKF and the Fast-LIO2 on a larger scale

Increamental ikd Tree Pre-process
update [ms] Size [num] time [ms]

ours [13] ours [13] ours [13]
nse 01 2.503 2.532 213384 215817 1.187 1.317
nse 02 1.581 1.712 88244 88840 1.170 1.192
nse 03 2.327 2.362 142730 142807 1.103 1.118
nse 04 4.310 5.016 60019 70328 1.101 1.273
nle 01 2.501 2.573 196410 197506 1.142 1.326
nle 02 2.708 2.754 269891 270773 1.129 1.155
nle 03 3.838 3.947 269891 270773 1.129 1.155
nle 04 1.717 1.825 79317 79668 1.104 1.136

TABLE III: Average time consumption of the mapping
procedures per scan using the ikd-Tree.

by running the New College Dataset [25]. The Fast-LIO2
encounters a challenge in obtaining a reliable initial guess
in a campus scenario where the platform may not stay
static long enough to acquire a dense point cloud. Instead
of running all sequences in the New College dataset, we
focused on an individual sequence where the movement
was already dynamic and LiDAR scans were captured in
campus areas with open fields, walls, and trees, resulting in
fewer meaningful feature points. The random walk and non-
optimal initialization estimation contribute to the degradation
of the EKF filter-based in the FAST-LIO2, impacting its
convergence and accuracy. It is clear that the FAST-LIO2
exhibits drift along the side of the 3D map, as depicted on
a larger scale within the white box in Fig. 5. This highlights
the benefits of the IMMKF filter in providing smoother and
more accurate values.

IV. CONCLUSION

This paper introduces the IMMKF-LIO, a framework for
tightly-coupled LiDAR-inertial odometry through localiza-
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Fig. 5: The mapping results of the IMMKF, and the FAST-
LIO2 in bird’s eye view using the New College Dataset [25].
Zooming out from the white box in the mapping results, it is
evident that our results exhibit less drift than the FAST-LIO2.

tion and mapping, demonstrating computational efficiency
compared to the current state-of-the-art LIO algorithm. The
key innovation lies in its support for various estimation
models to compensate for LiDAR distortion and ensure
consistent mapping. The implemented results demonstrate
that the IMMKF exhibits, on average, a 10% reduction in
computational complexity compared to other common non-
linear models, such as the EKF. The results indicate that
the IMMKF achieves similar or better accuracy with lower
computation compared to the FAST-LIO2 [13]. However,
our work still has some shortcomings. In certain indoor
scenes where feature scarcity is common due to aggressive
altitude changes, the LIO system may fail to extract enough
features to match the global map. To address this issue, our
future work will focus on fusing additional sensors, such
as millimeter-wave radar, to enhance feature detection and
improve system robustness.
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