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Abstract: Understanding the decay of correlations in time for (1+1)-dimensional poly-
mer models in the KPZ universality class has been a challenging topic. Following numer-
ical studies by physicists, concrete conjectures were formulated by Ferrari and Spohn
[34] in the context of planar exponential last passage percolation. These have mostly been
resolved by various authors. In the context of positive temperature lattice models, how-
ever, these questions have remained open. We consider the time correlation problem for
the exactly solvable inverse-gamma polymer in Z2. We establish, up to constant factors,
upper and lower bounds on the correlation between free energy functions for two poly-
mers rooted at the origin (droplet initial condition) when the endpoints are either close
together or far apart. We find the same exponents as predicted in [34]. Our arguments
rely on the understanding of stationary polymers, coupling, and random walk compar-
ison. We use recently established moderate deviation estimates for the free energy. In
particular, we do not require asymptotic analysis of complicated exact formulae.
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1. Introduction

1.1. Universality in stochastic growth. Random growth models have always been at
the heart of probability theory. The simplest example of random growth, occurring in
zero spatial dimension plus one time dimension, is a sum of independent and identically
distributed (i.i.d.) random variables. Provided their second moment is finite, the large-
scale behavior of the centered sum is independent of the distribution of the summands,
as described by the central limit theorem. With the fluctuation exponent 1/2 and the
Gaussian distribution as the central limit scaling law, this model is a member of the
Gaussian universality class.

Following the seminal 1986 physics work of Kardar, Parisi and Zhang [47], one major
goal of recent probability research has been to demonstrate that very different universal
behavior arises in a wide class of stochastic models with spatial dependence. Extensive
computer simulations, non-rigorous physical arguments, laboratory experiments, and
rigorous mathematical results have all suggested that this Kardar—Parisi—-Zhang univer-
sality class (KPZ) is rich. It includes interacting particle systems, percolation models,
polymer models, random tilings, certain stochastic PDEs and more. All known mem-
bers of the KPZ class share universal fluctuation exponents and many of their limiting
distributions are from random matrix theory [23,58].

In the past 25 years, many ground-breaking advances in understanding KPZ univer-
sality have come through the study of exactly solvable or integrable models. However,
for the vast majority of the conjectural members of the KPZ class, these fine techniques
of integrable probability, representation theory, and algebraic combinatorics do not ap-
ply. With the eventual goal of extending results beyond the integrable cases, a second line
of research uses in principle broadly applicable probabilistic techniques and geometric
arguments to study the integrable models. This paper falls in the latter category. We study
the temporal correlation in the inverse-gamma polymer model, originally introduced in
[61].

In the remainder of this introduction, Sect. 1.2 gives a brief overview of the presently
used mathematical methods in KPZ study, Sect. 1.3 discusses the correlation problem
studied in this paper, and Sect. 1.4 explains the organization of the rest of the paper.

1.2. Methods in the study of the KPZ class. Several different approaches to studying
the exactly solvable models of the KPZ class have emerged over the last 25 years.
We describe these methods briefly on a very general level, mainly in the context of
zero-temperature last-passage percolation (LPP) with exponential or geometric weights,
where mathematical development is farthest along.

1.2.1. Integrable probability For exactly solvable LPP models based on RSK correspon-
dence or similar remarkable bijections, it is possible to write down explicit formulas for
one-point and multi-point distributions. Integrable probability estimates refer to esti-
mates and asymptotics obtained by careful analysis of these formulas. Beginning with
the seminal work of Baik, Deift and Johansson [3], which established the Tracy-Widom
scaling limit for the longest increasing subsequence problem, this approach has brought
much success. This includes process limits for the last-passage time profile started from
particular initial conditions: the droplet initial condition [57], the flat initial condition
[18,60], and the stationary initial condition [4]. More recently, the seminal work [55]
constructed the KPZ fixed point which admits general initial conditions. Formulas for
two-time distributions have also been obtained [5,44,53,54].
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1.2.2. Gibbsian line ensembles A useful approach based on resampling in line ensem-
bles was introduced by Corwin and Hammond [25]. In the zero temperature model of
Brownian last-passage percolation, where the corresponding line ensemble has the Brow-
nian Gibbs property, a detailed understanding of the passage time profile was obtained
in a series of works [38—41]. A similar approach exists for the positive temperature KPZ
equation and has been used recently to great effect [26]. The Gibbsian line ensemble
approach led to the construction of the directed landscape (DL), the space-time scaling
limit of zero temperature models [27,28]. Subsequently, DL limits were established for
the KPZ equation [66,67].

1.2.3. Percolation methods with integrable inputs Yet another suite of techniques uses
black-box integrable inputs together with probabilistic and geometric arguments that can
in general be referred to as percolation arguments. The inputs typically used in this line of
work include (1) uniform curvature of the limit shape, (2) moderate deviation estimates
of the passage time, and (3) convergence of the one point distribution to the GUE Tracy-
Widom law that has a negative mean [11,13]. Some cases require more sophisticated
inputs such as the Airy process limit of the full profile [14]. These inputs are typically
obtained from the first approach above. In cases like exponential and Brownian LPP,
one can also exploit random matrix connections to obtain similar, albeit usually a bit
weaker, estimates [52]. These estimates are then applied to obtain fine information about
the geodesic geometry, which in turn provides further information about the space-time
profile of last-passage times. An axiomatic framework for these types of arguments has
been developed and used in [13].

1.2.4. Coupling methods The most probabilistic approach that minimizes the role of
integrability utilizes couplings with stationary growth processes. In zero temperature
the seminal work was [22], followed by [8], and [61] began this development in positive
temperature polymer models. This effort has been recently revolutionized by [30] that
made possible certain quantitatively optimal bounds. Presently this approach still relies
on a special feature of the model, namely, that the stationary measure is explicitly known.
It has been most successful in the study of solvable models. Its applicability does extend
to some stochastic processes presently not known to be fully integrable, namely classes
of zero-range processes and interacting diffusion [9,49]. Through comparisons with the
stationary process, many results about the geodesics, parallel to those developed by
the previous approach, have been proved [6,7,19,62]. Following the optimal bounds of
[30], some of the integrable inputs of the percolation approach can now be supplied
by coupling techniques, thereby reducing dependence on random matrix theory and
integrable probability.

1.2.5. The approach of this paper The current paper uses a combination of the final
two approaches discussed above to study the temporal decay of correlations in the
positive-temperature exactly solvable inverse-gamma polymer model. The major barrier
to applying the percolation arguments from [12,14] has been the lack of one-point
moderate deviation estimates. One advantage of the coupling techniques is that they can
be extended from zero temperature to positive temperature [31,68]. In the context of the
semi-discrete O’Connell-Yor polymer, one-point estimates have recently been obtained
under stationary initial conditions [51] and more recently for the point-to-point problem
[50]. These techniques carry over to the inverse-gamma polymer model as well. This
opens the door for proving versions of the lattice LPP results obtained through one-point
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estimates, now in the context of the positive temperature polymer models. Our paper
provides the first example in this vein (the fusion of percolation and coupling arguments),
by proving the first bounds on the time correlation structure of a lattice polymer model.

We expect similar techniques to be applicable to a number of other related problems.
To emphasize, although our approach here is similar to the one described in § 1.2.3,
we only require the one point moderate deviation inputs, and these are provided by the
recent advances in the coupling/stationary polymer approach of § 1.2.4. Therefore our
work does not rely on the integrable methods described in § 1.2.1-1.2.2.

1.3. Time correlation problem. We turn to the precise problem we study, its history, and
our contributions.

A central object in KPZ models is the random height function h : R x R>o — R.
Depending on the situation studied, z(x, ¢) can be the height of a randomly moving
interface over spatial location x at time ¢, the passage time on the plane from the origin
to (x, t), or the free energy of point to point polymers between the origin and location
(x,1).

The spatial statistics of x +— h(x, fo) ata fixed time ¢y are much better understood than
the temporal process ¢ — h(xg, t). Multi-time joint distributions of the height function
have been obtained in several exactly solvable models [5,43,45,46,53,54]. However, it
has remained difficult to extract useful information from these impressive formulas.

Short of capturing the full distribution of the temporal evolution, a natural object to
study is the two-time correlation function

Corr(h(0, t1), h(0, 12)), (1.1)

where we have now singled out the origin xo = 0 as the spatial location. This correlation
was first studied by physicists Takeuchi and Sano [65], who measured the quantity (1.1)
from a turbulent liquid crystal experiment. Subsequently came numerical simulations
[64] that predicted the behavior of (1.1) by fixing #; and sending #, to infinity.

1.3.1. Prior rigorous time correlation results Ferrari and Spohn [34] studied the large-
time behavior of (1.1) from various initial conditions in the exponential last-passage
percolation, which is one of the most-studied zero-temperature KPZ last-passage growth
model on the lattice. Taking time to infinity, they obtained a variational formulation of
the (rescaled) height function in terms of two independent Airy processes. From the
variational problem they derived an explicit formula for the limiting two-time covariance
under the stationary initial distribution, as 71, f> both tend to infinity. For the step and flat
initial conditions [34] conjectured asymptotics in the regimes #1 /t, — Oand #1/t, — 1.

Following the conjectures of [34], several rigorous works studied this problem under
different initial conditions in the zero-temperature setting.

The time correlation problem for the droplet initial condition in exponential LPP
was solved in two parallel works. Both employed a combination of integrable inputs
and a geometric study of geodesics. The results of [32], which also utilizes comparison
with stationary processes, are limiting in nature and also used the convergence of the
passage time profile to the Airy; process. They also obtained an exact formula for the
stationary case and identified universal behavior with respect to the initial condition when
the two time points are close to one another. In contrast, [12] used one point estimates,
convergence to Tracy-Widom GUE distribution (and the negativity of its mean), together
with geometric arguments, to obtain similar, but quantitatively weaker, results for the
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droplet initial condition, but valid also in the pre-limit setting. When the two time points
are far away, the case of the flat initial condition was dealt with in [ 14]. This work relied on
strong Brownian comparison results for the Airy, process, in addition to convergence
to it. The time correlation problem in the half-space exponential LPP has also been
recently studied in [33], utilizing comparison arguments with its stationary version and
the process limit obtained in [2].

The Gibbsian line ensemble approach has also been useful in this context. In an un-
published work, Corwin and Hammond solved the time correlation problem in Brownian
LPP with this approach. Subsequently, together with Ghosal, they extended their work
to the positive temperature KPZ equation [24].

1.3.2. Our work: temporal correlations in positive temperature on the lattice Prior to
the present work, there does not appear to be any mathematically rigorous work on
this problem for positive temperature lattice models. The application of Gibbsian line
ensemble techniques seems challenging for lattice models, due to the absence of explicit
calculations available for random walks compared to the Brownian motion. The one-
point convergence to Tracy-Widom GUE is known for the inverse-gamma polymer
[10,17,48]; very recently, since our work was completed, the convergence of the free
energy profile has also been shown in [1]. Hence, the approach of [32] might also be
feasible in the positive temperature case if one were to study the limiting regime, but we
are interested in the finite size estimates as well.

Our approach is inspired by [12] and the recent progress in stationary techniques.
One cannot directly apply the techniques of [12] in the positive temperature set-up, as
much of it refers to the fluctuations and coalescence of geodesics which do not exist in
our setting. We modify their definitions appropriately and construct events in terms of
the free energy profile and restricted free energies, which can serve similar purposes.
Certain estimates are directly proved using stationary techniques. The novel technical
ingredients of our paper are developed in these directions.

In Sect. 4, we directly prove the locally diffusive behavior of the free energy profile
instead of utilizing local fluctuations of geodesics as in [12]. For the lower bound in
Theorem 2.2, we use the FKG inequality as in [12], but in the absence of geodesics,
the resampling argument is significantly different, and, in fact, somewhat simpler. In
Sect.7, we give a direct proof of a lower bound of the difference between the expected
free energy and its long-term value, at the standard deviation scale. This way we avoid the
need for the Tracy-Widom limit, and in fact, this provides a new proof of the negativity
of the mean of the Tracy-Widom distribution. Our arguments carry over to the zero
temperature setting as well, thus eliminating the integrable probability inputs from the
LPP results of [12].

To summarize, in Theorems 2.1 and 2.2, we establish the exponents that govern the
decay of correlations in the time direction for the inverse-gamma polymer model. As
expected on universality grounds, the exponents are the same as in the zero-temperature
case. Ours is the first such result in a lattice polymer model in the KPZ class. The only
special feature of the model we use is the explicit description of the stationary process.
In particular, we do not use any weak convergence result (to the Tracy-Widom distri-
bution, for example). Our techniques consist of one-point estimates obtained through
stationary polymers, random walk comparisons, and percolation arguments. Ours is the
first instance where the stationary polymer techniques have been put together with the
percolation arguments in a positive temperature setting. This combination can be useful
for extending many zero-temperature results to the inverse-gamma polymer.
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That our approach does not rely on integrable inputs is not only potentially useful for
future extensions, but also necessary in the current state of the subject. There are fewer
integrable tools available for our model in comparison with exponential LPP, Brownian
LPP or the KPZ equation. There is no determinantal formula for the multi-point joint
distribution of the free energy, and there is no corresponding Brownian Gibbs property
in this discrete setting (unless one takes a certain limit of the model). Lastly, the inverse-
gamma polymer model sits higher up in the hierarchy of the KPZ models. This means that
through appropriate transformations and limits, LPP, BLPP, and the KPZ equation can
be derived from the inverse-gamma polymer. In consequence, our results should carry
over to these other models and thereby remove the inputs from integrable probability
utilized in previous works.

1.4. Organization of the paper. The polymer model is defined and our main results
on the correlation bounds, Theorems 2.1 and 2.2, are stated in Sect.2. Theorem 2.1 is
proved in Sect. 5 and Theorem 2.2 in Sect. 6. Auxiliary results needed for the main proofs
are collected in Sects.3 and 4. We treat the proofs of these auxiliary results differently
depending on their status. Those that require significant proof are verified in Sects. 7 and
8, while those based on existing work, such as analogous zero-temperature results, are
in the appendices. Next, we explain the organization of the supporting results in more
detail.

Section 3.1 contains additional notation and conventions, in particular, for various
subsets of Z and partition functions of restricted collections of paths. Section 3.2 collects
regularity properties of the shape function. Nothing beyond calculus is used here.

Section 3.3 covers various estimates for the free energy, organized into several sub-
sections.

e Sect.3.3.1 gives moderate deviation estimates for the point-to-point free energy.
Two estimates for the left tail that appear here are used multiple times in the paper
and proved in Sect. 8.

e Sects.3.3.2-3.3.6 contain a a variety of estimates. These are used only for the lower
bound of Theorem 2.2. Those that have previously appeared in the zero-temperature
setting have their proofs in Appendix A.1.

e Sect.3.3.7 gives a lower bound on the discrepancy between the asymptotic free en-
ergy and the finite-volume expected free energy, sometimes called the non-random
Sfluctuation. It is proved in Sect. 7 by comparison with the increment-stationary poly-
mer. This result is used in the proof of the lower bound of the left tail in Sect.3.3.1
and the construction of the Barrier event Sy, in Section 6.1.

Section 3.4 introduces the increment-stationary inverse-gamma polymer and dis-
cusses some of its properties. The proofs for these properties can be found in Sect.7.
Among the results here are upper and lower bounds on the free energy difference between
the stationary model and the i.i.d. model.

Section 3.5 presents arandom walk comparison of the free energy profile. Specifically,
we establish upper and lower bounds on the free energy along a down-right path using
two random walks. The proof of this comparison, which relies on the stationary polymer
process, can be found in Appendix B.

Section 4 is dedicated to local fluctuations in the free energy profile. The proofs in
this section rely on the moderate deviation estimates and the random walk comparison.
The results obtained here are crucial for the proofs of the main theorems.
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We end this section with an index of different partition functions that will appear in
the paper.

La The anti-diagonal line {a + (j, —j) : j € Z}
L’; The anti-diagonal segment {x € L, : |Xx — a|o < k}
Rl;,b The parallelogram spanned by a + (—k, k) and b £ (—k, k)
Zu,y The point-to-point partition function
Zu, Ly The point-to-line partition function
Zpc pd The segment-to-segment partition function
u~v
ZA B The partition function from summing over all paths between A and B, for A, B C 7?2
ZT%‘,h The maximum maxacA beB Zab-
in, R,
V4 A Bc’d The partition function with paths from A to B contained inside Ré” d
exit, R
AB ¢4 The partition function withkpaths from A to B that exit diagonal sides of Ri" d
. in,R
zink The abbreviation for Z ., *P
cyl.c? cyl.cy?
: exit,Rk
Zexslt’k B The abbreviation for Z ?;b
£al ’£b2 £al ’£b2
Zm,n The abbreviation for Z ), (n,n)
Zu,v The point-to-point partition function, including the weight at u
zh, The partition function for the ratio-stationary polymer

2. Main Results

Let {Y,},c72 be a collection of positive weights on the integer lattice 72 . Fix two points
u, v € Z? and denote the collection of up-right paths between them by Xu,v. An element
y € Xy, is viewed as a sequence of vertices y = (Y0, Y1, ---, Yju—v|;) such that
Yo = W, Yju—v|, = Vand y;41 — ¥; € {e1, ex}. The point-to-point polymer partition
function between u and v is defined by

lu—vl;
Zuv= Y, [] Yw @.1)
yeXyy i=1

provided that u # v and X, v is non-empty. Otherwise, we set Zyy = 0. Note the
convention here that the weight Yy, at the beginning of the path does not enter into the
definition of the partition function, since the product starts with i = 1.

The free energy is defined to be log Z, vy and takes the value —oo if Z,y = 0.
Provided that Z, y > 0, the quenched polymer measure is a probability measure on the
set of paths X, y defined by

[u—v|;
1

Y, for y € Xyv.
Zuv l_[ i Y u,v

’ i=1

Ouviy) =

In general, the positive weights {Y,},.72 can be chosen as a collection of i.i.d. positive
random variables on some probability space (€2, P). Under a mild moment assumption
such as

]E[|log Yz|1’] < oo forsome p > 2,
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a law of large numbers type result called the shape theorem holds for the free energy
(Section 2.3 of [42]): there exists a concave, positively homogeneous and deterministic
continuous function A : RZZO — R that satisfies

|log Z(0,02 — A@)|
|1

lim sup

0 P — almost surely.
n—oo

zeZiO:\zh >n

For general i.i.d. weights, regularity properties of A such as strict concavity or dif-
ferentiability, expected to hold at least for continuous weights, are unknown. There is a
special case, first observed in [61], that if the i.i.d. weights have the inverse-gamma dis-
tribution, then A can be computed explicitly. The density function of the inverse-gamma
distribution is

x P le™% forx > 0. (2.2)

Tu) =105

The shape parameter € (0, 0o) plays the role of temperature in this polymer model.
We derive several properties for A in Sect.3.2 which will be used in our proofs later
on. In addition, for this inverse-gamma polymer, many more explicit estimates can be
established, hence it is often referred to as an exactly solvable model.

As is standard, the correlation coefficient of two random variables ¢ and 7 is defined
by

Cov(¢, m) _ E[¢n] — E -En
Var(0)!/2 Var(m/2 — E[¢ — E¢[21'/2E[ [n — En|?]'/2

Our main result establishes the time correlation exponents 1/3 and 2/3 for two free
energies based on the separation of their endpoints.

The bounds in the next two theorems are valid under the assumption that the weights
{Y,} have the i.i.d. inverse-gamma distribution (2.2) for some choice of the parameter
u € (0, 00).

Corr(¢, n) =

Theorem 2.1. There exist positive constants C1, Ca, co, No suchthat, whenever N > N
and N/2 <r < N — cg, we have

N — r\2/3
) < Corr(log Z0,0),(r.r)» 10g Z©,00,(N.n)) < 1 — Cz(

N — r\2/3
1—01( ) .
N

Theorem 2.2. There exist positive constants C3, Cy, co, No such that, whenever N > Ny
and cy <r < N/2, we have

r\1/3 r\1/3
CS(N) < (Corr( log Z(O,O),(r,r)s 10g Z(O,O),(N,N)) < C4(N> .

We record the following two corollaries, which state the equivalent results but in
terms of the covariance of the free energies.

Corollary 2.3. There exist positive constants Cs, Ce, co, No such that, whenever N >
Noand N/2 <r < N — cq, we have
Cs(N — r)2/3 5\/Var( log Z(o,o),(r,r))\/Var( log Z(O,O),(N,N))

— Cov(log Z0,0),r.r)- 108 Z(0,0),(n.n)) < Ce(N — )

Corollary 2.4. There exist positive constants C7, Cg, co, No such that, whenever N >
No and co <r < N/2, we have

2/3.

C7r% < Cov(log Z(0,0).(r)- 108 Z0.0).v.v)) < Cr?/>.
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\o
a N\ [k
\a Rfyb
o

a

Fig. 1. Illustrations of the segment E’; and the parallelogram R]; p- All anti-diagonal segments have {*°-length
2k

3. Preliminaries on the Polymer Model

3.1. Notation. Generic positive constants are denoted by C, C’ in the proofs. They may
change from line to line. Other important positive constants in the results are numbered
in the form Cpumber-

As shown in Fig. 1, for any point a € 7%, La ={a+(j,—)): j € Z} denotes the
anti-diagonal line with slope —1 going through the point a, and for any positive constant
k, set

LA =(x€eLy:|x—ale <k}
Fora,b € Z? and k € Ry, R];’b denotes the parallelogram spanned by the four corners
a+t (—k,k)and b + (—k, k).

For a collection of directed paths 2, let Z(2() be the partition function obtained by
summing over all the paths in 2

zQy =Y []¥

ye zey

For A, B C R?, let Z4_ p denote the partition function obtained by summing over all
directed paths starting from integer points

A°={aeZ’:a+[0,1)>NA # 0§
and ending in

B°={beZ”:b+[0,1)>NB # ).
Furthermore, set

ZW% = max Zap.
acA°,beB°

For A, B Cc R%,¢,d € Z? and h > 0 we define two specific partition functions:

in, R! . S
Z, Bc’d = sum over directed paths from A to B contained inside the parallelogram Ri‘ a>
exit, Rf d . .
4 = sum over directed paths from A to B that exit at least one of

the sides of Ré‘, q parallel tod — c.
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We simplify the notation when the starting and end places of the free energy match with
the parallelogram, for example

s pk
1n,Ra’b
51 ps2

La Ly

in,k

s k
eXitRyy Zexitk
s 8
ol

Z =Z and Zﬁil,ﬁf,z =2y

Integer points on the diagonal are abbreviated as ¢ = (a,a) € Z?. Common oc-
currences of this include Z, v = Z¢.r).(v.N) ZpN = Zp.v.Ny L = LK , and

. a (a,a
— pk _ pk
Ry, =R"(a,b) =R, ,y 1)
The standard gamma function is I'(s) = fooo x*~le™ dx and the polygamma func-

tions are Wi (s) = j;Till logT'(s) fork =0,1,2,....

Finally, we point out two conventions. First, we drop the integer floor function to
simplify notation. For example, if we divide the line segment from (0, 0) to (N, N) in 5
equal pieces, we denote the free energy of the first segment by log Zo y/5 even if N/5
is not an integer. The second one is about the dependence of constants on parameters.
A statement of the type “there exists a positive 6y such that for each 0 < 6 < 6, there
exist positive constants Cp, Ny, ty such that...” means that Cy, Ng and 7y can (and often

necessarily do) depend on 6.

3.2. Regularity of the shape function and the characteristic direction. Henceforth fix
the shape parameter i € (0, 0o) and assume that the weights {Y,} have the i.i.d. inverse-
gamma distribution (2.2). Recall from Sect. 3.1 that W is the trigamma function, define
the characteristic direction as a function of p € (0, n)

3.1

Yi(p) Wi —p) )

Elpl = (\111(,0)4‘1111(“_10) ’ Wi(p)+W¥i(n—p)

The term characteristic direction becomes meaningful when we define the stationary
inverse-gamma polymer in Sect.3.4. W is strictly decreasing and C* on R. (. Thus
&[p] is a continuous bijection between p € (0, ) and vectors (or directions) on the
open line segment between e and e;. Denote the slope of the vector &[p + z] by

_ Elp+z]-e _ Vi(w—p—2)
Elp+z]-e Ui(p+z)

m,o(Z)

It is C°° with non-vanishing derivative on the interval z € (—p, u — p). Its inverse
function z,(m) is C°° and has a non-vanishing positive derivative for m € (0, o). The
graph of m /> (z) is illustrated in Fig. 2. Taylor expansion for m,(z) around z = 0 gives
this estimate:

Proposition 3.1 (Lemma 3.1 of [20]). There exist positive constants Co, C1¢, € such that
for each 7 € [—e, €] and each p € [€, u — €], we have

|mp(2) = (m,(0) + Coz)| < Croz”.
The next few results specialize to the diagonal direction p = /2. We drop the

subscript and write m = m, > and z = z,,/2. Taylor expansion of z(m) around m = 1
gives this estimate:
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—1/2 /2

Fig. 2. The graph of m />(z) for z € (—u/2, u/2). The function m is smooth and has a non-vanishing
derivative on (—/2, /2). The image of m,, /2 (2) is (0, 0o) which corresponds the slopes of the points inside
le1, ez

Proposition 3.2. There exist positive constants C11, C12, € such that for eachm € [1 —
€, 1 + €], we have

|2(m) — C11(m — D] < Cpa(m — 1)

Next, we quantify the dependence of the shape function on p. Recall the shape
function A is a positively homogeneous, nonrandom continuous function A : Rio - R
that satisfies the shape theorem (see [42, Section 2.3]): B

log Zo, — A@)|

i 0 P — almost surely. 3.2)
Z|1

lim sup
oo zeZiozlzhzn

Let f(p) denote the shape function A evaluated at the vector &[ p], and recall from [61]
that

£(p) = AEIPD) = —gZhs - Wo(u — p) — g L5 Wo(p)  (3.3)

where Wy and W) are the digamma and trigamma function. Let f; = f(u/2) denote
the shape function in the diagonal direction. From concavity and symmetry, we get this
inequality:

Proposition 3.3. For each (v > 0 and each z € (—u/2, 1/2), f(u/2) > f(u/2 + z2).
The next bound captures the curvature of the shape function.

Proposition 3.4. There exist positive constants C13, C14, € suchthat foreachz € [—¢, €],
we have

|(F@/2+2) = fGu/2) = (—Cpzd)| = Craz.
Proof. From (3.3),
Jw/2+2) = f(n/2)

_ Wy (1/240) v (u/2-2)
= [ - (wlw/zlzﬁiwl(zu/z—z) Wo(1/2 = 2) + Grgumeey s s Yo (/2 + Z))]
(3.4)
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Wi (11/2) Wi (n/2)
- [_ <_w1<u/5)fw_1(u/2> Yo (/) + Gy et Gy Yo/ 2))]' 3-5)

Taylor expand (3.4) around z = 0. The “zeroth" derivative terms and (3.5) cancel each
other. The coefficients of z, z3, z° are zero. The coefficient of z2 is %\112 (n/2) <0. O

. .. . 2/3
Our next proposition controls the variation of the shape function on a segment U]’\,N .

Proposition 3.5. There exist positive constants C15, No, €y such that for each N > Ny,
23
h < egN1/3 and each pe E}Z(,N , we have

|A(P) — 2N f4] < Cish*N'.

Proof. Since each p € E};\,N *” has the same ¢!-norm 2N ,letusrewrite p = 2N&[1/2 +
zp] for some real number zp,. Then, by our definition A(p) = 2N f (/2 + zp).

Since the perpendicular £>°-distance from p to the diagonal is at most AN?/3, the
slope of the characteristic vector §[11/2 + zp] satisfies

Im(zp) — 1] < 2hN~'/3.
Fix ¢( sufficiently small, by Proposition 3.2, we obtain
|zpl < CAN™'/3.
Finally, applying Proposition 3.4, we obtain that
|f (/2 +2p) = fal < CH*N7

which directly implies the result of our proposition after multiplying by 2N on both
sides. m|

3.3. Free energy estimates. In this section, we collect a number of estimates used later
in the proofs, organized thematically into subsections. Some results are merely quoted,
some proved later, and in cases where the result has already appeared in the zero tem-
perature setting the positive temperature proofs are in Appendix A.

3.3.1. Moderate deviation estimates for the free energy There are four moderate devi-
ation estimates: upper and lower bounds for both left and right tails.

The first theorem gives the upper bound on the right tail of the free energy. This
result for the inverse-gamma polymer was first proved as a combination of the moderate
deviation estimate from [10], which used integrable techniques, and the large deviation
estimate from [37]. The same moderate deviation upper bound was also recently proven
in [50] for the O’Connell-Yor polymer using the coupling method, which was based on
the seminal work [30] in the zero temperature setting. With a similar coupling approach,
the forthcoming work [31] proves this bound and obtains the sharp leading order term
%t3/ 2 in the exponent fort < CN 2/3 A version of this bound can be found in the Ph.D.
thesis of one of the authors of [31], as Theorem 4.3.1 in [68]. The right tail estimate for
the KPZ equation with the sharp leading order term was also recently obtained in [35].



163  Page 14 of 72 R. Basu, T. Seppildinen, X, Shen

Proposition 3.6. Lef € € (0, u/2). There exist positive constants C1¢g, No depending on
€ such that for each N > Ny, t > 1, and each p € [€, u — €], we have

P(log Zg angp) — 2Nf (p) = tN'/3) < e~ Crominl eVt

The next theorem is the corresponding lower bound for the right tail, restricted to the
diagonal direction. This was recently proved for the O’Connell-Yor polymer in [50] in
the diagonal direction. The proof uses the subadditivity of the free energy and the Tracy-
Widom limit of the free energy. Since using integrable techniques, the Tracy-Widom
limit of the inverse-gamma polymer is also known [10], the proof for the O’Connell-Yor
polymer in Section 9 of [50] can be repeated verbatim for the inverse-gamma polymer.
A similar argument in the zero-temperature setting appeared earlier in [12,36]. Without
this input from integrable probability, a lower bound with the correct leading order %13/ 2
for t < CN?/ over all directions in a compact interval away from e; and e, will appear
in [31].

Proposition 3.7. There exist positive constants Cy17, Ny, to, €9 such that for each N >
No, to < t < €gN>/3, we have

P(og Zo.y — 2N f4 > INV3) > o Crt?

The next theorem is the upper bound for the left tail. A similar result was stated as
Proposition 3.4 in [50] for the O’Connell-Yor polymer. We prove this estimate for the
inverse-gamma polymer in Sect. 8. Our proof is similar to [50], based on ideas from the
zero-temperature work [29].

Proposition 3.8. Let € € (0, u/2). There exist positive constants C13, No depending on
€ such that for each N > Ny, t > 1 and each p € [€, 1 — €], we have

P(log Zo angip) — 2Nf(p) < —tN'/3) < ¢~ Clomint? Nty

Remark 3.9. The correct order of the left tail should be ¢—C min{s LNty for all t > ¢.

This is different from the zero-temperature model where the left tail behaves as e~¢’ ’
For the O’Connell-Yor polymer, the authors in [50] also proved an upper bound e~¢ ’
when 1p < t < N?/3(log N)~!. This is done by adapting the bootstrapping argument
from the zero-temperature work [36]. We do not pursue this here but expect the same
result.

Finally, we have the lower bound on the left tail, which we prove in Sect. 8. The same
lower bound was proved in [50] for the O’Connell-Yor polymer. The idea of the proof

follows the zero-temperature work [36].

Proposition 3.10. There exist positive constants C19, Ny, to, €9 such that for each N >
No and each t) <t < 60N2/3/(log N)2, we have

P(log Zo.y — 2N fy < —tN'3) > ¢=Cror’,
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3.3.2. Free energy and path fluctuations In this section we state the estimates which
capture the loss of free energy when the paths have high fluctuations.

Proposition 3.11. There exist positive constants Coy, C21, No such that for each N >
No, h € Z and t > 0 we have

P(]ogZ N2/3 AN2/3 —2Nf; > (_C20h2+t)N1/3)
L L
0 (N—21N2/3 N+2nN2/3)

< ¢~ Ca1(hP+min(e?/2 N3y

Then, by essentially a union bound, we obtain the following proposition.

Proposition 3.12. There exist positive constants Cas, C23, No such that for each N >
No, t > 1and s > 0, we have

P<10gz v — 2N fa = —C22t2N1/3) < e Ot

RN o Al

Following this, we have the next proposition which states that paths with high fluctuation
tend to have much small free energy.

Theorem 3.13. There exist positive constants Cpy4, Cas, No such that for each N > Ny,
1<t<NY3and0 <s < e, we have

j 2/3 3
]P(log ZZI;S;IZYNZB —2Nfq = —C24f2N1/3> < e On
0o kN

From this, we have the following corollary which is a similar bound for point-to-point
free energy that is slightly off the diagonal direction.

Corollary 3.14. There exist positive constants Cae, C27, No such that for each N > Ny,
1<tr<NY3ando <s < t/10, we have

N2 3
IP’(log Zfil?;v]g/qsl\/zg)w —2N fa = —C2612N1/3) <e U,

3.3.3. Interval-to-line free energy In our work, we will also need an upper bound for
the right tail of the interval-to-line free energy.

Theorem 3.15. There exist positive constants Cg, Ca9, No such that for each N > Ny,
: 3/2 1/3
t>1land1 < h < Casmin{t /2Nt }, we have

_ 132 N3
IF’(log ZLSNZB,LN —2N f; > tN1/3) < ¢~ CoominltILINTEY
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3.3.4. Estimates for the constrained free energy When we constrain the paths, the free
energy decreases because we are summing over a smaller collection of paths in the
partition function. The first theorem captures that the point-to-point free energy can not
be too small if we constrain the paths to a fixed rectangle of size order N x N/3 which
obeys the KPZ transversal fluctuation scale. Our second theorem gives a lower bound
for the probability that a constrained free energy is large.

Theorem 3.16. For each positive ay, there exist positive constants C3, to such that for

each 0 < 0 < 100, there exists a positive constant Ny such that for each N > Ny, t > tg

2/3
andp € L%’QN , we have

in,§ N2/3 1/3 1 —C300t
]P’(logZO’p —2Nfy < —tN"/ )5%6 3061
Theorem 3.17. For any positive constant s, there exist positive constants C31, ty, No
such that for each N > Ny, t) <t < N2/3,

. 2/3 3
IP’(log ZimsNT _oN £y > tN1/3) > = Cat’?,

3.3.5. Minimum and maximum estimate for the free energy Our first theorem is the box-
to-point minimum bound. This was first proved in the zero-temperature setting which
appeared in [16] for the Poissonian LPP model, then later in [14] for the exponential
LPP model. The proof follows the idea from Section C.4 of [14].

Theorem 3.18. There exist positive constants C3p, Ny, ty such that for each N > Ny
and t > ty, we have
in, RV
IP( min log Zy x"" — @N — Ipl) fu < _;N1/3> <o Cot,
PER(I)\{QI\}/l()
Lastly, we state a box-to-line maximum bound.
Theorem 3.19. There exist positive constants C33, N, to such that for each N > Ny

and each t > toy, we have

_ _ 1/3 —C3at
P( max logZp oy — 2N — Ipl) fa = tN )se .

N
PERy 9N 10

Remark 3.20. In both bounds of Theorem 3.18 and Theorem 3.19, the power 1 on the
exponent 7! is not expected to be optimal.

3.3.6. Variance bound for the free energy We state the variance bound of the free energy
which follows directly from the upper and lower bounds for the left and right tails. We
omit its proof. The upper bound was first shown in [61] where the inverse-gamma
polymer was first introduced.

Theorem 3.21. There exist positive constants Cz4, C35, No such that for each N > N,
we have

C3aN?*"* < Var(log Zo,y) < C3sN*/>.
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3.3.7. Nonrandom fluctuation Finally, we record a lower bound for the nonrandom
fluctuation of the free energy ini.i.d. inverse-gamma polymer. This result follows directly
from the Tracy-Widom limit of the inverse-gamma model and the fact that the Tracy-
Widom distribution has a negative mean. Our contribution here is an alternative proof
(in Sect. 7) without relying on the Tracy-Widom limit.

Theorem 3.22. Let € € (0, u/2). There exist positive constants C3g, No such that for
each N > Ng and p € [€, u — €], we have

2N (p) — Ellog Zo angpe)] = C36N 2.

3.4. Stationary inverse-gamma polymer. The (increment) stationary inverse-gamma poly-
mer (with southwest boundary) is defined on a quadrant. To start, we fix a parameter
p € (0, u) and a base vertex v € Z2. Foreach z € v + Z2>0, the (vertex) bulk weights
are defined by Y, ~ Ga~ (1), where Ga—!(u) denotes the inverse-gamma distribution
with shape parameter ©. On the boundary v + ke, and v + ke;, the (edge) weights are
denoted by I’s and J’s, and they have the distributions

P -1
Iyt 1)ker, veke ) ~ G2 (e — p)

L -1
JIIU+(k—1)ke2,v+ke2]] ~ Ga™ (p).

(3.6)

All the weights in the quadrant are independent. We denote the probability measure for
the stationary inverse-gamma polymer by [P and record the parameter p and the base
point v in the notation of the partition function. For w € v + Zio, let us define

1 if Yi =V
[v—wl P .
Z 7 5 Ir, o ifyi-ea=v-e
Z\e,w = 1_[ Y. i where Y)/i = [[,gl_el’yl]] ¢ l e —v.e
yeXyw =0 lyi—e.y) LYi €L =V-€

Y, otherwise.

And for y € Xy, w, the quenched polymer measure is defined by

[v—wly

[ ¥

i=0

Qe,w (y) =

P
Zv,w

The name (increment) stationary inverse-gamma polymer is justified by the next
theorem, which first appeared in [61, Theorem 3.3].

Theorem 3.23. For each w € v + Z2 . We have

70w G-l Zyw .

5 ~Ga  (u—p) and 5 ~ Ga~ (p)
Z Z

V,wW—ej V,W—e)

Furthermore, let n = {n;} be any finite or infinite down-right path in V+Z220. This means
Ni+1 — Ni is either €] or —ey. Then, the increments {Zf,),,m] /ngm} are independent.
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From Theorem 3.23 above, we have the following identity for the expectation of the free
energy. Recall from Sect. 3.1 that W is the digamma function,

B[ 10g 7§, )| = —a®ox = p) = b@o(p), (3.7)

Because the weights appearing on the boundary are stochastically larger than the
bulk weights, the sampled polymer paths tend to stay on the boundary. However, for
each fixed p € (0, ), there is a unique direction for which this effect between the e;-
and e;-boundary is balanced out, we call this the characteristic direction &[p], which is
defined previously in (3.1).

The first estimate below is the upper bound for the right tail of the free energy. It first
appeared in the Ph.D. Thesis [68]. Then, it was proven again in [51]. From (3.7) and the
definitions of f(p) in (3.3) and &[p] in (3.1), by a substitution, we see that 2N f (p) can
be thought as the expectation of log Zg,z NELo)? if we ignore the error from the integer
rounding.

Theorem 3.24. Let € € (0, u/2). There exist positive constants C37, No such that for
each N > Ny, t > 1 and p € [€, u — €], we have
P(10g Z§ ,yg() — 2NS (0) = tN'/3) < e~ Cormintt '),

Along the characteristic direction, the sampled paths tend to stay on the boundary for
order N°/3 number of steps. Our next result is a corollary of this fact, which appears as
Corollary 4.2in [59]. Fixw € V+Zi0 andany k € R. . Let {ty w > k} denote the subset
of Xy,w such that the first |k steps of the path are all e -steps. Similarly, {ty w < —k}
is the subset of Xy w whose first |k| steps are all e>-steps. When 7y v appears inside
a quenched polymer measure as below, we will simplify the notation ty w = 7 as the
starting and end point of the paths are clear.

Theorem 3.25. Let € € (0, w/2). There exist positive constants C3g, C3g, No such that
forforall p € [e, u — €], N > Nyandr > 1, we have

—Cagr? —C3or®
IP)p(Qo,zzvg[p]Jrerﬂel{T S} zem W) et

Let Z denote the version of the partition function that also includes the weight at
the beginning of the path. The following is essentially a lower bound for the difference
between the free energies of the stationary boundary model and i.i.d. bulk polymer. We
included an additional boundary weight with the i.i.d. bulk free energy in the estimate
below because this version will be used to prove Theorem 3.22. Its proof will appear in
Sect.7.

Theorem 3.26. Let € € (0, u/2). There exist positive constants Cao, No such that for
each N > Ny, 0 < § < 1/2and p € [€, u — €], we have
P(log 2% gt~ (1°g Iji1,-1y.0,-1yy *+ 108 Zo,st[p]) = 5N1/3>
< Cyollog(8 v N~ 5 v N5,

For completeness, we also record the following upper bound for the difference be-
tween the stationary and i.i.d. free energy. This result follows directly from Theorem
3.24 and Proposition 3.8 using a union bound, hence we omit its proof.



Temporal Correlation in the Inverse-Gamma Polymer Page 19 of 72 163

Theorem 3.27. Let € € (0, u/2). There exist positive constants Ca1, No such that for
each N > No, t > 1 and p € [€, u — €], we have

_ 032 1/3
P(log Zfl,ZNE[p] — log ZO,ZNE[p] > tNl/S) <e C41 min{t”/<tN }

3.5. Randomwalk comparison for the free energy profile. The stationary polymer allows
one to compare the free energy profile along a segment of a downright path to random
walks. This technique has appeared previously in [6,8,20,59,61,62] and many more
places.

To start, fix p € (0, n) and define

vy = 2NE&[p].

Let ®; denote a down-right path of k (edge) steps that goes through the vertex vy . Order
the vertices of ®y as zg, . . ., Zx, where zg has the largest e;-coordinate value. Define the
free energy profile to be the following collection of random variables

logZy, —log Zy,_, wherei =1,... k. (3.8)

The proof of the following theorem appears in Appendix B.

Theorem 3.28. Fix € € (0, i/2). There exist positive constants Caz, No, o, ao, qo such
that for each p € [e,;t — €], N > No, 5o < s < a0N1/3, 1 <k < sN?/3 and each
down-right path Oy = {2y, . .., Z;}, there exist two collections of random variables { X ;}
and {Y;} such that the following holds. Set

173 1/3

A=p+qosN~ and n=p—qosN~
The random variables {X;} are mutually independent with marginal distributions

X; ~log(Ga™ (1 — 1) ifzi —zi— = e
—X; ~ log(Ga™' (»)) ifz; — 2,1 = —e.

The random variables {Y;} are mutually independent with marginal distributions

Yi ~log(Ga '(n—n) ifzi —zi— = e
—Y; ~ log(Ga™ ' (n)) ifz; —zi_1 = —ey.

Furthermore, X; and Y; bounds the free energy profile with high probability.
P(log % +Y; <logZy, —logZp,_, <log % + X foreachi =1,2, ... k) >1-— e=Cas®

We also note that when ® is vertical or horizontal, then X; and Y; can be coupled
together with an explicit joint distribution that allows calculations, see [6,7,20,59,62].
However, we will not use this fact in this paper.
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3.6. Maximum bound for the free energy. Finally, we document the following bound for
the free energy in a maximized version, rendering the estimates closely resembling those
in last-passage percolation. This specific argument persists throughout the remainder of
the paper. For illustrative purposes, we present this upper bound for the point-to-line
free energy, bounding it with the maximum version.

Proposition 3.29. Let log Zy o, be the point-to-line free energy; then the following
holds:

log Zy, £, < max log Zoy +10g(2N +1).
VELN

This directly follows from the factthat Zo £, = > ver\ Zoy < @N+1)-maxyery Zo.v-

We also note that the fluctuation of both log Z »,, and maxyez, Zo,v are of order N 173,
thus, the log(2N + 1) term is significantly smaller, which does not affect the estimates
significantly. Also, in the application of this upper bound, to simplify the notation we
may use 2log N instead of log(2N + 1).

4. Local Fluctuations

In this section, we look at fluctuations for the polymer near O or (N, N) where the
time scale can be much smaller than the full scale N. We start with an estimate for
the fluctuation of the free energy profile along the anti-diagonal line. This result was
first proved for a zero-temperature model (Brownian last-passage percolation) in [41]
using the Brownian Gibbs property. Other related results and extensions for the various
zero-temperature models have appeared in [12,14,21]. Compared to these, our proof
does not rely on integrable probability which was used in [21,41], and we improve the
tail estimate from [12,14] to optimal order.

Proposition 4.1. There exist positive constants C43, Ca4, co, No such that for each N >
No, 1 <t < coNl/z, and each a € Z=q, we have

P(log Zocg —logZon = C43f«/E) < g~ Casminit? 1/a),

Remark 4.2. Since the free energy profile {log Zo (v+k,N—k) —10g Zo, v }kez 1s expected
to be locally Brownian after the KPZ rescaling, the difference of the free energies in
the probability above should approximate the running maximum of a two-sided random
walk. Thus the tail bound is of optimal exponential order.

Proof. The case a = 0 is trivial, so we will always assume a € Z- . As we previously
discussed in Sect. 3.6, we may prove the proposition with the maximum version of the
free energy since

log Zo,n <log Z rq, < log 6“?‘7\] +10log(a + 1).
Let us also note that when a > 12/3N2/3, the estimate is straightforward. It holds that

P(log g‘?‘?v —logZon > Ctﬁ)

< P(log Z§"%, —log Zo.y = C st N'7)




Temporal Correlation in the Inverse-Gamma Polymer Page 21 of 72 163

< P(]Og max —log Zo.y > Ct4/3N1/3>
< ]P’(logzmax —ONfy > %t4/3N1/3)
+P(log ZoN —2N f; < —%t4/3N1/3> = e‘C,z’

where the last inequality comes from Propositions A.2 and 3.8.

From now on, we will assume that the integer a satisfies | < a < t23N23 In
addition, note that our estimate for the difference of two free energies does not change
if we included the weight Y(,0) in both partition functions. For the remaining part of
the proof, we will also assume this without introducing a new notation for this version
of the partition function.

By a union bound, it suffices to prove our estimate for

(log Zy% . —log Zo.y = c%ﬁ) 4.1)
where E‘]i,‘* is part of L4, above (N, N). For any fixed k =0, ..., a, let us rewrite
k

108 Zo.(N—k.N+k) — 10g Zo.v = D 10 Zo,(v—i.n+i) — 108 Z0,(N—(i—1). N+ —1)) = Sk-
i=1

This allows us to work with a running maximum of the walk Sy since
4.1) = IP( max S; > c’tﬁ). 4.2)
0<k<a

The steps of S are not i.i.d., however, Theorem 3.28 allows us to work with an i.i.d. ran-
dom walk S; which upper bounds S; with high probability. More precisely, the down-
right path ®;, will be the staircase from (N — a, N + a) to (N, N). Because the steps
of S and the free energy profile defined in (3.8) differ by a negative sign, the perturbed
parameter will be n = /2 — got?’>N~1/3, and the distribution of the steps of Sy is
given by log(Ga~ (1)) — log(Ga~ ! (1 ).

Let A denote the event that log 107, Sk > S, foreachk =0, 1...,a.Then, we have

(42)<1P>([ max sk>cfz3/4}mA)+P(A)

< ]P’({ log 10 o + max S > C’ﬁt3/4}) +P(A°).
0<k=<a

From Theorem 3.28, we know P(A€) < ¢=C"* . Absorb the constant log(10/9) into the
constant C, and it suffices to obtain the upper bound

]P( max S, > c/tﬁ) < g~ Cminl?1v/a), (4.3)
0<k<a

This is a standard running maximum estimate for an i.i.d. random walk whose steps are
sub-exponential. We omit the details here and postpone the proof of (4.3) to the end of
Appendix D. O

Next, we extend the value of ¢ in the previous proposition from ty < t < coN 172

to all # > fy. The cost of this is a non-optimal exponent appearing in the exponential
bound.
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Proposition 4.3. There exist positive constants ty, No such that foreach N > Ny, t > t,
and each a € Z=q, we have

_;1/10

P(log Zo ra —log Zon > ti/a) <e
L8 ,

Proof. The case a = 0 is trivial, so we will always assume a > 1. Due to Proposition
4.1, we only have to show the estimate when t > CyzcoN 1/2 where both constants Ca3
and ¢ are from Proposition 4.1. Suppose ¢ = zN''/? where z > Cy3co. Then,

IP(log ZO,[:;‘V —logZon > tﬁ) < P(log Zo,t:‘;v —log Zo.n > t)
— ]P’(log Zo,cs, —log Zoy = (zN‘/é)NW)

<P(logZy e —2Nfy > (AzNVON'3) +P(log Zoy —2Nfy < —(LzNVON/3
Ly 2 2

110
e,

The last inequality comes from Proposition A.2 and Proposition 3.8. O

Fix 0 < r < N/2. Recall that L, is the anti-diagonal through the point (r, r). Let p4
denote the random maximizer in

mELlZX { log Zo,p + log Zp,N} =log Zop, +log Zp, N.
PEL,

The proposition below captures the KPZ transversal fluctuation which says that the
maximizer p, cannot be too far from the diagonal on the local scale %/°. This can
of course be much smaller than the global fluctuation scale N%/3. This result was first
proved in the zero-temperature model in [15].

Proposition 4.4. There exist positive constants Cys, co, to, No such that for each N >
No, co <r < N/2andt > ty, we have

P(Ips — (1, 7)|oo > 1r2/3) < o~ Cast®

Proof. Abbreviate J" = Eifzhﬂ /3 re2hr /3y We bound the probability as follows.

P(Ips — (r, Moo > 1r°/7)
< }P’( max { log Zy,p + log Zp,N} > log Zp » + log Zr,N)
pel Ly’
/3
max max
< Z P(log Zyn +log Z357 > log Zo,, +log Zr)N)
|h1=11/2]
A1/3
= Z P([log g,l% —log Zo,r] + [log rjxl,,af‘N —log Zr’N] > O)
[h1=11/2]
A1/3
< ¥ [IP( log ZI™ — log Zo,, > —Dh2r1/3) (4.4)
|h1=11/2]
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+ ]P’( log 2T, —log Zy.y > Dh2r1/3)] (4.5)

where D is a small positive constant that we will fix.
For (4.4), provided tj is fixed sufficiently large, we may upper bound (4.4) using
Propositions 3.11 and 3.8 as the following

B(llog Z§'%) — 2r fal ~ llog Zo, — 2r fa) = —Dh’r'?)

= IP’(log ogh = 2rfa = —2Dh2r1/3) + ]P’(log Zoyr —2rfs < _thrl/s)

< o ClhP

provided D < 11—0C20 from Proposition 3.11.

For (4.5), we will split the value of r into two cases, whether r < €y(N — r) or
r > €o(N —r), for g which we will fix below (between 4.7 and 4.8). Whenr < €g(N —r),
we upper bound (4.5) by

4.5) < P(log 2 s = logZyw = '), (4.6)

and we would like to apply Proposition 4.1. From there, we let ¢ = 4|h|r?/3 and
t = 8|h|3/2eg/2. Then, continue from (4.6),

(4.6) < P<]0g Zz;fl'rz/} v —log Z, N > %D|h|3/2 4|h|r2/3>

1
= P(log ZBy —log Z,y = L1 y/a), @.7)

372
8¢,

Next, we fix €q sufficiently small so that r < 'Eorl/ 2 where Co is the constant ¢ from
Proposition 4.1. Then, we lower the value of D to get

I03/2 < C43 4.8)

where C43 is the constant appearing in Proposition 4.1. Finally, by Proposition 4.1, the
above probability in (4.7) will always be bounded by e=C?* = ¢=ClAF*,

On the other hand, when r > €o(N — r), if the maximizer p, is located more than
|h|r2/3 away from the diagonal, it means it is more than (60/2)2/3 |h|(N —r)2/3, which is
the same order as (N — r), away from the diagonal. Provided that 1y is fixed sufficiently
large depending on €, (4.5) can be upper bounded with a similar argument as in (4.4).

To summarize, the arguments above show that

,13 00

Y @dres < Y e <o
IhI=L1/2) IhI=L1/2]

with this, we have finished the proof of this proposition. O

By symmetry, similar results also hold for the case when N/2 < r < N. We record
this in the following proposition. Let p* denote the random maximizer of

max{log Zo p +log Zp n}.
peL,
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Proposition 4.5. There exist positive constants Cag, co, No, to such that for each N >
No, N/2 <r <N —coandt > ty, we have

]P)(|p>k — (r, V)|OO > [(N _ }")2/3) < e_C46’3_

The next estimate quantifies the effect of letting the crossing point of the path on
an antidiagonal fluctuate in the KPZ scale versus forcing the path to go through a fixed
point.

Proposition 4.6. There exist positive constants cg, ty, No, €o such that for each N > N,
N/2 <r <N —co, t > ty, we have

]P’( max {log Zo,p +1log ZP,N} — [log Zo r +log Z,.N] >t(N — r)1/3) < e_’l/lo.

Nn2/3
pect®=n

Proof. Let us start by rewriting

]P’( max [log Zo,p +log Zp,N} — [log Zo,r +log Z,,N] >t(N — r)1/3)

peri V-
< IP’( log Z0" v s —log Zo, = FH(N — r)‘/3) 4.9)
+]P<log Zzli)z(vfrﬂﬂ M log Z, n > %I(N _ r)1/3)_ (4.10)

Both probabilities (4.9) and (4.10) can be upper bounded by e~¢* o using Proposition
4.3. |

We combine the previous propositions into the following statement.

Proposition 4.7. There exist positive constants cy, ty, No, €o such that for each N > Ny,
N/2 <r <N —cop, t > tg, we have

P(mazx {log Zo,p +log Zp,N} — [log Zo, +log Zr,N] >t(N — r)1/3) < eftl/lo.
peL,

. . . _N2/3
Proof. By a union bound, we split the above maximum over p € L, to p & Ei(N )

_2/3
andp € LI

be upper bounded by e

. Propositions 4.5 and 4.6 show that in both cases the probability can
_cyl/1o
. O

The development culminates in the following theorem.

Theorem 4.8. There exist positive constants cg, to, No, such that for each N > N,
N/2 <r <N —cp, t > ty, we have

]P(log Zon — [log Zo., +1log Zyy] = 1 (N — r)‘/3) <e
Proof. This follows directly from the fact that
log Zon < makx{log Zop+logZy N} +210g(N — 1)
pel,

and Proposition 4.7. o
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5. Proof of Theorem 2.1

This section proves Theorem 2.1. Throughout, co < N —r < N/2is assumed. Using the
following identity, where the first equality below comes from performing the derivative
test for A and finding the minimum,

Var(U — V) > inf Var(U — AV) = (1 — Corr*>(U, V))Var(U)
reR (5.1)
= (1 — Corr(U, V))(1 + Corr(U, V))Var(U).

Apply this to bound 1 — Corr(U, V) for U = log Zy,ny and V = log Zo . By the FKG
inequality, Corr(log Zo v, log Zo ) € [0, 1]. (5.1) gives

infcr Var(log Zo y — Alog Zo ) <1 — Corr(log Z log Zo.») < Var(log Zo, v — log Zy,,)
2Var(log Zo. ) - O.N> 0r) = Var(log Zo.n)

Since Theorem 3.21 gives Var(log Zyg y) > CN 2/3 the lower bound of Theorem 2.1
follows from the second inequality of (5.2) and

Var(log Zo,y — log Zo.,) < C(N —r)?/3. (5.3)

To show (5.3), apply the inequality Var(A) < 2(Var(B) + E[(A — B to A =
log Zo. v —log Zp, and B =log Z, y. Var(B) < C(N — r)%/3 follows from Theorem
3.21, and E[(A — B)?] < C(N — r)*/3 follows from Theorem 4.8. The proof of the
lower bound of Theorem 2.1 is complete.

We turn to prove the upper bound of Theorem 2.1, by bounding a conditional variance.
Recallthat [[O, (N, N)]is the square with lower left corner at (0, 0) and upper right corner
at (N, N). Let F be the o-algebra of the weights in [0, (N, N)]] that lie on or below the
anti-diagonal line £,. Note that log Zo , is F-measurable

Var(log Zo n|F) = Var(log Zo.n — log Zo | F)

2
= E[( log Zo.n — log Zo.» — Ellog Zo.y — log Zo,,m) ‘]—']

(54)
We develop a lower bound for the last conditional expectation above.
By Theorem 4.8,
[Ellog Zo,v — log Zo,,] — Ellog Z,v1| = C(N =)', (5.5)

In Proposition 3.7 the centering 2N f; can be replaced with E[log Zy y] because
E[log Zo.n1 < 2N f; by superadditivity. Thus altered, Proposition 3.7 and (5.5) give

e 7" < P(log Z,. 5 — Ellog Z,y1 > t(N — r)'73)
< P(log Z,n — Ellog Zo.x —log Zo,,1 = (t = O)(N —n)'/?).
Let 5o be a large constant and define the event
Ary = {log Z, ny — E[log Zo.ny —log Zo,-] = so(N —r)'"*}. (5.6)

A, n is independent of F and P(A, y) is bounded below independently of r and N.
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Next, using Chebyshev’s inequality we get

P(‘E[]og Zo.n — log Zo | F] — Ellog Zo.x — log Zo,1| > t(N — r)‘/3)
_ Var(E[log Zo.y — log Zo | F])

= 2N = )23
Var(log Zo,n — log Zo ;) 2
- » L2 </ by (5.3).
12N — )23 =< yey

By choosing ¢ and s large enough, there is an event B, y € F, with positive probability
bounded below independently of N and r, on which

S0
Ellog Zo,y — log Zo,r|F] — Ellog Zo,v — log Zo,/1| = 75N = N3 (5
On A, y N B, y we have the following bound, using first superadditivity log Zo v —
log Zy,, > log Z, y, then (5.7) and last (5.6):
log Zo,n —log Zo,, — Ellog Zo,n — log Zo,r|F]

S0 950
> log Z,,y — Ellog Zo,v —log Zo,r] = 1-(N — '3 > TN - n'A.

Square this bound and insert it inside the conditional expectation on line (5.4). Continuing
from that line, we then have

Var(log Zo.n|F) = C(N — 1) E[la, 15, ,|F1 = C(N =) 15,
By the law of total variance, for all A € R,

Var(log Zo vy — Alog Zp )
= ]E[Var(log Zo.n —AlogZy,, |f)] + Var[E(log Zo.n —AlogZy , |f)]
> ]E[Var(log Zo.N — Alog ZO,r|]:)]
= E[Var(log Zo.y|F)] = C(N — )3 P(B,,y) = C(N —r)*".

Apply this lower bound to the numerator of the first member of (5.2) and apply Theorem
3.21 to the denominator. The upper bound of Theorem 2.1 has been established.

6. Proof of Theorem 2.2

We assume throughout that ¢ < r < N/2. First, we prove the upper bound. By the
Cauchy-Schwarz inequality and the independence of Z , and Z, y,

Cov(log Zo,r, log Zo,n) = Cov(log Zo,r, log Zo,n — log Zyn)
< Var(log Zo,,)l/2 - Var(log Zo,n — log Zr‘N)l/z.

It therefore suffices to show that both variances above have upper bounds of the order
r2/3 . The first variance satisfies Var(log Zp,,) < C r2/3 by Theorem 3.21. The second
variance can be bounded again using the inequality Var(A) < 2(Var(B)+E[(A— B 2D
with A =log Zg y—log Z, y and B = log Z . Var(B) < Cr?/3 follows from Theorem
3.21, and E[(A — B)?] < Cr?/3 from Proposition 4.8 with the parameters  and N — r
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swapped and the fact that A — B > 0. This finishes the proof of the upper bound. The
remainder of this section is dedicated to the lower bound of Theorem 2.2.
Our approach follows ideas from [12,14] that we now describe. For 6 > 0, let Fo

denote the o -algebra generated by the weights in the set [(0, 0), (N, N)] \ R .In
Sect. 6.6, we will show that there exists an event & € Fy with P(&)) > €y > 0 (€0
independent of  and N) such that

Cov(log Zo,n, 10g Zo /|1 Fo)(w) = Cr?3  forw € &. (6.1)

Since the free energy is increasing in the i.i.d. environment, by (6.1) and applying the
FKG inequality twice, we have

Ellog Zo, log Zo,]
= E[Ellog Zo,x log Zo.,|1 701

:/ E[logZOVNIOgZQ!r|f9]dP+/ E[IOgZO‘NlOgZO,A]:g]dP
&y ¢

5‘0
> / Ellog Zo,v |79 1Ellog Zo,,1Fp1dP + Ceor®/ + f Eflog Zo, v |Fp1Ellog Zo, |1 Fy] dP
& &
- E[E[log Zo.v|Fo]Ellog zo,,ur@]] +Cegr??
> E[log Zo,y1E[log Zo ;] + Ceor?/?

This shows Cov(log Zop.n,log Zy ) = C r2/3, hence the lower bound in our theorem. In
the next few sections, we prove (6.1).

6.1. Barrier event By, This section defines a barrier event By, € Fp and investigates
consequences of conditioning on it. Fix the parameters 0 < 6 < 1/2,¢; = 60710 ¢, =
9100 and L = 91000 We have the freedom to decrease 6 if necessary, so that 0 <
6 < 6.

Next, we define a barrier event around the rectangle R‘)’ . This part of the con-
/
struction is illustrated on the left of Fig. 3. The region R¢2r \Rer is formed by two
disjoint rectangles, U; above the dlagonal and U, below the diagonal.

The anti-diagonal lines { L,/ L} k=1 ! cut each of U 1 and U3 into L small rectangles. If
we fix r sufficiently large depending on L, these rectangles are not degenerate. Denote

these small rectangles by Uik fori =1,2andk=1,...,L.LetU f and Uf denote the
top and bottom sides (with slope —1) of the rectangle U ik. We define the event

2
Bpar = ﬂ ﬂ {log Z;‘kUl’Tk —2(r/L) fa < —Lr1/3}. (6.2)

i=1k=1 —irTi

Lemma 6.1. There exists a positive constant 6y such that for each 0 < 6 < 6y, there
exists a positive constant cq depending on 6 such that for each r > co, we have

100

P(Bpar) > e_eL
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Fig. 3. Left: A demonstration of the region used to define the barrier event By, in (6.2), the gray rectangle

2/3
above is RS’ r/ . Right: construction used in the event A in (6.4)

Proof. Note By, is the intersection of 2L events, of equal probability by translation
invariance. By the FKG inequality, it therefore suffices to lower bound the probability

P(log 70U oLy £y < —Lr1/3). 6.3)
Ui
The following construction is illustrated on the right of Fig.3. Using diagonal and

anti-diagonal lines, we cut the rectangle U 11 into smaller rectangles whose diagonal £°°-

lengthis ﬁ and anti-diagonal £°°-length % . Then, the number of rectangles in this grid

(see the right of Fig.3) along the diagonal will be L?°. And the number of rectangles
in the anti-diagonal direction is no more than L?'. Let us use R(u, v) to enumerate
these small rectangles, where the index u = 1, 2, . .. L% records the position along the
diagonal direction, and v = 1,2, ..., v < L?! enumerates the small rectangles along
the each anti-diagonal line. Let us also use £(u) to denote the anti-diagonal line which
contains the upper anti-diagonal side of R(u, v), and let R(u, v) to denote the lower
anti-diagonal side of R(u, v).
Let D be the small constant Css from Proposition 8.3, and we define the event

A= {108 Zrwn £ —20/1) fa = =D/ L)L 64

99

Using the FKG inequality and Proposition 8.3, we have P(A) > e—e"
Next, the constrained free energy can be upper bounded using the maximum bound
introduced in Sect. 3.6

L2
in, Uy
gz, o7 = Zl (10010g L + maxlog Zpguy con )
_— u=
< L29<100 log L + max log ZR(u,v),ﬁ(u))
u,v -

restrict to the event A < L29<100 log L + 2(r/L30)fd — Drl/S/Ll())

<2(r/L)f4 — DLYr'3 4+ 130
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<2(r/L)fg — Lr'?

provided that 6y is sufficiently small (which makes L large) and then increase cg. With
this, we have shown that on A, the event in (6.3) holds, thus

100

63) > e

and finished the proof of the lemma by the FKG inequality. O

6.2. Concentration of the free energy between (0,0) and L,. Our goal in this section
is to show that when conditioned on By the free energy log Zy ., is concentrated on

paths that go from (0, 0) to ﬁ’ * and are contained between the diagonal sides of the

rectangle R?)@L/r L This is stated in Proposition 6.9 at the end of this subsection.

Before stating Proposition 6.9, we define our high probability events. To start, split
the collection of paths from (0, 0) to £, as follows. First, let
2 = all paths from (0, 0) to £f’" that stay inside R¢2r
B = all other paths from (0, 0) to L.
Then among £, let us further split 2 = 2A; U 2> U A3 U A4 where

2, = paths from (0, 0) to LI’ * that stay between the diagonal sides of RSG[ »/1 and

touch each Rir’/L"’(iH)r/L fori =0,1,...,L -2,
2, = paths that avoid at least one ofRfrr/zf_(Hl)r/L completely fori =0,1,...,L —2.
23 = paths that exit from the diagonal sides of Rwr and

intersect Rl-r/;(iﬂ)r/L foralli =0,1,...,L —2.

123 30r2/

24 = paths from (0, 0) to E‘f \ L 7 that stay between the diagonal sides of Ry, / , and

touch each R?r’/zﬁ(m)r/L fori =0,1,...,L =2,
(6.5)

And among B, we write 8 = s U s where

2/3

s = all paths from (0, 0) to £, \ £"
g = all paths from (0, 0) to £?1" * that exit Rd’zr

Letlog Zy, ¢, (2;) denote the free energy when we sum over only the paths inside 2;,
and define the following events:

{tog Z0"" — 2y fy = —675¢173),
{log Zo £, ) — 2r fg < —670,1/3}
{log Zo £, Q3) — 2r fg < —67 200,173},
{
{

log Z() L, (Ql4) 2rfd < _9—9007_1/3}.
log Zo, g, (As) —2rfy < _9*10,,1/3}



163 Page 30 of 72 R. Basu, T. Seppildinen, X, Shen

As = {log Zo.c,(Ae) —2rfg < _9—100r1/3}
Next, we show that all six events are likely events.

Proposition 6.2. Fori = 1, ..., 6. There exists a positive constant 6y such that for each
0 < 6 < 0y, there exists a positive constant cq such that for each co <'r,

-2

P(A; |Bpar) > 1 — e?
To prove Proposition 6.2, we will split it into six separated lemmas, according to
i=1,...,6.
Lemma 6.3. There exists a positive constant 6y such that for each 0 < 6 < 6y, there
exists a positive constant co such that for each co <r,
P(A|Bpar) > 1=~
Proof. We upper bound P(A{|Bpsr). By independence and Theorem 3.16,

/3

P(A{|Bbar) = P(log Z(i)rj’rgrz 2 fy < _9—5r1/3) <t

O

Lemma 6.4. There exists a positive constant 6y such that for each 0 < 6 < 6y, there
exists a positive constant co such that for each co <,

79710

IP)(~A2|Bbar) >1—e

Proof. Let us further rewrite 2 as a non-disjoint union of paths 1%;12 ng* U ng’_

where Q(IE’Jr and ng’_ are the collections of paths which avoid Rzr’ /zf Uesyr /L by going
above or below. For simplicity of the notation, let

¢2{9 »2/3 $2—-0 2/3

-
Uf ==L and U, =L ? .
k (%—¢22+0r2/3,]%+¢22+0r2/3) k (%+¢22+9r2/3,kf—¢22+9r2/3)

For each fixed k € [1, L — 2] and [ € {+, —}, we have the upper bound
log Zy £, (521]5":’) < log 2oLy log ZUkD’UkDH + log ZL ety i Lor- (6.6)
Since we are conditioned on the event By, then
_ 7 /3
log ZUkD’UkDH 2(r/L) fa < —Lr /", (6.7)

Since the free energy is increasing in the environment while By, decreases the environ-
ment, using the FKG inequality and the interval to line estimate from Theorem 3.15, we
have

P(log Zo.0yy — 2kr/L) fa = \/Zr1/3‘Bbar>
<P(log 20 2,,,, — 20kr/L) fy = VIr'P) < e
IP’(log Zegpty = 2L =k = Dr/L) fs = x/Zrl/3‘Bbar)

< (108 2,08, — 2L — k= Dr/L) fa = VTP ) <™
(6.8)
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From (6.6), (6.7), (6.8), We obtain the following estimate foreach fixedk = 1,2, ..., L—
2

P(log Zo.c, @) = 2r fiy = =57 |Brar) < e 6.9)
Using (6.9), a union bound will give us the desired result from our lemma,
P (45| Boar)
L-2
< P({10g (D" Zo.c, @5 + Zo.c, @5 T)) =20 fa = — '} |Buur)
< ]P’( ke[ﬁl,aL)iz]] log Zy ¢, (ng’m) +2logL —2rfy; > —IL—Orl/3HBbar)
Oef{+,—}
L-2
=3 Y P({roezoe, @) 20 = 5} | Buur)
k=1 Oef+,—)
S 6_9710
where the last inequality comes from (6.9) and provided 6y is sufficiently small. O

Lemma 6.5. There exists a positive constant 0y such that for each 0 < 0 < 6y, there
exists a positive constant cq such that for each co <r,

P(Ag‘b’bar> >1-— 6_9710.

Proof. As before, let us rewrite A3 as a non-disjoint union of paths U,fz_g Q[];’Jr U ng’_
where ng” and Qtlg’f are the collections of paths which exit from the upper and lower
diagonal sides of the rectangle R,ff/’zﬂ(k 1)L

Let us fix k and look at ng*. We will show that all paths in this collection must have
high transversal fluctuations. This fact is illustrated in Fig. 4. First, we further break up

this collection of paths by where they cross the lines L,/ and L+1yr/L. Fori, j € Z>o,
let

i %Qrz/3
Ty = (kr/L—(i+3)0r2/3 kr/L+(i+1)6r2/3)
j Lor2/3
J(k+1)r/L - ((k+1)r/L—(j+5)0r2/3 (k+ Dr /L+(j+3)0r2/3)"

Then any path in 2l§’+ must cross Ilir/L and J&H)r/L for some 7, j € [0, ¢2o9’1]].
—1

A5G, Jj) where A5, ) is
the collection of paths inside Ql§’+ that goes through I,ir /L and J(Jk /L Next, we will
split the case of i and j into two cases, when |i — j| < 1 or otherwise.

. k,+ . . ¢ 0
Thus we may rewrite 23" as a non-disjoint union (_J i =0

. .. . 2/3 .
By our assumption, the paths inside Ql§’+ must intersect Rfr’ /2’ Uty /L while also

exiting the upper diagonal side of R,ff/rz/ikﬂ)ru. If |i — j| < 1, there must be an

unusually large transversal of size at least 0723 = (OL?/3)(r/L)*/? for the segment
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/. /.

- 30r%/3 39,2/

N iy

)
(r,r) N (r,m)
N
L(k+1)r/L Let1yr/L
‘Ckr/L ‘Ckr/L
)

(0,0 (0,0)

/.

- 30r2/3
-
(r,7)
Lk+1)r/L
Lyt

(0,0)

Fig. 4. Anillustration of the paths from the collection QL§+ The paths in this collection must intersect the two
gray rectangles shown in the picture. The top two paths cross the lines Ly, /1, and Lx+1)r/L at neighboring
segments (the case |i — j| < 1 from the proof of Lemma 6.5). They must have a high transversal fluctuation
between Ly, /1 and L 41,/ because they have to reach the gray rectangles. The bottom picture is a path
that crosses the lines Ly, /r, and L1y, at non-neighboring positions (the case |i — j| > 2). This path
has a high transversal fluctuation between Ly,/f, and Lx+1),/L because of these non-neighboring crossing
positions

of the path Qlé”(i, J) between I,ir/L and J{,;H)r/L. We may invoke Theorem 3.13 and
obtain that for |i — j| < 1,
—100

P(log Z,

J
kr/L> J(k+|)r/L

@4, j) = 20/0) fa = ~COLP /D)) < e

(6.10)
for some small constant D.
Next, when |i — j| > 2, then there is already a large transversal fluctuation of size at

least 6r2/3 = (9L2/3)(r/L)2/3 between for the segment of the path Qlé”(i, J) between
I,ir/L and J(]k+1)r/L’ By Proposition 3.12, we obtain that for |i — j| > 2,

P(logzli i

kr/L>Y (k+1)r/L

(Ql];”f(i, J) —=2@/L) fu = _D(9L2/3)2(r/L)1/3) < o710

(6.11)
for some small constant D.
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By the FKG inequality, (6.10) and (6.11) still hold if we replace the probability
measure P with P(+|Bpar). Now as before, we upper bound the value of the free energy
of the paths outside the region between Ly,/1, and L+1yr/1 by (6.8). We obtain

P(log Zo.c, @7 ) = 2 fa = =L°%r B |Bo) <7 (612)
We have
P (A5 Boar)

= P({10¢ (LZ2 > %l Z0,6, @550 7)) = 2 fa = ~1°%r 1) | Buu)

k=0 Oef+,—} i,j=0

< (] log Zo.z, 50, j)) + 1001og L — 2r fy > —L°9 1/3HB )
=< repyax 108 Zo.o, (3G, 1)) 0g rfa= r bar
Oef+,—}
i,jel0,¢207 1]
L2 207!
=3 3 Y p(logZos, @) — 20 fu = —10%51 | By )
k=1 Oe{+,—} i,j=0
S 679780
where the last inequality uses (6.12) and provided 6 is sufficiently small. O

Lemma 6.6. There exists a positive constant 6y such that for each 0 < 6 < 6y, there
exists positive constant cq such that for each co <,

P(.A;;‘Bbar) >1- 6_072.

Proof. This is simply because the last part of the paths has a very large transversal
fluctuation,

]P’(log Zo,ci’”m\qz/—* (Ag) — 2r f4 > —LO'9r1/3’BbaI)
< IP(log Zo.c,,), +log Zﬁf‘l’,.z/f,ﬁ‘f”m\q” —2rfy > —L0'9r1/3‘3bar)
= P(log Zoz, =20 =r/L) fa = (L — L0‘9)r1/3‘8b31> 6.13)
+2(log Z s ot s~ 20/L) Ja = —Lr' | Bor). (614)

By the FKG inequality and Theorem 3.15,

(6.13) < P(log Zor. ., —20—r/L)fs> (L — L°-9)r1/3) <e L,

r—r/L

By the FKG inequality and Proposition 3.12,

(6.14) < P(logZ 2y —20r/L) fa > —Lr1/3> < oL

2/3
302 ’ﬁi’l’ \LI

r—r/L

With these, we have finished the proof of this theorem. O
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Lemma 6.7. There exists a positive constant 6y such that for each 0 < 6 < 6y, there
exists positive constant co such that for each cy <r,

-2

P<A5‘Bbar> >1- 679
Proof. By the FKG inequality, it suffices to show P(AS) < e Then, this estimate
follows directly from Proposition 3.12. O

Lemma 6.8. There exists a positive constant 6y such that for each 0 < 6 < 6y, there
exists positive constant co such that for each cy <r,

-2

P(-Aé‘lgbar) >1- e’
Proof. By the FKG inequality, it suffices to show P(Ag) < e 07 Then, this estimate
follows directly from Theorem 3.13. O

With these lemmas, we have shown Proposition 6.2. Finally, we have the following
proposition.

Proposition 6.9. On the event m?:] A;, we have
log Zo £, (1) < log Zo,r, <logZy r, (1) +logb.
Proof. This follows directly from the definition of our events .A; and the fact

max{log Zo 2, ()} <log Zy r, < max{log Zo z, (A;)}+1log6
J J

in,0r2/3
and log Zy £, (211) > log ZO,r . O

6.3. Concentration of the global free energy along L,. Define p* to be the maximizer
in

maxilog Zy , +log Z .
peﬁr{ g £0,p +108 p,N}

Our goal in this section is to show that when conditioned on By, with high probability,

p* € E;w. This is stated as Proposition 6.12 at the end of this subsection.
Again, we start by defining our high probability events,

[5)

& = ﬂ {log ij‘r"m —logZ,y <67 jr2/3}
j=1 L7 N
: 2/3
& = max log Zo p +1og Zp v < log ng;er +log Zy n — 0_1r1/3},

pecr\ﬁ(rplrz/
The next two lemmas show that £ and & are high probability events.

Lemma 6.10. There exists a positive constant 6y such that for each 0 < 0 < 6y, there
exist positive constants co, No such that for each N > Ny, co <r < N/2, we have

1/100

P(&11Bpar) = 1 — 6797
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Proof. By independence, it suffices to prove this estimate for P(£1). We fix 6 > 0 small.
We will upper bound IP(£7) using Proposition 4.3. In our application of this proposition,

the variables a = /jr2/3 and t = §~!. By Proposition 4.3,

$2 (03}
P& < Z]P’(log 2?}2/3 M log Z, n > o1 jr2/3> < Zefefl/so - o010
j=1 T j=1

O

Lemma 6.11. There exists a positive constant 0y such that for each 0 < 0 < 0y, there
exist positive constants co, No such that for each N > Ny, co <r < N/2, we have

P& Bpay) > 1 — e

-2
Proof. By the FKG inequality, it suffices to show P(&) > 1 — e~ . To do this, we

upper bound P(£5). For simplicity, let us denote EEZ/S

i h
r—2hr2/3 r+2hr2/3) simply as J™.

rl/3
< max log Zp ,, + 1o N > 1o in, 2/3+lo Z”\/—@_lrl/3
P(ES) P( max log Zo,p +log Zp,y = 1 g g g7
hi=pr/2 P
A3
< Z IP’(log o gn +log ZTF, —log Zg}’rerm —logZ, n > —9_1r1/3>
Ihl=¢1/2
F1/3
B 3
< ¥ P(log Z0s —log Zin0 " = —c’h2r1/3) (6.15)
Ihl=¢1/2
+P(log 2%, —log Zx = (C'h* = 67")r!1?) (6.16)

where C’ is a positive constant which we will fix (independent of ).

Next, since hZ > 077, we see that (6.16) is bounded by e_C‘h|3 as it is exactly the
same as (4.5) appearing in the proof of Proposition 4.4.

The probability in (6.15) can be bounded as
/3

(6.15) < ]P(log ZM _0pfy > —zc’h2r1/3) + P(log zinor?

) —2rfy < —C’h2r1/3).

Provided that C’ is fixed sufficiently small, the two probabilities above are upper bounded

by e—Cn using Proposition 3.11 and Theorem 3.16. To summarize, we have shown that
o
PED< Y e et
|h|=¢1/2
and this finishes the proof of the lemma. O

Proposition 6.12. On the event (NS_| A;) ﬂ(ﬂ?zlé’j), we have p* € £;2/3'
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Proof. The main idea of the proof is the following. First, we know that the inequality
below must hold

mzzx{log Zop+logZy y} —log Z, v — log Zln or?/ Z 0.
pel,

And we will show thatif p & £/, 2/3 _then on the event (ﬂ6 LAD ﬂ(ﬁ2_15 ).
log Zop +log Zp vy —log Z, y — log Zm ,0r?/ - 25 0,

: . 2/3

hence it must be true that the maximizer p* € L/ !
First, we note that because we are on the event 6’2, then p* must be in £¢1 Then
within £¢‘r , the event m,—1A says we would lose more than 9 30,173 amount of

r2/3 r2
free energy comparing with going from (0,0) to p € E?‘ \ﬁf' instead of going
to (r,r). And for the free energy from (N, N) down to L,, & says for any p inside

2/3

L;f’lr , we gain at most ! /@17 !/3 amount of free energy comparing with going from

(r r) to (N, N). Thus, the loss 6°r1/3 is greater than the gain 6~ '/@;r'/3, hence,
g g

2/3

e L] O

6.4. Expectation bounds. In this subsection, we prove two propositions about the ex-
pected difference of free energies when conditioning on By,

Proposition 6.13. There exist positive constants Ca7, 0y such that for 0 < 0 < 6y, there
exists a positive constant co such that for each r > co, we have

E[(log Zo.r, —log Zm 39r2/3) ’Bbar] < Cyrr?3.
Proof. Let us denote the high probability event
6

and we have P(D¢|Bpar) < P(D¢) < ¢=97% which is the statement of Proposition 6.2.
Now let us look at the expectation on the event D. Using Proposition 6.9, we obtain
the first inequality below. The second inequality follows from Zg o (241) + log6 >
i 2/3 2/3
log Zgjfgr on the event D, so reducing the value of Z1r1 3o

: x __ por?/3
bigger. To simplify the notation, let R* = R'" Prr—03/2r4r/L°

makes the expectation

and we have

23
E[(log Zo.r, — log Z(')"fer ) ILD’Bbar] < E[(log Zo.z, () —log Z(‘)nrwr +log 6) ILD’Bbar]

30r2/3 - por2/3 2

< E[(log Zo.c, (1) — max { log Zo Ko +log Z::}RO" } +log 6) ‘Bbar] (6.17)

Now, recall the definition of 911 in (6.5), every path must touch R*. If we let p* be
39r2/3 in. RO

the maximizer for maxpeg+ log Z 7 +log Zp’} o7 then

log Zoy £ (1) < log Zln 307/ +10gZ L
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Therefore, the expectation (6.17) can be upper bounded by

in RO\ 2
(6.17) < 10 - E[m%x (log Zpc, —logZy , 0 ) ’Bbar:l
PER*
in, RO\ 2
< 10-E| max (log Z, £, —log Zp, " )'] (6.18)
pPER*

. er2/3
where the second inequality follows fromlog Z,, -, —log Z;,,’, %7 > 0and conditioning
on By, would decrease the difference by making log Z,, », smaller. Finally, to bound
(6.18), from monotonicity

L oar2/3

logZ .25 >logZy, or

p.L;

and Theorems 3.18 and 3.19 (note 4 = 1 in these theorems), we have

2
E[max (log Zp,£<2/3 —Q2r — |P|1)fd) ] < Ccor?3

peR*
" (6.19)
in, R('; 2 2/3
E[max (1og Zp O — @ — |p|1)fd> ] < cor?3,
peR*

Using the fact that

IA

max(a; — b)? < 10 max [(ak — )2+ (b — ck)z]

IA

IO[mI?X(ak —a)?+ II}(E/IX(bk/ — ck/)z],

the estimate (6.19) above implies (6.18) < COr?/3.
Next, for D¢, we use the FKG inequality and Cauchy-Schwarz inequality,

. 3\ 2
E[(log Zo.r, — log Zg}ferm) 1pe

Bbar]

< E[( log Zo £, — log Z(i)r}’rerm)z]lpf]

< 5[ (10g20.c, ~tog ") ] “r Dy 2
Again, because
in,0r2/3 >0,

log Zy z, — log Zy,

the fourth moment term can be bounded by C6*r*/3 using Theorems 3.15 and 3.16,
which provide both right and left tail upper bound for both. Combined with the fact that

P(D)1/? < et , we have finished the proof. O

Proposition 6.14. There exist positive constants Cag, 6y such that for 0 < 6 < 6y, there
exists a positive constant cq such that for each r > cg, we have

. 2/3\ 2
E[(]og Zon —logZ. y —log Z('ffer ) ‘Bbar] < Cygr?3.
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Proof. First, note we may replace log Zo y by maxper, {log Zo,p +1og Zp n)} because

R39r2/3

logZony > logZ, n +10gZOr
and
log Zo.y < ll}éagi{log Zop+logZp N} +1001l0gr.
Next, let us define the event
= (N1 A) [ (MF21E)).
We have P(D'|Bpar) < P(D') < e=?""" from Lemmas 6.10 and 6.11. We again will

split the expectation into two parts according to D’.
.. . . . . . 2/3
On the event D, by Proposition 6.12, the maximizer p* is contained inside L. / R

IE[( max{log Zop+logZp v} —log Z, y — log Z(l)nrwr ) 1p
peL,

Bba.r]

2
< 2E[< max log Zop — log Z(l)nrwrz/ ) ‘Bbdr] + 2E[< max_log Zy y —log Z, N) ]
peL peL’ 23

<cr?
where the last bound follows from Propositions 6.13 and 4.3.

On the event D', we again just bound with the FKG and the Cauchy-Schwartz
inequality,

E[( max{log Zop+logZy N} —log Z, y — log Zé)nrwr ) Lpre
pel

Bbar:I

2
< E[( max{log Zop+logZy n} —logZ, y — log Z(l)“rgrm> ]lD,L-]

pel,

49172
< E[( max{log Zop +log Zy n} — log Z, y — log Zanr9r2/3> ] P(D')!2,

peL,

(6.20)

The fourth moment term above can be bounded as

4 4
CIE[( max{log Zop+logZp N} —log Z, n — log Zo,,) ] + C]E[(log Zor — log Z(l)nrer ” ) ]
peLl,

4 4
< CE[(maX{log Zop+logZp Ny} —log Z, y — log ZOJ) ] + CE[(log Zo,r — 2rfd) ]
pel
) 3\ 4
+CE[(2rfa =102 757" )]
<crB vt oot

using Proposition 4.7, Proposition 3.6, and Theorem 3.16. Since P(D"¢)!/? < 1/200,
the expectation on D/ ¢ is also upper bounded by Cr?/3. With this, we have ﬁmshed the

proof. O
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6.5. Constrained variance lower bound. The main purpose of this section is to prove
the following theorem on the lower bound of the constrained variance. Recall Fy as the
o -algebra generated by the weights in the set [(0, 0), (N, N )]]\Rer "

Theorem 6.15. There exist positive constants Cag, 0y such that for each 0 < 6 < 6,
there exists a positive constant co and an event B C Bpar with P(B'|Bpar) > 1/2 such
that for each r > co, we have

Var( log Zm ,30r%/ ‘f@)(w) > C499_1/2r2/3 foreachw € B'.

First, let us define the following sequence of events. For i € (%9_3/ 2 %9_3/ 2) and a
positive constant ¢* which we fix in Proposition 6.16 below,

Z/{i={logZOL, - _lome36r <q*fr1/3}

0,i03/2r
in,360 1/3
Vi= {log L i1yp3/207 — log Z(l+1);3/2rr - q*\/gr / }
W; = ilog Z£39,2/3 023~ 293/2rfd < q*x/grlﬂ}

i03/2r > (i+1)63/2r

On the event By, the events defined above happen with high probability.

Proposition 6.16. There exist positive constants q*, 6y such that for each 0 < 0 < 6,
there exists a positive constant co such that for each r > cy,

PU; NV NW; [ Bpar) > 1 — 1074

Proof. We upper bound ¢/ and W. And by symmetry, the estimate for Vf is the same
as U
Flirst, by the FKG inequality and Theorem 3.15,

POV 1Buur) < B(log Z000" o = 26%2r fa < q"VAr'P) < 4",
i03/2r 7 (i+1)63/2r

Next, we upper bound P | Bpar). Let 2 denote the collection of paths going from

(0,0) to qu{ 12, such that they stay within the diagonal sides of R39’ », and they

—1)63/

touch the box R9’ 20302 i~ 1)63/2r (Note the 2 here plays the role of 2y from (6.5).)

Applying Proposmon 6.9 (for the free energy from 0 to i63/?r instead of from 0 to r),
we know that for 8 sufficiently small.

P(10g Z0.2,,1, =108 702,15, (%) +10g6|Br) = 1= 1075,
Then, it suffices for us to upper bound the event

{108 70,2, @) — log 270" > g*V/6r! 7 — 10g6)]. (6.21)

Now, since all the paths in 2 enter the box

or2/3
R* R(z 2)63/2r,(i—1)63/2p°
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let 2, denote the collection of paths in 2 that go through p € R*. Let p* be the maximizer
of

[r,réa}lgi { log Z0’£i03/2r (Ap) }
And it holds that
log Zo.z 5, () <logZo . ;, (Up+) +1001ogr.
Now, to bound (6.21), it suffices for us to upper bound
P(10g Zo.z, 1, Q) —log Zgola” > 3a*Vor' | Buur).
We will replace these two free energies appearing above with the right side below

IOg ZO’£i93/2r (le*) = 10g Z() .p* + lOg Zp* E 372,

30r2/‘ 9r2/3
in,30r%/3 o.r in,
1 Zo’l_g_g/2 > log ZO N +log Zp z93/2r
zerz/ 3
After the substitution, because log Zo p+ — log Z 7 is non-negative, it suffices for

us to upper bound

9r2/
P(logzp*,ﬁm/z logZ . 03/2r %q*\/grl/3’3bar)
,2/3

< ]P’(log Zo L, logZ N o %q*@r‘/3). (6.22)
And we may bound (6.22) as
(6.22) < P({)Iééll?)i log Zp’Li(~)3/2r — i03 % — pl) fa > %q*ﬁrl/3>
0r2/3

n, R
+B( minlog 2,07, — @i6¥%r ~Ipl) fa < ~4q"Vor').

Both of these probabilities are bounded by e™¢ T by Theorems 3.18 and 3.19. Finally,
by fixing ¢™* sufficiently large, this completes the proof of this proposition. O

We say an index i € (%9’3/2, %9’3/2) is good if
PU; NV, N W;|Fo)(w) > 1—10"2  where » € Bpar.
Note for a given w € By, the set of good indices is deterministic.

Lemma 6.17. Let B’ C By, denote the event that the number of good indices is at least
20732, Then P(B'|Bpar) > 1/2.

Proof. Since By, is Fg-measurable, by Markov’s inequality,
P(i is bad|Bpyr) < IP’({w (PUSUVE UWE | Fg)(w) > 0.01}‘Bbar>
< 100PU; U Vi UWF|Bpar) < 1/10.

Then, the expected number of bad indices (conditional on Bp,r) is upper bounded by

% . %0’3/ 2 and a further application of Markov’s inequality completes the proof. O
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Next we prove Theorem 6.15 using the B’ obtained in Lemma 6.17. Let us fix an
@' € B’ for the remainder of this proof; and for any configuration @ we shall define, its

projection onto the vertices outside Rg " " will agree with o’. Given this ', the collection
of good indices is known. Let us fix an enumeration of a portion of the good indices

J ={i1,i2, ..., ik}

where K > é9_3/2. Now, define a sequence of o-algebras Sy C S} C S C --- C Sk

where Sy is generated by the configuration o’ € B’ together with the configuration on
or?/3
i03/2r,(i+1)03/2r

. .. 2/3
the configuration inside R?”; ),
lje‘/

foralli ¢ J,and for j > 1, S; is the o-algebra generated by ;| and
i+ )8Y 2 Note that Sk is the o-algebra of the entire
weight configuration.

Consider the Doob martingale

M, =E[log 2" |s)].

By the variance decomposition of a Doob martingale, it follows that

K
Var(1og 25| £ ) @) = Y BIM; — My PIF @),
Jj=1

Theorem 6.15 follows directly from the lemma below. The proof of the lemma goes
by a re-sampling argument. This idea first appeared in the zero-temperature set-up in
[12,14], although the setup there is different from ours.

Lemma 6.18. There exist positive constants 6y, Cso such that for each 0 < 0 < 6y,
there exists a positive constant co such that for each r > cy, the following holds: for
eachij € J, there is an Sj_| measurable event G; with P(G;|Fp)(w') > 1/2 for each
o' € B, and for each w € G; we have

E[(Mj — M;_1)*|Sj—1](w) = Cso0r?/>.
Proof. Define the event

F = { IOg Zm or2/3

03/2, @i +1)03/2r 2(93/2r)fd = looq*\/arl/3}

where the fixed constant ¢* is from Proposition 6.16. By Theorem 3.17, P(F) > ¢ > 0.

Let w; denote the configuration on Rl 93 P drawn from i.i.d. inverse-gamma

r, (i +1)03/2r

2 3 . .
distribution. And let @; denote the configuration on R?" 10213 which is drawn

r (i j+1)03/2r
from i.i.d. inverse-gamma distribution but condmoned on F. By the FKG inequality
and Strassen’s Theorem [63], there exists a coupling measure of the joint distribution
(w1, @1) such that w; < @; coordinatewise. Let B denote such a coupling measure.
Let wq denote the conﬁguration on all vertices that are revealed in S; _1, and recall the

projection of wy outside of R, 9r is the same as @’ € B8/, the environment which we have
fixed previously. And w; is the remaining weight configurations besides wy, w;, @;. Let
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w = (wp, w1, w3) and @ = (wg, @1, wy) to denote the two coupled environments under
B, which was defined in the previous paragraph. We have

1 r r ~
B B LIS 11— Mot = / log(Zim3) (@) —log 2" () B(dw1, dd5)P(dw).
(6.23)
Since F' is independent of S; | and M;_{, we also have
1

E[(M; — M;_)?S;-1]1 > P(F)WE[(M — M;_)*1FISj-1]
5 (6.24)

P(F)(P(F)E[M LFIS)-11 = Mj1)

Next, we construct the event G;. Note that Ui, is &Sj—1 measurable, but Vi, is not.
Define another S; | measurable event

Vij = {wo : P(V;;1Sj-1)(wo) = 0.9}.
WesetG; = Z/~I,-j N 17,-j where
U,] ={wo: 1y, =1}.
J
By the definition that i is good, P(U4;; | Fo) (@) = 1 — 1072, By Markov’s inequality,
P | F) (@) = P({wo : PO IS;-1)(@0) = 0.1}1Fp) (@) < 10P(VS | Fp) @) < 0.1,
which implies ]P’(ifj |Fo)(@') = 0.9. Hence, G; satisfies the requirement
P(G;1Fo) (@) = 1/2.
For wy € G, starting with the inequality (6.24) then applying (6.23), we obtain that
E[(Mj — Mj-1)*|Sj-1](wp)
> 2(r)( [10e 27" @ — 10g 205" @ptden. diPen)) - 625)

Since the integrand above is non-negative, we further lower bound the integral in the
right-hand side of (6.25) by

[ (a2 @ = 0e 2y @) pldon. dinPen) (626
w| € wreD

where
Wy, = {1 : 1w, (@ = 1).
Note that since wg and o’ has been fixed, 1y, is determined by w;, and
J
D = D(wg) = {(,()2 : V[j holds on (wy, wz)}

where Vl-j is determined by (wq, w2).
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Now, it holds that

,36r2 30 0r2/3 30123
log ZZ)n " (LL)) = log Zz)n gg/z (a)) + log Z;n93;2r (l +1)0’%/2 (CL)) + log Zl(]; +1;93/2r r(w)
and

30,2 30
log Zm " L) < log Zy, L 032, (w) +log Zzlwrzr/z a3 (@) +log ZL(:‘.,-+1)H3/2;-J ().

6327 (1 j+1)63/2r
Since wp € G, we have on {w] € Wi;, w2 € D},

. 2/3 ; 2/3
log 2§ @) —10g 28 (@)

in,0r2/3 in,30r2/ * 1/3
>logZ, 110325, (1 +1)03/2r (@1) — log ch,m Ve ok (w1) —2q Vor
i :93/2y° (l/-+1)83/2r

> 50q*/or'/?

where the last inequality holds since @; € F by definition.
We can therefore lower bound (6.26) by

50q*«/§r1/3f _ ,B(dwl,dFo])/ P(dw,).

w] eW,-j wreD

Since, W; i () is determined by o’ and wy, it follows that
/ _ Blwi,d@y) = POW;; | Fp) (@) = 0.99
wleW

since i is good. Since G; C ii i it follows from the definition of D that f wneD dwy >
0.9 for all wy € G;. We can therefore lower bound the right hand side of (6.25) by
0r?PP(F) x (0.9 x 0.99 x 50g*)* thereby completing the proof. O

6.6. Covariance lower bound. To start with fix 0 sufficiently small. Let us recall three
subsets of By, from Theorem 6.15, Proposition 6.13 and Proposition 6.14,

B Var(log Zg)r},r30r2/3 ‘f@)(w) > Cao0 V2123 forwe B
B E[(log Zo.z, —log Zim37" 3) ’f@](w) < 100C4r>? forw e B"

" in,30r%/ 2 2/3 /11
B” Ef(logZon —logZ,ny —log Z; Fo [(w) < 100Cy8r forw € B”.
Besides P(B'|Bpar) > 1/2, we also know P(B”|Bpa) > 0.99 and P(B”|Bpar) > 0.99

by Markov inequality applied to their complements.
Now going back to (6.1), let us define

E=8BnNB"NnB".
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We know P(&y) > €9 > 0 because P(Eg|Bpyr) > 0.1. Finally, let us show (6.1). This
follows directly from a sequence of inequalities. For w € &

Cov(log Zo.r, log Zo n|Fa) (w)
= Cov(log Zy,, log Zo y — log Z, N |Fp) (w)

- (Cov( log 713" og 7o y —log Z, x ‘.7-9) (@)
C in,30r2/3
+ Cov|( log Zy , — log Zo,r ,dogZony —log Z, n|Fo ) (w)
= Var( log Z(i)'j’rwﬂﬂ ‘}'9) (w)
+ (COV( log Zgj;wrm, log Zo.y —log Z, y — log Z(if’rwrz/3 ’.7:9) (w)

- 2/3 - 2/3
+ (COV(]Og Zo,r — log Zg}fer ,log Zg}’far ‘]__9)((0)

in,30r%/ in,36r2/3

+ (Cov(log Zy,, — log Zy; /2, log Zo.n —log Z, v — log Zo,r ‘fg)(a))

> Var( log Zior?’rwrm ’]-'9) (w)

_ \/Var< log Z(i)rj;30r2/3

— \/Var log Z(i)rj’rwrz/3 ‘.7'_9)(0)) Var(log Zon — Zrn — log Z(i)l?'rw'a/3 ‘Fg)(m)

: 2/3
]—'9)(a)) Var(log Zo.r — log Z(lf’rwr ’fe)(w)

(
— \/Var( log Zo.,» — log Z(i)'j’ferz/} ‘]—'9) (w)
(

X \/Var log Zoy — Z, y — log Z(i)r’l’,?’gry3 ’fe)(w)
> Cco~1/223

where the last inequality holds by the definition of the event & for 0 sufficiently small.

7. Nonrandom Fluctuation Lower Bound

First, let us prove Theorem 3.26.

Proof of Theorem 3.26. To simplify the notation, let us simply use Z (instead of Z) to
denote the version of the partition function where we also include the weight at the
starting point. Note this does not apply to Z” as Z” does not pick up any vertex weight
at its starting point. Also, let us define

vy = 2NE&[p].
To prove the theorem, it suffices for us to assume that
§> N3 (7.1)

Recall the definition of the exit time T above Theorem 3.25, and we start with a simple
bound

P(log Zﬁl,vN - <log Ilf(—l,—l),(o,—])]] +log ZO,VN) < 8N1/3>
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<P(logz’,,, (1 =7 =N = (logf_ ) o 1y +10gZowy) < N'?)

< ]P’( max log Zfl,vN (t =k) — <log 1{(—1,—1),(0,—1)]] + log Zo,vN> < 8N1/3>.

1<k<N2/3
(7.2)
Foreachk = 1, ..., N%/3, let us denote the term inside our maximum as
S; = log Zfl’vN (t =k) — <log 1{(_1,_1)’(0’_1)H +log ZO,VN)
k
= (log Za.oyvy —log Zoyy) + Y 10
i=1
Then, our estimate can be written as a running maximum.
(7.2) = IP’( max S < 5N1/3). (1.3)
1<k<N?2/3

The steps of Sy are not i.i.d. because of the term log Z,0),yy — 10g Zo,yy . Our next
step is to lower bound S; by a random walk with i.i.d. steps using Theorem 3.28. In the
application of Theorem 3.28, we will rotate our picture 180° so the path ®;, y2/3 is the
segment [[(0, 0), (N2/3,0)]. And our perturbed parameter will be . = p + gosN~1/3
where s = |log|. Note our condition § > N ~1/3 verifies the assumption s < agpN
from Theorem 3.28. -

Let us denote the lower bounding i.i.d. random walk as Sk, and the distribution of the
steps of S is given by the independent sum — log(Ga*] (w—21)+ log,(sz1 (n — p)).
Define the event

A= (S =loggy+Scfork=0,1,...., N3

Continuing from (7.3), we have
(1.3) < P([ max S < 5N1/3} n A) +P(A%)
0<k<N?2/3
< IE”({ max_ S < 8N/ +log %}) + P(AS).
0<k<N?2/3

By Theorem 3.28, we know P(A€) < e~¢* ’ < §. It remains to upper bound the running
maximum

JP( max §k551v1/3+1og&). (7.4)
0<k<N2/3 9

Lastly, Proposition E.3 gives (7.4) < C|log §|5. With this, we have finished the proof of
the theorem.

Our nonrandom fluctuation lower bound follows directly from Theorem 3.26.

Proof of Theorem 3.22. By Theorem 3.26, there exists dg, No such that for all N > Ny,
we have

0 o 1 1/3
P(log 2 12N810) <1°g Ip1-1. 0.~y +log Zo,zNS[pJ) > 280NV ) = 0.99.
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Let us denote the above event as A, and let

_ p p
X =10gZ" | s ne1p — (log Tr—1,—1y,0,—ny T 108 Z0’2N€[p]>'

Note that X > 0. Using (3.3) and (3.7), we have

(B[22, syeq] = 2NF (0] = 10max{i@o(o)l. [9o(x — p)I).

With these, we have

2Nf(p) — (E[k)g Ilﬁflﬁl),((),*l)]]] + E[log ZO,ZN‘;‘[p]])
> E[X] — 10 max{|®o(p)|, |Po(u — p)I}
= E[XTa] +E[XT4c] — 10max{|®o(p)[, [Po(u — p)I}

= 158N — 10 max{|®o(p)l, [P0 (1 — p)I}.
The calculation above translates to our desired lower bound
2Nf(p) — Ellog Zo ang(p1] = 1580N "> = 10 max{| o ()], |Po(r — o)}
—|E[log I['E)(—l,—l),(o,—l)]]]l'

provided that Ny is fixed sufficiently large depending on € (recall p € [e, u — €]).

8. Moderate Deviation Bounds for the Left Tail

8.1. Upper bound for the left tail. Without introducing a new notation, let us assume that
we are working with the version of the partition function Z which includes the weight
at the starting point. Once the upper bound for the left tail is proved for this version of
Z, by a union bound it easily implies that the same result holds for the partition function
which does not include the starting weight.

Proof of Proposition 3.8. For simplicity of the notation, let us denote
vy = 2NE&[p].
We will first show the upper bound in the theorem for ¢ in the range
o <t <agN*? (8.1)

for some positive agp which we will fix during the proof. Because of Theorem 3.24, it
suffices for us to show that

Zﬁ] VN C'tN'/3 —c13/?
IP’(—’ > e ) <, (8.2)
ZO,VN

We start the estimate

2
Zﬁl,quT' < JVIN?3) - C/[N1/3)

left side of (8.2) = P( >
Zowy - OF )y Il < VIN?3)
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14 2/3
P(Z—l,vN(|t| < JVIN?3) - leC’fN1/3) 8.3)
- ZO,vN =2 ’
+P(Q?,, (It < VIN??) < 1/2). (8.4)

By Theorem 3.25, the probability in (8.4) above is bounded by ¢=C”  Also note that
by a union bound,

2/3
(8.3)<P< —1VN(1 <1 < JIN?) >lec/tN1/3>
o ZO,VN 4
4 2/3
+IP)<Z1'VN(_\/ZN / <-1=< _1) - lec/tNl/3>
ZO,vN — 4

The estimate for these two terms are similar, so we work with

2/3
IP( _1 vN(l <7 <\/_N /) eC'tNIB)

>1 (8.5)

ZO VN

As the numerator appearing in the probability measure of (8.5) can be bounded as
follows:

Z’O1V (lftfﬁNz/‘?))f max
N 15k5ﬁN2/3

(t =k)+100log N,

lvN

to get (8.5), we will upper bound the probability

P
maxy <x < /iN2/3 Z,1‘ (t=k) 1 A71/3
p(—==s PR > L, (8.6)
sYN
For any fixed k = 1, ..., +/IN?/3, let us denote
log Zfl’vN (t =k) —log Zoy vy
k
_ o
=log Iy _p.o-nyt ((log Z.0y.vy — 108 Zo yvy) + Z I[{()i—l,—l).(i,—l)]])
i=1
P
= log i —ny0-np * Sk.
By a union bound
1/3 C’ 1/3
(8.6) < P<1<kr<nj;(N2/3 Se = SN'A) +P(log Iy yy 01y = GIN'P). 87)

The second probability decays as e~ ¢V i

with the running maximum.

The steps of Sy are noti.i.d. because of the term log Zx 0),vy —10g Z, v, , but we can
upper bound Sy with a random walk with i.i.d. steps with exponentially high probability,
using Theorem 3.28. In the application of Theorem 3.28, we will rotate our picture 180°
so the path ©, ;2 is the horizontal segment [[(0, 0), (v/IN?/3,0)]. Our perturbed

parameter will be = p — go~/t N ~1/3. Let us denote the upper bounding i.i.d. random

, S0 it remains to bound the first probability
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walk as §k, and the distribution of the steps of §k is given by the independent sum
— log(Ga_l(u —n))+ log(Ga_l(u — p)). Define the event

A={S <logQ+Sfork=0,1,..../IN??).

Continuing from (8.7), we have

8.7) < IP’({ max S > %IN1/3] N A) +P(AS)
0<k<+/tN2/3

< IE”({ max S > %’tN‘/3}) +P(AS).
0<k<+/tN2/3

By Theorem 3.28, we know P(A) < ¢=C" 1t remains to upper bound the running
maximum

P( max 5= Sin'?). (8.8)
0<k</1N2%/3
This is now a classic random walk bound, and it is actually a special case of (4.3) where

a = t'/*N'/3_ Thus, (8.8) is upper bounded by e=C With this, we have finished the
proof for the case fp < t < a0N2/3.

Next, we generalize the range of ¢ from (8.1). First, we extend the range to tp <t <
aN?/3 for any large positive @ > ag. To see this, suppose t = zN>/3 for z € [ag, ].
Then, “?‘)t satisfies our previous assumption (8.1). Hence, we have for each 1y < r <
aN2/3,

P(log Zo.vy —2Nf(p) < —tN'3) < P(log Zovy —2Nf(p) < —(L1)N'/)

_ (902,32
<e e .

Finally, we will show that for a « sufficiently large, and for t > « N2/3
P(og Zo,vy —2Nf(p) < —tN'3) < o CIN'/>

Let us define r = zN%/3 where z > «. Then, we may replace the free energy with the
sum of weights along a single path y € X y,, which has a smaller value. Then, fix «
sufficiently large, for z > «, we have

2N
Pog Zoy, —2Nf(p) < —N') < B( Y log,, < ~1o)

i=1

2N
= P(Zlongjl > %zN)
i=1

— _ 1/3
<e CzN —e CtN

= )

(8.9)

where the last inequality follows Theorem D.1. With this, we have finished the proof of
our theorem.
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8.2. Lower bound for the left tail. The approach we employ here follows from the idea
of Theorem 4 in [36], which proves the optimal lower bound in the setting of last-passage
percolation. The same idea was adapted to the O’Connell-Yor polymer in [50]. To start,
we have the following proposition.

Proposition 8.1. Let p € (0, ). There exist positive constants Csy, Csa, No such that
for each N > Ny, we have

P(log Zoangrp) — 2N fa < —Cs51N'3) > Cs,.

Proof. This follows directly from Proposition 3.3 which says 2Nf; > 2Nf(p), and
Theorem 3.22 which says 2N f(p) > El[log Zg ang(p)] + CN'/3. Note the probability
of {log Zo s g1 — Ellog Zo angpp)] < 0} is bounded uniformly from below because of
the lower bound of the right tail in Proposition 3.7. Then, on the event {log Zy > yg[,] —

E[log Zo 2nep)] < 0}, we have {log Zo ayep) — 2N fa < —CN'3). ]
Using a step-back argument, we obtain an interval to interval lower bound.

Proposition 8.2. There exist positive constants Cs3, Csq4, 11, No such that for each N >
No and each integer h € [—nN'/3, nN'/3], we have

]P’(logZ —2Nfg < —C53N1/3> > Csy.

N2/3 AN2/3
) E(N 2nN2/3 N+2nN2/3)

Proof. For simplicity of the notation, let us denote

N2/3

N2/3
(N=2h N3 N+2hN2/3) and [ = LI )

h:ﬁ

The proof uses a step-back argument. For any € > 0, let us first define /¢ = /3],
We may increase the cutoff Ny depending on € so that 7€ is non-empty. We cover I by
a sequence of shifted 7¢’s, i.e.

K
rc | r

i=—K

where I = (—2i (eN)z/3 2i(eN)*3)+I€and K = |1/€]+1. We do the same for J” and
obtain the collection {J } j=—K" Next, we will show that for each pairi, j € [—K, K],
there exists c, ¢’ such that

P(log Z0™%, . —2Nf(p) < —cN'3)y > ¢, (8.10)
i
Let us define u* € I and v* € J;"E be the pair of points such that

Zmax

Zu*,v* = I( j €

And let us denote the midpoints of /f and J “as@andb.

Next, we define the step back pointsa = a — ¢(N, N) and b = b+ €(N, N). With
these new endpoints, we have

log Zap > log Zy y+ + log Z’;ia’;h_e +1og Zyx p. (8.11)
i
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Let us look at the term log Z, 1, on the left side. By Proposition 3.3, we have
A(b —a) <2(N +2¢eN) fy.

By Proposition 8.1, we know there exists an event A with P(A) > Cs; such that on the
event A, we have

10g Zap — 2(N +2€N) fa < —Cs1(N +2¢N)'/3. (8.12)
Next, we show that on a high probability event B with P(B) > 1 — Cs2/2, we have
10g Za,u +10g Zy — 4eNf(p) = —SLN'/3. (8.13)

Once we have these, on the event A N B which has probability at least Csy /2, estimates
(8.11), (8.12) and (8.13) will imply

log Zzga”;j,?.g —2Nfs < —SIN'A3,

which is the statement in (8.10).
By symmetry, we will work with the term log Z, y+. By Theorem 3.18,

P(log Zau+ — 26Nfy < —M(eN)'3) < e=M < C2

provided M is fixed sufficiently large. Let B denote the complement of the event above,
and let B be the similar event defined for log Zy+ . We define B = B N By, and

P(B)>1-— % Let us fix € sufficiently small so that Mell3 < % With this, we have
shown (8.13), thus finishing the proof for (8.10).
Finally, to prove the proposition, note

K

{log Ilnzﬁ —2Nfy < —cN'P} o ﬂ {log(Z;I;aJ;hve) —2Nfy < —cN1/3},
i, j=—K i’
By the FKG inequality
=S K
IP’(i jﬂK{log Z;‘;fXJ;,,e —2Nfy < —ch/z}) > ijl_[KIP’<logZ‘I“;’;ﬁe CONF(p) < _CN1/3>’

and (8.13) says each term inside the product is lower bounded by some positive ¢’.
Hence, we obtain that

P(log ZP — 2N (p) = —eN') = ()" = C5y

and we have finished the proof of this proposition. O

Using the FKG inequality, we will further improve our lower bound to the following.

Proposition 8.3. There exist positive constants Css5, Csg, No such that for all N > Ny

P(logZ1% , —2Nfs = ~CssN'") = Ce
2,

L
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Proof. For simplicity of the notation, let us denote

N2/

N2/3
(N—2hN2/3 N+2hN2/3) :

J"=r and [ =L

The main idea is to cover the line £ by J” for h € Z. For some large fixed ho which
will be chosen later, we then split the possible values of 4 into two parts [—hg, ho]l and
Z\[[—ho, holl. For h € [—ho, holl we use the FKG inequality and the lower bound from
Proposition 8.2. On the other hand, for & € Z \ [[—ho, holl, Proposition 3.11 show that
the probability is actually exponentially high, i.e.

P(log Z™, — 2Nf(p) < —cN'/3) = 1 — e CIIF,

provided c is sufficiently small. Thus, we have the lower bound

o0
Pog ZP% — 2N fg < —eN'P) = ¢ [T a - e~CIy = Cs,
Ihl=ho

where Csy is the probability lower bound from Proposition 8.2. With this, we have
finished the proof of this proposition. O

We prove a lower bound for the constrained free energy.

Proposition 8.4. There exists constants Cs7, Csg Ny, to, ag such that for each N > Ny,
to<t< cz()N2/3/(10gN)2 and 0 <1 < NY3, we have

N2/3
P(log ZE)'?’I{,N —2Nf; < —Cs57tN'3) > ¢7Cs8,

Proof. Using diagonal and anti-diagonal lines, we cut the rectangle Ré{vj\i/} into smaller
rectangles with diagonal £>°-length N /13/? and anti-diagonal £>°-length (N /3/%)%/3,
Let us denote these small rectangles as R(u, v) where the index u = 1,2,..., 13/2
indicates the anti-diagonal level, and v = 1, 2, ..., [t enumerates the rectangle inside
the same anti-diagonal level. Recall the notation R(u, v) and R(u, v) denote the upper
and lower anti-diagonal sides of R(u, v). Let us also finally define £(u) to denote the
anti-diagonal line which contains R (u, v).
Let us define the event

A= {108 Zraww £ —20/8) fa = =Css(N /)1,

u,v

where the constant Css is from Proposition 8.3. By the FKG inequality and Proposition
8.3, we know P(A) > ¢~ Clr*”,
Next, we see that our constrained free energy can be upper-bounded as follows.

N2/
log Z(lf’]f,N <137 ( log(tl) + max log ZR(u,v),L:(u))

ontheevent A < t3/2(log(tl) 2N/ fy — C55(N/t3/2)1/3)
<2Nfs — CsstN'3 + 13 log(1l).
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Finally, fix ag sufficiently small; the assumption t < agN 2/3 /(log N )2 implies that
%C551‘N1/3 > 13/2 log(zl). With this, we have shown that

: 2/3
log Zg’l’]f]N —2Nfy < ——C55tN1/3 on the event A.,
hence, finished the proof. m]
Finally, we prove Proposition 3.10.

Proof of Proposition 3.10. This follows from the FKG inequality, Proposition 8.4 and
Theorem 3.13. Set the parameter [ = A/t in Proposition 8.4, then,

P(log Zo.y —2Nfy < —C'tN'/3)
= ({100 'y NN _oNf < —c'tN 0 f1og 25 NINE_oONfy < —C'tN')

> P(log 2y Y _oNfy < —C'tN') )P (10g 25 Y _oNfy < ~C'iN')

—C3 —C3/2
EECZ'(l—ECZ )

provided that C" is fixed sufficiently small.
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A. Proofs of the Free Energy Estimates of Sect.3.3

A.l. Free energy and path fluctuation.

A.1.1. Proof of proposition 3.11
Proof of Proposition 3.11. For this proof, let us define

N2/3 N2/3

h _
=Ly = ﬁ(N—ZhN2/3,N+2hN2/3)‘

Without the loss of generality, we will assume / € Z>q and it satisfies
1
0<h< EN‘”, (A.1)

since Z; yu is O otherwise. We also note that by the maximum bound introduced in
Sect. 3.6, it suffices to prove this estimate for ;‘“}’;, since

log Z; j» < 1001log N +log Z'7,.
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Next, we describe the step back argument, the points a, B, a, b below are illustrated
inFig.5. Let a and b denote the midpoints of 7 and J "' Let us define the step back points
a=a—wy(N,N)andb = b +wo(N, N) where wy is a constant that we will fix later.
Let us use u* € 7 and v* € J” to denote the random points such that Z;“E}’j, = Zu* v*.
Then, we have ’

log Zap > log Zy y+ + log Z;“aﬁ +1og Zyxp. (A.2)

Since [b—a|; = 2(1+2wp) N, we rewrite the vectorb—a as 2(14+2wo) N&[14/2+za.p]
for some nonnegative constant z, . Note the perpendicular £!-distance from b — a to
the diagonal line is

(b—a)-(e; —e) = (b—7)-(e] — e),

which is the same as the ¢! -distance from b — 3 to the diagonal line. For each fixed 4 in
our range (A.1), it holds that

(b —3) - (e; —e) = 2hN?/3.
From the perpendicular distance to the diagonal, we see that

2(1-402wo) N+hN?3 1
2(1+2wo)N—hN2/3 —

slope of b—a = (A.3)

2h
t X 2w N0
Because of the upper bound i < %N 173 from (A.1), we can choose wg and Nj to be
large enough so that forall N > Npand0 < h < %N1/3, the slope in (A.3) is contained
inside the interval [1 — €, 1 + €] from Proposition 3.2. Then, by Proposition 3.2 and

possibly increasing the value wy if necessarily, there exists a positive constant C such
that

1 2% 2h
Zap € [C 2(1+2w)NTA—h? C2(1+2w0)N1/3—h:| (A4)

where the constant C above is independent of 4 as longas 0 < h < %N /3,

Subsequently, if required, we can further increase wy so that the interval from (A.4)
falls within the small interval [—e, €] from Proposition 3.4. Then, by leveraging Propo-
sition 3.4 and further increasing wy if necessary, we obtain the first inequality below,
while the second inequality is derived from (A.4).

2(1+2w) N[ f (/2 + zap) — fu] < (1 +2wo)N[ — Cz2,] < —Ch*N'3. (A5)

a .'.

Fig. 5. An illustration of the points @, b, a, b from the step back argument
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Note that wo has now been fixed, so we absorb it into C.
Finally, let us upper bound the probability stated in the proposition,

[P’(]og ZM 2N fy = (~Ch* + t)N1/3>
< IP’(log Zap —log Zyyx —log Zyxp — 2N fg > (—Ch2 + t)N1/3>
= P([log Za,b — 2+ 4wo)N fy] - [10g Zawr — 2woN fu]

— [log Zy+p — 2woN fa] = (—Ch* + t)N1/3)

by (A5) = P([log Zap — @+ 4w0)NF (/2 + zaw)] = [0g(Zau) — 20N fu]

~[log Zy- 1y = 2woN fu] = (€ = C)h? +HN'?)

< P(log Zap — 201+ 2w)Nf (11/2 + zap) = 1((C — OR* + z)N‘/3)

(A6)
+ IF’(log Zaws — 2woN fa < —4((C = O)n? + t)N1/3> (A7)
+ ]P’(log Zyeh —2woN f4 < —2(C = O)n* + t)N1/3) (A.8)

Fix C small so that C — C > 0 in the expression above, we will now show that
all three probabilities decay faster than e~ CURP+min{r* 2N - The  term

(A.6)< e~ CURP+min(e* 2N fol1ows from Proposition 3.6. For the remaining two
other terms, by symmetry, their estimates are the same. Let us work with (A.7). Since
u* only depends on the edges between the lines £y and Ly, then by Proposition 3.8

]P’(log Zawr — 20N f1 < —3((C — CHR? + z)N1/3)

< sup]P’(log Zaw —2woN f4 < —1((C = CI? + t)N]/3)

uel
< o~ CUnP+min{r?/2 1N/}

With this, we have finished the proof of this theorem.

A.1.2. Proof of proposition 3.12
Proof of Proposition 3.12. For this proof, let us define

N2/3
(—2kN2/3 2kN2/3)

N2/3

k _ h _
"=L Jh= L(N72hN2/3,N+2hN2/3)'

N2/3 ; 2/3 C .
Because ,Cf)N " and EO\E((;”)N are disjoint, then the number of points between

: 2/3 . . .
/Jf)N " and £ N\EE\S,”)N which are connected by directed paths is at most N'%0. We
may work with the maximum version of the free energy as
log Z

3 < log Z™* 3 +1001log N.

E6N2/3,£N\Lx+t) E‘E)NZB,EN\ES*”NN
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By translation invariance and Proposition 3.11,

Plog Z;—« yn — 2N fg = —Cao(h +k)*N'/3)
=Pdog Z0 jnsk — 2N fy4 = —Coo(h + k)2N'/3)
< o~ Ca(htk)®

Then, the following union bound finishes the proof

max B Cw 2w/
P(log <Z£5N2/3*£N\£SH)N2/3) 2N fa = —5gt°N )
= P( | Uoa(ZJi™) — 2N fu = = (h +0*N'))
h>s+t
k<s
+P( | log(Z ;1) = 2N fu = =L+ N ')
h>s+t
k<s
=Y o= Clhb)® _ =Cr®
h,k>t

A.1.3. Proof of theorem 3.13 We start with the following proposition which states that
the restricted partition function obtained by summing over paths with high fluctuation at
mid, (s+1) N2/3
LN23 pen2/3
*~N

ops . . 2/3 2/3
denote the partition function which sums over all paths between ﬁf)N " and DX,N ! ,and

2/3
they all avoid the segment L',g\s,;r;) N

the halfway time will be much smaller than typical. Fix any s € Z>¢. Let Z

Proposition A.1. There exist positive constants Csq9, Cep, No, ty such that for each N >
No, t > tg and s > 0 we have

; 2/3
]P’(log ZZU[{]’S;IZSVNZB —2Nfq = —C59t2N1/3) < e ‘o,
0o kw

Proof. Let G denote the segment

' 2/3
G = ﬁN/z \ £§$4/-§)N .

This follows directly from subadditivity

. 2/3
log ZMd SN < log ZDNZ/3 cT logZ

) ) = SN2/3
LN o A G.Ly)

and applying Proposition 3.12 to log ZLBNZB,G and log ZG,L;,NZB'

Next, we are ready to prove Theorem 3.13.

Proof of Theorem 3.13. First, let us rewrite the collection of directed paths that exit the

00,27 IP)N3 . C . .
rectangle R(()S;,t Lizo 2 ONTE oS the following disjoint union. For each j € Zx, let T}

. 2/3 2/3 .
denote the collection of paths between Ef)N " and £§VN " that avoids at least one of the
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(s+t3oF ) 2mi/5)N2/3

‘c(l+1)N/2k+1

e PO s+ TE g2 nN
(-1 N/2’CJrl IN/2k+1

Fig. 6. The £*°-distance between a and b is N/Zk+l and the ¢°°-distance between ¢ and d is 2%/t N%/3.
If la — bloo < |c — d|co, then there would not exist a directed path (shown in gray) which goes through
(s+1 Y k2 271N s+ YK 2SN L sH YK 2m SN
(- 2k an R while avoiding £IN/2"+]

(s+t Z{=0 2-i/5)N2/3
IN /271

. . 2/3 2/3 L
below is taken over the collection of paths between L‘f)N and Ef\,N . Our disjoint
union will be

segments £ where [ € {1...,2/*! —1}. The set complement in (A.9)

Ag = Tp, A]:TocﬂTl, Az:TfﬂTz, e, Ak():TkCO—lmTko (A.9)

where k¢ is the smallest index such that if k& > ko, Ay will be an empty set. This is
demonstrated in Fig. 6. As seen from the figure, the following upper bound holds for kg,

2%/5 < N13 ¢, (A.10)

Using this decomposition of the paths, we have

. ko
exit, (s+ Y720 27 /S)NZ3
10 Z£8N2/3’£_§VN2/3 - log (ZZ,C?)NZ/S,,C%NZ/S (Ak)>
k=0

< log(ko) + o?@o{log A LN v (Ap)}

<logN + Og}ca;?(o{log Zﬁ?iNz/Ssﬁ?va (Ap)}-

Since our estimate is on the scale N'/3, we may ignore the log N term above. Now, it
suffices for us to upper bound bound

. ) 1/3)
]P)<0I§rllca§)§co {log ZE(S)NZ/S,QVNZB (Ak)} 2N fqg = —Ct°N (A.11)

ko
< ZP(log Z s s (A = 2N fo 2 —Ct2N1/3)

Next, let us upper bound each term inside the sum above,

P(logZ (A —2Nfy > —Ct N1/3) (A.12)

£vN2/3 ﬁY
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Define Uy ={2m —1:m=1,... 2"}. For [ € Ui, we can write Ay as a (non-disjoint)
union of Ai where Ai contains the collection of paths between LBN ** and Ef\,N " that

(s+t Y2y 2719 N3 (s+t Y12 27PN -
go through the segments £ (I—1)N j2k+1 and Ly ke while avoiding the
k i/5\n2/3
tY 027N
segment £<3+ iz ) in between. Then, we have

lN/2k+1

(A.12) < P(log ( Z Zﬁf)Nz/S,Lj'va (Ai)) — 2N fq > —5t2N1/3>
leUy

< P(log(zkﬂ) + max { log Z£3N2/3 L"N2/3 (Ai)] —2N fg > —5;2N1/3>

(max{logz o vNZ/z(Ak)}—szd> —2Ct N1/3) by (A.10)
leUy Ly L

< ZP(log Z s g (AQ) = 2N fu = oGt N1/3) (A.13)
leUy

Again, let us look at the probability inside the sum (A.13). First, note we have the
following upper bound

log Z . \2/3 23 (AL <log Z . v A.14
g L(&‘)N / sL;VN / ( k) = g L(Y)N / ’L([,|)N/2k+1 ( )
mid, (s+1 YF_y 275N
+logZ o4t SEL 215N (srr R 0mi/S N2/ (A.15)
(I—1)N/2k+1 YT (1+1)N 2k
+logZ N2/ (A.16)
‘C'(I+I)N/2k+1 LY

. (s+1 Y X2y 2715 N2
Now, note for (A.15), the transversal fluctuation of the paths between £ (—1) N Jket
(s+1 Y k20 2715 N2/

and [’(1+1)N/2’<+'

is more than

k/5 . n12/3 _ 2% ky2/3
2N = et (N2

Thus, by Proposition A.1, for some positive constants C’ and C”,

22k/3 o 22k/3
P((A15) — 2= f; > —C' v jaya) < ¢ G ) (A.17)
2k 2k/5
And note that
22k/3 2
<2k/5 t) (N/zk)l/B — 3k/5.2N1/3

With this, we may upper bound the probability inside the sum (A.13) as

IP’(logZ w2 e (AL — 2N fy > —25t2N1/3>
Ly Ly

mid, (s+1 YK, 2715 N2/ _
(s+t Z{‘;& 2_’>/5)N2/3 (s+t Z{‘;& 2_’./5)N2/3
(I—1)N/2k+1 YT (1+1)N j2k+1

<P(logZ ZEfd > _C'3k/52 173
g 5%

(A.18)
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2/3

+P<10g Z£6N2/3 r +log ZE

sN
T —1)N 2kl (I+1)N j2k+1> LY

(2N 2 )f > OSN3 25:2N1/3) (A.19)

Note that we have seen in (A.17) that (A.18) < o—C/2K/100¢3

by lowering the value of C if needed,

. To bound (A.19), note that

CKISRANIB _ a2 N3 > 1C123k/5t2N1/3’

[\

then the event in (A.19) should be rare because the free energy is unusually large. By a
union bound

(A.19) < P(log Zopeh g — DN p s Lok N1/3) (A20)
* P(log Zﬁ(z 1N /2k+] Ly T @N - Z(Z;k]’f)’N)fd = %C/23k/5t2N1/3>'

(I-1)N
2k+1 >

By symmetry, let us bound (A.20) above. For simplicity of the notation, let M =
then

193k/5,2a71/3
(A.20) = ]P’(log Z ot ;= 2Mfa 2 C24M—’1/3NM1/3)

To upper bound this term, we would like to apply the interval-to-line bound from Theorem
3.15. The only assumption from Theorem 3.15 that we need to verify here is the width
of the interval can not be too wide. A sufficient bound that guarantees the assumption is

C'23k/52 N1/3
S(N/M)?3 < e amP

The inequality above holds by our assumption that s < e’. Thus, we obtain

) DK/ 2N1/3\3/2 Q35N o
¢ min { ( E ) e M3}

k/100 .3
<e—cz/ r

(A20)<e
To summarize this last part, we have shown that

(A 12) < Z e_czk/loolﬁ +e_c2k/100t3 < 2]( ) e_czt/100[3
leUy

And going back to our goal (A.11), we have shown
_ 27173 k —C2k/10043 —cr?
P<0I§I}ca§)§<o log Zo v (Ak)) — 2N fg > —Ct°N ) 22 <e )

With this, we have finished the proof of this theorem.
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A.1.4. Proof of corollary 3.14

Proof. Because of the choice s < /10, we see that

(s+%)Nz/3 (N2/3
Ro.n C K(sN23 sN23) N
Then, we have the following bound for the free energy

exit, (s+5)N?/3

exit,tN2/3
Z < log Z£8N2/3’£.;VN2/3'

log (—sN2/3 sN23) N —

Our corollary follows directly from Theorem 3.14 when applied to the right side above.O

A.2. Interval-to-line free energy. We start with a point-to-line bound.

Proposition A.2. There exist positive constants Ce1, No such that for each N > Nq and
eacht > 1, we have

P(log Zo,cy — 2N fy = IN'/3) < e=Corminle 2N,
Proof. Note it suffices to prove the same estimate for
P(log Z§"% — 2N fg = tN'/?) (A21)

. 23
since log Z £, < log(Z("#* ) +1001og N. Let Jh — 'CZV—2hN2/3,N+2hN2/3)'

bound and Proposition 3.11, we have

By aunion

(A21) < Y P(log ZI™ — 2N fy = tN'/3) < Y = Clhminte 2V

heZ heZ
< o~ Cmin{t2 N}

O

Next, we use a step-back argument to upgrade the point-to-line bound of Proposition
A.2 to Theorem 3.15.

Proof of Theorem 3.15. First, we prove the case when 7 = 1. Since

log Zﬁ{)VZB,EN < penﬁlallvyg/3 log Zp 1y +1001og N,
0

it suffices to work with the maximum above. Let p* denote the random maximizer that

?v§/3 08 Lp.Ly 08 Lp*. Ly
peLy

Then, we have

logZ Ny =10gZ N pr+10g Zps -
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With this, we see that

IP( max logZ, oy — 2N fy4 > tN1/3)
pecl?’?

< P(llog Z_w.cy — 4N fal — log Z_npr = 2N ful = tN'?)
< P(log Zonry —ANfy> §N1/3) (A22)
+IP’<log Z_ Ny —2Nfs < —§N1/3). (A.23)

From Proposition A.2, we obtain (A.22) < ¢~ € min{r2.tN) Because p* only depends

on weights between Ly and Ly, and by Proposition 3.8, we have

(A23) = max P(log Z anp—aNfs < —§N1/3) < = Cminl®2aN'R) (A gy

N2/3
peL;

This finishes the case when A o L.
Next, let us define I/ = £é\i 2} N3 42 N213) where j is the collection of integers in
[—%, k] Then, it holds that

log Z < logZ;, r, +logh.
02 Z w2t p = max, l0g Zy; £y +log

Using this and a union bound,

_ 1/3 _ tarl/3
]P)<10gZLgN2/3,/:N 2N fqg > tN ) < P(,'er[ff‘/fhnlogz’f“ 2N fa > 3N )

IA

10hP(log Zpo £, — 2N fa = §N'7?)

10eC28 min{t3/z,tNl/3}efa min{r3/2,:N1/3}

IA

<o € min{t3/2,tN1/3}'

where the last inequality holds if we fix Cag < %5 where C is the constant appearing
in (A.24). With this, we have finished the proof of the theorem.

A.3. Estimates for the constrained free energy.

A.3.1. Proof of theorem 3.16

Proof. First, we prove the estimate when
o<t <N,

To do this, we break the line segment from (0, 0) to p into equal pieces with £! length
2N6/4/t. And let us denote the endpoints in between as {p;}.
Let 0 < C’ < 1/2 which we will fix later. By a union bound, we have

]P’(log Z(i)rjime —2Nf; < —C't2N1/3)
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t : 3
< %ﬂ)(log ZiV a0 D f < —CPPRP WOV (a2s)

Using the fact that

log Zo,p, < log?2+ max { log Zé)npelN " 1o ZSXSIGNM ],

we may continue the bound

(A25) < i[l?’(log Zo.py — 2NOJVD) f1 < —C'12P0B(NO IO + 1og2) (A.26)

exit,11/36013 (0N //1)2/3

+ IP’( log Z s

—2NO/VD) fa = —C’(t1/391/3)2(N9/ﬁ)1/3)].
(A27)

It remains to upper bound each of the probabilities above and this would finish the proof
of this theorem.

First, we show that the probability in (A.26) is bounded by e~¢?". There exists an
absolute constant ag such that

a004/3
|(Vo/VE NV —pi| = S (No VDR,
Then, by Proposition 3.5
a0 —20v0/ D fu| = (U Y e,

and the fraction £ ?/6/ is bounded for ap and 0 < 6 < 100. Hence, we may replace the

2(N6/+/1) f4 in (A.26) by A(p1) and Proposition 3.8 can be applied.
For the probability in (A.27), we may apply Theorem 3.13 and obtain

1739173 2/3
P(log Zgy NN oo/ fa =~ P PR (NG V) < e C,

provided that C’ is fixed sufficiently small. Note here the assumption
113913 < (N6/4/t)'/3 in Theorem 3.13 is satisfied because of our current assump-
tion r < N2/3. This finishes the proof of the estimate when 1y < t < N%/3, as we have

shown that the probability appearing in our theorem is upper bounded by % ‘[ —cor,
Finally, to generalize the range of ¢, the steps are exactly the same as how we generahzed
the range of ¢ in the proof of Proposition 3.8. First, we can trivially generalize to the
range fo < t < aN*/> for any large positive . This only changed the C from our uppze/:3r
E)ni’ON
by a sum of weights from a single deterministic path inside our parallelogram RQN 7
Then, our estimate follows from Theorem D.1, as shown in (8.9). |

bound ﬁe_cm . For t > aN?/3, we replace the constrained free energy log Z
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A.3.2. Proof of theorem 3.17

Proof. We may lower bound the constrained free energy by an i.i.d sum

log ZMN > kszm log z“1 SN”:/Z X o (A.28)
k
Note that

IP(I me N 2N/ fa = (s3/2N/k)‘/3) (A.29)

Tk
> ]P’(logZ SN 2sPN/k) fg > 2(s3/2N/k)1/3) (A.30)

k

- P(log zex‘gjfjv/ 2SN fy > (s3/2N/k)1/3). (A31)

Tk

The probability (A.30) is lower bounded by an absolute constant ¢y € (0, 1) by Propo-
sition 3.7, provided s3/2N/k > N(’)k where NS‘ is the No from Theorem 3.17. And the
probability (A.31) is upper bounded by ¢~C¥ from Theorem 3.13 when k < /sN!/3
and (A.31) is zero when k > /s N'/3. Thus,

_~3/2,3)2
Cs '/t -~

(A29) > cg — e co/10

when ¢ is large.
Finally, let k = +=s3/2¢3/2. On the intersection of k independent events that each term

of the sum in (A. 28) is large like in (A.29),

L

: 2/3 _(3/243/2\ C13/2 _(43/2
P(log ZmNE N £y > #tNm) > (e — e~ O 5 e
’ 0

where the last constant C depends on s. With this, we have finished the proof of this
theorem. =

A.4. Minimum and maximum of the constrained free energy in a box.

A.4.1. Proof of theorem 3.18
Proof. First, we will prove the following estimate,

RN2/3
]P( min logZ 0NN —Ipl) fa < —tN1/3) <o C1 (A32)
PERY Y 16

Then, the statement of the theorem follows from a union bound, which we will show
at the end of the proof. To start, we construct a tree 7 with the base at (N, N). Define
To = {(N, N)} and we will define the remaining part of the tree. Fix a positive constant
J such that

such J always exists provided that Ny is sufﬁmently large Next, for j = 1,2,...,J,
7; is the collection of 32/ vertices which we now define. Fori = 1,2, ..., 8/, from
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; . . . 2/3
2,+, gine Ve collect 4/ vertices which split the the segment EQ{H i N

into 4/ + 1 equal pieces. We define the vertices of our tree 7 as the union U 07
Now, we form the edges between the vertices. Let us label the vertices in 7; as

each segment oy

hpil<i<8/ 1<k<4l)
A fixed index i records the anti-diagonal segment Ez,+1 giN . And along this segment,
we label the 4/ chosen vertices by their e»-coordinate Values withindex k =1, ...,4/.

For k = 1, we choose x(ji jto be the vertex with the smallest e>-coordinate (which could
be negative). Next, for j = 1,2, ..., J — 1, we connect the vertex x{. K € 7; with the

32 vertices inside 7;; which are of the form )cg(l1 1)+ A1)+ where 1 < i’ < 8 and
1 < j’ < 4. This completes the construction of the tree 7.
For fixed j, i and k, let us denote the collection of 32 points in 7', which are connected
to X(J i1 8 Vijik. Now, foreach v € Vj ; , the diagonal distance between the v and X(]iy )
satisfies
; 8—J 8/

X/ 1 — IVl € [2 N6 ] (A.34)

and their anti-diagonal distance is upper bounded as

X)) (€1 — ) = V- (e — ez)‘ <2.47IN3, (A35)

Similarly, we look at the vertices inside 7, they form a grid inside the rectangle
N2/3

. . N2/3 N2/3 . J
2+§2_J which contains RO’N/16. Then, foreachp € RO,N/16’ there exists an X (i [pl.klp))

s

= xl{ € T7 such that
—J 8—]

J
— 2— —_— A.
xpli = 1Bl € [255-N. 6= N] (A.36)

and
xp - (e1 —e) —p- (e —ez)‘ <2.47/N?, (A.37)

Provided that Ny is sufficiently large, the collection of up-right paths from p to xI{ while
remaining inside R(’)\f ;;jw has to be non-empty. This is because by our choice of J from
(A.33), the estimates (A.36) and (A.37) imply the diagonal distance between p and xl{

is lower bounded by N'/4/100, while their anti-diagonal distance is upper bounded by
2(N8™7)23 < N3P,
Now, for each v € V;; t, let us define the event

(j+1) ar2/3 : o
Via = {10g 2TV = i fa = 27N a3®)

VX(i 1)

Here note that the path constrain in the parallelogram in the definition above also satisfies
the global constraint as
—(j+1) A2/3 2/3
R4Vt N CRN/

J O,N *
V’X(i,k)
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From (A.34), (A.35) and the choice for the width of the rectangle Rh4 urN 2/3, b

v x(l k)/4/
Theorem 3.16,

in. f (87 )23 j /5173 21110
PR} =P(log 2"} — (ol = VI fa = =279V 1) < =€,
(]
Hence,
> j/10
J - - J —
IP( Uiz us Uil 1Uvev],i,k(73§,i,k)°) <Y 100/e T < e,
j=0

provided that 7 is sufficiently large.
Next, let us define the event

Rstart = {100 8§/N mln/ {logY,} > —tN1/3}

eRgN
Recall that N8/ < N1/3-001 then

P((Rstar)®) < IF’( min {log¥,} < —tNO-O(”) < N2. ]P’(log Yo < _tNo.om)

N
zeRO,N

_ ny0.001 _
e CN tfe Ct.

Then, on the event Ry N ( ﬂJ 1 HSI — ﬂ‘“ —1 Nvev;,, kR i k) which has probability at

least 1 — e~ €’, we must have
o gV 00 _
min logZ 0N N —ph) fa > —<1 + ZZ_J/5>IN1/3.
pecy?’? j=0

J

. N2/3 J .
To see this, foreach p € Ro, N/16> W may go tox,. Then, from Xp,We obtain a sequence

of points xl{ which traces back to (N, N). Then, we have

T J—1 RN
1ogZpN°N > |p—x |1 mm {0 Alog Y} + E 1ogz“}+1 W
R *p
ON j=0

And on the event Ry, N (ﬂj ! ﬂ8j 1 ﬂ —1Mvev;, kRJ i k) the right side above is greater

than QN — |pl1) fu — (l + Z?O:o 2= 1/5) tN'/3. With this, we have finished the proof

of (A.32).
Finally, the estimate from our theorem simply follows from a union bound using (A.32).

. N2/3 .
We rewrite the rectangle Ryy'gy /10 @8 @ union of smaller rectangles

N2/3 N2/3
U Ry (e N -

160> 16
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Then, (A.32) can be applied to each one of these rectangles in the form

in RNZ/3
P( N‘?/%“ log Z, " — Q2N —Ipln)fa < —tN1/3>
€R .

kN (k+D)N
160"~ 160

and a union bound finishes the proof. O

Proof of Proposition 3.10. This follows from a step-back argument. First, let p* denote
the random maximizer of

max_ logZy £y — 2N —pl1) fa-

erN
P 0. 7N

Then,
logZ Ny =10gZ N px+10g Zys £

By a union bound,

P(10g Zy: £y — N — ") fu = tN')
< IP’(log Z n.ry —ANfy > %tN1/3)

+]P’(10g Z_np — QN +[p*11) fa < —%tNW).

The two probabilities are bounded by ¢ =€’ by Proposition 3.8 and Theorem 3.18.

B. Proof of the Random Walk Comparison in Sect. 3.5

Proof of Theorem 3.28. We will construct the upper bound X;. The construction of Y;
follows from a similar argument, which we sketch at the end of the proof. In addition,
we will assume that the partition functions include the weight Y (g ¢y, which does not
change the profile.

To start, recall the profile that we are looking at is along ®; = {zo, ..., zx}. Let us
first fix an ag sufficiently small that zj - e; > %V ~ - 2. Next, we will fix the constant gy,
and the idea is illustrated in Fig.7. Recall 4 = p + gos N /3. By Proposition 3.1, for
q0 > 0,

the slope of the vector §[A] > m,,(0) + cqorN*m.

This means increasing go will make the dotted line appearing in Fig.7 more vertical.
Then, because the slope between (0, 0) and vy ism ,(0) and |zg — Vy |00 < SN 2/3 there
exists a positive constant gq sufficiently large such that the —&[A]-directed ray starting
at zo (the dotted line) will cross the horizontal line y = —1 on the right of the vertical
line x = sN?/3, as shown in Fig.7.
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Once q is fixed, we may lower the value of ag further if necessary, so the parameters
A and p — A are both contained inside [5, u — 5]. We will place Ga~'(u — A) and

Ga™! (A) on the e{- and e>-boundaries based at the base (—1, —1).
By Theorem 3.25, we have

P(0%,lr < ~1) 2 1/10) <7, (B.1)
and let us define the complement of (B.1) as
A= {Q);LZO{I > 1) > 9/10}.
By Proposition C.2, it holds that fori =1, ..., k,
ot r=1)> 0% {r=1)

Let Z%dsflit)h. be the partition function that uses the same weights as Z* | , except that

Zﬁosﬁlit)h does not see or use any of the weights on the vertical boundary along x = —1.

Then, we can upper bound log Z¢ ,, — log Zy 5, _, as follows,

o102 202, =10g 20,7y _ 20,2,
ZO,Zi—l
X,south X,south X,south
A AT 17 _
by Proposition C.1 < A(O’ Do o —O-Da | 1CL-D0, -l
7 ,south Zk,south IA,south
0,—1),zj—; 0,-1),z—; [(—=1,—1),(0,—D]I
Zh =D Qr (=D Zh,
— i ~ A T
Z—l,z,-,l(r >1) Q—l,zi,l(‘c =1 Z—I,Zi—l
A
10 2%, .
ontheevent A < —_clm
9 Z)\lz-
—1.Zj—1
Zo
A\
o
o
Ga~'(\) —&[\]-directed
¢
0
(-1,-1) o o

(—1,sN2/3) 5 Ga '(u—2A)

Fig. 7. The step up in the proof of Theorem 3.28
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Z)L
Zﬁl.zg—l
proprieties of X; are guaranteed by Theorem 3.23.
For the lower bound, by increasing the value g if necessary, the —&[n] directed ray
starting from z; will hit the vertical line x = —1 above the horizontal line y = sN2/>.
We place Ga~!'(u — n) and Ga—!(u) on the e;- and e>-boundaries based at the base

(=1, —1). Then by Theorem 3.25, we have
IP(Q"_LZO{r > 1) > 1/10) <O,
Let us define the complement of (B.1) as
B= {QZLZk{f <1} > 9/10].
By Proposition C.2, it holds that fori =0, ...,k — 1,
0" fr=-1}=0" f{r<-1}.

Then, we lower bound log Zy ;. — log Zy 5,_, as follows,

1,z;

Choosing X; = log finishes the proof of the upper bound. Note the distributional

o8 Z05—log Zo_ _ L0
ZO,Zi—l
Zn,west Zn,west Jn,west
. 0,1,z _ “0,~1),z [(=1,—1),(=1,00]]
by Proposition C.1 > PR = e . et
0,—1),zi— ©0,=D.zicp I(=1=D, (=10
oz ,e=-n 0l c=-1) Z!,
Zzl,zl._l(f <-1 Qn_l,zi_l(r <-1 Zzl,zi_]
9 2%,
on the eventB > — 7 L.z
1z, ,
—1,Zj—]
ZVI
Choosing Y; = log Z,,fl’z" will give us the desired lower bound.

—lLzi_q

C. Monotonicity for the Polymer Model

The following two propositions hold for arbitrary positive weights on the lattice, and
there is no probability involved. The first proposition is Lemma A.2 from [20], and the
second proposition is Lemma A.5 from [59].

Proposition C.1. Let X,y,z € 7> be such thatx -e; < y-ej, X-e >y - e, and
coordinate wise X,y < z, then
Zxz Zy,z Zxz Zy,z

< and > .
Zx z—e Zy1—e Zxz—e Zy1—e

Proposition C.2. Forany k,l,m € Z>o and z € ZZZO,

QO,z{T >k} < QO,z+le17me2{T > k}.
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D. Sub-Exponential Random Variables

First, we state a general result for the running maximum of sub-exponential random
variables. Recall that a random variable X is sub-exponential if there exist two positive
constants Kg and Ag such that

log(E[M X1 —EXiD)y < Kga2  for A € [0, Ag]. (D.1)

Let {X;} be a sequence of i.i.d. sub-exponential random variables with the parameters
Ko and Aq. Define Sy = 0 and Sy = X1 +-- -+ X — kE[X] for kK > 1. The following
theorem captures the right tail behavior of the running maximum.

Theorem D.1. Let the random walk Sy be defined as above. Then,

IE”( max Sy > 1t/n

0<k<n

) - e~P1GK0) iy < 200 Ko/n
= eV ifr > 2a0Ko/n

Proof. Since Sy is a mean zero random walk, then ¢*5 is a non-negative sub-martingale
for . > 0. By Doob’s maximal inequality,

AS), AX1n
<E[e 1 E[e*]

VN YN

IP’( max S > tﬁ) = IP’( max 5 > e“ﬁ)

0<k<n 0<k<n

Taking the logarithm of the expression above, and using our assumption (D.1) for X1,
we obtain

| (]E[e““]”

T) — nlog(E[e*X1]) — at/n < nKor2 — at/n for i € [0, Aol.
e

Let us denote the quadratic quadratic function in A € [0, X¢] as
h(Z) = nKoh2 — At/n.
And note the minimizer of & is given by )L{“i“ = min{Ag, m}, and
pmn) = {—%2 1 if1 < 210Ko i
nKorg — dot/n < —5hot/n if t > 200Ko/n
With this, we have finished the proof of this proposition. O

Our next proposition shows that both log(Ga) and log(Ga_l) = —log(Ga) are sub-
exponential random variables.

Proposition D.2. Fix e € (0, ;t/2). There exists positive constants Ko, Ao depending on
€ such that for each o € [€, u — €], let X ~ Ga(a) and we have

log(E[e™*10eX)=W1@D ]y < k022 for & € [0, Aol
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Proof. First, note that E[X ] = %, provided that « = A > 0. Then, the proof

essentially follows from Taylor’s theorem,
log(E[eiA(IOg(X)—‘Vl(Dl))]) — lOg(E[Xi)”]e$)“yl(a))
= log(I'(a £ 1)) — [log(I"()) £ AW ()]

(recall log(I'(@))’ = Wi (@) = ‘I’IT(“)AZ +o(A?)
< Ko\?

provided Ag is fixed sufficiently small. The constant K can be chosen uniformly for all
o from the compact interval [€, u — €] because P is a smooth function on R>. m]

Proof. (Proof of (4.3)) First, let us normalize the §k by its expectation, and let us denote
the new walk by Si. The expectation of the step of Sy is

— Wo(n) + Yo(u — 1)
= —Wo (/2 — qot* PN + Wo(u/2 + qor?*N~1/3)
< c1t2/3N_1/3

provided Ny is sufficiently large and ¢y is sufficiently small. Then,
E[S] < acit?AN73 < ¢y14/a.

By fixing C’ = 2c¢; in (4.3), we see that

4.3) < IP’( max Sy > clzﬁ).
0 a

<k=<

Since the sum of two independent sub-exponential random variables is still a sub-
exponential random variable, this fact together with Proposition D.2 shows that the
steps of S are sub-exponential. Now, we may apply the right tail bound on the running
maximum from Theorem D.1 to the term

IP’( max Sp > clt\/a),

0<k<a

and this finishes the proof. O

E. Random Walk Estimate

First, let us recall two results from [56]. Let {X;};cz_, be an i.i.d. sequence of random
variables with

E[X;]=u, Var[X;]=1 and c3 =E|X — /JL|3 < 00.

Define Sy = Z;‘:] X; with S = 0.
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Lemma E.1. ([56, Lemma 5]) There exists an absolute constant C such that for any
[>0

_ 2
P(lg}(e;x]v S < 1) P(]ganN S < o) < Clesl+3)(ul +1/¥N). (B

Lemma E.2 ([56, Lemma 7]). There exists an absolute constant C such that

2
P(lg}éxN S < o) < CAE(ul +1/VN). (E.2)

Combining them, we obtain the following proposition.

Proposition E.3. There exists an absolute constant C such that for any [ > 0,

P(lsmkanN S, < 1) < Clesl + A (ul + 1/VN). (E.3)
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