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Abstract

We show that two semi-infinite positive temperature

polymers coalesce on the scale predicted by KPZ

(Kardar–Parisi–Zhang) universality. The two polymer

paths have the same asymptotic direction and evolve

in the same environment, independently until coales-

cence. If they start at distance ý apart, their coalescence

occurs on the scale ý3∕2. It follows that the total variation

distance of two semi-infinite polymer measures decays

on this same scale. Our results are upper and lower

bounds on probabilities and expectations that match, up

to constant factors and occasional logarithmic correc-

tions. Our proofs are done in the context of the solvable

inverse-gamma polymer model, but without appeal to

integrable probability. With minor modifications, our

proofs give also bounds on transversal fluctuations of

the polymer path. As the free energy of a directed poly-

mer is a discretization of a stochastically forced viscous

Hamilton–Jacobi equation, our results suggest that the

hyperbolicity phenomenon of such equations obeys the

KPZ exponent.
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1 INTRODUCTION

This paper focuses on a probability model for nearest-neighbor up-right random walk paths on

the two-dimensional square lattice. The lattice vertices are assigned independent and identically

distributed random variables called weights, and the energy of a path is defined as the sum of

the weights along the path. The point-to-point quenched polymer measures are probability mea-

sures on admissible paths connecting pairs of sites. The probability of a path is proportional to the

exponential of its energy.

This model is known as the two-dimensional directed lattice polymer with bulk disorder and was

introduced in the statistical physics literature by Huse and Henley [22] in 1985 to represent the

domain wall in the ferromagnetic Ising model with random impurities. This model is expected

to be a member of the Kardar–Parisi–Zhang (KPZ) universality class and has been extensively

studied over the past three decades, becoming a paradigmaticmodel in the field of nonequilibrium

statistical mechanics. See the surveys [11–14, 20, 21, 30, 31, 37].

The directed last-passage percolation (LPP) model on the square lattice is a zero-temperature

version of the randompolymermodel. In LPP,we consider the ground states, which are admissible
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paths that maximize the energy, and are referred to as geodesics. This particular LPP model with

up-right nearest-neighbor lattice paths is also called the corner growth model.

In LPP, a path that starts from a given lattice vertex and only moves up or right is called a

semi-infinite geodesic if each finite piece of the path is a geodesic between its endpoints. The

existence, directedness, and uniqueness or nonuniqueness of semi-infinite geodesics have been

well-studied and understood (see [16, 17, 38] for details). Notably, it has been demonstrated in [16]

that these semi-infinite geodesics can be obtained as limits of finite geodesics, as the endpoint

moves off toward infinity in a particular direction. Furthermore, it has been shown in the same

paper that semi-infinite geodesics starting at different vertices but having the same asymptotic

direction eventually coalesce, that is, they intersect and then move together.

The study of semi-infinite polymer measures in the case of random directed lattice polymers

was carried out in [18, 25]. Similar to LPP, [25] established that semi-infinite polymer measures

that start from different vertices and share the same asymptotic velocity can be coupled in such

a way that their paths coalesce with probability one. As a consequence, the marginals of any two

semi-infinite polymer measures that correspond to the same asymptotic velocity are asymptotic

to each other. This phenomenon, known as hyperbolicity, has been found to be linked to various

phenomena such as stochastic synchronization and the one force–one solution principle (see, e.g., [1,

26]). In this work, our focus is on providing precise quantitative bounds on the convergence rates,

showcasing how this hyperbolicity obeys the KPZ exponents. Currently, such sharp estimates are

only available in the so-called solvable cases, where the weight distribution is chosen in a specific

way, allowing for explicit analytic computations.

With nearest-neighbor up-right paths and independent and identically distributed vertex

weights, the only known solvable LPP models are the ones with either exponential or geometric

weight distribution. In the only known solvable directed polymer model, the weights have a neg-

ative log-gamma distribution. This solvable directed polymer model was first introduced by the

second author in [32] and has since been referred to as the inverse-gamma or log-gamma polymer.

Our main contributions in this paper are sharp quantitative bounds on the rates of coalescence

of the coupled paths and convergence of themarginals in the inverse-gamma polymermodel. The

corresponding estimates for LPP with exponential weights were obtained in [5] using integrable

probabilitymethods, and in [34] using couplingwith stationary versions of themodel, which relies

less on the solvability of themodel. In this paper, we adopt the latter approach and further develop

it to handle the additional layer of randomness that arises in the case of semi-infinite polymer

measures, where the random environment only determines the path measures. Along the way,

we provide various new estimates on the exit point of stationary polymers and we improve one

existing estimate, namely the last inequality in (4.1).

Organization of the paper

In Section 2, we present the setting and our main results concerning the coalescence point, total

variation distance, and transversal fluctuations. The connection to hyperbolicity in stochastic

Hamilton–Jacobi equations is addressed briefly in Remark 2.10. Exit time estimates in the station-

ary inverse-gamma polymer are a crucial tool in our proofs. We introduce the stationary polymer

in Section 3 and provide the exit time estimates in Section 4. The proofs of the coalescence results

are presented in Section 5, while the proofs of the total variation distance estimates can be found

in Section 6. The proofs of the transversal fluctuations results are provided in Section 7. Various

auxiliary results are gathered in the Appendix.
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Notation and conventions

Subscripts indicate restricted subsets of the reals and integers: for example, ℤ>0 = {1, 2, 3, … } and

ℤ2
>0
= (ℤ>0)

2 is the strictly positive first quadrant of the planar integer lattice.

On ℝ2 we have the following conventions for points ý = (ý1, ý2) and ÿ = (ÿ1, ÿ2). Coordinate-

wise order: ý ⩽ ÿ if and only if ý1 ⩽ ÿ1 and ý2 ⩽ ÿ2. The ý
1 norm is |ý|1 = |ý1| + |ý2|. The origin

ofℝ2 is denoted by both 0 and (0,0). The two standard basis vectors are ÿ1 = (1, 0) and ÿ2 = (0, 1).

For integers ÿ ⩽ ÿ, the integer interval is denoted by çÿ, ÿè = {ÿ,ÿ + 1,… , ÿ}. For planar

points ÿ ⩽ ÿ in ℤ2, çÿ, ÿè = {ý ∈ ℤ2 ∶ ÿ ⩽ ý ⩽ ÿ} is the rectangle in ℤ2 with corners ÿ and ÿ. The

northeast boundary of a rectangle [[ÿ, ÿ]], denoted by ÿNE[[ÿ, ÿ]], is the set of vertices ÿ ∈ [[ÿ, ÿ]]

such that ÿ ⋅ ÿ1 = ÿ ⋅ ÿ1 or ÿ ⋅ ÿ2 = ÿ ⋅ ÿ2. The notation çÿ, ÿè is an integer line segment in ℤ2 if ÿ
and ÿ are on the same horizontal or vertical line. In particular, çÿ − ÿ1, ÿè and çÿ − ÿ2, ÿè denote
unit edges.

The total variation distance between two probability measures ÿ and ÿ on a measurable

space (Ω,) is ýTV(ÿ, ÿ) = supý∈ |ÿ(ý) − ÿ(ý)|. For a probability measure ÿ, ÿ ∼ ÿ means the

random variable ÿ has distribution ÿ.

2 MAIN RESULTS

2.1 Directed polymer model

Let {ýÿ}ÿ∈ℤ2 be a collection of positive weights on the sites of the planar integer square lattice.

For vertices ÿ ⩽ ÿ in ℤ2, ÿÿ,ÿ denotes the collection of up-right paths ý∙ = {ýÿ}0⩽ÿ⩽ÿ where ÿ =

|ÿ − ÿ|1, ý0 = ÿ, ýÿ = ÿ and ýÿ+1 − ýÿ ∈ {ÿ1, ÿ2} for all ÿ ∈ ç0, ÿ − 1è. Define the point-to-point
polymer partition function between the two vertices ÿ ⩽ ÿ by

ýÿ,ÿ =
∑

ý∙∈ÿÿ,ÿ

|ÿ−ÿ|1∏
ÿ=0

ýýÿ .

We use the convention ýÿ,ÿ = 0 if ÿ ⩽ ÿ fails. The quenched polymer measure is a probability

measure on the set ÿÿ,ÿ and is defined by

ýÿ,ÿ{ý∙} =
1

ýÿ,ÿ

|ÿ−ÿ|1∏
ÿ=0

ýýÿ .

In general, the positive weights {ýÿ}ÿ∈ℤ2 can be seen as a random environment if they are chosen

as independent and identically distributed positive random variables defined on some probability

space (Ω, ,ℙ). Under the moment assumption
ý[| logýý|ý] < ∞ for some ý > 2,

there exists a concave, positively homogeneous, nonrandom continuous function Λ ∶ ℝ2
⩾0
→ ℝ

that satisfies the shape theorem (see [25, section 2.3]):

lim
ÿ→∞

sup
ÿ∈ℤ2

⩾0
∶|ÿ|1⩾ÿ

| log ý0,ÿ − Λ(ÿ)|
|ÿ|1 = 0 ℙ-almost surely. (2.1)
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Λ is called the (limiting) free energy density or, by analogywith stochastic growthmodels, the shape

function. Regularity properties of Λ such as strict convexity or differentiability are not known

in general.

Fix a base point ÿ ∈ ℤ2 and let ýý ⩾ ÿ in ℤ2 be a sequence of lattice points going to infinity in

a deterministic direction ÿ, that is, ýý∕|ýý|1 44444→
ý→∞

ÿ∕|ÿ|1. The ÿ-directed semi-infinite polymer
measure is obtained as the weak limit

ýÿ,ýý ⇀ Π
ÿ
ÿ as ý → ∞, (2.2)

provided this weak limit exists ℙ-almost surely. The probability measureΠ
ÿ
ÿ is the quenched path

measure of a random walk in a random environment (RWRE) on ℤ2 started at ÿ. An RWRE is

Markov chainwhose transition probability depends on the environment in a translation-covariant

way. In the polymer case, these transition probabilities are given by limiting ratios of partition

functions. If the shape function Λ (as a function of directions) has sufficient local regularity

around the direction ÿ, then the limiting measure Π
ÿ
ÿ exists [25, Theorem 3.8].

2.2 Inverse-gamma polymer

This paper focuses exclusively on the inverse-gamma polymer. A real random variable ÿ has

the inverse-gamma distribution with shape parameter ÿ ∈ (0,∞), abbreviated as ÿ ∼ Ga−1(ÿ),

if its reciprocal ÿ−1 has the gamma distribution with shape parameter ÿ. Equivalently, ÿ has

probability density function

ÿÿ(ý) =
1

Γ(ÿ)
ý−1−ÿÿ−ý

−1
ÿ(0,∞)(ý)

where Γ(ÿ) = ∫ ∞
0 ýÿ−1ÿ−ýýý is the gamma function. The inverse-gamma polymer is defined by

letting {ýÿ}ÿ∈ℤ2 be independent and identically distributed inverse-gamma distributed random

variables. We will fix the shape parameter ÿ in the rest of the paper. While many of the constants

in the proofs depend on ÿ, we will not explicitly mention this fact.

In the current state of the subject, Λ in (2.1) can be written down explicitly only in the

inverse-gamma case. Then the regularity of Λ required for (2.2) can be verified explicitly.

Hence, for each given direction ÿ in the open first quadrant and each initial vertex ÿ ∈ ℤ2,

the measure Π
ÿ
ÿ exists almost surely [18, Theorem 7.1]. Its transition probability is given in

Equation (5.2).

Let Ψ0 and Ψ1 be the digamma and trigamma functions, defined by Ψ0(ÿ) =
ý

ýÿ
log Γ(ÿ) and

Ψ1(ÿ) = Ψ′
0
(ÿ) = ý2

ýÿ2
log Γ(ÿ). In the study of the inverse-gamma polymer, it is convenient to index

the spatial directions ÿ by the parameter ÿ ∈ (0, ÿ) through

ÿ[ÿ] =
(

Ψ1(ÿ)

Ψ1(ÿ)+Ψ1(ÿ−ÿ)
,

Ψ1(ÿ−ÿ)

Ψ1(ÿ)+Ψ1(ÿ−ÿ)

)
. (2.3)

We call ÿ[ÿ] the characteristic direction associated to the parameter ÿ. This notion acquires its full

meaning when we discuss the stationary inverse-gamma polymer in Section 3. The formula for
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F IGURE 1 These pictures illustrate the likely events which are the complements of the rare events bounded

in Theorems 2.1 and 2.3. The open circle marks the coalescence point of two ÿ[ÿ]-directed semi-infinite polymer

paths. On the left ÿ is large and the initial points are far apart on the scale ý2∕3. Consequently the two paths are

unlikely to coalesce before exiting the rectangle. On the right ÿ is small and coalescence inside the rectangle is

likely.

the shape function Λ is cleanest in terms of the characteristic direction: from [32, (2.16)]

Λ(ÿ[ÿ]) = −
Ψ1(ÿ)

Ψ1(ÿ)+Ψ1(ÿ−ÿ)
⋅ Ψ0(ÿ − ÿ) −

Ψ1(ÿ−ÿ)

Ψ1(ÿ)+Ψ1(ÿ−ÿ)
Ψ0(ÿ).

Throughout the paper, ý is a scaling parameter that goes to infinity. We define the particular

sequence of lattice points

ÿý = (+ýÿ[ÿ] ⋅ ÿ1,, +ýÿ[ÿ] ⋅ ÿ2,) ∈ ℤ2
⩾0 (2.4)

that go to infinity in the characteristic direction ÿ[ÿ].We simplify the notation for the semi-infinite

polymer distribution to Π
ÿ
ÿ = Π

ÿ[ÿ]
ÿ .

2.3 Coalescence bounds

For two initial vertices ÿ, ÿ ∈ ℤ2, let ÿ
ÿ,ÿ

denote the classical coupling measure of the Markov

chains Π
ÿ
ÿ and Π

ÿ
ÿ
, as defined by Thorisson [35, chapter 2]. Under the distribution ÿ

ÿ,ÿ
, the two

paths evolve jointly as a Markov chain on ℤ2 × ℤ2 with marginal distributions Π
ÿ
ÿ and Π

ÿ
ÿ
. The

joint transition probability is defined on ℤ2 × ℤ2 so that the two paths move independently until

they meet, after which they move together. When this meeting happens we say that the two paths

coalesced. By [25, TheoremA.1], for a given ÿ, coalescence happensÿ
ÿ,ÿ
-almost surely, for almost

every environment.

We quantify the speed of coalescence by specifying the lattice subset in which the coalescence

first happens. Forý ⊂ ℤ2, let Γý denote the collection of pairs of semi-infinite up-right paths inℤ2

that first meet at a vertex inside the setý. Then,ÿ
ÿ,ÿ

(
Γ[[0,ÿý]]

)
is the quenched probability that the

coalescence of the paths from ÿ and ÿ happens inside the set [[0, ÿý]]. Similarly,ÿ
ÿ,ÿ

(
Γℤ

2⧵[[0,ÿý]]
)
is

the quenched probability that the coalescence happens outside [[0, ÿý]]. The two theorems below

give upper and lower bounds on the expectations of these quenched probabilities in two distinct

cases: when the initial points are close together and when they are far apart on the scale ý2∕3.

These two scenarios are illustrated in Figure 1.
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Theorem 2.1. Let ÿ ∈ (0, ÿ∕2). There exist positive constants ÿ1, ÿ2, ý0, ÿ0 depending only on ÿ

such that for each ÿ ∈ [ÿ, ÿ − ÿ],ý ⩾ ý0 andý
−2∕3 ⩽ ÿ ⩽ ÿ0, we have

ÿ1ÿ ⩽ ý
[ÿ

+ÿý2∕3,ÿ1,+ÿý2∕3,ÿ2

(
Γℤ

2⧵[[0,ÿý]]
)]

⩽ ÿ2| log ÿ|10ÿ.

Remark 2.2. The restriction ÿ ⩾ ý−2∕3 is needed only for the lower bound of the theorem and only

for the trivial reason that the expectation vanishes when ÿ < ý−2∕3 because then the two paths

start together at the origin.

Theorem 2.3. Let ÿ ∈ (0, ÿ∕2). There exist positive constants ÿ1, ÿ2, ÿ0, ý0, ý0 that depend only on

ÿ such that for each ÿ ∈ [ÿ, ÿ − ÿ],ý ⩾ ý0 and ÿ0 ⩽ ÿ ⩽ ý0ý
1∕3, we have

ÿ−ÿ1ÿ
3
⩽ ý
[ÿ

+ÿý2∕3,ÿ1,+ÿý2∕3,ÿ2

(
Γ[[0,ÿý]]

)]
⩽ ÿ−ÿ2ÿ

3
.

Remark 2.4. Again, the upper bound ÿ ⩽ ý0ý
1∕3 is only needed for the lower bound in the

theorem.

The estimates above do not depend on starting the paths on an antidiagonal. The following

corollary gives two of the four additional estimates. The other two follow from the theorems. Also,

ÿ1 and ÿ2 are interchangeable by symmetry.

Corollary 2.5. Let ÿ ∈ (0, ÿ∕2). There exist positive constants ÿ,ý0, ÿ0, ÿ0 that depend only on ÿ

such that for each ÿ ∈ [ÿ, ÿ − ÿ],ý ⩾ ý0, ÿ ⩾ ÿ0 andý
−2∕3 ⩽ ÿ ⩽ ÿ0, we have

ý
[ÿ

0,+ÿý2∕3,ÿ1

(
Γ[[0,ÿý]]

)]
⩽ ÿ−ÿÿ

3
and ý

[ÿ

0,+ÿý2∕3,ÿ1

(
Γℤ

2⧵[[0,ÿý]]
)]

⩾ ÿÿ.

By planar monotonicity and a change of variable, our estimates can also be stated for two

semi-infinite polymer paths that start at fixed locations. If the initial points are of order ý apart,

then their meeting takes place on the scale ý3∕2, as captured in the corollary below. We shift the

rectangle with the initial points so that the constants do not depend at all on the initial points.

The coordinate-wise minimum of two lattice points ÿ = (ÿ1, ÿ2) and ÿ = (ÿ1, ÿ2) is denoted by

ÿ ∧ ÿ = (ÿ1 ∧ ÿ1, ÿ2 ∧ ÿ2).

Corollary 2.6. Let ÿ ∈ (0, ÿ∕2) and ÿ ≠ ÿ inℤ2. Let ý = |ÿ − ÿ|1 ⩾ 1. There exist positive constants

ÿ1, ÿ2, ÿ0, ý0 that depend only on ÿ such that for each ÿ ∈ [ÿ, ÿ − ÿ], ý ⩾ 1, ÿ ⩾ ÿ0 and ÿ ⩾ ý0ý
−1∕2

we have

ÿ1ÿ
−2∕3 ⩽ ý

[ÿ
ÿ,ÿ

(
Γℤ

2⧵{ÿ∧ÿ + [[0,ÿ
ÿý3∕2

]]}
)]

⩽ ÿ2(log ÿ)
10ÿ−2∕3 and

ÿ−ÿ2ÿ
−2
⩽ ý
[ÿ

ÿ,ÿ

(
Γÿ∧ÿ + [[0,ÿÿý3∕2 ]]

)]
⩽ ÿ−ÿ1ÿ

−2
.

The next result gives tail bounds for the quenched probability of fast coalescence, of optimal

exponential order.
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Theorem 2.7. Fix ÿ ∈ (0, ÿ∕2). There exist positive constants ÿ1, ÿ2, ÿ3, ÿ4, ÿ0, ý0, ý0 that depend

only on ÿ such that for each ÿ ∈ [ÿ, ÿ − ÿ],ý ⩾ ý0 and ÿ0 ⩽ ÿ ⩽ ý0ý
1∕3, we have

ÿ−ÿ1ÿ
3
⩽ ℙ
(ÿ

+ÿý2∕3,ÿ1,+ÿý2∕3,ÿ2

(
Γ[[0,ÿý]]

)
⩾ 1 − ÿ−ÿ2ÿ

2ý1∕3
)

⩽ ℙ
(ÿ

+ÿý2∕3,ÿ1,+ÿý2∕3,ÿ2

(
Γ[[0,ÿý]]

)
⩾ ÿ−ÿ3ÿ

2ý1∕3
)
⩽ ÿ−ÿ4ÿ

3
.

2.4 Coupling and total variation distance

As the quenched noncoalescence probability ÿ
ÿ,ÿ
(Γℤ

2⧵(ÿ∧ÿ + [[0, ÿ
ÿý3∕2

]])) is nonincreasing in ÿ,

Corollary 2.6 implies the almost sure convergenceÿ
ÿ,ÿ
(Γℤ

2⧵(ÿ∧ÿ + [[0, ÿ
ÿý3∕2

]])) → 0 as ÿ → ∞. This

says that the polymer distributions Π
ÿ
ÿ and Π

ÿ
ÿ
couple almost surely. To state this precisely, let

ÿ
ý = ÿ

ý(ÿ) denote the vertex where a semi-infinite up-right path ÿ started inside [[0, ÿý]] first

meets the northeast boundary ÿNE[[0, ÿý]]. If (ÿ
ÿ, ÿÿ) denote the paths under ÿ

ÿ,ÿ
, then for

ÿ, ÿ ∈ ℤ2
⩾0
we have

ÿ
ÿ,ÿ
{ÿý(ÿ

ÿ) = ÿ
ý(ÿ

ÿ) for large enough ý} = 1. (2.5)

The standard coupling inequality (stated in (6.1) in Section 6) implies that the total variation

distance between the distributions induced on ÿNE[[0, ÿý]] converges to zero almost surely:

lim
ý→∞

ýTV

(
Π
ÿ
ÿ{ÿý ∈ ∙} , Π

ÿ
ÿ
{ÿý ∈ ∙}

)
= 0 ℙ-almost surely. (2.6)

The next two theorems establish bounds on this convergence. In the same spirit as in the earlier

results, when the initial points are close on the scale ý2∕3, the total variation distance on the

northeast boundary of a rectangle of size ý is small. In the opposite case the starting points are

far apart on the scale ý2∕3 and the total variation distance is close to 1.

Theorem 2.8. Let ÿ ∈ (0, ÿ∕2). There exist finite strictly positive constants ÿ0, ý0, ÿ that depend on

ÿ such that, whenever 0 < ÿ ⩽ ÿ0,ý ⩾ ý0 and ÿ ∈ [ÿ, ÿ − ÿ],

ý
[
ýTV

(
Π
ÿ

+ÿý2∕3,ÿ1
(ÿý ∈ ∙),Π

ÿ

+ÿý2∕3,ÿ2
(ÿý ∈ ∙)

)]
⩽ ÿ| log ÿ|10ÿ.

Theorem 2.9. Let ÿ ∈ (0, ÿ∕2). There exist finite positive constants ÿ0, ý0, ÿ depending on ÿ such

that wheneverý ⩾ ý0, ÿ0 ⩽ ÿ ⩽ ý1∕3 and ÿ ∈ [ÿ, ÿ − ÿ], we have

ý
[
ýTV

(
Π
ÿ

+ÿý2∕3,ÿ1
(ÿý ∈ ∙),Π

ÿ

+ÿý2∕3,ÿ2
(ÿý ∈ ∙)

)]
⩾ 1 − ÿ−ÿÿ

3
.

The proofs of the two theorems are given in Section 6.

Remark 2.10 (Hyperbolicity in stochastic equations). The free energy of a directed polymer can

be viewed as a discretization of a stochastically forced viscous Hamilton–Jacobi equation. This

connection goes back to [23, 24]. In this vein, semi-infinite polymer measures can be used to
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COALESCENCE OF SEMI-INFINITE POLYMERS 9 of 58

construct stationary eternal solutions to such equations. Article [1] treats a semidiscrete case and

[26] the KPZ equation. In particular, the limit (2.6) is a version of hyperbolicity that appears in

stochastic synchronization (also called the one force–one solution principle) of such equations. This

is the positive temperature analogue of the inviscid phenomenon whereby action minimizers are

asymptotic to each other in the infinite past. See, for example, [1, Theorem 4.4]. Our results above

show that, in the case at hand, this form of hyperbolicity obeys the KPZ wandering exponent. On

universality grounds one can predict that this is true in some generality in one space dimension

for stochastically forced viscous Hamilton–Jacobi equations with nonlinear Hamiltonians.

2.5 Transversal fluctuations

Finally, we present a result concerning the transversal fluctuation of the finite independent and

identically distributed polymer. This result is derived bymaking a slight modification to the proof

of the upper bound for fast coalescence, as stated in Theorem 2.1. It is expected for the midpoint

of polymer from (0,0) to (ý,ý) to fluctuate around the diagonal on the scale ý2∕3. The upper

bound on the transversal fluctuation was first proved in the work [32], and we provide here the

lower bound, that is, we show that it is rare for the midpoint of the polymer to be too close to

the diagonal.

To state the result, let us introduce somenotation. Let {mid ⩽ ý}denote the collection of directed

paths between −ÿý and ÿý that intersect the ý∞ ball of radius ý, centered at the origin.

Theorem 2.11. Let ÿ ∈ (0, ÿ∕2). There exist finite strictly positive constants ÿ0, ý0, ÿ that depend

on ÿ such that, whenever 0 < ÿ ⩽ ÿ0,ý ⩾ ý0 and ÿ ∈ [ÿ, ÿ − ÿ],

ý
[
ý−ÿý ,ÿý {mid ⩽ ÿý2∕3}

]
⩽ ÿ| log ÿ|10ÿ.

Remark 2.12. Themidpoint transversal fluctuation can be generalized to other positions along the

path, as long as they are order ý away from −ÿý and ÿý .

Remark 2.13. Our proof technique also yields the following lower bound on the fluctuation of the

endpoint of the point-to-line polymer. Let ý
p2l
0,ý

denote the point-to-line quenched path measure

on the collection of directed paths from (0,0) to the anti-diagonal line ý + ÿ = 2ý. And let {end ⩽

ý} denote the sub-collection of these paths that intersect theý∞ ball of radius ý, centered at (ý,ý).

It holds that

ý
[
ý
p2l
0,ý
{end ⩽ ÿý2∕3}

]
⩽ ÿ| log ÿ|10

√
ÿ. (2.7)

We get the weaker
√
ÿ instead of ÿ because the antidiagonal version of the independence property

of Busemann increments on horizontal or vertical lines for two different directions is not known.

3 STATIONARY INVERSE-GAMMA POLYMER

One of the main tools we use in our proofs is a stationary version of the polymer model, which

we now describe.
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10 of 58 RASSOUL-AGHA et al.

The stationary inverse-gamma polymer with southwest boundary is defined on a quadrant

instead of the entire ℤ2. It requires a parameter parameter ÿ ∈ (0, ÿ) and a base vertex ÿ ∈ ℤ2.

To each ÿ ∈ ÿ + ℤ2
>0

we attach a weight ýÿ ∼ Ga−1(ÿ). On the ÿ1- and ÿ2-boundary of ÿ + ℤ2
⩾0
,

we place (edge) weights

ý
ÿ
ÿ+ýÿ1

∼ Ga−1(ÿ − ÿ) and ý
ÿ
ÿ+ýÿ2

∼ Ga−1(ÿ), ý ⩾ 1. (3.1)

All these weights in the quadrant are independent. We refer to the ý weights as the bulk weights

and to the ýÿ and ýÿ weights as the ÿ-boundary weights. Subsection 5.1 explains the reason behind

thinking of ýÿ and ýÿ as edge weights instead of vertex weights.

We use the same ℙ to denote the joint distribution of the weights (ý, ýÿ, ýÿ). For ý ∈ ÿ + ℤ2
⩾0
,

we define the partition function of the stationary polymer by

ý
ÿ
ÿ,ý =

∑
ý∙∈ÿÿ,ý

|ý−ÿ|1∏
ÿ=0

ý̃ýÿ , where for ý ∈ ÿ + ℤ2
⩾0
, ý̃ý =

⎧⎪⎪«⎪⎪¬

1 if ý = ÿ,

ý
ÿ
ý−ÿ1,ý

if ý ∈ ÿ + ℤ>0ÿ1,

ý
ÿ
ý−ÿ2,ý

if ý ∈ ÿ + ℤ>0ÿ2,

ýý for ý ∈ ÿ + ℤ2
>0
.

The corresponding quenched polymer measure is defined as

ý
ÿ
ÿ,ý(ý∙) =

1

ý
ÿ
ÿ,ý

|ý−ÿ|1∏
ÿ=0

ý̃ýÿ , ý∙ ∈ ÿÿ,ý.

Next we state the theorem that explains why the process ýÿ is called ratio-stationary, or simply

stationary. For a subset ý ⊂ ℤ2, let ý< = ∪ý∈ý(ý + ℤ2
<0
).

Theorem 3.1 [32, Theorem 3.3] and [18, eq. (3.6)]. Fix ÿ ∈ (0, ÿ). For each ÿ ∈ ÿ + (ℤ>0 × ℤ⩾0),

ý ∈ ÿ + (ℤ⩾0 × ℤ>0), and ý ∈ ÿ + ℤ2
⩾0
we have

ý
ÿ
ÿ,ÿ

ý
ÿ
ÿ,ÿ−ÿ1

∼ Ga−1(ÿ − ÿ),
ý
ÿ
ÿ,ý

ý
ÿ
ÿ,ý−ÿ2

∼ Ga−1(ÿ), and
1

ý
ÿ
ÿ,ý+ÿ1

∕ý
ÿ
ÿ,ý + ý

ÿ
ÿ,ý+ÿ2

∕ý
ÿ
ÿ,ý

∼ Ga−1(ÿ).

Translation invariance: The distribution of the process

{ ý
ÿ
ÿ,ÿ+ÿ

ý
ÿ
ÿ,ÿ+ÿ−ÿ1

,
ý
ÿ
ÿ,ÿ+ý

ý
ÿ
ÿ,ÿ+ý−ÿ2

∶ ÿ ∈ ℤ>0 × ℤ⩾0, ý ∈ ℤ⩾0 × ℤ>0

}

does not depend on the translation ÿ ∈ ÿ + ℤ2
⩾0
. Furthermore, letý = {ÿÿ}ÿ∈ be any finite or infinite

down-right path in ÿ + ℤ2
⩾0
, indexed by an interval  ⊂ ℤ. (This means that each increment satis-

fies ÿÿ+1 − ÿÿ ∈ {ÿ1, −ÿ2}.) Then, the nearest-neighbor ratios {ý
ÿ
ÿ,ÿÿ+1

∕ý
ÿ
ÿ,ÿÿ

} along the path and the

weights
{(
ý
ÿ
ÿ,ý+ÿ1

∕ý
ÿ
ÿ,ý + ý

ÿ
ÿ,ý+ÿ2

∕ý
ÿ
ÿ,ý

)−1
∶ ý ∈ ý< ∩ (ÿ + ℤ2)

}
are mutually independent.

A key quantity in the coupling approach to polymers and LPP models is the exit time. For an

up-right path ÿ, we define ÿ(ÿ) ∈ ℤ ⧵ {0} as the signed number of steps taken before the first turn,
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COALESCENCE OF SEMI-INFINITE POLYMERS 11 of 58

where the plus sign corresponds to ÿ1 steps and theminus sign to ÿ2 steps. For example, ÿ(ÿ) = −3

means that the first four steps of ÿ consist of three consecutive ÿ2 steps followed by an ÿ1 step. For

ÿ, ý ∈ ℤ, when additional clarity is needed, we use the notation ÿÿ,ý to denote the restriction of

the function ÿ to the domain ÿÿ,ý. When the path ÿ starts at the base vertex ÿ of the stationary

polymer process, |ÿ| equals the number of boundary weights seen by the path before it exits the
boundary. This justifies the term exit time for ÿ(ÿ).

With the function ÿ, we define the restricted partition function ýÿ,ý(ÿ ⩽ ÿ ⩽ ÿ) similarly to

ýÿ,ý, except that we sum only over the subset of paths {ý∙ ∈ ÿÿ,ý ∶ ÿ ⩽ ÿÿ,ý(ý∙) ⩽ ÿ}.

Because the weights on the boundary are stochastically larger than the bulk weights, the path

prefers to stay on the boundary. For each ÿ ∈ (0, ÿ) the characteristic direction ÿ[ÿ] is the unique

direction in which the pulls of the ÿ1- and ÿ2-boundaries balance out. The sampled path between

the origin and ÿý tends to take order ý2∕3 steps on the boundary. Precise exit time estimates are

stated in in Section 4.

The stationary inverse-gamma polymer with northeast boundary is analogous to the previously

definedmodel, except that it is defined on a third quadrant and uses boundary edgeweights placed

on the northeast boundary. Thus, it also requires a parameter ÿ ∈ (0, ÿ) and a base vertex ÿ ∈ ℤ2,

but it is defined on the quadrant ÿ − ℤ2
⩾0
. To each ÿ ∈ ÿ + ℤ2

<0
we attach a bulk (vertex) weight

ýÿ ∼ Ga−1(ÿ). On the ÿ1- and ÿ2-boundary of ÿ − ℤ2
⩾0
, we place edge weights

ý
ÿ

[[ÿ+(ý−1)ýÿ1,ÿ+ýÿ1]]
= ý

ÿ

ÿ+(ý−1)ýÿ1,ÿ+ýÿ1
∼ Ga−1(ÿ − ÿ),

ý
ÿ

[[ÿ+(ý−1)ýÿ2,ÿ+ýÿ2]]
= ý

ÿ

ÿ+(ý−1)ýÿ2,ÿ+ýÿ2
∼ Ga−1(ÿ), ý ⩽ 0.

(3.2)

All these weights in the quadrant are independent. Here too, we use ℙ to denote the joint distribu-

tion of (ý, ýÿ, ýÿ) and write ý
ÿ,NE
ÿ,ÿ andý

ÿ,NE
ÿ,ÿ for, respectively, the partition function and quenched

measure for the polymer with northeast boundary. Precisely, for ÿ ∈ ÿ − ℤ2
⩾0
, define

ý
ÿ,NE
ÿ,ÿ =

∑
ý∙∈ÿÿ,ÿ

|ÿ−ÿ|1∏
ÿ=0

ý̃ýÿ , where for ý ∈ ÿ − ℤ2
⩾0
, ý̃ý =

⎧
⎪⎪«⎪⎪¬

1 if ý = ÿ,

ý
ÿ
ý,ý+ÿ1

if ý ∈ ÿ − ℤ>0ÿ1,

ý
ÿ
ý,ý+ÿ2

if ý ∈ ÿ − ℤ>0ÿ2,

ýý for ý ∈ ÿ − ℤ2
>0
.

The quenched polymer measure is defined by

ý
ÿ,NE
ÿ,ÿ (ý∙) =

1

ý
ÿ,NE
ÿ,ÿ

|ÿ−ÿ|1∏
ÿ=0

ý̃ýÿ .

Remark 3.2. We work mostly with the stationary model with southwest boundary and, therefore,

we only flesh out the location of the boundarywhen it is the northeast boundary that is being used.

By symmetry, the analogous version of Theorem 3.1 holds for the stationary polymer with

northeast boundary.
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4 EXIT TIME ESTIMATES

In this section, we prove exit time estimates for the stationary polymer model with southwest

boundary, introduced in Section 3. These results will be used to derive the coalescence estimate

in Section 5 and the total variation bounds in Section 6.

The first theorem below concerns the case when the polymer paths have an unusually large exit

time. The upper bound for the annealed measure is proved in [15, 28]. We improve this estimate

into a bound for the quenched tail. The related upper bound in the zero-temperature model is [8,

Theorem 2.4]. The proof in [8] uses a technical result from [7, Theorem 10.5]. We will present a

simpler proof in this paper.

Theorem 4.1. Fix ÿ ∈ (0, ÿ∕2). There exist positive constants ÿ0, ý0, ý0, and ÿÿ , ÿ ∈ [[1, 6]], that

depend only on ÿ such that for all ÿ ∈ [ÿ, ÿ − ÿ],ý ⩾ ý0 and ÿ0 ⩽ ÿ ⩽ ý0ý
1∕3, we have

ÿ−ÿ1ÿ
3
⩽ ℙ

(
min

ý∉[[0,ÿý]]
ý
ÿ
0,ý
{|ÿ| > ÿý2∕3} ⩾ 1 − ÿ−ÿ2ÿ

2ý1∕3
)

⩽ ℙ
(
ý
ÿ

0,ÿý+(1,1)
{|ÿ| > ÿý2∕3} ⩾ ÿ−ÿ3ÿ

2ý1∕3
)
⩽ ÿ−ÿ4ÿ

3
(4.1)

and

ÿ−ÿ5ÿ
3
⩽ ý

[
min

ý∉[[0,ÿý]]
ý
ÿ
0,ÿý

{|ÿ| > ÿý2∕3}

]
⩽ ý
[
ý
ÿ

0,ÿý+(1,1)
{|ÿ| > ÿý2∕3}

]
⩽ ÿ−ÿ6ÿ

3
.

The next theorem is about the polymer paths having unusually small exit times. The esti-

mate improves upon the result from [9] where these types of estimates were used to rule out the

existence of nontrivial bi-infinite polymer measures. This technique was first developed for the

nonexistence of bi-infinite geodesics in the corner growth model [2] and subsequently applied to

coalescence estimates for semi-infinite geodesics in [34].

Theorem 4.2. Fix ÿ ∈ (0, ÿ∕2). There exist positive constants ÿ1, ÿ2, ý0, ÿ0 that depend only on ÿ

such that for all ÿ ∈ [ÿ, ÿ − ÿ],ý ⩾ ý0,ý
−2∕3 < ÿ ⩽ ÿ0, we have

ℙ

(
max

ý∉[[0,ÿý]]
ý
ÿ
0,ý
{|ÿ| ⩽ ÿý2∕3} ⩾ ÿ−| log ÿ|2

√
ÿý1∕3
)
⩽ ÿ1| log ÿ|10ÿ (4.2)

and

ÿ1ÿ ⩽ ý

[
max

ý∉[[0,ÿý]]
ý
ÿ
0,ý
{|ÿ| ⩽ ÿý2∕3}

]
⩽ ÿ2| log ÿ|10ÿ. (4.3)

We close this section by extending the above estimates to any coupling of stationary polymer

measures. Let ý̃
ÿ
0,ý

be any coupling of the measures {ý
ÿ
0,ý

∶ ý ∈ ý}. This is then a probability

measure on the product space
∏

ÿ∈ý ÿ0,ÿ . We view the elements of this product space as vectors

and then forý ∈ ý, theýth coordinate of such a vectorwould be the path that ends atý. Forý ∈ ý,

define the map ÿ̃0,ý ∶
∏

ÿ∈ý ÿ0,ÿ → ℤ that records the exit time of the path in the ýth coordinate

of any vector in
∏

ÿ∈ý ÿ0,ÿ .
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Theorem 4.3. Fix ÿ ∈ (0, ÿ∕2). There exist positive constants ÿ1, ÿ2, ÿ0, ý0, ý0 that depend only on

ÿ such that for each ÿ ∈ [ÿ, ÿ − ÿ],ý ⩾ ý0 and ÿ0 ⩽ ÿ ⩽ ý0ý
1∕3, we have

ℙ

»¼¼½
ý̃
ÿ

0,ÿNE[[0,ÿý]]

»¼¼½
⋂

ý∈ÿNE[[0,ÿý]]

{|ÿ̃0,ý| ⩾ ÿý2∕3}
¿ÀÀÁ
⩾ 1 − ÿ−ÿ1ÿ

2ý1∕3
¿ÀÀÁ
⩾ ÿ−ÿ2ÿ

3

and

ý

Â
ÃÃÄ
ý̃
ÿ

0,ÿNE[[0,ÿý]]

»
¼¼½
⋂

ý∈ÿNE[[0,ÿý]]

{|ÿ̃0,ý| ⩾ ÿý2∕3}
¿
ÀÀÁ

Å
ÆÆÇ
⩾ ÿ−ÿÿ

3
.

Theorem 4.4. Fix ÿ ∈ (0, ÿ∕2). There exist positive constants ÿ,ý0, ÿ0 that depend only on ÿ such

that for each ÿ ∈ [ÿ, ÿ − ÿ],ý ⩾ ý0, ÿ ⩾ 1 and 0 < ÿ ⩽ ÿ0, we have

ý

ÂÃÃÄ
ý̃
ÿ

0,ÿNE[[0,ÿý]]

»¼¼½
⋃

ý∈ÿNE[[0,ÿý]]

{|ÿ̃0,ý| ⩽ ÿý2∕3}
¿ÀÀÁ

ÅÆÆÇ
⩽ ÿ| log ÿ|10ÿ.

4.1 Proof of Theorem 4.1

The expectation bounds in Theorem 4.1 follow directly from the tail bounds. We split the proof of

the tail bounds into the following two lemmas.

Lemma 4.5. Fix ÿ ∈ (0, ÿ∕2). There exist positive constants ÿ1, ÿ2, ÿ0,ý0 depending only on ÿ such

that for all ÿ ∈ [ÿ, ÿ − ÿ],ý ⩾ ý0 and ÿ ⩾ ÿ0, we have

ℙ
(
ý
ÿ
0,ÿý

{|ÿ| > ÿý2∕3} ⩾ ÿ−ÿ1ÿ
2ý1∕3
)
⩽ ÿ−ÿ2ÿ

3
.

Lemma 4.6. Fix ÿ ∈ (0, ÿ∕2). There exist positive constants ÿ1, ÿ2, ÿ0, ý0, ý0 depending only on ÿ

such that for all ÿ ∈ [ÿ, ÿ − ÿ],ý ⩾ ý0 and ÿ0 ⩽ ÿ ⩽ ý0ý
1∕3, we have

ℙ

(
min

ý∉[[0,ÿý]]
ý
ÿ
0,ý
{|ÿ| > ÿý2∕3} ⩾ 1 − ÿ−ÿ1ÿ

2ý1∕3
)
⩾ ÿ−ÿ2ÿ

3

4.1.1 Proof of Lemma 4.5

We start with two calculations for the shape function Λ. Their proofs use Taylor expansions and

are thus postponed to Appendix A.2.

The first proposition below captures the loss of free energy due to curvature.

Proposition 4.7. Fix ÿ ∈ (0, ÿ∕2). There exist positive constantsÿ1,ý0, ý0 depending only on ÿ such

that for each ÿ ∈ [ÿ, ÿ − ÿ],ý ⩾ ý0, 1 ⩽ ý ⩽ ý0ý
1∕3, we have

Λ
(
ÿý − +ýý2∕3,ÿ1 + +ýý2∕3,ÿ2

)
− +ýý2∕3,Ψ0(ÿ − ÿ) + +ýý2∕3,Ψ0(ÿ) − Λ(ÿý) ⩽ −ÿ1ý

2ý1∕3.
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14 of 58 RASSOUL-AGHA et al.

F IGURE 2 Sketch of Corollary 4.10. On the left is a path in the event ÿ0,ÿý−+ÿý2∕3,ÿ1 ⩾ 1. On the right, a

second base point is placed at −+ÿý2∕3,ÿ1 and the edge weights on the ÿ2-axis based at 0 are determined by the
ratio variables of the polymer based at −+ÿý2∕3,ÿ1. By Lemma A.7,
ý0,ÿý−+ÿý2∕3,ÿ1 {ÿ ⩾ 1} = ý−+ÿý2∕3,ÿ1 ,ÿý−+ÿý2∕3,ÿ1 {ÿ ⩾ +ÿý2∕3, + 1}, and Theorem 4.9 can be applied.

The second proposition is essentially a bound on the nonrandom fluctuationwhen the endpoint

varies around ÿý .

Proposition 4.8. Fix ÿ ∈ (0, ÿ∕2). There exist positive constantsÿ1,ý0, ý0 depending only on ÿ such

that for each ÿ ∈ [ÿ, ÿ − ÿ],ý ⩾ ý0, 0 ⩽ ý ⩽ 3, we have

||||Λ
(
ÿý − +ýý2∕3,ÿ1 + +ýý2∕3,ÿ2

)
− +ýý2∕3,Ψ0(ÿ − ÿ) + +ýý2∕3,Ψ0(ÿ) − Λ(ÿý)

|||| ⩽ ÿ1ý
1∕3.

Next, we recall the established annealed version of the exit time estimate, which, through the

Markov inequality, yields the expression (4.4). This equation represents a nonoptimal variant of

the upper bound presented in Lemma4.5, as it has ÿ−ÿÿ
3
instead of ÿ−ÿÿ

2ý1∕3
within the probability

measure. It is important to note that this nonoptimal version alone is not enough to prove the

coalescence estimate later on. Consequently, Lemma 4.5 assumes a pivotal role in advancing the

arguments laid out in the paper.

Theorem 4.9 [15, 28]. Fix ÿ ∈ (0, ÿ∕2). There exist positive constants ÿ1, ÿ2, ÿ3, ÿ0, ý0 that depend

only on ÿ such that for for all ÿ ∈ [ÿ, ÿ − ÿ],ý ⩾ ý0 and ÿ ⩾ ÿ0, we have

ý
[
ý
ÿ
0,ÿý

{|ÿ| > ÿý2∕3}
]
⩽ ÿ−ÿ1ÿ

3
.

And by Markov inequality,

ℙ
(
ý
ÿ
0,ÿý

{|ÿ| > ÿý2∕3} ⩾ ÿ−ÿ2ÿ
3
)
⩽ ÿ−ÿ3ÿ

3
(4.4)

Lemma A.7 allows us to obtain the following corollary from Theorem 4.9. The proof of

Corollary 4.10 is by now standard and is summarized in Figure 2 and its caption.

Corollary 4.10. Fix ÿ ∈ (0, ÿ∕2). There exist positive constants ÿ1, ÿ2, ÿ3, ÿ0, ý0 that depend only

on ÿ such that for for all ÿ ∈ [ÿ, ÿ − ÿ],ý ⩾ ý0 and ÿ ⩾ ÿ0, we have

ℙ
(
ý
ÿ

0,ÿý−ÿý
2∕3ÿ1

{ÿ ⩾ 1} ⩾ ÿ−ÿ1ÿ
3
)
⩽ ÿ−ÿ2ÿ

3
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and

ý
[
ý
ÿ

0,ÿý−ÿý
2∕3ÿ1

{ÿ ⩾ 1}
]
⩽ ÿ−ÿ3ÿ

3
.

The same result holds when ÿý − ÿý2∕3ÿ1 is replaced by ÿý + ÿý2∕3ÿ2.

With these results, we obtain the following estimate for the maximum free energy.

Proposition 4.11. For each ÿ ∈ (0, ÿ∕2), there exist positive constants ÿ1, ÿ2, ý0, ý0 depending on

ÿ such that for eachý ⩾ ý0 and 1 ⩽ ÿ ⩽ ý0ý
2∕3, we have

ℙ

(
max

ý∈[[0,3+ý2∕3,]]

{
log ý0,ÿý+(−ý,ý) − Λ(ÿý + (−ý, ý))

}
⩾ ÿ1ÿý

1∕3

)
⩽ ÿ−ÿ2ÿ

3∕2
.

Proof. To start, let us separate the probability that we are trying to bound into two parts.

ℙ

(
max

ý∈[[0,3+ý2∕3,]]

{
log ý0,ÿý+(−ý,ý) − Λ(ÿý + (−ý, ý))

}
⩾ ÿ′ÿý1∕3

)

⩽ ℙ

(
max

ý∈[[0,3+ý2∕3,]]

{
log ý0,ÿý+(−ý,ý) − log ý0,ÿý − [Λ(ÿý + (−ý, ý)) − Λ(ÿý)]

}
⩾

ÿ′

2
ÿý1∕3

)

(4.5)

+ ℙ
(
log ý0,ÿý − Λ(ÿý) ⩾

ÿ′

2
ÿý1∕3
)

(4.6)

Using Proposition A.1, (4.6) ⩽ ÿ−ÿÿ
3∕2
. To bound (4.5), we reformulate the problem into a bound

for running maxima of random walks. First, by Proposition 4.8, if ÿ′ ⩾ 4ÿ1 and ÿ ⩾ 1, then

(4.5) ⩽ ℙ

(
max

ý∈[[0,3+ý2∕3,]]

{
log ý0,ÿý+(−ý,ý) − logý0,ÿý − [ýΨ0(ÿ − ÿ) − ýΨ0(ÿ)]

}
⩾

ÿ′

4
ÿý1∕3

)
.

(4.7)

Next, we will show that the quantity log ý0,ÿý+(−ý,ý) − logý0,ÿý can be compared to a ran-

dom walk with independent and identically distributed steps. To do this, we will place boundary

weights on the south-west boundary of (−1, −1) + ℤ2
⩾0
with parameters ÿ = ÿ − ÿ0

√
ÿý−1∕3 and

ÿ − ÿ. Here, ÿ0 will be fixed sufficiently large so that the situation from Figure 3 happens: if

we trace the −ÿ[ÿ]-directed ray from ÿý , it crosses the vertical line ý = −1 above the point

(−1, ÿý2∕3). Then the ý0 from the statement of our proposition can be now fixed sufficiently small

so that ÿ stays between (0, ÿ). These choices depend only on ÿ.

Because (−1, ÿý2∕3) is far away from (−1, −1) on the scale ý2∕3, by a similar argument to

Corollary 4.10, we have

ℙ
(
ýÿ
(−1,−1),ÿý

{ÿ ⩾ 1} ⩾ 1∕10
)
⩽ ÿ−ÿÿ

3
. (4.8)

Let us denote the complement of the event above as

ý =
{
ýÿ
(−1,−1),ÿý

{ÿ ⩽ −1}>9∕10
}
.
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16 of 58 RASSOUL-AGHA et al.

F IGURE 3 The random walk set up in Proposition 4.11.

In the calculation below, let ýÿ,W
(−1,0),ý

denote the partition function for up-right paths from (−1, 0)

to ý, which uses the same weights as ýÿ
(−1,−1),ý

does on the west boundary but uses the original

(bulk) weights on ℤ2
⩾0
. For each ÿ = 0, 1, … , 3+ý2∕3, − 1, we have

ý0,ÿý+(−ÿ−1,ÿ+1)

ý0,ÿý+(−ÿ,ÿ)

⩽
ýÿ,W
(−1,0),ÿý+(−ÿ−1,ÿ+1)

ýÿ,west
(−1,0),ÿý+(−ÿ,ÿ)

=
ýÿ,W
(−1,0),ÿý+(−ÿ−1,ÿ+1)

ýÿ,W
(−1,0),ÿý+(−ÿ,ÿ)

⋅

ýÿ
[[(−1,−1),(−1,0)]]

ýÿ
[[(−1,−1),(−1,0)]]

by Proposition A.3

=
ýÿ
(−1,−1),ÿý+(−ÿ−1,ÿ+1)

(ÿ ⩽ −1)

ýÿ
(−1,−1),ÿý+(−ÿ,ÿ)

(ÿ ⩽ −1)
=
ýÿ
(−1,−1),ÿý+(−ÿ−1,ÿ+1)

(ÿ ⩽ −1)

ýÿ
(−1,−1),ÿý+(−ÿ,ÿ)

(ÿ ⩽ −1)
⋅

ýÿ
(−1,−1),ÿý+(−ÿ−1,ÿ+1)

ýÿ
(−1,−1),ÿý+(−ÿ,ÿ)

⩽
10

9

ýÿ
(−1,−1),ÿý+(−ÿ−1,ÿ+1)

ýÿ
(−1,−1),ÿý+(−ÿ,ÿ)

on the event ý .

By Theorem 3.1, we can define

ÿÿ
ý
=

ý−1∑
ÿ=0

log
ýÿ
(−1,−1),ÿý+(−ÿ−1,ÿ+1)

ýÿ
(−1,−1),ÿý+(−ÿ,ÿ)

which is an independent and identically distributed random walk whose step has the same dis-

tribution as logÿ1 − logÿ2, where ÿ1 and ÿ2 are independent, respectively, Ga(ÿ − ÿ) and Ga(ÿ)

random variables. Consequently, we have

(4.7) ⩽ ℙ

(
max

ý∈[[0,3+ý2∕3,]]
{
ÿÿ
ý
− [ýΨ0(ÿ − ÿ) − ýΨ0(ÿ)]

}
⩾

ÿ′

8
ÿý1∕3

)
+ ℙ(ýý), (4.9)
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whereℙ(ýý) ⩽ ÿ−ÿÿ
3
. Noteý[ÿÿ

ý
] = ýΨ0(ÿ − ÿ) − ýΨ0(ÿ), and using Taylor expansion and the fact

that ý ⩽ 3ý2∕3, we have

|||ý[ÿ
ÿ
ý
] − [ýΨ0(ÿ − ÿ) − ýΨ0(ÿ)]

||| ⩽ ÿ
√
ÿý1∕3.

Finally, taking ÿ′ ⩾ 16ÿ, the probability in (4.9) is bounded as follows

ℙ

(
max

ý∈[[0,3+ý2∕3,]]
{
ÿÿ
ý
− [ýΨ0(ÿ − ÿ) − ýΨ0(ÿ)]

}
⩾

ÿ′

8
ÿý1∕3

)

⩽ ℙ

(
max

ý∈[[0,3+ý2∕3,]]
{
ÿÿ
ý
− ý[ÿÿ

ý
]
}
⩾

ÿ′

16
ÿý1∕3

)
⩽ ÿ−ÿ

′′ÿ3∕2

where the last inequality follows from Theorem A.11. □

With this result, we are ready to prove Lemma 4.5. The proof uses arguments for a stationary

polymer with an antidiagonal boundary instead of a southwest boundary, which we will now

define. Let (0,0) be the bi-infinite staircase paths (with alternating ÿ1 and −ÿ2 steps) through

(0,0)

(0,0) = {… , (−1, 1), (−1, 0), (0, 0), (0, −1), (1, −1), … }. (4.10)

Next, we attach boundary weights along (0,0), which are all independent. For each horizontal
edge to the left and right of (0,0), we attach Ga(ÿ − ÿ) and Ga−1(ÿ − ÿ)weights. For each vertical

edge to the left and right of (0,0), we attach Ga−1(ÿ) and Ga(ÿ) weights. For ý ∈ ℤ, letÿý denote

the product of the edge weights from (0,0) between (0,0) and (ý, −ý).
The partition function for this polymer with antidiagonal boundary is defined by

ý
ÿ,dia
0,ý

=
∑
ý∈ℤ

ÿý ⋅ ý̃(ý,−ý),ý,

where ý̃ is the point-to-point partition but without using the weight at its starting point. The

corresponding polymer measure ý
ÿ,dia
0,ý

is a probability measure on paths that start at 0, move

along the antidiagonal, taking either only ÿ1 − ÿ2 steps or only ÿ2 − ÿ1 steps, and then enter the

bulk by taking an ÿ1 or ÿ2 step, after which they only take steps in {ÿÿ , ÿ = 1, 2}. For such a path ÿ,

we define ÿdia(ÿ) ∈ ℤ ⧵ {0} as the signed number of steps taken before entering the bulk, where

the plus sign corresponds to ÿ1 − ÿ2 steps and the minus sign to ÿ2 − ÿ1 steps. For ý ∈ ℤ, let us

define the partition function over paths with exit point ý as

ý
ÿ,dia
0,ý

(ÿdia = ý) = ÿý ⋅ ý̃(ý,−ý),ý. (4.11)

Proof of Lemma 4.5. First, by Lemma A.9, it suffices to prove our estimate for the stationary poly-

mer with the antidiagonal boundary defined above. By a slight abuse of notation, let us denote

ýÿ = ýÿ,dia, and ýÿ = ýÿ,dia. There is no confusion because we will only be working with the

antidiagonal boundary in the remainder of this proof (instead of southwest boundary).

By a union bound, it suffices to prove that there exist positive constants ÿ1, ÿ2, ý0, ý0 such that

for each ý ⩾ ý0 and ý0 ⩽ ý ⩽ ý0ý
1∕3, we have

ℙ

(
max

ýý−2∕3∈(ý,ý+1]
ý
ÿ
0,ÿý

{ÿdia = ý} ⩾ ÿ−ÿ1ý
2ý1∕3
)
⩽ ÿ−ÿ2ý

3
.
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To show this, we rewrite the quenched probability above in terms of the free energies,

ℙ

(
log ý

ÿ
0,ÿý

− max
ýý−2∕3∈(ý,ý+1]

log ý
ÿ
0,ÿý

{ÿdia = ý} ⩽ ÿ′ý2ý1∕3

)

⩽ ℙ
([
log ý

ÿ
0,ÿý

− Λ(ÿý)
]

(4.12)

− max
ýý−2∕3∈(ý,ý+1]

[
log ý

ÿ
0,ÿý

{ÿdia = ý} − (Λ(ÿý + (−ý, ý)) − ýΨ0(ÿ − ÿ) + ýΨ0(ÿ))
]

⩽ ÿ′ý2ý1∕3 + max
ýý−2∕3∈(ý,ý+1]

(Λ(ÿý + (−ý, ý)) − ýΨ0(ÿ − ÿ) + ýΨ0(ÿ) − Λ(ÿý))

)
.

Applying Proposition 4.7, if we fix ÿ′ in (4.12) sufficiently small, then, we may replace the right

side of the inequality in (4.12) by −ý′ý2ý1∕3 for some small positive constant ý′.

Let {ýÿ}
∞
ÿ=1

denote a sequence of independent and identically distributed random variables with

the same distribution given by − logÿ1 + logÿ2, where ÿ1 and ÿ2 are independent, respectively,

Ga(ÿ − ÿ) andGa(ÿ) randomvariables. Theýÿ ’s will play the role of the boundaryweight at (ÿ, −ÿ),

ÿ ⩾ 1. Now continuing with a union bond, we have

(4.12) ⩽ ℙ
(
log ý

ÿ
0,ÿý

− Λ(ÿý) ⩽ − 1

5
ý′ý2ý1∕3

)
(4.13)

+ ℙ

(
max

ýý−2∕3∈(ý,ý+1]

(
ý∑
ÿ=1

ýÿ + ýΨ0(ÿ − ÿ) − ýΨ0(ÿ)

)
⩾

1

5
ý′ý2ý1∕3

)
(4.14)

+ ℙ

(
max

ýý−2∕3∈(ý,ý+1]

(
log ý̃(−ý,ý),ÿý − Λ(ÿý + (−ý, ý)

)
⩾

1

5
ý′ý2ý1∕3

)
, (4.15)

and (4.13) ⩽ ÿ−ÿý
3
by Proposition A.2, (4.14) ⩽ ÿ−ÿý

3
by Proposition A.12 and Theorem A.11,

(4.15) ⩽ ÿ−ÿý
3
by Proposition 4.11. Finally, we note that even the ý̃ free energy does not use the first

weight, but Proposition 4.11 (which was originally stated for ý instead of ý̃) still applies because

using a union bound we can get

ℙ

(
max

0⩽ý⩽3ý2∕3
logý(−ý,ý) ⩾ ÿý2ý1∕3

)
⩽ ý2∕3ÿ−ýý

2ý1∕3
⩽ ÿÿ−ý

2ý1∕3
⩽ ÿ′ÿ−ý

′ý3 .

Also, we are applying Proposition 4.11 by first shifting the picture to move the ÿý in (4.7) to the

origin, flipping it about the antidiagonal, and thenusing, in the proposition, a ÿý that is not exactly

the ÿý in the lemma, but rather ÿý − ýý2∕3(1, −1). This is allowed because the proposition is

stated uniformly for a whole interval of characteristic directions. □

4.1.2 Proof of Lemma 4.6

To prove Lemma 4.6, we tilt the probability measure to make the event likely and pay for this

with a bound on the Radon–Nikodym derivative. This argument was introduced in [3] in the con-

text of the asymmetric simple exclusion process and later adapted to lower bound proofs of the

longitudinal fluctuation exponent [33] and large exit time probability [34] in the stationary last-

passage percolation process. The key idea here is to perturb the parameter ÿ of the stationary
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polymer model to ÿ ± ÿý−1∕3. This allows us to control the exit point on the scaleý2∕3. The gen-

eral idea of utilizing perturbations of order ý−1∕3 goes back to the seminal paper [10]. We now

give the details.

For ÿ ∈ ℤ2
⩾0
let ÿNE[[0, ÿ]] denote the north-east boundary of the rectangle [[0, ÿ]], that is, the

sites ÿ ∈ [[0, ÿ]] with ÿ ⋅ ÿ1 = ÿ ⋅ ÿ1 or ÿ ⋅ ÿ2 = ÿ ⋅ ÿ2.

Note that it is enough to prove the claimed bound withminý∉[[0,ÿý]] ý
ÿ
0,ý
{|ÿ| > ÿý1∕3} replaced

by

min
ý∈ÿNE[[0,ÿý]]

ý
ÿ
0,ý
{|ÿ| > ÿý2∕3},

as

min
ý∉[[0,ÿý]]

ý
ÿ
0,ý
{|ÿ| > ÿý2∕3}

= min
ý∉[[0,ÿý]]

∑
ÿ∈ÿNEç0,ÿýè

ý
ÿ
0,ý
{|ÿ| > ÿý2∕3 and the path passes through z}

= min
ý∉[[0,ÿý]]

∑
ÿ∈ÿNE[[0,ÿý]]

ý
ÿ
0,ÿ
{|ÿ| > ÿý2∕3}ý

ÿ
0,ý
{path passes through ÿ}

⩾ min
ý∉[[0,ÿý]]

∑
ÿ∈ÿNE[[0,ÿý]]

(
min

ÿ′∈ÿNEç0,ÿýè
ý
ÿ

0,ÿ′
{|ÿ| > ÿý2∕3}

)
ý
ÿ
0,ý
{passes through ÿ}

= min
ÿ′∈ÿNE[[0,ÿý]]

ý
ÿ

0,ÿ′
{|ÿ| > ÿý2∕3}.

Take ý ∈ (0, ÿ

4ÿ2
∧ 1

2
], with ÿ as in the statement of the lemma. Below, we will choose an exact

value for ý, which will still only depend on ÿ (and ÿ).

Given positive ÿ and ý, define the perturbed parameters ÿ = ÿ + ÿý−1∕3 and ÿ = ÿ − ÿý−1∕3.

The choice of ý guarantees that if

ÿ ⩽ ý((ÿ − ÿ)2 ∧ ÿ2)ý1∕3, (4.16)

then ÿ < ÿ < ÿ are all contained in [ÿ∕2, ÿ − ÿ∕2].

Given positive constants ÿ < ÿ, define a new environment ℙ̃ by changing the original boundary

weights (whose distribution we will denote by ℙÿ) on parts of the axes. Precisely, ℙ̃ is the joint

distribution, under ℙÿ of

ÿ̃ýÿ1 ∼ Ga−1(ÿ − ÿ) forý ∈ [[+arý2∕3, + 1, +brý2∕3,]]
ÿ̃ýÿ2 ∼ Ga−1(ÿ) forý ∈ [[+arý2∕3, + 1, +brý2∕3,]]
ÿ̃ÿ ∼ ÿÿ for all other ÿ ∈ ℤ2

⩾0
.

The ÿ̃ weights in the first two lines are all independent and independent of the ÿ weights. The

exact values of ÿ and ÿ will be determined further down and will only depend on ÿ > 0 (and

ý). Essentially, they will be chosen so that, in the picture in the left panel of Figure 4, the two

thick dotted lines passing through ÿý and having slopes ÿ[ÿ] and ÿ[ÿ] rest inside the highlighted

regions on the axes. Then, under the new random environment ℙ̃, we will show that there exists
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20 of 58 RASSOUL-AGHA et al.

F IGURE 4 Left: Two dotted lines have slopes ÿ[ÿ] and ÿ[ÿ]. Right: Decomposition of the north and east

boundaries of ç0, ÿýè into regions  (light gray) and (dark gray). A small perturbation of ÿý to ýý keeps the

endpoint of the −ÿ[ÿ] ray from ýý in the interval [ÿÿý2∕3, ÿÿý2∕3].

some constant ÿ1 such that for ý and ÿ large,

ℙ̃

(
min

ý∈ÿNE[[0,ÿý]]
ý0,ý{|ÿ| > ÿÿý2∕3} ⩾ 1 − ÿ−ÿ1ÿ

2ý1∕3
)
⩾ 1∕2. (4.17)

We finish the proof of the theorem, assuming this inequality. Denote the event inside (4.17) by ÿ

and let ÿ = ýℙ̃

ýℙÿ
, where ℙÿ is the marginal of ℙ, that is, the probability measure with independent

ÿ-boundary weights and bulk weights. By the Cauchy–Schwarz inequality, we have

1∕2 ⩽ ℙ̃(ÿ) = ýÿ[ÿÿÿ] ⩽ ℙÿ(ÿ)1∕2ýÿ[ÿ2]1∕2 ⩽ ℙÿ(ÿ)1∕2ÿÿÿ
3
,

where the last bound for the second moment of ÿ follows from Proposition A.10. This implies

ℙ

(
min

ý∈ÿNE[[0,ÿý]]
ý
ÿ
0,ý
{|ÿ| > ÿÿý2∕3} ⩾ 1 − ÿ−ÿ1ÿ

2ý1∕3
)
⩾ ÿ−ÿ2ÿ

3
. (4.18)

To recover the statement of our lemma without the constant ÿ in (4.18), just modify ÿ1 and ÿ2.

Next, we will show (4.17) that will finish the proof of the theorem. To do this, we will show that

for ÿ and ý large, we have

ℙ̃

(
max

ý∈ÿNE[[0,ÿý]]
ý0,ý{1 ⩽ ÿ ⩽ ÿÿý2∕3} < ÿ−ÿ

′ÿ2ý1∕3
)
⩾ 1 − ÿÿ−3. (4.19)

This and the similar estimate for the event {−1 ⩾ ÿ0,ý ⩾ −ÿÿý2∕3} imply (4.17) when ÿ is taken

large. Note that here we will pick the values of ÿ < ÿ and ý ∈ (0, ÿ

4ÿ2
∧ 1

2
] only for the bound

(4.19). When applying the same argument to the other case, we obtain another set of constants

ÿ′ < ÿ′ and ý′ ∈ (0, ÿ

4ÿ2
∧ 1

2
] that are possibly different. Then, we replace ÿ and ÿ′ by ÿ ∧ ÿ′, ÿ and

ÿ′ by ÿ ∨ ÿ′, and ý and ý′ by ý ∧ ý′.

Recall the perturbed parameter ÿ = ÿ + ÿý−1∕3. If ý ∈ (0, ÿ

4ÿ2
∧ 1

2
] and ÿ andý satisfy condition

(4.16), then ÿ satisfies

ÿ∕2 < ÿ < ÿ ⩽ ÿ + ý((ÿ − ÿ)2 ∧ ÿ2) ⩽ ÿ − ÿ∕2. (4.20)
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F IGURE 5 Left: The dotted lines have characteristic slope ÿ[ÿ]. Consequently, with high probability, the

sampled ÿ polymer from 0 to ýý exits through the interval [[ÿÿý2∕3ÿ1, ÿÿý
2∕3ÿ1]]. Right: Illustration of estimate

(4.25).

We estimate the difference of the reciprocal slopes (i.e.,
change of ý

change of ÿ
) of the vectors ÿ[ÿ] and ÿ[ÿ]. By

definition

ÿ[ÿ] ⋅ ÿ1
ÿ[ÿ] ⋅ ÿ2

−
ÿ[ÿ] ⋅ ÿ1
ÿ[ÿ] ⋅ ÿ2

=
Ψ1(ÿ + ÿý−1∕3)

Ψ1(ÿ − ÿ − ÿý−1∕3)
−

Ψ1(ÿ)

Ψ1(ÿ − ÿ)
.

AsΨ1 is smooth and takes positive values on compact intervals strictly contained inside (0, ÿ), we

can Taylor expand the quotient g(ÿ) =
Ψ1(ÿ+ÿ)

Ψ1(ÿ−ÿ−ÿ)
around ÿ = 0. This gives

|||||

(
ÿ[ÿ] ⋅ ÿ1
ÿ[ÿ] ⋅ ÿ2

−
ÿ[ÿ] ⋅ ÿ1
ÿ[ÿ] ⋅ ÿ2

)
− (−ý1ÿý

−1∕3)
|||||
⩽ ý2ÿ

2ý−2∕3, (4.21)

for all ÿ and ÿ such that ÿ∕2 < ÿ < ÿ < ÿ − ÿ∕2. Here, ý1 and ý2 are positives constant depending

only on ÿ, ÿ, and ÿ. Take ý ∈ (0, ÿ

4ÿ2
∧ 1

2
] to satisfy

ý ⩽
1

100

ý1
ý2

. (4.22)

Then, for ÿ and ý satisfying (4.16),

ý2ÿ
2ý−2∕3 <

1

10
ý1ÿý

−1∕3. (4.23)

And from (4.21) and (4.23) above, we obtain

−2ý1ÿý
−1∕3 ⩽

ÿ[ÿ] ⋅ ÿ1
ÿ[ÿ] ⋅ ÿ2

−
ÿ[ÿ] ⋅ ÿ1
ÿ[ÿ] ⋅ ÿ2

⩽ − 1

2
ý1ÿý

−1∕3. (4.24)

Now, start two rays at (0,0) in the directions ÿ[ÿ] and ÿ[ÿ] and let ÿý be the lattice point closest

to the ÿ[ÿ]-directed ray such that ÿý ⋅ ÿ2 = ÿý ⋅ ÿ2. (See the right panel of Figure 5.) Then (4.24)

implies that there exist two fixed positive constants ý1, ý2 depending only on ÿ, ÿ, and ÿ such that

ý1ÿý
2∕3 ⩽ ÿý ⋅ ÿ1 − ÿý ⋅ ÿ1 ⩽ ý2ÿý

2∕3. (4.25)
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For now, we define

ÿ = 1

10
ý1 and ÿ = 10ý2,

and note that the above value of ÿ will be lowered if necessary, later in the argument.

Fix a positive constant ÿ ⩽ 1

10
ý1, let us define

ýý = ÿý − +ÿÿý2∕3,ÿ1. (4.26)

As shown on the right of Figure 4, the point ýý splits ÿNE[[0, ÿý]] into the dark region and the

light region . We will first work with the dark region and show
ℙ̃

(
max
ý∈ ý0,ý{1 ⩽ ÿ ⩽ ÿÿý2∕3} ⩽ ÿ−ÿ

′ÿ2ý1∕3
)
⩾ 1 − ÿÿ−3. (4.27)

Let us look at another polymer measure ý0,ý that is restricted to paths that start with an ÿ1 step

from the origin, then

ý0,ý{1 ⩽ ÿ ⩽ ÿÿý2∕3} =
ý0,ý(1 ⩽ ÿ ⩽ +ÿÿý2∕3,)

ý0,ý(1 ⩽ ÿ)
.

From the following three facts,

∙ ý0,ý{1 ⩽ ÿ ⩽ ÿÿý2∕3} ⩽ ý0,ý{1 ⩽ ÿ ⩽ ÿÿý2∕3},
∙ ý0,ý{1 ⩽ ÿ ⩽ ÿÿý2∕3} + ý0,ý{ÿ > ÿÿý2∕3} = 1, and
∙ by Lemma A.4, ý0,ýý {ÿ > ÿÿý2∕3} ⩽ ý0,ý{ÿ > ÿÿý2∕3} for each ý ∈ ,
we have

ý0,ý

{
1 ⩽ ÿ ⩽ ÿÿý2∕3

}
⩽ ý0,ýý

{
1 ⩽ ÿ ⩽ ÿÿý2∕3

}
for each ý ∈ .

Thus, in order to show (4.27), it suffices to show

ℙ̃
(
ý0,ýý {1 ⩽ ÿ ⩽ ÿÿý2∕3} ⩽ ÿ−ÿ

′ÿ2ý1∕3
)
⩾ 1 − ÿÿ−3. (4.28)

To show (4.28), we will find a high probability event

ý = ý1 ∩ ý2 ∩ ý3 ∩ ý4

with ℙ̃(ý) ⩾ 1 − ÿÿ−3 such that on ý,

ý0,ýý (+ÿÿý2∕3, + 1 ⩽ ÿ ⩽ +ÿÿý2∕3,) ⩾ ÿÿ
′ÿ2ý1∕3

ý0,ýý (1 ⩽ ÿ ⩽ +ÿÿý2∕3,), (4.29)

as this implies

ý0,ýý {ÿ > ÿÿý2∕3} ⩾
ý0,ýý (+ÿÿý2∕3, + 1 ⩽ ÿ ⩽ +ÿÿý2∕3,)

ý0,ýý (1 ⩽ ÿ)

⩾ ÿÿ
′ÿ2ý1∕3 ý0,ýý (1 ⩽ ÿ ⩽ +ÿÿý2∕3,)

ý0,ýý (1 ⩽ ÿ)

= ÿÿ
′ÿ2ý1∕3

ý0,ýý {1 ⩽ ÿ ⩽ ÿÿý2∕3},
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which together with

ý0,ýý {1 ⩽ ÿ ⩽ ÿÿý2∕3} + ý0,ýý {ÿ > ÿÿý2∕3} = 1

gives

ý0,ýý {1 ⩽ ÿ ⩽ ÿÿý2∕3} ⩽
1

1 + ÿÿ′ÿ2ý1∕3
⩽ ÿ−ÿ

′ÿ2ý1∕3
on ý.

Next, we define ý1, ý2, ý3 and ý4 and their intersection gives ý. Let ý
ÿ and ýÿ denote the

partition functions with the ÿ- and ÿ-boundaryweights, andwhere all boundaryweights are inde-

pendent. Then, the ÿ1-boundaryweights from ℙ̃ can be seen as amixture of these ÿ- andÿ-weights.

The desired inequality (4.29) (under ℙ̃) can be rewritten as

»
¼¼½

ýÿ
0,ýý

ý
ÿ
0,ýý

+ÿÿý2∕3,∏
ÿ=1

ý
ÿ

(ÿ,0)

ýÿ
(ÿ,0)

¿
ÀÀÁ

ýÿ
0,ýý

(+ÿÿý2∕3, + 1 ⩽ ÿ ⩽ +ÿÿý2∕3,)
ýÿ
0,ýý

⩾ ÿÿ
′ÿ2ý1∕3

ý
ÿ
0,ýý

(1 ⩽ ÿ ⩽ +ÿÿý2∕3,)
ý
ÿ
0,ýý

,

which is implied by the inequality

»
¼¼½

ýÿ
0,ýý

ý
ÿ
0,ýý

+ÿÿý2∕3,∏
ÿ=1

ý
ÿ

(ÿ,0)

ýÿ
(ÿ,0)

¿
ÀÀÁ

ýÿ
0,ýý

(+ÿÿý2∕3, + 1 ⩽ ÿ ⩽ +ÿÿý2∕3,)
ýÿ
0,ýý

⩾ ÿÿ
′ÿ2ý1∕3

.

Because ýý is a point of order ÿý2∕3 units away from ÿý (recall ÿý is along the ÿ[ÿ]-

characteristic ray defined above (4.25)), there is an eventý1 with ℙ(ý1) ⩾ 1 − ÿ−ÿÿ
3
such that the

ÿ quenched probability appearing above (i.e., the last ratio of partition functions on the left-hand

side) satisfies

ýÿ
0,ýý

(+ÿÿý2∕3, + 1 ⩽ ÿ ⩽ +ÿÿý2∕3,)
ýÿ
0,ýý

⩾ 1∕2 on the event ý1.

This is proved as Lemma 4.12 at the end of this section, and the idea is illustrated on the right of

Figure 5.

Once on the event ý1, (4.29) would follow from having

ýÿ
0,ýý

ý
ÿ
0,ýý

ÿÿý2∕3∏
ÿ=1

ý
ÿ

(ÿ,0)

ýÿ
(ÿ,0)

⩾ ÿÿ
′ÿ2ý1∕3

, (4.30)

with possibly a different ÿ′. This inequality should hold with a high probability if ÿ > 0 is taken

sufficiently small. We will work with the logarithmic version of (4.30)

log ýÿ0,ýý
− log ý

ÿ
0,ýý

−
»
¼¼½

ÿÿý2∕3∑
ÿ=1

log(ýÿ
(ÿ,0)

) − log(ý
ÿ

(ÿ,0)
)
¿
ÀÀÁ
.
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We start by showing that

ý
[
log ýÿ0,ýý

]
− ý
[
log ý

ÿ
0,ýý

]
⩾ ý1ÿ

2ý1∕3 (4.31)

for some ÿ-dependent constant ý1, and this constant ý1 will be used for the rest of the proof. First,

note the exact values of the expectations are

ý
[
log ýÿ0,ýý

]
= Ψ0(ÿ − ÿ)(+Ψ1(ÿ)ý, − +ÿÿý2∕3,) + Ψ0(ÿ)+Ψ1(ÿ − ÿ)ý,

ý
[
log ý

ÿ
0,ýý

]
= Ψ0(ÿ − ÿ)(+Ψ1(ÿ)ý, − +ÿÿý2∕3,) + Ψ0(ÿ)+Ψ1(ÿ − ÿ)ý,.

Using a Taylor expansion,

Ψ0(ÿ − ÿ) = Ψ0(ÿ − ÿ) + Ψ1(ÿ − ÿ)(−ÿý−1∕3) + 1

2
Ψ′1(ÿ − ÿ)(−ÿý−1∕3)2 + ý1,

Ψ0(ÿ) = Ψ0(ÿ) + Ψ1(ÿ)(ÿý
−1∕3) + 1

2
Ψ′1(ÿ)(ÿý

−1∕3)2 + ý2.

Due to condition (4.20), we have |ýÿ| ⩽ ÿ(ÿý−1∕3)3 for both ÿ ∈ {1, 2} and with an ÿ-dependent

constant ÿ > 0. Plugging these two formulae back into the right side of (4.31), the linear terms

from the expansions cancel out. By further lowering the value of ý from (4.16) if necessary, ý1 and

ý2 can be absorbed into the (ÿý
−1∕3)2 terms, and there exist two positive constants ÿ1 and ÿ2

depending only on ÿ, ÿ and ý such that

ý
[
log ýÿ0,ýý

]
− ý
[
log ý

ÿ
0,ýý

]
⩾ ÿ1ÿ

2ý1∕3 − ÿ2ÿÿ
2ý1∕3,

where the parameter ÿ is from (4.26). By fixing ÿ sufficiently small, we obtain the desired estimate

(4.31).

Next, with the constant ý1 from (4.31), we define the two events

ý2 =
{
log ýÿ0,ýý

⩾ ý
[
log ý

ÿ
0,ýý

]
+
ý1
2
ÿ2ý1∕3

}
,

ý3 =
{
log ý

ÿ
0,ýý

⩽ ý
[
log ý

ÿ
0,ýý

]
+
ý1
10
ÿ2ý1∕3

}
,

and we will show ℙ(ý2) ∧ ℙ(ý3) ⩾ 1 − ÿÿ−3.

First, we work with ℙ(ý2). For ÿ, ý > 0, let us define ÿ(ÿ, ý) as in [32, (3.17)],

ÿ(ÿ, ý) = ∫
ý

0
(Ψ0(ÿ) − log ÿ)ý−ÿÿÿ−1ÿý−ÿýÿ.

In the next calculation, the first equality is the statement in [32, Theorem 3.7],

ýar[log ý
ÿ
0,ýý

] = ýý ⋅ ÿ2Ψ1(ÿ) − ýý ⋅ ÿ1Ψ1 (ÿ − ÿ) + 2ý

[
ý
ý
ÿ
0,ýý

[
0∨ÿ∑
ÿ=1

ÿ(ÿ − ÿ, ý
ÿ
ÿÿ1
)

]]

⩽ ÿ

(
ÿý2∕3 + ý

[
ý
ý
ÿ
0,ýý
[
ÿÿ{ÿ⩾1}

]]
+ 1

)
(by Lemma 4.2 of [32])

⩽ ÿ

(
ÿý2∕3 + ý

[
ý
ý
ÿ
0,ÿý
[
ÿÿ{ÿ⩾1}

]]
+ 1

)
(by Lemma A.5)

⩽ ÿÿý2∕3 + ÿ′ý2∕3 (by (4.32) of [32]). (4.32)
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Now, we upper bound the compliment

ℙ(ýý
2) = ℙ

{
log ýÿ0,ýý

< ý
[
log ý

ÿ
0,ýý

]
+
ý1
2
ÿ2ý1∕3

}

⩽ ℙ
{
log ýÿ0,ýý

< ý
[
log ýÿ0,ýý

]
−
ý1
2
ÿ2ý1∕3

}
(by (4.31))

⩽
4

ý2
1
ÿ4ý2∕3

ýar
[
log ýÿ0,ýý

]

⩽
4

ý2
1
ÿ4ý2∕3

(ýar
[
log ý

ÿ
0,ýý

]
+ ý3ÿý

2∕3) (by Lemma 4.1 of [32])

⩽ ÿÿ−3 (by (4.32)).

The fact ℙ(ý3) ⩾ 1 − ÿÿ−3 comes from the Markov inequality

ℙ(ýý
3) = ℙ

{
log ý

ÿ
0,ýý

> ý[log ý
ÿ
0,ýý

] +
ý1
10
ÿ2ý1∕3

}
⩽

100

ý2
1
ÿ4ý2∕3

ýar[log ý
ÿ
0,ýý

] ⩽ ÿÿ−3.

Next, we define another high probability event ý4 by

ý4 =

⎧
⎪«⎪¬

ÿÿý2∕3∑
ÿ=1

(
log ýÿ

(ÿ,0)
− log ý

ÿ

(ÿ,0)

)
⩽
ý1
10
ÿ2ý1∕3

«
⎪¬⎪­
.

If ÿ is chosen sufficiently small compared to ý1, then by Proposition A.12 and Theorem A.11,

ℙ(ý4) ⩾ 1 − ÿ−ÿÿ
3
.

Finally, on the event

ý1 ∩ ý2 ∩ ý3 ∩ ý4,

our desired estimate (4.30) (after taking logarithm) will hold

log ýÿ0,ýý
− logý

ÿ
0,ýý

−
»¼¼½

ÿÿý2∕3∑
ÿ=1

log ýÿ
(ÿ,0)

− log ý
ÿ

(ÿ,0)

¿ÀÀÁ
⩾
ý1
10
ÿ2ý1∕3 ⩾ ÿ′ÿ2ý1∕3.

This finishes the argument for the dark region and (4.27).

For the light region,

ℙ̃

(
max
ý∈ ý0,ý{1 ⩽ ÿ ⩽ ÿÿý2∕3} ⩽ ÿ−ÿ

′ÿ2ý1∕3
)

⩾ ℙ

(
max
ý∈ ý

ÿ
0,ý
{1 ⩽ ÿ ⩽ ÿÿý2∕3} ⩽ ÿ−ÿ

′ÿ2ý1∕3
)

⩾ ℙ

(
max
ý∈ ý

ÿ
0,ý
{1 ⩽ ÿ} ⩽ ÿ−ÿ

′ÿ2ý1∕3
)
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= ℙ
(
ý
ÿ
0,ýý

{1 ⩽ ÿ} ⩽ ÿ−ÿ
′ÿ2ý1∕3

)
(by Lemma A.5)

= 1 − ℙ
(
ý
ÿ
0,ýý

{1 ⩽ ÿ} > ÿ−ÿ
′ÿ2ý1∕3

)

⩾ 1 − ÿ−ÿÿ
3

(by Corollary 4.10).

The proof of Lemma 4.6 is complete.

Lemma 4.12 is an auxiliary estimate for the proof of Lemma 4.6. Recall that ÿ = ÿ + ÿý−1∕3 and

satisfies the condition (4.20). As shown on the right of Figure 4, ÿý and ÿý on the north boundary

satisfies (4.25). Using the parameters ý1 and ý2 in (4.25), we fix

ÿ ⩽ 1

10
ý1, ÿ ⩾ 10ý2, ÿ ⩽ 1

10
ý1. (4.33)

Recall ýý = ÿý − ÿÿý2∕3ÿ1 is a point on the north boundary of [[0, ÿý]]. Lemma 4.12 shows that

for small enough ÿ > 0 and large enough ÿ > 0, the sampled polymer path between the origin

and ýý exits the ÿ1-axis through the interval [[ÿÿý
2∕3ÿ1, ÿÿý

2∕3ÿ1]] with high probability under

ℙÿ. This is illustrated on the left of Figure 5.

Lemma 4.12. Let ÿ ∈ (0, ÿ∕2), and fix ÿ ∈ [ÿ, ÿ − ÿ] and constants ÿ, ÿ, ÿ as in (4.33). There exist

positive constantsÿ1, ÿ2, ÿ3, ÿ0, andý0 that depend only on ÿ such that, for any ÿ > ÿ0,ý ⩾ ý0 with

ÿ = ÿ + ÿý−1∕3 satisfying (4.20), we have

ℙ
(
ýÿ0,ýý

{
ÿÿý2∕3 ⩽ ÿ ⩽ ÿÿý2∕3

}
⩽ 1 − ÿ−ÿ1ÿ

2ý1∕3
)
⩽ ÿ−ÿ2ÿ

3

and

ý
[
ýÿ0,ýý

{
ÿÿý2∕3 ⩽ ÿ ⩽ ÿÿý2∕3

}]
⩾ 1 − ÿ−ÿ3ÿ

3
.

Proof. First, note we have the following horizontal distance bound between ýý and ÿý , where

ÿý is defined previously above (4.25)

1

2
ý1ÿý

2∕3 ⩽ ýý ⋅ ÿ1 − ÿý ⋅ ÿ1 ⩽ ý2ÿý
2∕3.

Let ÿý be the integer point closest to where the −ÿ[ÿ]-directed ray starting at ýý crosses the ÿ1-

axis (illustrated as the white dot in Figure 5), then the distance between the origin and ÿý satisfies

the same bound

1

2
ý1ÿý

2∕3 ⩽ ÿý ⋅ ÿ1 ⩽ ý2ÿý
2∕3. (4.34)

In the next part, we will show that sampled polymer path between the origin and ýý will exist

on the ÿ1-axis near ÿý . More precisely, we show for ÿ > ÿ0 andý ⩾ ý0 such that (4.20) holds, then

ℙ
(
ýÿ0,ýý

{ÿ < ÿÿý2∕3
)
⩾ ÿ−ÿÿ

2ý1∕3)
⩽ ÿ−ÿ

′ÿ3 , (4.35)

ℙ
(
ýÿ0,ýý

{ÿ > ÿÿý2∕3
)
⩾ ÿ−ÿÿ

2ý1∕3)
⩽ ÿ−ÿ

′ÿ3 . (4.36)

First, we show (4.36). In the estimate below, the first inequality follows from Lemma A.5; the

next equality comes from moving the base from the origin to ÿý as a nested polymer; the final
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F IGURE 6 The vertex ÿý is shown as the white dot. Applying Lemma A.8 in the proof of Lemma 4.12 to

assert that ýÿ
0,ýý

{ÿ ⩽ ÿÿý2∕3} = ýÿ
(+ÿÿý2∕3,,−ℎ),ýý

{ÿ < −ℎ}, which is small.

inequality comes from applying Lemma 4.6 to the nested polymer where the starting and end

points are in the ÿ[ÿ] direction,

ℙ
(
ýÿ0,ýý

{ÿ > ÿÿý2∕3} ⩾ ÿ−ÿ1ÿ
2ý1∕3
)

⩽ ℙ
(
ýÿ0,ÿý

{ÿ > ÿÿý2∕3} ⩾ ÿ−ÿ1ÿ
2ý1∕3
)

= ℙ
(
ýÿÿý ,ÿý

{ÿ > ÿÿý2∕3 − ÿý ⋅ ÿ1} ⩾ ÿ−ÿ1ÿ
2ý1∕3
)

= ℙ
(
ýÿÿý ,ÿý

{ÿ > ÿ

2
ÿý2∕3} ⩾ ÿ−ÿ1ÿ

2ý1∕3
)

⩽ ÿ−ÿ2ÿ
3
.

This proves (4.36).

To prove (4.35) choose ℎ so that (+ÿÿý2∕3,, −ℎ) is the closest integer point to the (−ÿ[ÿ])-
directed ray starting at ýý (see the right of Figure 6). Lemma A.8 gives

ℙ
(
ýÿ0,ýý

{ÿ ⩽ ÿÿý2∕3} ⩾ ÿ−ÿ1ÿ
2ý1∕3
)

= ℙ
(
ýÿ+ÿÿý2∕3,,−ℎ),ýý

{ÿ < −ℎ} ⩾ ÿ−ÿ1ÿ
2ý1∕3
)
.

Lemma 4.6 states that it is unlikely for the sampled polymer paths from ý(+ÿÿý2∕3,,−ℎ),ýý to exit

late in the scale ý2∕3 from the ÿ-axis because the direction is the characteristic one ÿ[ÿ]. Thus, it

suffices to show ℎ is bounded below by some ý(ÿ)ÿý2∕3.

Using the lower bound from (4.34), the distance between ÿý and +ÿÿý2∕3,ÿ1 is bounded below
by 4ÿÿý2∕3. The slope of the line going through ýý and ÿý is roughly ÿ[ÿ], because recall ÿý is

defined to be the closes integer point to the crossing point between the −ÿ[ÿ]-directed ray from

ýý and the ÿ1-axis. Thus, its slope is contained inside a compact interval strictly inside (0, ÿ).
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F IGURE 7 The north and east boundaries of ç0, ÿýè are decomposed into ± (light gray) and (dark gray).

The parameter ÿ is less than some small constant that depends only on ÿ.

Thus, we have

ℎ ⩾ ý(ÿ)ÿý2∕3 (4.37)

which finishes the proof. □

4.2 Proof of Theorem 4.2

First, note that instead of

max
ý∉[[0,ÿý]]

ý
ÿ
0,ý
{|ÿ| ⩽ ÿý2∕3},

it suffices to work with

max
ý∈ÿNE[[0,ÿý]]

ý
ÿ
0,ý
{|ÿ| ⩽ ÿý2∕3}

as

max
ý∉[[0,ÿý]]

ý
ÿ
0,ý
{|ÿ| ⩽ ÿý2∕3}

= max
ý∉[[0,ÿý]]

∑
ÿ∈ÿNEç0,ÿýè

ý
ÿ
0,ý
{|ÿ| ⩽ ÿý2∕3 and passes through z}

= max
ý∉[[0,ÿý]]

∑
ÿ∈ÿNE[[0,ÿý]]

ý
ÿ
0,ÿ
{|ÿ| ⩽ ÿý2∕3}ý

ÿ
0,ý
{passes through ÿ}

⩽ max
ý∉[[0,ÿý]]

∑
ÿ∈ÿNE[[0,ÿý]]

(
max

ÿ′∈ÿNEç0,ÿýè
ý
ÿ

0,ÿ′
{|ÿ| ⩽ ÿý2∕3}

)
ý
ÿ
0,ý
{passes through ÿ}

= max
ÿ′∈ÿNE[[0,ÿý]]

ý
ÿ

0,ÿ′
{|ÿ| ⩽ ÿý2∕3}.

(4.38)

Decompose the northeast boundary ÿNEç0, ÿýè into three parts and ± as in Figure 7, with
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ý+
ý = ÿý − +ÿÿý2∕3,ÿ1 and ý−

ý = ÿý − +ÿÿý2∕3,ÿ2
where ÿ ⩽ 1 is a small positive constant to be chosen later above (4.42), and

ÿ = | log ÿ|.

The dark gray set  comprises the vertices between ý+
ý
and ý−

ý
on the northeast corner of the

boundary of the rectangle ç0, ÿýè. Recall that we assume in the theorem that

ý > ÿ−3∕2. (4.39)

This is natural because otherwise the probability in the statement of the theorem would be zero.

Introduce the perturbed parameters

ÿ = ÿ + ÿý−1∕3 and ÿ = ÿ − ÿý−1∕3. (4.40)

We require the following bounds to hold for these two parameters

ÿ < ÿ ⩽ ÿ +
ÿ ∧ (ÿ − ÿ)

2
< ÿ and 0 < ÿ −

ÿ ∧ (ÿ − ÿ)

2
⩽ ÿ < ÿ. (4.41)

The point of the choice ÿ ±
ÿ∧(ÿ−ÿ)

2
is only to bound ÿ and ÿ from above and below by two con-

stants strictly inside (0, ÿ) and only depending on ÿ. The above two requirements can be rewritten

as

ý ⩾

(
2ÿ

ÿ ∧ (ÿ − ÿ)

)3
.

With (4.39), this bound on ý is automatically satisfied as soon as ÿ−3∕2 ⩾
(

2ÿ

ÿ∧(ÿ−ÿ)

)3
. As ÿ =

| log ÿ|, we can ensure this by lowering the value of ÿ0.
Now we show that if one takes ÿ and ÿ small enough, then the ÿ[ÿ]- and ÿ[ÿ]-directed rays

started at the points±+ÿÿý2∕3,ÿ1will avoid as shown inFigure 8. To this end, recall ÿ[ÿ]defined

in 2.3. Let ÿý be the point where the ÿ[ÿ]-ray starting from +ÿÿý2∕3,ÿ1 crosses the north boundary
of [[0, ÿý]]. Then the ÿ1-coordinates of ý

+
ý
and ÿý can be lower bounded by

(
Ψ1(ÿ)

Ψ1(ÿ − ÿ)
⋅

Ψ1(ÿ − ÿ)

Ψ1(ÿ) + Ψ1(ÿ − ÿ)
−

Ψ1(ÿ)

Ψ1(ÿ) + Ψ1(ÿ − ÿ)

)
ý − ÿÿý2∕3 − ÿÿý2∕3 − 5

=
Ψ1(ÿ − ÿ)

Ψ1(ÿ) + Ψ1(ÿ − ÿ)
⋅

(
Ψ1(ÿ)

Ψ1(ÿ − ÿ)
−

Ψ1(ÿ)

Ψ1(ÿ − ÿ)

)
ý − ÿÿý2∕3 − ÿÿý2∕3 − 5

⩾ ÿ1(ÿ)ÿý
2∕3 − ÿÿý2∕3 − ÿÿý2∕3 − 5, (4.42)

where the inequality comes from Taylor’s theorem becauseΨ1 is a smooth function on a compact

interval inside (0, ÿ) depending on ÿ. Here, ÿ1(ÿ) is a finite positive constant that only depends on

ÿ. The inequality holds provided ÿý−1∕3 ⩽ ý(ÿ) for some positive ý(ÿ) that only depends on ÿ and

this can be guaranteed to hold by lowering the threshold ÿ0 because

ÿý−1∕3 ⩽ | log ÿ|ÿ1∕2 ⩽ ÿ
1∕3
0
.
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F IGURE 8 Illustration of the set, the nested polymer, and three characteristic directions. The parameters
ÿ = ÿ are less than some small constant that depends only on ÿ, ÿ is a small positive constant in (0, ÿ0), and ÿ is a

large constant with ÿ = | log ÿ|.

Now choosing

ÿ = ÿ = ÿ1(ÿ)∕10, (4.43)

we obtain

(4.42) ⩾ ÿ2(ÿ)ÿý
2∕3, (4.44)

and this gives us the desired picture for ÿ[ÿ] shown in Figure 8. The argument for the ÿ[ÿ]-directed

ray is similar. For what followswe alsowant to guarantee that ÿ < ÿÿ = ÿ| log ÿ|. This can be done
by decreasing the value of ÿ0 after having fixed ÿ. This completes the setup described in Figure 8.

Consider the set  shown in Figure 7 in dark gray and also in Figure 8. Place the station-

ary polymer model on 0 + ℤ2
⩾0

as a nested polymer inside a larger stationary polymer model

on the quadrant −+ÿý2∕3,ÿ1 + ℤ2
⩾0
. From the relation between two nested polymers given by

Lemma A.7, we have

ℙ

(
max
ÿ∈ ý

ÿ
0,ÿ
{1 ⩽ ÿ ⩽ ÿý2∕3} ⩾ ÿ−| log ÿ|2

√
ÿý1∕3
)

(4.45)

=ℙ

(
max
ÿ∈ ý

ÿ

−+ÿý2∕3,ÿ1,ÿ
{+ÿý2∕3, + 1 ⩽ ÿ ⩽ +ÿý2∕3, + ÿý2∕3} ⩾ ÿ−| log ÿ|2

√
ÿý1∕3
)

⩽ ℙ

»¼¼½
max
ÿ∈

ý
ÿ

−+ÿý2∕3,ÿ1,ÿ
(+ÿý2∕3, + 1 ⩽ ÿ ⩽ +ÿý2∕3, + ÿý2∕3)

ý
ÿ

−+ÿý2∕3,ÿ1,ÿ
(+ÿý2∕3, − ÿÿý2∕3 + 1 ⩽ ÿ ⩽ +ÿý2∕3, + ÿÿý2∕3)

⩾ ÿ−| log ÿ|2
√
ÿý1∕3
¿ÀÀÁ

= ℙ
(
min
ÿ∈
{
log ý

ÿ

−+ÿý2∕3,ÿ1,ÿ
(+ÿý2∕3, − ÿý2∕3 + 1 ⩽ ÿ ⩽ +ÿý2∕3, + ÿý2∕3)

− log ý
ÿ

−+ÿý2∕3,ÿ1,ÿ
(+ÿý2∕3, + 1 ⩽ ÿ ⩽ +ÿý2∕3, + ÿý2∕3)

}
⩽ | log ÿ|2

√
ÿý1∕3

)
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⩽ ℙ

(
min
ÿ∈
{

max
ÿ∈[[−ÿý2∕3+1,ÿý2∕3]]

log ý
ÿ

−+ÿý2∕3,ÿ1,ÿ
(ÿ = +ÿý2∕3, + ÿ)

− log ý
ÿ

−+ÿý2∕3,ÿ1,ÿ
(ÿ = +ÿý2∕3,) + log ý

ÿ

−+ÿý2∕3,ÿ1,ÿ
(ÿ = +ÿý2∕3,)

− max
ý∈[[1,ÿý2∕3]]

log ý
ÿ

−+ÿý2∕3,ÿ1,ÿ
(ÿ = +ÿý2∕3, + ý)

}
⩽ 2| log ÿ|2

√
ÿý1∕3

)
,

and by a union bound, the last probability above can be upper bounded as follows

⩽ ℙ

(
min
ÿ∈
{

max
ÿ∈[[−ÿý2∕3+1,ÿý2∕3]]

log ý
ÿ

−+ÿý2∕3,ÿ1,ÿ
(ÿ = +ÿý2∕3, + ÿ)

− log ý
ÿ

−+ÿý2∕3,ÿ1,ÿ
(ÿ = +ÿý2∕3,)

}
⩽ 3| log ÿ|2

√
ÿý1∕3

)
(4.46)

+ ℙ

(
max
ÿ∈
{

max
ý∈[[1,ÿý2∕3]]

log ý
ÿ

−+ÿý2∕3,ÿ1,ÿ
(ÿ = +ÿý2∕3, + ý)

− log ý
ÿ

−+ÿý2∕3,ÿ1,ÿ
(ÿ = +ÿý2∕3,)

}
⩾ | log ÿ|2

√
ÿý1∕3

)
.

Before we continue our bound, let us simplify our notation. For ÿ ∈  and ÿ ∈ [[−+ÿÿý2∕3, +
1, +ÿÿý2∕3,]], define horizontal increments

ý̃ÿ
(ÿ,1)

=
ý(ÿ−1,1),ÿ

ý(ÿ,1),ÿ

which live on the horizontal line ÿ = 1. With these increments, define a two-sided multiplicative

walk {ýÿ
ÿ}ÿ∈[[−+ÿÿý2∕3,+1,+ÿÿý2∕3,]] by settingýÿ

0
= 1 and

ýÿ
ÿ∕ý

ÿ
ÿ−1 = ý

ÿ

(ÿ,0)
∕ý̃ÿ

(ÿ,1)
(4.47)

where ý
ÿ

(ÿ,0)
are the boundary weights from the stationary polymer in the quadrant −+ÿý2∕3,ÿ1 +

ℤ2
⩾0
. Note that ÿ = 0 corresponds to ÿ = +ÿý2∕3,, which is exit at the origin.
Then, (4.46) can be upper bounded as

(4.46) = ℙ

(
min
ÿ∈ max

ÿ∈[[−ÿÿý2∕3+1,ÿÿý2∕3]]
logýÿ

ÿ ⩽ 3| log ÿ|2
√
ÿý1∕3

)
(4.48)

+ ℙ

(
max
ÿ∈ max

ÿ∈[[1,ÿý2∕3]]
logýÿ

ÿ ⩾ | log ÿ|2
√
ÿý1∕3

)
(4.49)

⩽ ℙ

({
min
ÿ∈ max

ÿ∈[[1,+ 1
2
ÿÿý2∕3,]]

logýÿ
ÿ ⩽ 3| log ÿ|2

√
ÿý1∕3

}

⋂{
min
ÿ∈ max

ÿ∈[[−+ 1
2
ÿÿý2∕3,,0]]

logýÿ
ÿ ⩽ 3| log ÿ|2

√
ÿý1∕3

})
(4.50)

+ ℙ

(
max
ÿ∈ max

ÿ∈[[1,+ÿý2∕3,]]
logýÿ

ÿ ⩾ | log ÿ|2
√
ÿý1∕3

)
. (4.51)
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F IGURE 9 Setup for the stationary polymer with ratios of partition functions.

For any ÿ ∈ , Lemma A.3 gives

ýÿ
ÿ ⩾ ý

ý+
ý

ÿ for ÿ ⩾ 1 and ýÿ
ÿ ⩾ ý

ý−
ý

ÿ for ÿ ⩽ 0.

Therefore, we may bound (4.50) and (4.51) by

(4.50) + (4.51) ⩽ ℙ

({
max

ÿ∈[[1,+ 1
2
ÿÿý2∕3,]]

logý
ý+
ý

ÿ ⩽ 3| log ÿ|2
√
ÿý1∕3

}
(4.52)

⋂{
max

ÿ∈[[−+ 1
2
ÿÿý2∕3,,0]]

logý
ý−
ý

ÿ ⩽ 3| log ÿ|2
√
ÿý1∕3

})

+ ℙ

(
max

ÿ∈[[1,+ÿý2∕3,]]
logý

ý−
ý

ÿ ⩾ | log ÿ|2
√
ÿý1∕3

)
(4.53)

Next, to each edge on the north and east sides of the rectangle [[−+ÿý2∕3,ÿ1, ÿý + ÿ1 + ÿ2è,
we attach both ÿ- and ÿ-edge weights, coupled as in [9, Theorem B.4]. We denote these weights

by ýÿ,NE
ÿÿ+ýÿ1+ÿ2

, ýÿ,NE
ÿÿ+ÿ1+ýÿ2

, ý
ÿ,NE
ÿÿ+ýÿ1+ÿ2

, and ý
ÿ,NE
ÿÿ+ÿ1+ýÿ2

, ý ⩽ 1. Together with the bulk weights in

[[−+ÿý2∕3,ÿ1 + ÿ2, ÿýè, these define stationary polymers with northeast boundary. Let us denote
their partition functions by ýÿ,NEý,ÿý+ÿ1+ÿ2

and ý
ÿ,NE
ý,ÿý+ÿ1+ÿ2

for ý ∈ ç(−+ÿý2∕3,, 1), ÿýè. The corre-
sponding polymer measures are denoted by ýÿ,NEý,ÿý+ÿ1+ÿ2

and ý
ÿ,NE
ý,ÿý+ÿ1+ÿ2

, respectively. This is

depicted in Figure 9.

On the horizontal line ÿ = 1, let us also define for ÿ ∈ [[−+ÿÿý2∕3, + 1, +ÿÿý2∕3,]]

ýÿ,NE
(ÿ,1)

=
ýÿ,NE
(ÿ−1,1),ÿý+ÿ1+ÿ2

ýÿ,NE
(ÿ,1),ÿý+ÿ1+ÿ2

and ý
ÿ,NE

(ÿ,1)
=
ý
ÿ,NE

(ÿ−1,1),ÿý+ÿ1+ÿ2

ý
ÿ,NE

(ÿ,1),ÿý+ÿ1+ÿ2

. (4.54)
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Lemma 4.13. There exists a positive constantÿ, depending only on ÿ, such that for ÿ, ÿ,ý as chosen

above, and for any integers ÿ, ÿ ∈ [[−+ÿÿý2∕3, + 1, +ÿÿý2∕3,]], the event

ý =

{
1

2

ÿ∏
ÿ=ÿ

ý
ÿ,NE

(ÿ,1)
⩽

ÿ∏
ÿ=ÿ

ý̃
ý−
ý

(ÿ,1)
⩽

ÿ∏
ÿ=ÿ

ý̃
ý+
ý

(ÿ,1)
⩽ 2

ÿ∏
ÿ=ÿ

ýÿ,NE
(ÿ,1)

}
(4.55)

satisfies ℙ(ýý) ⩽ ÿ−ÿÿ
3
.

Proof. Due to the relative positions of ý±
ý
, Lemma A.3 implies the middle inequality in the

definition of ý. We will prove the desired bound for the inequality on the right, that is,

ℙ

(
ÿ∏
ÿ=ÿ

ý̃
ý+
ý

ÿ
⩽ 2

ÿ∏
ÿ=ÿ

ýÿ,NE
ÿ

)
⩾ 1 − ÿ−ÿÿ

3
. (4.56)

The argument for the inequality on the left is similar and will be omitted.

Let ÿNE be defined similarly to ÿ, but acting on down-left paths. Namely, it gives the number of

steps the path takes before making its first corner. We will again use the convention that ÿNE > 0

if the first step of the path is −ÿ1 and ÿ
NE < 0 if the first step is −ÿ2.

Our estimate essentially follows from the following two facts. The first fact is that the random

variable

ýÿ,NE+ÿÿý2∕3,ÿ1+ÿ2,ÿý+ÿ1+ÿ2
{ÿNE ⩾ ÿÿý2∕3}

is, almost surely, less than or equal to

ýÿ,NE
(ÿ,1),ÿý+ÿ1+ÿ2

{ÿNE ⩾ ÿÿý2∕3} ∀ÿ ∈ [[−+ÿÿý2∕3, + 1, +ÿÿý2∕3,]].

This follows directly from Lemma A.5, although note that here we exit from the NE boundary

instead of the SW boundary. The second fact is that there exist positive constants ÿ1 and ÿ2 such

that

ℙ
(
ýÿ,NE+ÿÿý2∕3,ÿ1+ÿ2,ÿý+ÿ1+ÿ2

{ÿNE ⩾ ÿÿý2∕3} ⩾ 1 − ÿ−ÿ1ÿ
2ý1∕3
)
⩾ 1 − ÿ−ÿ2ÿ

3
. (4.57)

To see this, observe that

ℙ
(
ýÿ,NE+ÿÿý2∕3,ÿ1+ÿ2,ÿý+ÿ1+ÿ2

{ÿNE ⩽ ÿÿý2∕3} ⩾ ÿ−ÿ1ÿ
2ý1∕3
)
⩽ ÿ−ÿ2ÿ

3

is the same as (4.35), except here we rotate the picture by 180◦. The key idea is illustrated

in Figure 10. Note the similarities between Figures 6 and 10. From Figure 10, the calculation

ÿý ⋅ ÿ2 − ÿý ⋅ ÿ2 − 1 ⩾ ÿÿý2∕3 is omitted because it is similar to (4.37).

Let ýÿ,N
(ÿ,1),ý+

ý
+ÿ2

denote the partition function for up-right paths from (ÿ, 1) to ý+
ý
+ ÿ2, which

uses the same weights as ýÿ,NE
(ÿ,1),ý+

ý
+ÿ2

does on the north boundary but uses the original (bulk)

weights on ý+
ý
+ ℤ2

⩽0
.

On the high probability event

{
ýÿ,NE+ÿÿý2∕3,ÿ1+ÿ2,ÿý+ÿ1+ÿ2

{ÿNE ⩾ ÿÿý2∕3} ⩾ 1 − ÿ−ÿ1ÿ
2ý1∕3
}
, (4.58)
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F IGURE 10 Illustration of (4.57). By Lemma A.8,

ýÿ,NE
ÿý ,ÿý

(ÿNE ⩽ ÿÿý2∕3) = ýÿ,NE
ÿý ,ÿý

(ÿNE < −(ÿý ⋅ ÿ2 − ÿý ⋅ ÿ2 − 1)), and this is unlikely because

ÿý ⋅ ÿ2 − ÿý ⋅ ÿ2 − 1 ⩾ ÿÿý2∕3.

we have

ÿ∏
ÿ=ÿ+1

ý̃
ý+
ý

(ÿ,1)
=
ý(ÿ,1),ý+

ý

ý(ÿ,1),ý+
ý

⩽

ýý
(ÿ,1),ý+

ý
+ÿ2

ýý
(ÿ,1),ý+

ý
+ÿ2

(By Lemma A.3)

=

ýý
(ÿ,1),ý+

ý
+ÿ2

∏+ÿÿý2∕3,+1
ÿ=1

ýÿ,NE
ÿý+ÿ1+ÿ2−ÿÿ1

ýý
(ÿ,1),ý+

ý
+ÿ2

∏+ÿÿý2∕3,+1
ÿ=1

ýÿ,NE
ÿý+ÿ1+ÿ2−ÿÿ1

=
ýNE
(ÿ,1),ÿý+ÿ1+ÿ2

(ÿNE ⩾ +ÿÿý2∕3,)
ýNE
(ÿ,1),ÿý+ÿ1+ÿ2

(ÿNE ⩾ +ÿÿý2∕3,)

=
ýNE
(ÿ,1),ÿý+ÿ1+ÿ2

(ÿNE ⩾ +ÿÿý2∕3,)
ýNE
(ÿ,1),ÿý+ÿ1+ÿ2

(ÿNE ⩾ +ÿÿý2∕3,)
ÿ∏

ÿ=ÿ+1

ýÿ,NE
(ÿ,1)

⩽
1

1 − ÿ−ÿ1ÿ2ý
1∕3

ÿ∏
ÿ=ÿ+1

ýÿ,NE
(ÿ,1)

(on the event (4.58)).
□

With the new horizontal increments ýÿ,NE and ýÿ,NE, define two more two-sided multiplicative

random walksýÿ
ÿ andý

ÿ
ÿ withý

ÿ
0
= ý

ÿ
0
= 1,

ýÿ
ÿ∕ý

ÿ
ÿ−1 = ý

ÿ

(ÿ,0)
∕ýÿ,NE

(ÿ,1)
, and ý

ÿ
ÿ∕ý

ÿ
ÿ−1

= ý
ÿ

(ÿ,0)
∕ý

ÿ,NE

(ÿ,1)
.
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On the event ý from (4.55), we get

1

2
ýÿ
ÿ ⩽ ý

ý+
ý

ÿ ⩽ 2ý
ÿ
ÿ for ÿ ⩾ 1 and

1

2
ý

ÿ
ÿ ⩽ ý

ý−
ý

ÿ ⩽ 2ýÿ
ÿ for ÿ ⩽ 0. (4.59)

Now we can bound

ℙ(event in (4.52) ∩ ý) ⩽ ℙ

»¼¼¼½

⎧⎪«⎪¬
max

ÿ∈[[1,+ 1
2
ÿÿý2∕3,]]

logýÿ
ÿ ⩽ 6| log ÿ|2

√
ÿý1∕3

«⎪¬⎪­

⋂⎧⎪«⎪¬
max

ÿ∈[[−+ 1
2
ÿÿý2∕3,,0]]

logý
ÿ
ÿ ⩽ 6| log ÿ|2

√
ÿý1∕3

«
⎪¬⎪­

¿
ÀÀÀÁ
,

(4.60)

ℙ(event in (4.53) ∩ ý) ⩽ ℙ

(
max

ÿ∈[[1,+ÿý2∕3,]]
logý

ÿ
ÿ ⩾

1

2
| log ÿ|2

√
ÿý1∕3

)
. (4.61)

[9, Theorem B.4] states that the increment variables {ýÿ,NE
(ÿ,1)

}ÿ⩾1 ∪ {ý
ÿ,NE

(ÿ,1)
}ÿ⩽0 are independent, and

these are independent of the boundary weights {ý
ÿ

(ÿ,0)
} by construction. Thus, we get

(4.60) ⩽ ℙ

»¼¼½
max

ÿ∈[[1,+ 1
2
ÿÿý2∕3,]]

logýÿ
ÿ ⩽ 6| log ÿ|2

√
ÿý1∕3

¿ÀÀÁ

× ℙ

»¼¼½
max

ÿ∈[[−+ 1
2
ÿÿý2∕3,,0]]

logý
ÿ
ÿ ⩽ 6| log ÿ|2

√
ÿý1∕3

¿ÀÀÁ
.

(4.62)

The next step is a randomwalk estimate because the steps of thewalks logýÿ
ÿ and logý

ÿ
ÿ are given

by the difference of two independent log-gamma random variables, which are sub-exponential

random variables. Using Proposition A.13, we see that (4.62) ⩽ ÿ| log ÿ|6ÿ. Using Theorem A.11,

we also have (4.61) ⩽ ÿÿ.

To summarize, we have shown

ℙ(event in (4.45)) ⩽ 2ℙ(ýý) + ℙ(event in (4.52) ∩ ý) + ℙ(event in (4.53) ∩ ý)

⩽ 2ÿ−ÿ| log ÿ|3 + ÿ| log ÿ|6ÿ
⩽ | log ÿ|10ÿ.

(4.63)

This completes the proof of the desired bound (4.2) with themaximum taken over the dark region

 ⊂ ÿNEç0, ÿýè in Figure 7.
For the endpoints in +, we have the following estimate,

ℙ

(
max
ÿ∈+ ý

ÿ
0,ÿ
{1 ⩽ ÿ ⩽ ÿý2∕3} ⩾ ÿ−| log ÿ|2

√
ÿý1∕3
)

⩽ ℙ

(
max
ÿ∈+ ý

ÿ
0,ÿ
{1 ⩽ ÿ} ⩾ ÿ−| log ÿ|2

√
ÿý1∕3
)
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F IGURE 11 We have ý0,ý−
ý
{ÿ ⩽ ÿý2∕3} = ý(+ÿý2∕3,,−ℎ),ý−

ý
{ÿ < −ℎ} which is rare because ℎ is lower bounded

by ÿÿý2∕3. The lower bound on ℎ follows from the fact the vertical distance between ÿý and ý−
ý
is of order ÿý2∕3.

⩽ ℙ

(
ý
ÿ

0,ý+
ý

{1 ⩽ ÿ} ⩾ ÿ−| log ÿ|2
√
ÿý1∕3
)

(by Lemma A.5)

⩽ ÿ−ÿ| log ÿ|3 (by Corollary 4.10).

Similarly, for the − region, we have

ℙ

(
max
ÿ∈− ý

ÿ
0,ÿ
{1 ⩽ ÿ ⩽ ÿý2∕3} ⩾ ÿ−| log ÿ|2

√
ÿý1∕3
)
⩽ ℙ

(
max
ÿ∈− ý

ÿ
0,ÿ
{ÿ ⩽ ÿý2∕3} ⩾ ÿ−| log ÿ|2

√
ÿý1∕3
)

⩽ ℙ
(
ý
ÿ
0,ý−

ý
{ÿ ⩽ ÿý2∕3} ⩾ ÿ−| log ÿ|2

√
ÿý1∕3
)

⩽ ÿ−ÿ| log ÿ|3 .

The idea for the last inequality is illustrated in Figure 11, essentially again following from

Lemma A.5 and Corollary 4.10. This finishes the argument for the − region. The bound (4.2)

is thus proved.

The probability bound implies the upper bound in (4.3):

ý

[
max

ÿ∈ÿNE[[0,ÿý]]
ý
ÿ
0,ÿ
{|ÿ| ⩽ ÿý2∕3}

]
⩽ ÿ + ℙ

(
max

ÿ∈ÿNE[[0,ÿý]]
ý
ÿ
0,ÿ
{|ÿ| ⩽ ÿý2∕3} ⩾ ÿ

)
⩽ ÿ| log ÿ|10ÿ.

We turn to the lower bound in (4.3). By Lemma 4.6, there exist two constants ÿ0 and ý0

(depending on ÿ) such that, for ý ⩾ ý0,

ý
[
ý
ÿ
0,ÿý+ÿ1+ÿ2

{|ÿ| ⩽ ÿ0ý
2∕3}
]
⩾
1

2
. (4.64)
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F IGURE 1 2 Left: Partition for the collection of paths in (4.64). The origin is not necessarily a partition

point. Right: An illustration for (4.68). The nested polymer with its quenched measure ý(0)

ÿ,ÿ′
ý

is shown in black.

Abbreviate ÿ′
ý
= ÿý + ÿ1 + ÿ2. Given ÿ ⩾ ý−2∕3, partition [−ÿ0, ÿ0] as

−ÿ0 = ý0 < ý1 <⋯ < ý+ 2ÿ0
ÿ
, < ý+ 2ÿ0

ÿ
,+1 = ÿ0

with mesh size ýÿ+1 − ýÿ ⩽ ÿ. See the left side of Figure 12. By (4.64), there exists an integer ÿ⋆ ∈

[0, + 2ÿ0
ÿ
,] such that

ý

[
ý
ÿ

0,ÿ′
ý

{ýÿ⋆ý
2∕3 ⩽ ÿ ⩽ ýÿ⋆+1ý

2∕3}

]
⩾

1

2
ÿ

2ÿ0
= ÿ(ÿ)ÿ. (4.65)

As we cannot control the exact location of ÿ⋆, we compensate by varying the endpoint around

ÿ′
ý
. Let

ýý = çÿ′ý − ÿ0ý
2∕3ÿ1, ÿ

′
ýè ∪ çÿ′ý − ÿ0ý

2∕3ÿ2, ÿ
′
ýè

denote the set of lattice points on the boundary of the rectangle ç0, ÿ′
ý
èwithin distance ÿ0ý2∕3 of

the upper right corner ÿ′
ý
. We claim that for any integer ÿ ∈ [0, + 2ÿ0

ÿ
,],

ý

[
max
ÿ∈ýý

ý
ÿ
0,ÿ
{|ÿ| ⩽ ÿý2∕3}

]
⩾ ý

[
ý
ÿ

0,ÿ′
ý

{ýÿ⋆ý
2∕3 ⩽ ÿ ⩽ ýÿ⋆+1ý

2∕3}

]
. (4.66)

Then bounds (4.65) and (4.66) imply

ý

[
max
ÿ∈ýý

ý
ÿ
0,ÿ
{|ÿ| ⩽ ÿý2∕3}

]
⩾ ÿ(ÿ)ÿ, (4.67)

and the lower bound in (4.3) follows directly from (4.67).

It remains to prove claim (4.66). If ýÿ⋆ ⩽ 0 ⩽ ýÿ⋆+1, (4.66) is immediate. We argue the case

ýÿ⋆+1 > ýÿ⋆ > 0, the other one being analogous. Set ÿ = (+ýÿ⋆ý2∕3, − 1)ÿ1 and apply Lemma A.7
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to the polymer with the nested quenched measure ý(0)ÿ, ∙. See the right side of Figure 12. Then

ý

[
ý
ÿ

0,ÿ′
ý

{ýÿ⋆ý
2∕3 ⩽ ÿ ⩽ ýÿ⋆+1ý

2∕3}

]

⩽ ý

[
ý(0)
ÿ,ÿ′

ý

{1 ⩽ ÿ ⩽ ÿý2∕3}

]
(4.68)

= ý

[
ý
ÿ

0,ÿ′
ý
−(+ýÿ⋆ý2∕3,−1)ÿ1

{1 ⩽ ÿ ⩽ ÿý2∕3}

]
] (by shift-invariance)

⩽ ý

[
max
ÿ∈ýý

ý
ÿ
0,ÿ
{|ÿ| ⩽ ÿý2∕3}

]
.

Theorem 4.2 is proved.

4.3 Coupled polymer measures

Proof of Theorem 4.3. From Theorem 4.1, there exists an event ý with probability at least ÿ−ÿ1ÿ
3

such that on ý, we have

min
ý∈ÿNE[[0,ÿý]]

ý
ÿ
0,ý
{|ÿ| > ÿý2∕3} ⩾ 1 − ÿ−ÿ2ÿ

2ý1∕3
.

By a union bound, on the event ý we have

ý̃
ÿ

0,ÿNE[[0,ÿý]]

»¼¼½
⋂

ý∈ÿNE[[0,ÿý]]

{|ÿ̃0,ý| > ÿý2∕3}
¿ÀÀÁ
⩾ 1 − ýÿ−ÿ2ÿ

2ý1∕3
⩾ 1 − ÿ−ÿ3ÿ

2ý1∕3

provided that ÿ0, ý0 are sufficiently large. With this, we have finished the proof of this

theorem. □

Proof of Theorem 4.4. By Theorem 4.2, on the high probability event ý with probability at least

1 − ÿ1ÿ| log ÿ|10, we have

max
ý∈ÿNE[[0,ÿý]]

ý
ÿ
0,ý
{|ÿ| ⩽ ÿý2∕3} ⩽ ÿ−| log ÿ|2

√
ÿý1∕3

.

With the assumption that
√
ÿý1∕3 ⩾ 1, a union bound implies that on ý,

ý̃0,ÿNE[[0,ÿý]]

»
¼¼½
⋃

ý∈ÿNE[[0,ÿý]]

{ÿ̃0,ý ⩽ ÿý2∕3}
¿
ÀÀÁ
⩽ ýÿ−| log ÿ|2

√
ÿý1∕3

⩽ ÿ.

The claim of the theorem follows. □
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5 COALESCENCE OF SEMI-INFINITE POLYMERS

In this section, we will define the semi-infinite polymer measures and prove Theorems 2.1 and

2.3 about their coalescence. The proof will use a duality between forward and backward polymer

measures, which we describe in Subsection 5.2.

5.1 Busemann functions and semi-infinite polymers

Following [18, Theorem 4.1], for any fixed ÿ ∈ (0, ÿ), ℙ-almost surely, the limits

ýÿ(ý, ÿ) = lim
ý→∞

(
log ýý,ÿý − logýÿ,ÿý

)
, (5.1)

exist for any ý, ÿ ∈ ℤ2 and satisfy

ý−1ÿ = ÿ−ý
ÿ(ÿ,ÿ+ÿ1) + ÿ−ý

ÿ(ÿ,ÿ+ÿ2)

and

ýÿ(ý, ÿ) + ýÿ(ÿ, ÿ) = ýÿ(ý, ÿ),

for all ý, ÿ, ÿ ∈ ℤ2. Furthermore, for any ÿ ∈ ℤ2, ý
ÿ
ÿ = ÿý

ÿ(ÿ−ÿ1,ÿ) ∼ Ga−1(ÿ − ÿ), ý
ÿ
ÿ = ÿý

ÿ(ÿ−ÿ2,ÿ) ∼

Ga−1(ÿ), and ifwe fix any vertex ÿ ∈ ℤ2, then theweightsýÿ, ý
ÿ
ÿ−ýÿ1

, ý
ÿ
ÿ−ýÿ2

, ÿ ∈ ÿ − ℤ2
>0
,ý ⩾ 0, are

mutually independent and thus define a stationary polymer with northeast boundary on ÿ − ℤ2
⩾0
.

The partition function and quenched polymermeasure will be denoted by ý
ÿ,NE
∙,ÿ , ý

ÿ,NE
∙,ÿ . Similarly,

if we define

�ý
ÿ
ÿ =

1

ÿ−ý
ÿ(ÿ−ÿ1,ÿ) + ÿ−ý

ÿ(ÿ−ÿ2,ÿ)
, ÿ ∈ ℤ2 ,

then �ý
ÿ
ÿ ∼ Ga−1(ÿ) for all ÿ ∈ ℤ2, and for any vertex ÿ ∈ ℤ2 the weights �ý

ÿ
ÿ , ý

ÿ
ÿ+ýÿ1

, ý
ÿ
ÿ+ýÿ2

, ÿ ∈

ÿ + ℤ2
>0
, ý ⩾ 1, are mutually independent and defined a stationary polymer with southwest

boundary on ÿ + ℤ2
⩾0
. The partition function and quenched polymer measure will be denoted

by �ý
ÿ,ÿÿ
ÿ,∙ , �ý

ÿ,ÿÿ
ÿ,∙ . Thus, for any ÿ ∈ ℤ2, �ý

ÿ,ÿÿ
ÿ,∙ has the same distribution as the generic ý

ÿ
ÿ,∙ we

introduced in Section 3 and used in Section 4. (This distributional equality is a special feature of

the inverse-gamma polymer.)

The ÿ[ÿ]-directed (forward) semi-infinite polymer measure starting at ÿ, denoted by Π
ÿ
ÿ , is a

Markov chain on ℤ2 with transition probabilities

ÿÿ(ý, ý + ÿ1) =
ý
ÿ
ý+ÿ2

ý
ÿ
ý+ÿ1

+ ý
ÿ
ý+ÿ2

= ýý ÿ
−ýÿ(ý,ý+ÿ1),

ÿÿ(ý, ý + ÿ2) =
ý
ÿ
ý+ÿ1

ý
ÿ
ý+ÿ1

+ ý
ÿ
ý+ÿ2

= ýý ÿ
−ýÿ(ý,ý+ÿ2) .

(5.2)
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The ÿ[ÿ]-directed backward semi-infinite polymer measure starting at ÿ, denoted by �Π
ÿ
ÿ , is a

Markov chain on ℤ2 with transition probabilities

�ÿÿ(ý, ý − ÿ1) =
ý
ÿ
ý

ý
ÿ
ý + ý

ÿ
ý

= �ý
ÿ
ý ÿ

−ýÿ(ý−ÿ1,ý) and �ÿÿ(ý, ý − ÿ2) =
ý
ÿ
ý

ý
ÿ
ý + ý

ÿ
ý

= �ý
ÿ
ý ÿ

−ýÿ(ý−ÿ2,ý) .

(5.3)

The next proposition relates the semi-infinite polymers to the stationary ones. For ÿ ∈ ℤ2 and

ÿ ∈ ÿ + ℤ2
>0
let Π

ÿ
ÿ,ÿ be the distribution of the Markov chain that starts at ÿ, has transition prob-

abilities ÿÿ(ý, ý + ÿÿ), ÿ ∈ {1, 2}, if ý ∈ [[ÿ, ÿ − ÿ1 − ÿ2]], and when it gets to ÿ − ℤ>0ÿÿ , ÿ ∈ {1, 2},

it takes ÿÿ steps to get to ÿ and end there. Similarly, let �Π
ÿ
ÿ,ÿ be the distribution of the Markov

chain that starts at ÿ, has transition probabilities �ÿÿ(ý, ý − ÿÿ), ÿ ∈ {1, 2}, if ý ∈ [[ÿ + ÿ1 + ÿ2, ÿ]],

and when it gets to ÿ + ℤ>0ÿÿ , ÿ ∈ {1, 2}, it takes −ÿÿ steps to get to ÿ and end there.

Define, similarly to ÿÿ,ÿ, the set ÿÿ,ÿ of down-left paths starting at ÿ and ending at ÿ. For ý∙ ∈

ÿÿ,ÿ, respectively, ∈ ÿÿ,ÿ, let ý̄∙ ∈ ÿÿ,ÿ, respectively, ∈ ÿÿ,ÿ, be the path that traverses ý∙ in the

reverse direction.

Proposition 5.1. We have ℙ-almost surely, for any ÿ ∈ ℤ2 and ÿ ∈ ÿ + ℤ2
>0
, for any ý∙ ∈ ÿÿ,ÿ ,

Π
ÿ
ÿ,ÿ(ý∙) = ý

ÿ,NE
ÿ,ÿ (ý∙) and �Π

ÿ
ÿ,ÿ(ý̄∙) = �ý

ÿ,SW
ÿ,ÿ (ý∙).

Proof. We prove the second claim, the first one being similar. Let ý = |ÿ − ÿ|1 and index the path
ý∙ so that ý0 = ÿ and ýý = ÿ. We will consider the case where ý1 = ÿ1 and the proof in the other

case is identical. Let ý ⩾ 1 be such that ýý = ÿ + ýÿ1 and ýý+1 = ÿ + ýÿ1 + ÿ2. Then

�Π
ÿ
ÿ,ÿ(ý̄∙) =

ý−1∏
ÿ=ý

�ÿÿ(ýÿ+1, ýÿ) =

ý−1∏
ÿ=ý

�ý
ÿ
ýÿ+1

ÿ−ý
ÿ(ýÿ ,ýÿ+1)

= ÿ−ý
ÿ(ýý ,ÿ)

ý−1∏
ÿ=ý

�ý
ÿ
ýÿ+1

= ÿ−ý
ÿ(ÿ,ÿ)

ý∏
ÿ=1

ý
ÿ
ÿ+ÿÿ1

ý−1∏
ÿ=ý

�ý
ÿ
ýÿ+1

.

Adding the above over all paths ý∙ ∈ ÿÿ,ÿ gives

1 = ÿ−ý
ÿ(ÿ,ÿ)�ý

ÿ,SW
ÿ,ÿ .

Consequently,

�Π
ÿ
ÿ,ÿ(ý̄∙) =

∏ý
ÿ=1 ý

ÿ
ÿ+ÿÿ1

∏ý−1
ÿ=ý

�ý
ÿ
ýÿ+1

�ý
ÿ,SW
ÿ,ÿ

= �ý
ÿ,SW
ÿ,ÿ (ý∙).

□

5.2 Coupling the forward and backward semi-infinite polymers

We now couple the polymer measures {Π
ÿ
ÿ ∶ ÿ ∈ ℤ2} following the construction in [25,

appendix A]. To this end, introduce a collection of independent and identically distributed

Uniform[0, 1] random variables {ÿÿ}ÿ∈ℤ2 that are also independent of the random environment

{ýÿ ∶ ÿ ∈ ℤ2}. Let ÿ denote the distribution of ÿ.
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Define a directed random graph g
ÿ on ℤ2, according to the following rule

g
ÿ(ý) =

⎧⎪⎪«⎪⎪¬

ÿ1 if ÿý ⩽
ý
ÿ
ý+ÿ2

ý
ÿ
ý+ÿ1

+ý
ÿ
ý+ÿ2

,

ÿ2 if ÿý >
ý
ÿ
ý+ÿ1

ý
ÿ
ý+ÿ1

+ý
ÿ
ý+ÿ2

.

From g
ÿ, we can construct a semi-infinite path ÿ

ÿ,ÿ
∙ defined by

ÿ
ÿ,ÿ
0

= ÿ and ÿ
ÿ,ÿ
ÿ+1

= ÿ
ÿ,ÿ
ÿ + g

ÿ(ÿ
ÿ,ÿ
ÿ ). (5.4)

It is clear from the construction that for ℙ-almost every ý∙, the distribution of ÿ
ÿ,ÿ
∙ under ÿ

is exactly Π
ÿ
ÿ . Namely, we have ℙ-almost surely, for any ÿ ∈ ℤ2 and any finite up-right path ý∙

starting at ÿ,

ÿ{ÿÿ,ÿ
∙ = ý∙} = Π

ÿ
ÿ {ý∙}. (5.5)

We next couple the backward semi-infinite polymer measures together with the forward ones.

To this end, define another (dual) random graph �gÿ by

�gÿ(ý) =

{
−ÿ1 if gÿ(ý − ÿ1 − ÿ2) = ÿ1,

−ÿ2 if gÿ(ý − ÿ1 − ÿ2) = ÿ2.

Define the down-left semi-infinite paths �ÿÿ,ÿ according to

�ÿ
ÿ,ÿ
0

= ÿ and �ÿ
ÿ,ÿ
ÿ+1

= �ÿ
ÿ,ÿ
ÿ + �gÿ( �ÿ

ÿ,ÿ
ÿ ). (5.6)

By construction, for ℙ-almost every ý∙, the distribution of �ÿ
ÿ,ÿ
∙ under ÿ is that of a Markov chain

on ℤ2 with steps in {−ÿ1, −ÿ2} and transition probabilities

ý
ÿ
ý−ÿ1

ý
ÿ
ý−ÿ2

+ ý
ÿ
ý−ÿ2

=
ÿý

ÿ(ý−ÿ1−ÿ2,ý−ÿ1)

ÿý
ÿ(ý−ÿ1−ÿ2,ý−ÿ2) + ÿý

ÿ(ý−ÿ1−ÿ2,ý−ÿ1)
=

ÿ−ý
ÿ(ý−ÿ1,ý)

ÿ−ý
ÿ(ý−ÿ2,ý) + ÿ−ý

ÿ(ý−ÿ1,ý)

=
ÿý

ÿ(ý−ÿ2,ý)

ÿý
ÿ(ý−ÿ1,ý) + ÿý

ÿ(ý−ÿ2,ý)
= �ÿÿ(ý, ý − ÿ1)

to go from ý to ý − ÿ1 and, similarly,

ý
ÿ
ý−ÿ2

ý
ÿ
ý−ÿ2

+ ý
ÿ
ý−ÿ2

= �ÿÿ(ý, ý − ÿ2)

to go from ý to ý − ÿ2.

Remark 5.2. Note that the graph g
ÿ and its coupled paths {ÿ

ÿ,ÿ
∙ ∶ ÿ ∈ ℤ2} are constructed to form

a forest that covers all of ℤ2. By [25, Theorem A.2], this forest is in fact a spanning tree, with

probability 1 under ℙ. The paths { �ÿ
ÿ,ÿ
∙ − (ÿ1 + ÿ2)∕2 ∶ ÿ ∈ ℤ2} form the dual forest that spans the

dual latticeℤ2 − (ÿ1 + ÿ2)∕2. Again, by [25, TheoremA.2], this dual forest is also a spanning forest

ℙ-almost surely.
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42 of 58 RASSOUL-AGHA et al.

F IGURE 13 The sampled polymers starting (+ÿý2∕3,, 0) and (0, +ÿý2∕3,) (gray dotted lines) coalesce
outside ç0, ÿýè. Equivalently, some dual point ý∗ = ý − (1∕2, 1∕2) outside of ç0, ÿýè − (1∕2, 1∕2) sends a dual

polymer �ÿÿ,ý
∙ − (1∕2, 1∕2) (black dotted line) into the rectangle ç(0, 0), (+ÿý2∕3,, +ÿý2∕3,)è.

For ÿ ∈ ℤ2
>0

let ÿ̃
ÿ,ÿ
∙ ∈ ÿÿ,0 be the random path that follows �ÿ

ÿ,ÿ
∙ from ÿ until the first time it

hits the axesℤ>0ÿÿ , ÿ ∈ {1, 2}, and then goes to 0 taking only−ÿ1 or only−ÿ2 steps. Forý ⊂ ℤ2
>0
let

ý̃
ÿ
0,ý

be the distribution underÿ of the paths {ÿ̃
ÿ,ÿ
∙ ∶ ÿ ∈ ý}. By Proposition 5.1, this is a coupling of

the measures { �ý
ÿ,SW
0,ÿ

∶ ÿ ∈ ý} and by their construction, the paths {ÿ̃
ÿ,ÿ
∙ ∶ ÿ ∈ ý} are ý̃

ÿ
0,ý
-almost

surely ordered.

5.3 Proofs of Theorems 2.1, 2.3, and 2.7, and Corollary 2.5

We note that the probabilityÿ
ÿ,ÿ

(
Γý
)
is the same as the probability under ÿ that the coalescence

point of the coupled paths ÿ
ÿ,ÿ
∙ and ÿ

ÿ,ÿ
∙ belongs to ý.

Proof of Theorem 2.1. As shown in Figure 13, the duality mentioned in Remark 5.2 implies that the

sampled polymer paths coalesce outside of the rectangle [[0, ÿý]] if and only if there exists some ý

on the northeast boundary of [[0, ÿý]] such that the polymer ÿ̃
ÿ,ý
∙ satisfies |ÿ0,ý| ⩽ ÿý2∕3.

By this equivalence, the expectation in Theorem 2.1 is equal to the expectation in Theorem 4.4,

ý
[ÿ

+ÿý2∕3,ÿ1,+ÿý2∕3,ÿ2

(
Γℤ

2⧵[[0,ÿý]]
)]

= ý

ÂÃÃÄ
ý̃
ÿ

0,ÿNE[[0,ÿý]]

»¼¼½
⋃

ý∈ÿNE[[0,ÿý]]

{|ÿ̃0,ý| ⩽ ÿý2∕3}
¿ÀÀÁ

ÅÆÆÇ
.

Finally, for the exit time expectation on the right-hand side, the upper bound follows from The-

orem 4.4. The lower bound follows from (4.38) and (4.3) in Theorem 4.2 because the probability

of a union of events is bounded below by the maximum of the probabilities of the individual

events. □

Proof of Theorems 2.3 and 2.7. As shown in Figure 14, if the two sampled forward polymers starting

at (+ÿý2∕3,, 0) and (0, +ÿý2∕3,) coalesce inside [[0, ÿý]], then by duality, this happens if and only
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F IGURE 14 None of the backward polymers (black dotted lines) will enter the gray square because they are

shielded away from it by the coalescing forward polymers (gray dotted lines).

for each ý ∈ ÿNE[[0, ÿý]] the polymer ÿ̃
ÿ,ý
∙ satisfies |ÿ0,ý| ⩾ ÿý2∕3. Then, we have

ÿ

+ÿý2∕3,ÿ1,+ÿý2∕3,ÿ2

(
Γ[[0,ÿý]]

)
ý
= ý̃

ÿ

0,ÿNE[[0,ÿý]]

»
¼¼½
⋂

ý∈ÿNE[[0,ÿý]]

{|ÿ̃0,ý| ⩾ ÿý2∕3}
¿
ÀÀÁ
. (5.7)

The expectation and the tail probabilities of the right-hand side can be lower bounded using The-

orem 4.3. And they are upper bounded by Theorem 4.1 because the probability of an intersection

of events is bounded above by the minimum of the probabilities of the individual events. □

Proof of Corollary 2.5. To prove the first inequalitywewill lower bound its complement. By duality,

it suffices to show that for some small ÿ depending only on ÿ,

ý
[ÿ

0,+ÿý2∕3,ÿ1

(
Γℤ

2⧵[[0,ÿý]]
)]

= ý

Â
ÃÃÄ
ý̃
ÿ

0,ÿNE[[0,ÿý]]

»
¼¼½
⋃

ý∈ÿNE[[0,ÿý]]

{1 ⩽ ÿ̃0,ý ⩽ ÿý2∕3}
¿
ÀÀÁ

Å
ÆÆÇ

⩾ ý
[
ý
ÿ

0,ÿý−ÿÿý
2∕3ÿ2

{1 ⩽ ÿ ⩽ ÿý2∕3}
]

⩾ 1 − ÿ−ÿÿ
3
. (5.8)

The last inequality (5.8) follows from an argument similar to the proof of Lemma 4.12. Here,

instead of perturbing the directional parameter, we simply perturb our end point from ÿý to

ÿý − ÿÿý2∕3ÿ2. Then, as shown in Figure 15, if we fix ÿ sufficiently small, then the−ÿ[ÿ] directed

ray starting at ÿý − ÿÿý2∕3ÿ2will hit the ÿ1-axiswithin [[ÿÿý
2∕3, ÿÿý2∕3]], for some 0 < ÿ < ÿ < 1.

This again just follows from Taylor’s theorem and we omit the details. Then the rest of the

argument is exactly the same as in Lemma 4.12.

To prove the second inequality in the claim of the corollary we start with the following calcu-

lation, where the first equality comes from duality and the same calculation from (4.38) gives us
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F IGURE 15 An illustration for the inequality (5.8). Starting from the point ÿý − ÿÿý2∕3ÿ2, the

−ÿ[ÿ]-directed ray will hit the ÿ1-axis between [[ÿÿý
2∕3, ÿÿý2∕3]] for some 0 < ÿ < ÿ < 1, provided that ÿ is fixed

sufficiently small.

the inequality when we switch from }}maxý∈ÿNE[[0,ÿý]]…
′′ to }}maxý∉[[0,ÿý]]…

′′

ý
[ÿ

0,+ÿý2∕3,ÿ1

(
Γℤ

2⧵[[0,ÿý]]
)]

= ý

ÂÃÃÄ
ý̃
ÿ

0,ÿNE[[0,ÿý]]

»¼¼½
⋃

ý∈ÿNE[[0,ÿý]]

{1 ⩽ ÿ̃0,ý ⩽ ÿý2∕3}
¿ÀÀÁ

ÅÆÆÇ

⩾ ý

[
max

ý∈ÿNE[[0,ÿý]]
ý
ÿ
0,ý
{1 ⩽ ÿ ⩽ ÿý2∕3}

]

⩾ ý

[
max

ý∉[[0,ÿý]]
ý
ÿ
0,ý
{1 ⩽ ÿ ⩽ ÿý2∕3}

]
.

The last expectation can be lower bounded by ÿÿ. The proof is very similar to that of the lower

bound in (4.3). More precisely, by (5.8), we can fix two constants ÿ0 andý0 (depending on ÿ) such

that, for ý ⩾ ý0,

ý
[
ý
ÿ

0,ÿý−ÿÿ0ý
2∕3ÿ2+ÿ1

{1 ⩽ ÿ ⩽ ÿ0ý
2∕3}
]
⩾
1

2
. (5.9)

Note that using the endpoint ÿý − ÿÿ0ý
2∕3ÿ2 + ÿ1 instead of ÿý − ÿÿ0ý

2∕3ÿ2 does not change the

proof of this lower bound.

Now, (5.9) replaces the input (4.64), and we form our partition {ýÿ} in the range [1, ÿ0] instead

of [−ÿ0, ÿ0]. Then, the rest of the proof is the same as the lower bound proof in (4.3). □

6 TOTAL VARIATION DISTANCE BOUNDS

Proof of Theorem 2.8. The claim follows from the fact that if ý and ý are two random variables

with distributions ÿ and ÿ, respectively, and if ÿ is any coupling of the two random variables, then

ýTV(ÿ, ÿ) ⩽ ÿ(ý ≠ ý). (6.1)
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Consider the paths ÿ
ÿ,ÿý2∕3ÿÿ
∙ , ÿ ∈ {1, 2}, defined in Subsection 5.2. Then, ÿý(ÿ

ÿ,ÿý2∕3ÿ1
∙ ) ≠

ÿ
ý(ÿ

ÿ,ÿý2∕3ÿ2
∙ ) implies the two paths did not coalesce inside [[0, ÿý]]. Hence, if ÿ is the probability

measure from Subsection 5.2, then

ÿ
{
ÿ
ý

(
ÿ
ÿ,ÿý2∕3ÿ1
∙

) ≠ ÿ
ý

(
ÿ
ÿ,ÿý2∕3ÿ2
∙

)}
⩽ ÿ

+ÿý2∕3,ÿ1,+ÿý2∕3,ÿ2

(
Γℤ

2⧵[[0,ÿý]]
)
.

Now the upper bound claimed in the theorem follows directly from Theorem 2.1. □

Proof of Theorem 2.9. We will first look at ÿ only in the north boundary of [[0, ÿý]], which we

denote as ÿN[[0, ÿý]], and we will show that

∑
ÿ∈ÿN[[0,ÿý]]

|Πÿ

+ÿý2∕3,ÿ1
(ÿý = ÿ) − Π

ÿ

+ÿý2∕3,ÿ2
(ÿý = ÿ)| is close to 1.

A similar argument can be applied to the east boundary to show that sum is also close to 1. And

combining the two calculations for the north and east boundaries would finish the proof.

From Proposition 5.1 and Theorem 4.1,

ℙ
(
Π
ÿ

+ÿý2∕3,ÿ2
(ÿý ∈ ÿý[[0, ÿý]]) ⩾ 1 − ÿ−ýÿ

2ý1∕3
)
⩾ 1 − ÿ−ÿÿ

3
,

ℙ
(
Π
ÿ

+ÿý2∕3,ÿ1
(ÿý ∈ ÿý[[0, ÿý]]) ⩽ ÿ−ýÿ

2ý1∕3
)
⩾ 1 − ÿ−ÿÿ

3
.

To finish the proof, on the intersection of the two events above, we have

∑
ÿ∈ÿN[[0,ÿý]]

|Πÿ

+ÿý2∕3,ÿ1
(ÿý = ÿ) − Π

ÿ

+ÿý2∕3,ÿ2
(ÿý = ÿ)|

⩾
∑

ÿ∈ÿN[[0,ÿý]]

(
Π
ÿ

+ÿý2∕3,ÿ1
(ÿý = ÿ) − Π

ÿ

+ÿý2∕3,ÿ2
(ÿý = ÿ)

)

= Π
ÿ

+ÿý2∕3,ÿ2
(ÿý ∈ ÿý[[0, ÿý]]) − Π

ÿ

+ÿý2∕3,ÿ1
(ÿý ∈ ÿý[[0, ÿý]])

⩾ 1 − 2ÿ−ýÿ
2ý1∕3

. □

7 TRANSVERSAL FLUCTUATION LOWER BOUND

In this section, we prove Theorem 2.11, but omit some of the details because the whole proof is

similar to the proof of the upper bound in Theorem 4.2.

First, for ÿ ∈ {1, 2}, let us define {midÿ ⩽ ÿý2∕3} to be the collection of paths between −ÿý and

ÿý that crosses the segment between −ÿý2∕3ÿÿ and ÿý
2∕3ÿÿ . As

{mid ⩽ ÿý2∕3} ⊂ {mid1 ⩽ ÿý2∕3} ∪ {mid2 ⩽ ÿý2∕3},

by a union bound and the symmetry between ÿ = 1 and 2 it suffices to prove that

ý
[
ý−ÿý ,ÿý {mid1 ⩽ ÿý2∕3}

]
⩽ ÿ| log ÿ|10ÿ.

 1
4
6
9
7
7
5
0
, 2

0
2
4
, 1

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://lo
n
d
m

ath
so

c.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
2
/jlm

s.1
2
9
5
5
 b

y
 F

iras R
asso

u
l-A

g
h
a - U

n
iv

ersity
 O

f U
tah

 , W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

9
/0

6
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



46 of 58 RASSOUL-AGHA et al.

We prove this by showing that

ℙ
(
ý−ÿý ,ÿý {mid1 ⩽ ÿý2∕3} ⩾ ÿ−| log ÿ|2

√
ÿý1∕3
)
⩽ ÿ| log ÿ|10ÿ. (7.1)

Let ÿ = | log ÿ| and fix ÿ sufficiently small (now depending only on ÿ) as in the proof of Theo-

rem 4.2. The next calculation follows the same steps as (4.45), except that we now set ÿ = ÿ∕2 and

consider the dark region as a single point ÿý .

left side of (7.1)

= ℙ
(
log ý−ÿý ,ÿý − log ý−ÿý ,ÿý {mid1 ⩽ ÿý2∕3} ⩽ | log ÿ|2

√
ÿý1∕3

)

⩽ ℙ
(
log ý−ÿý ,ÿý {mid1 ⩽ ÿý2∕3} − log ý−ÿý ,ÿý {mid1 ⩽ ÿý2∕3} ⩽ | log ÿ|2

√
ÿý1∕3

)

⩽ ℙ

(
max

|ý|⩽+ÿý2∕3,

[
log ý−ÿý ,ýÿ1 + log ý(ý,1),ÿý

]

− max
|ÿ|⩽+ÿý2∕3,

[
log ý−ÿý ,ýÿ1 + logý(ý,1),ÿý

]
⩽ 2| log ÿ|2

√
ÿý1∕3

)

= ℙ

(
max

|ý|⩽+ÿý2∕3,

[
log

ý−ÿý ,ýÿ1
ý−ÿý ,(0,0)

+ log
ý(ý,1),ÿý
ýÿ2,ÿý

]

− max
1⩽ÿ⩽+ÿý2∕3,

[
log

ý−ÿý ,ÿÿ1
ý−ÿý ,(0,0)

+ log
ý(ÿ,1),ÿý
ýÿ2,ÿý

]
⩽ 2| log ÿ|2

√
ÿý1∕3

)

⩽ ℙ

(
max

|ý|⩽+ÿý2∕3,

[
log

ý−ÿý ,ýÿ1
ý−ÿý ,(0,0)

+ log
ý(ý,1),ÿý
ýÿ2,ÿý

]
⩽ 3| log ÿ|2

√
ÿý1∕3

)
(7.2)

+ ℙ

(
max

1⩽ÿ⩽+ÿý2∕3,

[
log

ý−ÿý ,ÿÿ1
ý−ÿý ,(0,0)

+ log
ý(ÿ,1),ÿý
ýÿ2,ÿý

]
⩾ | log ÿ|2

√
ÿý1∕3

)
. (7.3)

Next, let us define

ý̃
ÿý
(ÿ,1)

=
ý(ÿ−1,1),ÿý
ý(ÿ,1),ÿý

, ý̃
−ÿý
(ÿ,0)

=
ý−ÿý ,(ÿ,1)

ý−ÿý ,(ÿ−1,1)
,

and a two-sided multiplicative walk {ý′
ÿ}ÿ∈[[−+ÿÿý2∕3,+1,+ÿÿý2∕3,]] by settingý′

0
= 1 and

ý′
ÿ∕ý

′
ÿ−1 = ý̃

−ÿý
(ÿ,0)

∕ý̃
ÿý
(ÿ,1)

.

Then, the two probabilities can be rewritten as

(7.2) + (7.3) = ℙ

(
max

ÿ∈[[−ÿÿý2∕3+1,ÿÿý2∕3]]
logý′

ÿ ⩽ 3| log ÿ|2
√
ÿý1∕3

)

+ ℙ

(
max

ÿ∈[[1,ÿý2∕3]]
logý′

ÿ ⩾ | log ÿ|2
√
ÿý1∕3

)
.

(7.4)
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Note how the right-hand side is similar to (4.48) + (4.49), except for having ý′
ÿ instead of ýÿ,

and the region  is reduced to the single vertex ÿý . Next, we give a sketch of how to carry over

the estimate from the proof of Theorem 4.2 to the random walk in this proof. The essential step

is to upper and lower bound the walk ý′
ÿ by two other walks with independent and identically

distributed steps. This was done for ýÿ previously in (4.59). After that, the bound on the two

probabilities above comes from the same estimates as in the proof of Theorem 4.2.

First, let us summarize how the desired random walk bound was obtained in the proof of The-

orem 4.2. Recall ÿ and ÿ, defined in (4.40). Lemma 4.13 showed that with probability at least

1 − ÿ−ÿÿ
3
, for each ÿ, ÿ ∈ [[−+ÿÿý2∕3, + 1, +ÿÿý2∕3,]],

1

2

ÿ∏
ÿ=ÿ

ý
ÿ,NE

(ÿ,1)
⩽

ÿ∏
ÿ=ÿ

ý̃
ÿý
(ÿ,1)

⩽ 2

ÿ∏
ÿ=ÿ

ýÿ,NE
(ÿ,1)

,

where ý ∙,NE
(ÿ,1)

∼ Ga−1(∙). Furthermore, as stated below (4.61), there is a coupling such that the

random variables
{
ý
ÿ,NE

(ÿ,1)
, ýÿ,NE
(ÿ,1)

∶ ÿ ⩽ 0, ÿ ⩾ 1
}
are independent. (7.5)

By symmetry (or rotating the picture 180◦), the exact same argument can be applied to ý̃
−ÿý
(ÿ,0)

,

where now these edge weights are calculated to the point−ÿý − (ÿ1 + ÿ2) instead of to ÿý + (ÿ1 +

ÿ2). We get that with probability at least 1 − ÿ−ÿÿ
3
, for each ÿ, ÿ ∈ [[−+ÿÿý2∕3, + 1, +ÿÿý2∕3,]],

1

2

ÿ∏
ÿ=ÿ

ý
ÿ,SW

(ÿ,0)
⩽

ÿ∏
ÿ=ÿ

ý̃
−ÿý
(ÿ,0)

⩽ 2

ÿ∏
ÿ=ÿ

ýÿ,SW
(ÿ,0)

,

where ý ∙,SW
(ÿ,0)

∼ Ga−1(∙) are edge weights that are calculated to−ÿý − (ÿ1 + ÿ2) and with a bound-

ary placed on the south-west edges of the quadrant −ÿý − (ÿ1 + ÿ2) + ℤ2
⩾0
. As above, the random

variables
{
ýÿ,SW
(ÿ,0)

, ý
ÿ,SW

(ÿ,0)
∶ ÿ ⩽ 0, ÿ ⩾ 0

}
are independent. (7.6)

Note how the parameters switched sides, as compared to (7.5).

Next, define two two-sided multiplicative random walksý+
ÿ ,ý

−
ÿ withý

±
0
= 1 and

ý+
ÿ ∕ý

+
ÿ−1

= ýÿ,SW
(ÿ,0)

∕ý
ÿ,NE

(ÿ,1)

ý−
ÿ ∕ý

−
ÿ−1 = ý

ÿ,SW

(ÿ,0)
∕ýÿ,NE

(ÿ,1)

We get

1

2
ý−
ÿ ⩽ ý′

ÿ ⩽ 2ý+
ÿ for ÿ ⩾ 1 and

1

2
ý+
ÿ ⩽ ý′

ÿ ⩽ 2ý−
ÿ for ÿ ⩽ 0.

These bounds play the role of (4.59). With this, go back to (7.4) and follow the same argument as

the one we used to bound (4.48)+ (4.49), but withýÿ,ý
ÿ
ÿ , andý

ÿ
ÿ replaced byý

′
ÿ,ý

−
ÿ , andý

+
ÿ ,

respectively. We should point out that an essential fact that is used in the step analogous to (4.62)

is the independence of the walks {ý−
ÿ ∶ ÿ ⩾ 1} and {ý+

ÿ ∶ ÿ ⩽ 0}, which follows from (7.5) and

(7.6). We omit the rest of the details.
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APPENDIX A: TECHNICAL COMPLEMENTS

A.1 Moderate deviation of the bulk free energy

We present here two estimates that we use in the proof of (4.1). The first tail bound can be derived

for the inverse-gamma polymer by combining [4, Theorem 1.7], which utilizes integrable proba-

bilitymethods, with [19, Theorem 2.2]. For theO’Connell–Yor polymer, the boundwas established

in [27] as Proposition 2.1 without the use of integrable probability. A proof of the bound for the

inverse-gamma polymer, without the use of integrable probability, will appear in [15]. This result

can be found in Theorem 4.3.1 of the Ph.D. thesis [36].

Proposition A.1. Fix ÿ ∈ (0, ÿ∕2). There exist positive constants ÿ,ý0 depending on ÿ such that for

eachý ⩾ ý0, ý ⩾ 1, and each ÿ ∈ [ÿ, ÿ − ÿ], we have

ℙ
(
log ý0,ÿý − Λ(ÿý) ⩾ ýý1∕3

)
⩽ ÿ−ÿmin{ý

3∕2, ýý1∕3}.

The next tail bound is [6, Proposition 3.8]. The analogous bound for the O’Connell–Yor polymer

appears as [27, Proposition 3.4].

Proposition A.2. Let ÿ ∈ (0, ÿ∕2). There exist positive constants ÿ,ý0 depending on ÿ such that for

eachý ⩾ ý0, ý ⩾ 1 and and each ÿ ∈ [ÿ, ÿ − ÿ], we have

ℙ
(
log ý0,ÿý − Λ(ÿý) ⩽ −ýý1∕3

)
⩽ ÿ−ÿmin{ý

3∕2, ýý1∕3}.

A.2 Proof of Propositions 4.7 and 4.8

Let ÿ ∈ (0, ÿ∕2) and fix ÿ ∈ [ÿ, ÿ − ÿ]. We start with a few derivative calculations.

ý

ýÿ

Ψ1(ÿ + ÿ)

Ψ1(ÿ + ÿ) + Ψ1(ÿ − ÿ − ÿ)

||||ÿ=0 =
Ψ2(ÿ)Ψ1(ÿ − ÿ) + Ψ1(ÿ)Ψ2(ÿ − ÿ)

(Ψ1(ÿ) + Ψ1(ÿ − ÿ))2
, (A.1)

ý

ýÿ

Ψ1(ÿ − ÿ − ÿ)

Ψ1(ÿ + ÿ) + Ψ1(ÿ − ÿ − ÿ)

||||ÿ=0 = −
Ψ2(ÿ)Ψ1(ÿ − ÿ) + Ψ1(ÿ)Ψ2(ÿ − ÿ)

(Ψ1(ÿ) + Ψ1(ÿ − ÿ))2
,

ý2

ýÿ2
Ψ1(ÿ + ÿ)

Ψ1(ÿ + ÿ) + Ψ1(ÿ − ÿ − ÿ)

||||ÿ=0 = −
2Ψ2(ÿ)(Ψ2(ÿ) − Ψ2(ÿ − ÿ))

(Ψ1(ÿ) + Ψ1(ÿ − ÿ))2
+

Ψ3(ÿ)

Ψ1(ÿ) + Ψ1(ÿ − ÿ)

+ Ψ1(ÿ)

(
2(Ψ2(ÿ) − Ψ2(ÿ − ÿ))2

(Ψ1(ÿ) + Ψ1(ÿ − ÿ))3
−

Ψ3(ÿ − ÿ) + Ψ3(ÿ)

(Ψ1(ÿ) + Ψ1(ÿ − ÿ))2

)
,

ý2

ýÿ2
Ψ1(ÿ − ÿ − ÿ)

Ψ1(ÿ + ÿ) + Ψ1(ÿ − ÿ − ÿ)

||||ÿ=0 =
2Ψ2(ÿ − ÿ)(Ψ2(ÿ) − Ψ2(ÿ − ÿ))

(Ψ1(ÿ) + Ψ1(ÿ − ÿ))2
+

Ψ3(ÿ − ÿ)

Ψ1(ÿ) + Ψ1(ÿ − ÿ)

+ Ψ1(ÿ − ÿ)

(
2(Ψ2(ÿ) − Ψ2(ÿ − ÿ))2

(Ψ1(ÿ) + Ψ1(ÿ − ÿ))3
−

Ψ3(ÿ − ÿ) + Ψ3(ÿ)

(Ψ1(ÿ) + Ψ1(ÿ − ÿ))2

)
,

ý

ýÿ

(
Ψ1(ÿ + ÿ)

Ψ1(ÿ + ÿ) + Ψ1(ÿ − ÿ − ÿ)
Ψ0(ÿ − ÿ − ÿ) +

Ψ1(ÿ − ÿ − ÿ)

Ψ1(ÿ + ÿ) + Ψ1(ÿ − ÿ − ÿ)
Ψ0(ÿ + ÿ)

)||||ÿ=0

=
(Ψ0(ÿ − ÿ) − Ψ0(ÿ))(Ψ2(ÿ)Ψ1(ÿ − ÿ) + Ψ1(ÿ)Ψ2(ÿ − ÿ))

(Ψ1(ÿ) + Ψ1(ÿ − ÿ))2
, (A.2)
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ý2

ýÿ2

(
Ψ1(ÿ + ÿ)

Ψ1(ÿ + ÿ) + Ψ1(ÿ − ÿ − ÿ)
Ψ0(ÿ − ÿ − ÿ) +

Ψ1(ÿ − ÿ − ÿ)

Ψ1(ÿ + ÿ) + Ψ1(ÿ − ÿ − ÿ)
Ψ0(ÿ + ÿ)

)||||ÿ=0

=
2(Ψ0(ÿ)Ψ2(ÿ − ÿ) − Ψ2(ÿ)Ψ0(ÿ − ÿ))(Ψ2(ÿ) − Ψ2(ÿ − ÿ))

(Ψ1(ÿ) + Ψ1(ÿ − ÿ))2

+
Ψ3(ÿ)Ψ0(ÿ − ÿ) + Ψ0(ÿ)Ψ3(ÿ − ÿ) − Ψ2(ÿ)Ψ1(ÿ − ÿ) − Ψ1(ÿ)Ψ2(ÿ − ÿ)

Ψ1(ÿ) + Ψ1(ÿ − ÿ)

+ (Ψ1(ÿ)Ψ0(ÿ − ÿ) + Ψ0(ÿ)Ψ1(ÿ − ÿ))

(
2(Ψ2(ÿ) − Ψ2(ÿ − ÿ))2

(Ψ1(ÿ) + Ψ1(ÿ − ÿ))3
−

Ψ3(ÿ − ÿ) + Ψ3(ÿ)

(Ψ1(ÿ) + Ψ1(ÿ − ÿ))2

)
.

Because of the bijection in (2.3), there exists a ÿ such that

ýÿ[ÿ + ÿ] = ÿý − +ýý2∕3,ÿ1 + +ýý2∕3,ÿ2. (A.3)

From (A.1), we see that the derivative of
Ψ1(ÿ+ÿ)

Ψ1(ÿ+ÿ)+Ψ1(ÿ−ÿ−ÿ)
at ÿ = 0 is strictly negative. By conti-

nuity, it is also strictly negative on a neighborhood of 0. This and the mean value theorem imply

that

ÿ ∈ [ý1ýý
−1∕3, ý2ýý

−1∕3] (A.4)

for some positive constant ý1, ý2 depending on ÿ.

The quantity appearing on the left side of Propositions 4.7 and 4.8 is essentially the following

(we ignore the integer floor function),

−ý

[
Ψ1(ÿ + ÿ)

Ψ1(ÿ + ÿ) + Ψ1(ÿ − ÿ − ÿ)
Ψ0(ÿ − ÿ − ÿ) +

Ψ1(ÿ − ÿ − ÿ)

Ψ1(ÿ + ÿ) + Ψ1(ÿ − ÿ − ÿ)
Ψ0(ÿ + ÿ)

]

+ý

[
Ψ1(ÿ)

Ψ1(ÿ) + Ψ1(ÿ − ÿ)
Ψ0(ÿ − ÿ) +

Ψ1(ÿ − ÿ)

Ψ1(ÿ) + Ψ1(ÿ − ÿ)
Ψ0(ÿ)

]

+ýΨ0(ÿ − ÿ)

[
(

Ψ1(ÿ + ÿ)

Ψ1(ÿ + ÿ) + Ψ1(ÿ − ÿ − ÿ)
−

Ψ1(ÿ)

Ψ1(ÿ) + Ψ1(ÿ − ÿ)

]

+ýΨ0(ÿ)

[
Ψ1(ÿ − ÿ − ÿ)

Ψ1(ÿ + ÿ) + Ψ1(ÿ − ÿ − ÿ)
−

Ψ1(ÿ − ÿ)

Ψ1(ÿ) + Ψ1(ÿ − ÿ)

]
.

In the above, we used (A.3) to write +ýý2∕3, = (ÿý −ýÿ[ÿ + ÿ]) ⋅ ÿ1 = (ýÿ[ÿ + ÿ] − ÿý) ⋅ ÿ2.

By performing Taylor expansions in ÿ and using the computations presented earlier in this

section, we observe a number of cancellations, ultimately turning the above expression into

ý

2
⋅
Ψ1(ÿ)Ψ2(ÿ − ÿ) + Ψ2(ÿ)Ψ1(ÿ − ÿ)

Ψ1(ÿ) + Ψ1(ÿ − ÿ)
ÿ2 +ý ⋅ (ÿ3).

This and (A.4) imply the claimed bounds in Propositions 4.7 and 4.8, provided that a sufficiently

small value of ý0 is chosen.

A.3 Nonrandom properties

The following monotonicity property of the ratios of partition functions is in [9, Lemma A.2].
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Lemma A.3. Let ý, ÿ, ÿ ∈ ℤ2 be such that ý ⋅ ÿ1 ⩽ ÿ ⋅ ÿ1, ý ⋅ ÿ2 ⩾ ÿ ⋅ ÿ2, and ý, ÿ ⩽ ÿ, then

ýý,ÿ

ýý,ÿ−ÿ1
⩽

ýÿ,ÿ

ýÿ,ÿ−ÿ1
and

ýý,ÿ

ýý,ÿ−ÿ2
⩾

ýÿ,ÿ

ýÿ,ÿ−ÿ2
. (A.5)

The above lemma implies the following results about the monotonicity between the ratio of

partition functions and exit times.

Lemma A.4. Let ÿ ∈ ℤ2
⩾0
and let ý, ý ∈ ℤ⩾1 be such that ý ⩽ ý. Then

ý0,ÿ(ÿ ⩾ ý)

ý0,ÿ−ÿ1(ÿ ⩾ ý)
⩽

ý0,ÿ(ÿ ⩾ ý)

ý0,ÿ−ÿ1(ÿ ⩾ ý)
and

ý0,ÿ(ÿ ⩾ ý)

ý0,ÿ−ÿ2(ÿ ⩾ ý)
⩾

ý0,ÿ(ÿ ⩾ ý)

ý0,ÿ−ÿ2(ÿ ⩾ ý)
.

Proof. Note that
ý0,ÿ(ÿ⩾ý)

ý0,ÿ−ÿ1 (ÿ⩾ý)
=

ýýÿ1,ÿ

ýýÿ1,ÿ−ÿ1
and

ý0,ÿ(ÿ⩾ý)

ý0,ÿ−ÿ1 (ÿ⩾ý)
=

ýýÿ1,ÿ

ýýÿ1,ÿ−ÿ1
. Then Lemma A.3 gives us the

inequality

ýýÿ1,ÿ

ýýÿ1,ÿ−ÿ1
⩽

ýýÿ1,ÿ

ýýÿ1,ÿ−ÿ1
.

The other inequality with ÿ2 follows from a similar argument. □

The next lemma is an immediate consequence of Lemma A.4. It suggests that shifting the end-

point to the right or down increases the likelihood of the polymer taking more ÿ1 steps at the

beginning.

Lemma A.5. For any ý, ý,ÿ ∈ ℤ⩾0 and ý ∈ ℤ2
⩾0
such that ý + ýÿ1 −ÿÿ2 ∈ ℤ2

⩾0
,

ý0,ý{ÿ ⩾ ý} ⩽ ý0,ý+ýÿ1−ÿÿ2 {ÿ ⩾ ý}.

Proof. Note that the proof of Lemma A.4 also gives

ý0,ý

ý0,ý−ÿ1
⩽

ý0,ÿ(ÿ ⩾ ý)

ý0,ý−ÿ1(ÿ ⩾ ý)
and

ý0,ý

ý0,ý−ÿ2
⩾

ý0,ý(ÿ ⩾ ý)

ý0,ý−ÿ2(ÿ0,ý ⩾ ý)
.

Rearrange to get

ý0,ý{ÿ ⩾ ý} =
ý0,ý(ÿ ⩾ ý)

ý0,ý
⩽
ý0,ý+ÿ1(ÿ ⩾ ý)

ý0,ý+ÿ1
= ý0,ý+ÿ1 {ÿ ⩾ ý} (A.6)

and

ý0,ý{ÿ ⩾ ý} ⩾ ý0,ý+ÿ2 {ÿ ⩾ ý}. (A.7)

Applying the two inequalities (A.6) and (A.7) repeatedly gives us the statement of our lemma. □

Fix ÿ ∈ ℤ2, wewill define a polymerwith a general down-right boundarywith the base at ÿ. Let

çÿ = {ÿÿ}ÿ∈ℤ be a bi-infinite downright path going through ÿ. We use the convention that ÿ0 = ÿ

and ÿÿ ⋅ ÿ1 ⩽ ÿÿ ⋅ ÿ1 if ÿ ⩽ ÿ.
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Next, let us place positive edge weights {ÿÿÿ−1,ÿÿ } along çÿ, and we will define the following

functionÿ. Letÿÿ,ÿ = 1. For each ý0 = ÿÿ for someÿ > 0, define

ÿÿ,ý0
=

ÿ∏
ÿ=1

ý̃ÿÿ−1,ÿÿ where ý̃ÿÿ−1,ÿÿ =

{
ÿÿÿ−1,ÿÿ if ÿÿ − ÿÿ−1 = ÿ1,

1∕ÿÿÿ−1,ÿÿ if ÿÿ − ÿÿ−1 = −ÿ2.

For each ý0 = ÿ−ÿ for someÿ > 0, define

ÿÿ,ý0
=

−ÿ+1∏
ÿ=0

ý̃ÿÿ ,ÿÿ−1 where ý̃ÿÿ ,ÿÿ−1 =

{
1∕ÿÿÿ ,ÿÿ−1 if ÿÿ − ÿÿ−1 = ÿ1,

ÿÿÿ ,ÿÿ−1 if ÿÿ − ÿÿ−1 = −ÿ2.

Recall ç⩾
ÿ = ∪ÿ(ÿÿ + ℤ2

⩾0
) and ç>

ÿ = ∪ÿ(ÿÿ + ℤ2
>0
). For each ÿ ∈ çÿ and ÿ ∈ ç>

ÿ , define the

set of paths

ÿ
çÿ
ÿ,ÿ = {ý∙ ∈ ÿÿ,ÿ ∶ ý1 ∈ ç>

ÿ }.

This set is empty if both ÿ + ÿÿ , ÿ ∈ {1, 2}, are on çÿ. For ÿ ∈ ç>
ÿ , define the partition function

ý
çÿ
ÿ,ÿ =

∑
ÿ∈çÿ

∑
ý∙∈ÿ

çÿ
ÿ,ÿ

ÿÿ,ÿ

|ÿ−ÿ|1∏
ÿ=1

ýýÿ ,

where {ýÿ} are the bulk weights for ÿ ∈ ç>
ÿ . For ÿ ∈ çÿ let ý

çÿ
ÿ,ÿ = ÿÿ,ÿ. The corresponding

quenched path measure will be denoted as ý
çÿ
ÿ,ÿ. Note that these partition functions satisfy the

following induction: for ý ∈ ç>
ÿ ,

ý
çÿ
ÿ,ý = (ý

çÿ
ÿ,ý−ÿ1

+ ý
çÿ
ÿ,ý−ÿ2

)ýý. (A.8)

Given a polymer model defined on ç⩾
ÿ . We fix another bi-infinite down-right path èÿ ⊂ ç⩾

ÿ

and define the following nested polymer model rooted at ÿ. It has the same bulk weights, and on

the new boundary èÿ = {ÿÿ}, the weights are given by

ÿÿÿ−1,ÿÿ =

⎧⎪⎪«⎪⎪¬

ý
çÿ
ÿ,ÿÿ

ý
çÿ
ÿ,ÿÿ−1

if ÿÿ − ÿÿ−1 = ÿ1,

ý
çÿ
ÿ,ÿÿ−1

ý
çÿ
ÿ,ÿÿ

if ÿÿ − ÿÿ−1 = −ÿ2.

We will denote this nested polymer measure by ý
èÿ ,(çÿ)
ÿ,∙ .

Lemma A.6. Fix ÿ, ÿ ∈ ℤ2 and two down-right bi-infinite paths çÿ and èÿ with èÿ ⊂ ç⩾
ÿ . Then

for ý ∈ è⩾0
ÿ ,

ý
èÿ ,(çÿ)
ÿ,ý =

ý
çÿ
ÿ,ý

ý
çÿ
ÿ,ÿ

. (A.9)
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Consequently, for each ý ∈ è⩾0
ÿ and ÿ ∈ {1, 2},

ý
çÿ
ÿ,ý+ÿÿ

ý
çÿ
ÿ,ý

=
ý
èÿ ,(çÿ)
ÿ,ý+ÿÿ

ý
èÿ ,(çÿ)
ÿ,ý

. (A.10)

Proof. When ý ∈ èÿ the equality (A.9) comes straight from the definitions. Then it follows for

ý ∈ è>
ÿ because the two sides satisfy the same induction (A.8). □

Lemma A.7. Fix ÿ, ÿ ∈ ℤ2 and two down-right bi-infinite paths çÿ and èÿ with èÿ ⊂ ç⩾
ÿ . Let

ÿ ∈ {1, 2} and ÿ ∈ èÿ be such that ÿ + ÿÿ is insideè>0
ÿ . Then, for each ý ∈ è>0

ÿ .

ý
çÿ
ÿ,ý{path goes through [[ÿ, ÿ + ÿÿ]]} = ý

èÿ ,(çÿ)
ÿ,ý {path goes through [[ÿ, ÿ + ÿÿ]]}.

Proof. We prove the case with ÿ = 2, the other case being symmetric. Then

ý
çÿ
ÿ,ý{path goes through the edge [[ÿ, ÿ + ÿ2]]} =

ý
çÿ
ÿ,ÿ ⋅ ýÿ+ÿ2,ý

ý
çÿ
ÿ,ý

=

ý
çÿ
ÿ,ÿ

ý
çÿ
ÿ,ÿ

⋅ ýÿ+ÿ2,ÿ

ý
çÿ
ÿ,ý

ý
çÿ
ÿ,ÿ

=
ý
èÿ ,(çÿ)
ÿ,ÿ ⋅ ýÿ+ÿ2,ÿ

ý
èÿ ,(çÿ)
ÿ,ý

by Lemma A.6

= ý
èÿ ,(çÿ)
ÿ,ý {path goes through the edge [[ÿ, ÿ + ÿ2]]}.

See the top panel in Figure A1 for an illustration. □

Next, we restrict attention to stationary polymers with southwest and antidiagonal bound-

aries. To simplify the notation, we will denote the respective partition functions by ýÿ,∙ and ý
dia
ÿ,∙ .

The corresponding polymer measures are denoted by ýÿ,∙ and ý
dia
ÿ,∙ . For the antidiagonal bound-

aries, the bi-infinite paths are given by ÿ = ÿ + (0,0), where (0,0) is given in (4.10). For the

nested polymers, we will always assume the outer polymer has an antidiagonal boundary, and the

nested partition functions with antidiagonal and southwest boundaries are denoted, respectively,

by ý(ÿ),diaÿ,∙ and ý(ÿ)ÿ,∙ . The corresponding polymer measures are denoted by ý
(ÿ)
ÿ,∙ and ý

(ÿ),dia
ÿ,∙ .

The following two lemmas relate the exit times of two polymer processes with different starting

points. They are illustrated on the bottom of Figure A1.

Lemma A.8. Fix two base points (0,0) and (ÿ,−ÿ) withÿ, ÿ > 0. Take ÿ with ÿ ⩽ (0, 0) and ÿ ⩽

(ÿ,−ÿ). Let ý(ÿ)
0, ∙

and ý(ÿ)
(ÿ,−ÿ), ∙

be the partition functions of the polymers with southwest boundaries,

rooted at (0,0) and (ÿ,−ÿ), respectively, nested inside a polymer rooted atÿ andhaving antidiagonal

boundary ÿ. Then for ÿ ∈ ((0, 0) + ℤ2
>0
) ∩ ((ÿ,−ÿ) + ℤ2

>0
),

ý(ÿ)
0,ÿ
{ÿ ⩽ ÿ} = ý(ÿ)

(ÿ,−ÿ),ÿ
{ÿ < −ÿ}.
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F IGURE A1 Top: Illustration of Lemma A.7 in the special case when çÿ and èÿ are southwest boundaries.

Bottom: Illustration of Lemmas A.8 and A.9. Note that any directed path between ÿ and ÿ goes through a gray

edge/arrow if and only if it goes through a black edge/arrow.

Proof. This lemma follows from Lemma A.7 as we have the equalities

ý(ÿ)
0,ÿ
{ÿ ⩽ ÿ}

= ýdiaÿ,ÿ{{path goes through edges {[[ÿ, ÿ + ÿ2]] ∶ 0 < ÿ ⋅ ÿ1 ⩽ ÿ and ÿ ⋅ ÿ2 = 0}}∪

{path goes through edges {[[ÿ, ÿ + ÿ1]] ∶ 0 < ÿ ⋅ ÿ2 ⩽ ÿ ⋅ ÿ2 and ÿ ⋅ ÿ1 = 0}}}

= ýdiaÿ,ÿ {path goes through edges {[[ÿ, ÿ + ÿ1]] ∶ 0 < ÿ ⋅ ÿ2 ⩽ ÿ ⋅ ÿ2 and ÿ ⋅ ÿ1 = ÿ}}

= ý(ÿ)
(ÿ,−ÿ),ÿ

{ÿ < −ÿ}.
□

Recall the exit time from the antidiagonal boundary, defined above (4.11).

LemmaA.9. Fix two base points (0,0) and (ÿ, ÿ)with ÿ ∈ ℤ>0. Take ÿ ∈ −ℤ2
>0
. Letý(ÿ)

0, ∙
andý(ÿ),dia

(ÿ,ÿ), ∙
be the partition functions of the polymers with southwest and antidiagonal boundaries, rooted at

(0,0) and (ÿ, ÿ), respectively, nested inside a polymer rooted at ÿ and having antidiagonal boundary

ÿ. Then for ÿ ∈ (ÿ, ÿ) + ℤ2
>0
,

ý(ÿ)
0,ÿ
{ÿ ⩾ 2ÿ} = ý(ÿ),dia

(ÿ,ÿ),ÿ
{ÿdia ⩾ ÿ}.
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Proof. This lemma again follows from Lemma A.7 as we have the equalities

ý(ÿ)
0,ÿ
{ÿ ≥ 2ÿ}

= ýdiaÿ,ÿ {path goes through edges {[[ÿ, ÿ + ÿ2]] ∶ 2ÿ ⩽ ÿ ⋅ ÿ1 ⩽ ÿ ⋅ ÿ1 and ÿ ⋅ ÿ2 = 0}}

= ýdiaÿ,ÿ {{path goes through edges {[[(ÿ, 2ÿ − ÿ), (ÿ, 2ÿ − ÿ) + ÿ1]] ∶ 2ÿ ⩽ ÿ < ÿ ⋅ ÿ1}}∪

{path goes through edges {[[(ÿ, 2ÿ − ÿ), (ÿ, 2ÿ − ÿ) + ÿ2]] ∶ 2ÿ ⩽ ÿ ⩽ ÿ ⋅ ÿ1}}}

= ý(ÿ),dia
(ÿ,ÿ),ÿ

{ÿdia ⩾ ÿ}. □

A.4 Radon–Nikodym derivative calculation

Given ÿ > 0, ý ∈ ℤ>0, and ÿ > 0, let ÿÿ denote the probability distribution on the product space

Ω = ℝ+ÿý2∕3, underwhich the coordinatesÿÿ(ÿ) = ÿÿ are independent and identically distributed

Ga−1(ÿ) random variables.

Proposition A.10. Fix ÿ > 0 and ÿ ∈ (0, ÿ∕2). There exists a positive constant ÿ that only depends

on ÿ and ÿ and such that the following holds. Take any ÿ > 0, ÿ ∈ ℝ, and ý ∈ ℤ>0, and any ÿ ∈

[ÿ, ÿ − ÿ]. Take |ÿ| ⩽ 1

4
ÿý1∕3 and let ÿ denote the Radon–Nikodym derivative

ÿ =
ýÿÿ+ÿý

−1∕3

ýÿÿ
.

Then

ýÿ
ÿ
[ÿ2] ⩽ ÿÿÿÿ

2
.

Proof. Let us denote ÿ = ÿ + ÿý−1∕3. From a direct computation, we obtain

ýÿ
ÿ
[ÿ2] = ∫

»
¼¼¼¼½

+ÿý2∕3,∏
ÿ=1

1

Γ(ÿ)

1

ÿÿ+1
ÿ

ÿ
− 1
ÿÿ

1

Γ(ÿ)

1

ÿ
ÿ+1
ÿ

ÿ
− 1
ÿÿ

¿
ÀÀÀÀÁ

2

ÿ(ýÿ)

=

(
Γ(ÿ)2

Γ(ÿ)2
1

Γ(ÿ) ∫
∞

0

1

ý2ÿ−ÿ+1
ÿ−

1
ý ýý

)+ÿý2∕3,

=

(
Γ(ÿ)Γ(2ÿ − ÿ)

Γ(ÿ)2

)+ÿý2∕3,
. (A.11)

We continue by taking the logarithm of (A.11),

log(ý.11) = +ÿý2∕3,(log Γ(ÿ) + log Γ(2ÿ − ÿ) − 2 log Γ(ÿ)).

Note that ÿ = ÿ − ÿý−1∕3 and 2ÿ − ÿ = ÿ + ÿý−1∕3. We can thus assume that ÿ > 0, the other

case being symmetric. Next, note that if we Taylor expand

log Γ(ÿ) + log Γ(2ÿ − ÿ) − 2 log Γ(ÿ), (A.12)

then both the zeroth and the first derivative terms cancel out.
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The assumption 0 < ÿ ⩽ 1

4
ÿý1∕3 implies that

0 < ÿ ⩽ ÿ < ÿ < 2ÿ − ÿ ⩽ ÿ −
ÿ

2
< ÿ.

In addition, log Γ(∙) is a smooth function onℝ>0. Thus, the second derivative termand the remain-

der from the expansion can be upper bounded using a constant ÿ′ depending only on ÿ and ÿ and

we get

(ý.12) ⩽ ÿ′ÿ2ý−2∕3 + ÿ′ÿ3ý−1.

Again, by the assumption on ÿ, ÿ′ÿ2ý−2∕3 + ÿ′ÿ3ý−1 ⩽ (1 + ÿ∕4)ÿ′ÿ2ý−2∕3. The claim follows

with ÿ = (1 + ÿ∕4)ÿ′. □

A.5 Sub-exponential random variables

Let {ÿÿ} be a sequence of independent and identically distributed sub-exponential random

variables with parameters ÿ0 > 0 and ÿ0 > 0. This means

ý[ÿÿ(ÿ1−ý[ÿ1])] ⩽ ÿÿ0ÿ
2

for all ÿ ∈ [0, ÿ0]. (A.13)

Define ÿ0 = 0 and ÿý = ÿ1 +⋯ + ÿý − ýý[ÿ1] for ý ⩾ 1. The following theorem captures the

right tail behavior of the running maximum.

Theorem A.11. Assume (A.13). Then

ℙ

(
max
0⩽ý⩽ÿ

ÿý ⩾ ý
√
ÿ

)
⩽

{
ÿ−ý

2∕(4ÿ0) if ý ⩽ 2ÿ0ÿ0
√
ÿ ,

ÿ−
1
2
ÿ0ý
√
ÿ if ý ⩾ 2ÿ0ÿ0

√
ÿ .

Proof. As ÿý is a mean zero random walk, ÿÿÿý is a nonnegative sub-martingale for ÿ ⩾ 0. By

Doob’s maximal inequality,

ℙ

(
max
0⩽ý⩽ÿ

ÿý ⩾ ý
√
ÿ

)
= ℙ

(
max
0⩽ý⩽ÿ

ÿÿÿý ⩾ ÿÿý
√
ÿ

)
⩽
ý[ÿÿÿÿ ]

ÿÿý
√
ÿ
=
ý[ÿÿ(ÿ1−ý[ÿ1])]ÿ

ÿÿý
√
ÿ

⩽ ÿÿÿ0ÿ
2−ÿý
√
ÿ,

where in the last inequality we applied (A.13), for which we now assume ÿ ∈ [0, ÿ0]. On this

interval, the exponent ℎ(ÿ) = ÿÿ0ÿ
2 − ÿý
√
ÿ is minimized at ÿý = min{ÿ0,

ý

2ÿ0
√
ÿ
} and

ℎ(ÿý) =

{
− ý2

4ÿ0
if ý ⩽ 2ÿ0ÿ0

√
ÿ ,

ÿÿ0ÿ
2
0
− ÿ0ý
√
ÿ ⩽ − 1

2
ÿ0ý
√
ÿ if ý ⩾ 2ÿ0ÿ0

√
ÿ .

The proof is complete. □

Next, we verify that log gamma and log inverse gamma random variables are sub-exponential.

Recall that if ÿ ∼ Ga(ÿ), then ý[logÿ] = Ψ0(ÿ), where Ψ0 is the digamma function, that is,

Ψ0(ÿ) = (log Γ(ÿ))′.
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Proposition A.12. Fix ÿ ∈ (0, ÿ∕2). There exist positive constants ÿ0, ÿ0 depending on ÿ such that

for each ÿ ∈ [ÿ, ÿ − ÿ] and ÿ ∼ Ga(ÿ), we have

ý[ÿÿ(logÿ−Ψ0(ÿ))] ⩽ ÿÿ0ÿ
2

for all ÿ ∈ [−ÿ0, ÿ0].

Proof. First, note that ý[ÿÿ] = Γ(ÿ+ÿ)

Γ(ÿ)
, provided that ÿ + ÿ > 0. This last condition can be

guaranteed for all ÿ > ÿ by taking ÿ0 small enough (depending on ÿ). Then, by Taylor’s theorem,

logý[ÿÿ(logÿ−Ψ0(ÿ))] = log(ý[ÿÿ]ÿ−ÿΨ0(ÿ)) = log Γ(ÿ + ÿ) − log Γ(ÿ) − ÿΨ0(ÿ)

= Ψ1(ÿ)
ÿ2

2
+ ý(ÿ2) ⩽ ÿ0ÿ

2,

provided ÿ0 is taken sufficiently small depending on ÿ. The constant ÿ0 can be chosen to not

depend on ÿ ∈ [ÿ, ÿ − ÿ] because Ψ1 is a smooth function on ℝ>0. □

A.6 Randomwalk estimates

Let {ÿÿ}ÿ∈ℤ>0 be an independent and identically distributed sequence of random variables with

ý[ÿÿ] = ÿ, ýar[ÿÿ] = 1 and ý[|ÿÿ − ÿ|3] = ý3 < ∞.

Define ÿý =
∑ý
ÿ=1 ÿÿ for ý ⩾ 1. We have the following proposition that bounds the probability that

the running maximum of a random walk is small.

Proposition A.13. There exists a positive constant ÿ such that for any ý > 0, we have

ℙ

(
max
1⩽ý⩽ý

ÿý < ý

)
⩽ ÿ(ý3ý + ý23)(|ÿ| + 1∕

√
ý). (A.14)

This result follows directly from the following two results from [29].

Lemma A.14 [29] Lemma 5. There exists an absolute constant ÿ such that for any ý > 0

ℙ

(
max
1⩽ý⩽ý

ÿý < ý

)
− ℙ

(
max
1⩽ý⩽ý

ÿý < 0

)
⩽ ÿ(ý3ý + ý23)(|ÿ| + 1∕

√
ý). (A.15)

Lemma A.15 [29] Lemma 7. There exists an absolute constant ÿ such that

ℙ

(
max
1⩽ý⩽ý

ÿý < 0

)
⩽ ÿý23(|ÿ| + 1∕

√
ý). (A.16)
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