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A B S T R A C T

This study presents a process optimization study for a vacuum pressure swing adsorption (VPSA) process using a 
flexible metal-organic framework (MOF), which is gaining attention as a material to realize energy-efficient 
carbon dioxide capture processes. Many flexible MOFs exhibit sigmoidal adsorption isotherms with hysteresis, 
posing a challenge for simulation and optimization using a rigorous process model. In this study, we employ 
surrogate model optimization, where surrogate models using machine-learning algorithms were constructed 
from simulation of 903 operating conditions generated by Latin hypercube sampling. The surrogate models with 
the best performance were identified from 18 different surrogate options considering four design varia
bles—adsorption pressure, desorption pressure, adsorption time, and desorption time. Using the best surrogate 
models, a multi-objective optimization problem was solved to identify the Pareto front among recovery, energy 
consumption, and bed size factor. Our analysis identified a distinct characteristic of VPSA using a flexible-MOF 
where purity and recovery are hardly affected by the feed volume.

1. Introduction

Carbon dioxide (CO2) emissions constitute a significant environ
mental concern due to their contribution to global warming. These 
emissions arise predominantly from industrial activities, with thermal 
power plants and manufacturing facilities being major point sources 
(Aaron and Tsouris, 2005). Capture of CO2 from flue gas presents an 
essential technology in efforts to mitigate these emissions. To date, 
various methodologies for CO2 capture, such as amine absorption, 
membrane separation, and cryogenic separation, have been proposed. 
Among these technologies, the vacuum pressure swing adsorption 
(VPSA) process is considered as particularly promising due to its po
tential for lower energy consumption (Shen et al., 2011).

Various kinds of adsorbents have been tested in VPSA processes. 
Historically, zeolites and activated carbons have been used in VPSA 
processes due to their high adsorption capacity and durability (Ko et al., 
2005; Shen et al., 2012; Xu et al., 2019). Recently, metal-organic 

frameworks (MOFs) for their highly tunable and customizable nature, 
have attracted considerable attention as potential adsorbents. Specif
ically, flexible MOFs have demonstrated promise for CO2 capture owing 
to their unique "gate-opening/closing" property triggered by adsorption 
(Fig. 1) (Coudert et al., 2013; Horike et al., 2009; James, 2003; 
Majchrzak-Kucęba et al., 2019; Schneemann et al., 2014; Zhou and 
Kitagawa, 2014). This distinctive feature, giving rise to sigmoidal 
adsorption isotherms, achieves high working capacity and selectivity. In 
these isotherms, once the CO2 pressure exceeds the “gate pressure”, the 
amount of adsorption increases sharply. Flexible MOFs also exhibit 
intrinsic thermal management, where the exothermic heat generated 
during adsorption is counterbalanced by the endothermic expansion of 
the framework (Hiraide et al., 2017; Mason et al., 2015). Furthermore, 
isotherms of flexible MOFs often have hysteresis, where adsorption and 
desorption do not follow the same trajectory. These distinctive charac
teristics of flexible MOFs require special attention in mathematical 
modeling, as discussed below. Among the various flexible MOFs, Elastic 
Layer-structured Metal-organic Framework-11 (ELM-11) is particularly 
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Nomenclature

bL imaginary adsorption isotherm parameter for CO2 
[molCO2/(kgads⋅kPa)]

bU temperature dependent value for imaginary CO2 
adsorption isotherm [kPa−1]

bU
∞ imaginary adsorption isotherm parameter for CO2 [kPa−1]

bH imaginary adsorption isotherm parameter for CO2 
[molCO2/(kgads⋅kPa)]

bN2 adsorption isotherm parameter for N2 [molN2/(kgads⋅kPa)]
Cpg heat capacity of gas [J/(kg⋅K)]
Cps heat capacity of solid [J/(kg⋅K)]
Cads coefficient for adsorption time [-]
Cdes coefficient for desorption pressure [-]
DL axial dispersion coefficient [m2/s]
Ecom power consumption for the compressor [GJe/tonne-CO2]
EU imaginary adsorption isotherm parameter for CO2 [kJ/ 

molCO2]
Evac power consumption for the vacuum pump [GJe/tonne- 

CO2]
feed amount of CO2 feed gas [molCO2]
h heat transfer coefficient [J/(m2⋅s⋅K)]
Hstep,j enthalpy of the phase transitions [kJ/molCO2]
i component
impurity amount of N2 gas in the product [molN2]
j mode of hysteretic isotherms
ki overall mass transfer coefficient of component i [1/s]
KL axial thermal conductivity [J/(m⋅s⋅K)]
L column length [m]
mode binary variable for mode of hysteretic isotherms [-]
nL imaginary adsorption isotherm where the gate is always 

closed [molCO2/kgads]
nU imaginary adsorption isotherm where the gate is always 

open [molCO2/kgads]
nj adsorption/desorption isotherms of CO2 [mol/kgads]
nU

∞ saturated amount of CO2 adsorption [molCO2/kgads]
ndes→ads secondary or higher-order adsorption isotherm [molCO2/ 

kgads]
nads→des secondary or higher-order desorption isotherm [molCO2/ 

kgads]
nsat saturated amount of CO2 adsorption [molCO2/kgads]

nswitch amount of CO2 adsorbed at switched point [molCO2/kgads]
nsat(T) saturated amount of CO2 adsorption at a temperature T 

[molCO2/kgads]
pCO2 partial pressure of CO2 [kPa]
pCO2,tar target partial pressure of CO2 during adsorption step [kPa]
Pdes desorption pressure [kPa]
Pfeed feed gas pressure [kPa]
pfoot,ads(T) foot CO2 pressure at a temperature T for adsorption [kPa]
pfoot,des(T) foot CO2 pressure at a temperature T for desorption [kPa]
product amount of CO2 product in one cycle at a steady state 

[molCO2]
qi amount of component i adsorbed [mol/kgads]
qi* equilibrium amount of component i adsorbed [mol/kgads]
qCO2,tar target amount of CO2 adsorbed during desorption step 

[molCO2/kgads]
R gas constant [J/(mol⋅K)]
tads adsorption time [s]
tcycle cycle time [s]
tdes desorption time [s]
tdepress depressurization time [s]
tdes desorption time [s]
tdes’ time needed until the amount of CO2 adsorbed at the inlet 

reaches the target value [s]
T temperature [K]
Tfeed feed temperature [K]
Twall column wall temperature [K]
u gas velocity [m s-1]
wj weight [-]
yi,feed feed mole fraction of component i [-]
z axial position in column [m]
vj weighting function parameter [-]
χj parameter for the weighting function wj [-]
εbed bed void [-]
ηcom efficiency of compressor [-]
ηvac efficiency of vacuum pump [-]
ρads adsorbent density without binder [kgads/m3]
ρpellet pellet density [kg/m3]
ρwall wall density [kg/m3]
μ gas viscosity [kg/(m⋅s)]
γ heat capacity ratio [-]

Fig. 1. Isotherm hysteresis with the gate-opening/closing property.
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promising. As first reported by Li and Kaneko (2001), ELM-11 has su
perior CO2 working capacity and selectivity, which have been exten
sively explored by many researchers (Bon et al., 2015; Kondo et al., 
2006; Kultaeva et al., 2018; Tanaka et al., 2015; Yang et al., 2012).

Dynamic simulation of adsorption processes in flexible MOFs, char
acterized by sigmoidal isotherms and isotherm hysteresis, is a chal
lenging task. Rigorous dynamic models, represented by partial 
differential algebraic equations (PDAEs), pose significant challenges due 
to nearly discrete and non-differentiable changes within the system. 
These challenges arise from the sigmoidal isotherm shapes and switch
ing of isotherm trajectories caused by the hysteresis in flexible MOFs. 
Despite these difficulties, our team has successfully modeled the equi
librium and kinetics, and developed a dynamic simulation of the VPSA 
process with ELM-11 using advanced mathematical methods (Fujiki 
et al., 2023; Sugimoto et al., 2023; Takakura et al., 2022).

In the above dynamic simulation, the VPSA process using ELM-11 
was analyzed in detail and compared with a conventional adsorbent 
zeolite 13X, reporting the following: (1) the ELM-11 isotherms for CO2 at 
temperatures ranging from −10 ◦C to 25 ◦C and a N2 isotherm were 
measured (the isotherms and its fittings are shown in Supplementary 
Material (S.2)); (2) models were created from the isotherms data, 
showing different adsorption equilibrium states due to hysteresis in 
cyclic operation; (3) due to the large working capacity of CO2 and the 
small amount of N2 adsorbed, the purity is above 98 % in all cases in the 
region where the feed CO2 pressure exceeds the gate pressure (“high 
purity region” in Fig. 1); (4) the CO2 recovery rate was found to depend 
greatly on how much higher the feed CO2 pressure is compared to the 
gate pressure, requiring careful control of temperature and pressure; and 
(5) the validity of the adsorption rate equation was also examined. While 
this advancement enabled us to evaluate effective operations and assess 
process performance using ELM-11, optimization of the process using a 
rigorous dynamic model has yet to be addressed, which is an even more 
difficult computational challenge. The sigmoidal isotherms with hys
teresis, which are implemented as a hybrid model (Barton and Pan
telides, 1994; Peszyńska and Showalter, 1998) would not allow 
Newton-based optimization that requires computations of derivatives 
(gradients and Jacobians) of functions. Furthermore, attaining a 
cyclic-steady-state (CSS), for example, necessitates a sequence of 
repeated cyclic operations (Kim et al., 2022; Takakura et al., 2022). The 
computational demand is further exacerbated in optimization, which 
requires iterative computation for CSSs under different operating 
conditions.

In recent years, optimization using surrogate modeling has been 
reported for PSA processes. Several researchers have employed different 
surrogate modeling methods to address similar challenges (Table 1). For 
example, Kim et al. (2022) implemented various machine-learning 
methodologies using Pycaret, a versatile Python-based framework, for 
the separation of carbon monoxide from steel-mill off-gas, achieving a 
cost-effective operation. Agarwal et al. (2009) proposed a reduced-order 

model using proper orthogonal decomposition (POD) for hydrogen (H2) 
purification. Beck et al. (2015) adopted kriging regression for handling 
output uncertainty and demonstrated a comparable Pareto front. Arti
ficial neural networks (ANNs) have been used in many studies, such as 
Sant Anna et al. (2017) for achieving target purity of nitrogen (N2), and 
Ye et al. (2019) for obtaining high-purity H2 from multicomponent 
mixtures. Leperi et al. (2019) applied ANNs for CO2 capture assessing 
PSA systems, while Subraveti et al. (2019) used partial least square (PLS) 
regression for surrogate model development. A variety of surrogate 
models developed by machine-learning algorithms, including ANN, 
have been used with a focus on CO2 capture systems, as reported by Pai 
et al. (2020). Xiao et al. (2020) compared ANN and polynomial 
regression surrogate models, emphasizing superior performance of ANN 
in H2 purification. Vo et al. (2020) achieved feasible H2 recovery and 
CO2 capture solutions using ANN optimizations and model order 
reduction via singular value decomposition (SVD). Kim et al. screened 
75 adsorbent options using ANN regression (Kim et al., 2022). 
Furthermore, Hao et al. (2021) proposed a hybrid framework for PSA 
optimization using Gaussian process and gradient-based algorithm, 
while Tong et al. (2021) and Yu et al. (2021) used ANN for optimization 
of H2 purification. Nevertheless, optimization of a PSA process using a 
flexible MOF has not been reported.

In this study, we analyze optimal operations of the VPSA process for 
CO₂ capture using the flexible metal-organic framework ELM-11 for the 
first time, where the numerical challenges for the sigmoidal isotherms 
with hysteresis were resolved by a surrogate model optimization 
approach by machine learning. Utilizing Latin hypercube sampling 
(LHS), we generated a diverse dataset from 903 distinct operating con
ditions to construct reliable surrogate models. The predictability of the 
surrogate model was carefully validated, and the most reliable surrogate 
model was identified from 18 candidates of surrogate models. Using the 
surrogate model, multi-objective optimization was performed for four 
objective functions: recovery, bed size factor (BSF), power consumption, 
and purity. The solution of the optimization problem, a four- 
dimensional Pareto front, allows us to analyze the trade-off of the four 
objective functions. Our analysis identifies unique characteristics of 
adsorption processes using flexible MOFs which cannot be seen in those 
using conventional adsorbents.

2. Process descriptions and analysis

2.1. Isotherm modeling

ELM-11 exhibits complex hysteresis behavior, causing shifts in the 
isotherm trajectory between adsorption and desorption. This results in 
infinite variations of isotherm trajectories influenced by the historical 
cycles of adsorption and desorption, significantly complicating the 
analysis of the adsorption process.

Our previous work classified the infinite patterns of adsorption/ 
desorption isotherm exhibited by ELM-11 into four main categories 
(Takakura et al., 2022), as shown in Fig. 2(a). The primary isotherm for 
adsorption, shown as (I) in the figure, is generated from the origin, or a 
clean state, with monotonically increasing CO2 pressure. Similarly, the 
primary isotherm for desorption, shown as (II) in the figure, is generated 
from a saturated state with monotonically decreasing CO2 pressure.

The trajectories shown as (III) and (IV) in Fig. 2(a), are the secondary 
isotherms, categorized as generated when a switch occurs between 
adsorption and desorption at an intermediary point between the clean 
and saturated states. For example, in the secondary isotherm (III), 
adsorption is carried out from the origin until reaching the light-blue 
circle, and then desorption is carried out. Similarly in the secondary 
isotherm (IV), desorption is carried out from the saturated state until 
reaching the orange circle, and then adsorption is carried out. Moreover, 
when switching between adsorption/desorption is repeated on the tra
jectories of second-order isotherms, the isotherm follows an even higher- 
order trajectory. Thus, the equilibrium depends on the history of 

Table 1 
Surrogate modeling studies for PSA processes.

Refs. Separation process Separation system

Kim et al. (2022) Four-bed six-step VPSA CO separation
Kim et al. (2022) Four-step VPSA CO2 capture
Agarwal et al. (2009) Two-bed four-step PSA H2 purification
Beck et al. (2015) Two-bed six-step VPSA Post-combustion CO2 capture
Sant Anna et al. (2017) Single bed four-step PSA N2 rejection from natural gas
Ye et al. (2019) Single bed four-step PSA H2 purification
Leperi et al. (2019) Three to five step PSA Post-combustion CO2 capture
Subraveti et al. (2019) Four to ten step PSA Post combustion CO2 capture
(Pai et al., 2020) Two-bed four-step VPSA Post-combustion CO2 capture
Xiao et al. (2020) Two-bed six-step PSA H2 purification
Vo et al. (2020) Two-bed six-step PSA H2 recovery and CO2 capture
Hao et al. (2021) Four-step PSA CO2 capture
Tong et al. (2021) Two-bed six-step PSA H2 purification
Yu et al. (2021) Four-bed six-step PSA H2 purification
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switching between adsorption and desorption, and there exists an 
infinite number of isotherm trajectories for hysteretic adsorbents.

For the primary isotherms, the sigmoidal shape is modeled using the 
approach proposed by Hefti et al. (2016) which have been validated in 
our previous studies (Fujiki et al., 2023; Sugimoto et al., 2023; Takakura 
et al., 2022). We consider imaginary adsorption isotherms in Fig. 2(b). 
There, the lower isotherm nL is an imaginary adsorption isotherm where 
the structures always remain closed regardless of the CO2 partial pres
sure. On the other hand, the upper isotherm nU is another imaginary 
isotherm where the structures remain open, and the molecules can enter 
the internal space. We consider the weighted sum of uptakes given by 
these two imaginary isotherms: 

nj = nUwj + nL
(
1 − wj

)
, j ∈ (ads, des). (1) 

where j is mode of isotherms (adsorption and desorption), and wj ∈ [0, 1] 
is the weight. The imaginary isotherms nL and nU are given by: 

nL = bLpCO2 , (2) 

nU =
nU

∞bUpCO2

1 + bUpCO2

+ bHpCO2 , (3) 

bU = bU
∞exp

(
EU

RT

)

, (4) 

where bL, bU
∞, bH, and EU are parameters for the imaginary adsorption 

isotherms; pCO2 is partial pressure of CO2; T is temperature. The weight 
wj is modeled as follows: 

wj =

exp

(
ln(pCO2 )−ln(pstep,j(T))

χj

)

1 + exp

(
ln(pCO2 )−ln(pstep,j(T))

χj

), (5) 

where χj is a parameter for the weight; pstep,j(T) is the step pressure of 
isotherm j at temperature T. The step pressure is modeled as follows: 

pstep,j(T) = pstep0,jexp
(

−
Hstep,j

R

(
1
T0

−
1
T

))

, (6) 

where pstep0,j is the step pressure of isotherm j at T0 = 273.15 [K]; and 
Hstep,j is the enthalpy of the phase transition.

The secondary isotherms are given by vertically compressing the pri
mary isotherms. The equilibrium follows the branched trajectory 
ndes→ads shown as the orange line in Fig. 2(c) when desorption is carried 
out from the saturated state until reaching orange circle, and then 
adsorption occurs. We obtain the secondary isotherm ndes→ads by verti
cally compressing the primary isotherm nads from the bottom to the top as 
follows: 

ndes→ads = nads⋅
{

(nsat − nswitch)

nsat

}

+ nswitch, (7) 

where nswitch is the amount of CO2 adsorbed at the time of the switch 
between adsorption and desorption; nsat is a saturated amount of CO2 
uptake. Similarly, the equilibrium follows the trajectory nads→des shown 
as a light-blue line in Fig. 2(d), where adsorption is carried out from the 
clean state until reaching the light blue circle, and then desorption is 
carried out. The secondary isotherm can be modeled similarly by 

Fig. 2. Adsorption and desorption isotherms of ELM-11: (a) hysteresis given by primary and secondary isotherms; (b) modeling approach for sigmoidal isotherm 
using imaginary isotherms; (c) modeling of a secondary adsorption isotherm; and (d) modeling of a secondary desorption isotherm.
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vertically compressing the primary isotherm ndes, but this time from the 
top to the bottom, as follows: 

nads→des = ndes⋅
(

nswitch

nsat

)

. (8) 

Finally, the equilibrium amount of adsorption q∗
CO2 

is given by: 

q∗
CO2

= ndes→ads⋅mode + nads→des⋅(1 − mode), (9) 

where mode is a binary variable. Here, qCO2
∗ is equal to the adsorption 

isotherm ndes→ads when mode = 1, and the desorption isotherm nads→des 
when mode = 0. The variable mode takes the value of 1 only in the steps 
where the adsorption operation in a VPSA process is carried out: 

mode =

{
1 if 0 ≤ t < tpress + tads

0 if tpress + tads ≤ t < tpress + tads + tdepress + tdes
, (10) 

where tpress, tads, tdepress, and tdes are pressurization, adsorption, 
depressurization, and desorption times, as shown in Section 2.1. The 
adsorption isotherm of N2 is approximated by the following linear model 
without temperature dependence: 

q∗
N2

= bN2 pN2 , (11) 

where bN2 is a parameter; q∗
N2 

is the equilibrium uptake of N2; and pN2 is 
partial pressure of N2.

2.2. VPSA process model

This study considers a four-step VPSA process shown in Fig. 3. This 
process configuration without rinse and purge steps was designed due to 
the intrinsic adsorption property of ELM-11, which has nearly zero CO2 
adsorption capacity at low pressures, as illustrated in Fig. 2(b). This 
unique property allows for the omission of rinse or purge steps often 
necessary in VPSA processes with conventional adsorbents (Takakura 
et al., 2022). By reducing the process to the four simple steps, we 
anticipate significant benefits, including shortening of cycle times and 
preventing purity drop of recovered CO2. Operating conditions 
including the feed CO2 concentration are shown in the Supplementary 
Material (S.5).

In this process, the column is enveloped by a jacket maintained at a 
temperature of Twall [K], which is assumed to be equal to feed temper
ature Tfeed [K]. Note that the energy required for cooling is not consid
ered in this study due to the difficulty in estimating it accurately. 
Furthermore, since the heat of adsorption for ELM-11 is low (Hiraide 
et al. 2017) the cooling cost would be relatively small. This process 

undergoes the following cyclical steps until a cyclic steady state is 
achieved:

Step 1 Pressurization: A gas mixture of CO2 and N2 is introduced 
from the bottom inlet of the column until the desired pressure is ach
ieved. During this stage, the top outlet of the column remains closed.

Step 2 Adsorption: The gas mixture continues to be fed from the 
inlet, while the outlet is opened to vent nitrogen-rich gas, thereby 
allowing CO2 adsorption onto the adsorbent in the column.

Step 3 Depressurization: The outlet is closed, and the column is 
depressurized to atmospheric pressure, preparing the system for the 
subsequent desorption step.

Step 4 Desorption: The column pressure is further reduced using a 
vacuum pump, which results in the desorption and collection of CO2 
product from the bottom of the column.

This study aims to optimize this simple four-step VPSA process by 
exploiting the unique CO2 adsorption attributes of ELM-11, leading to 
the development of a high-performance CO2 capture system.

In a typical VPSA process, CO2 is recovered from the outlet to prevent 
N2 contamination. However, in this process, CO2 is recovered from the 
inlet due to the high selectivity of ELM-11, which results in almost no N2 
contamination when recovering CO2 from the feed inlet. Additionally, 
the sigmoidal desorption isotherm causes fast CO2 desorption which 
increases the gas which increases the gas CO2 concentration sharply 
during desorption, which would lead to a larger amount of CO2 re- 
adsorption if the product was recovered from the opposite end. By 
recovering CO2 from the feed inlet, this process effectively prevents re- 
adsorption and pressure loss, offering significant advantages.

The Partial Differential Algebraic Equation (PDAE) model is shown 
in Table 2. Boundary conditions and design parameters used in this 
study are presented in Section S.1 in the Supplementary Material. 
Further descriptions on the model can be found in the literature 
(Takakura et al., 2022).

2.2. Performance indicators

To evaluate the efficiency of the process design and operation, four 
performance indicators are defined as shown in Table 2. These in
dicators have been widely utilized in some past studies (Bon et al., 2014; 
Hiraide et al., 2020, 2016; Kim et al., 2022; Takakura et al., 2022). Two 
commonly utilized metrics, purity and recovery, were selected to 
ascertain the influence of operating variables, such as operating pressure 
and temperature, on the overall effectiveness of the process. Details on 
these four performance indicators are shown in the Supplementary 
Material (S.4).

The four performance indicators in Table 3 are defined as follows:

Fig. 3. Four-step cycle of the VPSA process.
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Purity: This metric represents the quality of the captured CO2. A 
high purity indicates a greater concentration of CO2 in the product gas, 
improving the usability of the captured gas for downstream 
applications.

Recovery: This index reflects the proportion of CO2 successfully 
extracted from the feed. A higher recovery implies effective removal of 
CO2 from the gas mixture.

The remaining performance indicators, Bed Size Factor (BSF) and 
Power Consumption, pertain more directly to the operational efficiency 
and environmental and economic impact of the process.

Bed Size Factor (BSF): This index is measured in kgads/TPDCO2, 
where TPDCO2 represents tonnes per day CO2. BSF is the amount of 
adsorbent needed to recover a tonne of CO2 in one day. A lower BSF 
indicates a more economically efficient process, as less adsorbent ma
terial is needed to capture a given amount of CO2 per unit time.

Power Consumption: Expressed in GJe/tonne-CO2, this perfor
mance indicator quantifies the amount of electrical energy required for 
compression and vacuum operations per unit weight of CO2 recovered. 
Importantly, it considers the efficiencies of the compressor ηcom and that 
of the vacuum pump ηvac, with a particular emphasis on the fact that ηvac 
varies in response to changes in desorption pressure (Section S4 in the 
Supplementary Material). A lower value of power consumption indicates 
a more sustainable and economically efficient process.

3. Methods

3.1. Surrogate modeling

3.1.1. Decision variables
The surrogate model in this study analyzes the influences of four 

decision variables, which are operating conditions for the PVSA opera
tion. The decision variables are feed pressure Pfeed [kPa], column wall 
temperature Twall [K], coefficient for adsorption time Cads [-] which 
increases the adsorption time while the feed flow rate is set constant, 
and coefficient for desorption pressure Cdes [-] which are defined later. 
The learning datasets were obtained from variable ranges shown in 
Table 4. The ranges of Pfeed [kPa] and Twall [K] were chosen from 
adsorption and desorption isotherms of ELM-11. The ranges of Cads [-] 
and Cdes [-] were chosen to be sufficiently wide.

One of the decision variables Cads [-] is for choosing the optimal 
adsorption time. In the VPSA process operation, the adsorption time is 
terminated when the outlet CO2 pressure reaches a threshold value pCO2, 

tar [kPa] (see Fig. 4(a)): 

pCO2 ,tar = Cads⋅pfoot,ads(Twall) (17) 

where pfoot,ads(Twall) [kPa] is the foot CO2 pressure at which equilibrium 
CO2 adsorption amount reaches 2 % of saturation at the column wall 
temperature Twall [K] (see Fig. 4(b)): 

pfoot,ads(Twall) = 0.02⋅nsat(Twall), (18) 

where nsat(Twall) [molCO2/kgads] is the saturated amount of CO2 
adsorption at Twall [K]. This method of determining the adsorption time 
is based on the sigmoidal adsorption isotherm of ELM-11; it is observed 
that fast breakthrough of CO2 begins when the CO2 partial pressure at 
the outlet reaches 1.00 – 1.75 times the pfoot,ads(Twall) [kPa], which is 
represented by the value of Cads in Table 4.

Another decision variable Cdes [-] is for choosing the optimal 
desorption pressure Pdes [kPa] (see Fig. 4(c)): 

Pdes = Cdes⋅pfoot,des(Twall). (19) 

where pfoot,des(Twall) [kPa] is the foot CO2 pressure at which the equi
librium CO2 desorption amount reaches 2 % of saturation at column wall 
temperature Twall [K] (see Fig. 4(b)). The range of Cdes [-], 0.20 – 0.70, 
was set after running some simulation trials to choose the conditions 
that give reasonable values of power consumption and desorption effi
ciency. Here, we found that a too short desorption time leads to unstable 
simulation. To enable computational convergence of the PDAEs, the 
desorption time tdes [s] is determined by the following equation: 

Table 2 
Model equations for the VPSA simulation.

Component mass 
balance − DL

[
∂2yi

∂z2 + 2T
(

∂yi

∂z

){
∂
∂z

(
1
T

)}

+

2
(

1
P

)(
∂yi

∂z

)(
∂P
∂z

)]

+
∂yi

∂t
+ u

∂yi

∂z
+

1
εbed

RT
P

ρads

(
∂qi

∂t
− yi

∑

i
∂qi

∂t

)

= 0

(12)

Overall mass balance ∂u
∂z

+
u
P

∂P
∂z

+ uT
∂
∂z

(
1
T

)

+ T
∂
∂t

(
1
T

)

+
1
P

∂P
∂t 

− DL

[

T
∂2

∂z2

(
1
T

)

+
1
P

∂2P
∂z2 +

2
(

T
P

)(
∂P
∂z

)(
∂
∂z

(
1
T

))]

+
1

εbed

RT
P

ρads

∑

i
∂qi

∂t
= 0

(13)

Ergun equation
−

∂P
∂z

= 150
μu

4Rp
2

(1 − εbed)
2

εbed3 +

1.75
(1 − εbed)

2Rpεbed3 u|u|ρgas

(14)

LDF model ∂qi

∂t
= ki(qi

∗ − qi)
(15)

Heat balance equation {
εbedρgasCpg + ρpelletCps

} ∂T
∂t

+ ρgasCpgεbedu
∂T
∂z

−

KL
∂2T
∂z2 

− ρads

∑

i
Hi

∂qi

∂t
+

2h
Rbed

(T − Twall) = 0

(16)

Table 3 
Four performance indicators.

Index Definition Unit

Recovery Amount of CO2 in product per cycle
Amount of CO2 in feed per cycle

%

Purity Amount of CO2 in product per cycle
Amount of CO2 and inpurity in product per cycle

%

BSF Mass of adsorbent
Amount of CO2 in product per cycle / tcycle × 3600 × 24

kgads/TPDCO2

Power consumption ηcomEcom + ηvacEvac GJe/tonne-CO2

Table 4 
The four decision variables and search ranges.

Variables Ranges

Feed Pressure Pfeed [kPa] 500 – 1500
Feed temperature Twall [K] 273.15 – 298.15
Coefficient for adsorption time Cads [-] 1.0 – 1.75
Coefficient for desorption pressure Cdes [-] 0.20 – 0.75
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tdes = max(tdes
’, 150), (20) 

where tdes’ [s] is the time when the following condition is met, where the 
amount of CO2 adsorbed at the inlet reaches qCO2,tar [molCO2/kgads]: 

qCO2 ,tar = 0.30⋅nsat(Twall). (21) 

In Eqs. (20)-(21), the desorption time was set to be at least 150 s to 
avoid numerical difficulties. The vacuum operation is relatively time- 
consuming, and we believe enforcing a lower bound of 150 s, which is 
relatively short compared to the cycle time of approximately 600 s, is a 
reasonable assumption.

3.1.2. Data generation for machine-learning
A total of 1511 points were collected for the ranges of the decision 

variables shown in Table 4. From the collected data, 608 points, in the 
range of Pfeed = 500–700 kPa and Cdes = 0.70–0.75, which gave unsat
isfactory performance indicators, were eliminated a priori, resulting in 
903 points to be used by the surrogate models. These sample points were 
determined by Latin hypercube sampling (LHS), which generate samples 
from a multidimensional domain, ensuring a more uniform coverage 
compared to simple random sampling (Kim et al., 2022). It divides each 
dimension into equispaced intervals and randomly selects one point 
from each interval, creating a set of stratified samples. LHS offers the 

advantage of achieving sufficient accuracy with a smaller number of 
samples compared to other sampling techniques (Diwekar and Kalag
nanam, 1997).

3.1.3. Surrogate models
In this study, multiple surrogate models were constructed utilizing 

the PyCaret library (Hao et al., 2021). PyCaret is an open-source library 
for automated machine learning (AutoML) in Python that offers auto
mation and simplification of processes from data preprocessing to model 
building, evaluation, and tuning. Various predictive modeling method
ologies were employed using this library, including linear regression, 
tree-based algorithms such as decision trees and random forests, 
gradient-based algorithms such as XGBoost and LightGBM, and poly
nomial projection. These models provide a range of complexity and 
flexibility, suitable for different types of data and prediction tasks. We 
opted to use the default hyperparameters in PyCaret, which are derived 
from extensive empirical testing and optimization across a wide range of 
datasets and scenarios. This approach leverages the general applicability 
of these parameters, avoiding the potential overfitting that can result 
from extensive hyperparameter tuning. To avoid potential data bias and 
ensure the reliability of the model, a 10-fold cross-validation was con
ducted. The collected data points were partitioned into a 70 % training 
set, which was used to build the model, and a 30 % validation set, which 

Fig. 4. Operation methods of the VPSA process: (a) CO2 partial pressure at the outlet approaching pCO2,tar; (b) definition of pfoot,ads, pfoot,des, and nsat(Twall); and (c) 
amount of CO2 adsorbed at the inlet approaching qCO2,tar.

Fig. 5. Surrogate model construction, validation, multi-objective optimization, and test.
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was employed to test the predictive accuracy of the models. The above 
procedure was repeated 10 times shifting the division between the 
training and validation sets (Fig. 5). Finally, the predictability of the 
surrogate models was tested by comparing the performance indicators 
with the rigorous models at four points on the parent front.

3.2. Multi-objective optimization

To identify optimal operating conditions, the following multi- 
objective optimization problem was solved. 

max Recovery
min Power consumption
min BSF.

(22) 

It should be noted that the purity was omitted from the objective 
function and constraint equations, as it consistently exceeded 98 % 
across all the 903 samples. This high purity is due to the very high CO2/ 
N2 selectivity of ELM-11. Even when we attempted to lower the feed 
pressure down to 500 kPa, purity remained above 98 % in every case. 
The optimization procedure was implemented within the Python 3.7.9 
environment using the Optuna library (Akiba et al., 2019). The repro
ducibility of the optimization was ensured using the Tree-Structured 
Parzen Estimator (TPE) algorithm. The TPE algorithm is a form of 
Bayesian optimization designed for efficient optimization of model 

hyperparameters. Specifically, it utilizes the results of past trials to 
suggest new parameter combinations to maximize model performance. 
Through iterative model building and evaluation, the algorithm pro
gressively identifies the optimal set of hyperparameters (Lundberg et al., 
2020).

4. Results

4.1. Algorithm selection and validation

By using Pycaret, the most suitable surrogate model developed by 
machine learning algorithms was selected considering prediction accu
racy. First, the training accuracy of the algorithms was evaluated using 
mean absolute error (MAE), mean squared error (MSE), root mean 
squared error (RMSE), and coefficient of determination (R2) (Table 5(a) 
and (b)). These metrics represent the average results from the ten cross- 
fold-validation training runs. These metrics show a very similar trend 
across the multiple surrogate models, and in this study, the models with 
the highest R2 values were chosen for further optimization. The Gradient 
Boosting Regressor algorithm was chosen for recovery, purity, and BSF, 
while the Extra Tree Regressor algorithm was chosen for power 
consumption.

Fig. 6 presents parity plots of the predicted results from the surrogate 
models and simulation results for the four performance indicators. These 

Table 5 
Comparison of 18 surrogate models: (a) recovery and power consumption, (b) purity and BSF.

(a)

Recovery of CO2 [%] Power consumption [GJe/tonne-CO2]

Algorithm MAE MSE RMSE R2 Algorithm MAE MSE RMSE R2

Gradient Boosting Regressor 0.7629 1.224 1.096 0.9798 Extra Trees Regressor 0.0301 0.0029 0.0516 0.9771
Extra Trees Regressor 0.7303 1.299 1.117 0.9790 Light Gradient Boosting Machine 0.0337 0.003 0.0533 0.9762
Light Gradient Boosting Machine 0.7327 1.326 1.134 0.9784 Gradient Boosting Regressor 0.0369 0.003 0.0538 0.9761
Random Forest Regressor 0.9767 1.798 1.331 0.9701 Random Forest Regressor 0.0383 0.0034 0.0571 0.9726
K Neighbors Regressor 1.355 3.693 1.906 0.9388 K Neighbors Regressor 0.0579 0.0076 0.0856 0.9402
Decision Tree Regressor 1.639 5.226 2.270 0.9109 Decision Tree Regressor 0.06300 0.0083 0.0901 0.9336
AdaBoost Regressor 2.034 6.362 2.507 0.8933 AdaBoost Regressor 0.0835 0.0115 0.107 0.9073
Least Angle Regression 1.987 7.580 2.739 0.8730 Least Angle Regression 0.0932 0.0179 0.1324 0.8563
Bayesian Ridge 1.986 7.580 2.739 0.8730 Bayesian Ridge 0.0932 0.0179 0.1324 0.8563
Ridge Regression 1.985 7.580 2.739 0.8730 Ridge Regression 0.0932 0.0179 0.1324 0.8563
Linear Regression 1.987 7.580 2.739 0.8730 Linear Regression 0.0932 0.0179 0.1324 0.8563
Huber Regressor 1.951 7.744 2.765 0.8712 Huber Regressor 0.0885 0.0189 0.1358 0.8489
Lasso Regression 2.323 11.10 3.305 0.8167 Passive Aggressive Regressor 0.1078 0.0229 0.1494 0.8172
Passive Aggressive Regressor 2.712 13.75 3.672 0.7603 Orthogonal Matching Pursuit 0.1995 0.0575 0.2395 0.538
Elastic Net 3.177 17.80 4.212 0.7034 Lasso Regression 0.2881 0.1279 0.3572 −0.0228
Orthogonal Matching Pursuit 3.930 28.77 5.352 0.5157 Elastic Net 0.2881 0.1279 0.3572 −0.0228
Lasso Least Angle Regression 6.245 61.60 7.822 −0.0266 Lasso Least Angle Regression 0.2881 0.1279 0.3572 −0.0228
Dummy Regressor 6.245 61.60 7.822 −0.0266 Dummy Regressor 0.2881 0.1279 0.3572 −0.0228

(b)

Purity of product CO2 [%] BSF [kgads/TPDCO2]

Algorithm MAE MSE RMSE R2 Algorithm MAE MSE RMSE R2

Gradient Boosting Regressor 0.0427 0.0066 0.0796 0.9099 Gradient Boosting Regressor 33.57 4285 62.20 0.9729
Extra Trees Regressor 0.0406 0.0072 0.0818 0.9069 Light Gradient Boosting Machine 31.71 4490 63.82 0.9715
Light Gradient Boosting Machine 0.0425 0.0075 0.0839 0.8982 Extra Trees Regressor 31.10 5006 65.46 0.9686
Random Forest Regressor 0.0436 0.0076 0.0858 0.8948 Random Forest Regressor 36.96 5942 73.85 0.9622
Decision Tree Regressor 0.0551 0.0115 0.1029 0.8516 K Neighbors Regressor 61.76 9733 97.38 0.9356
K Neighbors Regressor 0.0669 0.0188 0.1326 0.7638 Decision Tree Regressor 57.40 11,441 104.4 0.9243
AdaBoost Regressor 0.1143 0.0190 0.1372 0.7271 AdaBoost Regressor 91.63 13,579 115.1 0.9092
Bayesian Ridge 0.1393 0.0378 0.1921 0.4875 Ridge Regression 93.21 16,431 126.8 0.8926
Ridge Regression 0.1395 0.0378 0.1921 0.4871 Bayesian Ridge 93.27 16,431 126.8 0.8926
Linear Regression 0.1396 0.0378 0.1921 0.4869 Lasso Regression 92.97 16,433 126.8 0.8926
Least Angle Regression 0.1396 0.0378 0.1921 0.4869 Linear Regression 93.33 16,431 126.8 0.8925
Huber Regressor 0.1221 0.0456 0.2084 0.4194 Least Angle Regression 93.33 16,431 126.8 0.8925
Orthogonal Matching Pursuit 0.1579 0.0494 0.2197 0.3281 Huber Regressor 87.91 18,109 132.1 0.8833
Passive Aggressive Regressor 0.1706 0.0593 0.2354 0.2287 Passive Aggressive Regressor 88.70 18,674 134.1 0.8799
Lasso Regression 0.1989 0.0773 0.2737 −0.0175 Lasso Least Angle Regression 91.54 18,862 135.1 0.8778
Elastic Net 0.1989 0.0773 0.2737 −0.0175 Orthogonal Matching Pursuit 109.7 24,850 155.5 0.8370
Lasso Least Angle Regression 0.1989 0.0773 0.2737 −0.0175 Elastic Net 129.5 32,665 178.7 0.7873
Dummy Regressor 0.1989 0.0773 0.2737 −0.0175 Dummy Regressor 322.3 153,789 390.9 −0.0245
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plots were obtained using a 10-fold cross-validation method, where the 
R2 values are averaged across the 10-fold runs. The predictability of the 
chosen surrogate models was examined using the validation data. As can 
be seen in Fig. 6(a) and (d), generally accurate predictions are obtained 
for recovery and power consumption. On the other hand, in Fig. 6(b) and 
(d), there are samples with significant errors for purity in the lower 
range, and for BSF in the higher range. However, these were deemed 
acceptable; operating conditions that give such low purity or high BSF 
are unpractical and not employed in this study. The R2 value of 0.9099 
for purity is relatively low, which is due to the narrow range of purity 
which consistently exceeds 98 % because of the very high selectivity of 
ELM-11. The predictability of the surrogate models was further tested 

using four different points on the Pareto front, as shown in Section 4.2.

4.2. Multi-objective optimization

The surrogate models formulated in the previous section are used for 
multi-objective optimization here. The Pareto-optimal solutions ob
tained from our multi-objective optimization formulation given in Eq. 
(22), using the non-dominated sorting genetic algorithm II (NSGA-II) 
solver in the Optuna package, are visualized in Fig. 7. This exploration, 
conducted over a population of 10,000 points, yielded results that were 
subsequently plotted in two dimensions.

Some distinctive trends can also be seen in the Pareto fronts in Fig. 7, 

Fig. 6. Parity plot between the simulations using rigorous model of PDAEs with the surrogate model predictions: (a) recovery of CO2; (b) purity of CO2; (c) BSF; and 
(d) power consumption.
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which cannot be seen in adsorption processes using conventional ad
sorbents. In Fig. 7(b) where the power consumption is plotted against 
BSF, an “elbow” can be seen in the Pareto front. This indicates that when 
we try to save the power consumption below a critical value of 
approximately 2.0 GJe/TPDCO2, the BSF increases significantly. 
Furthermore, in Fig. 7(c-1), the Pareto front of recovery is nearly ver
tical. These trends are due to the sigmoidal shape of the isotherm of 
ELM-11, where the uptake increase sharply once the pressure exceeds 
the gate pressure (Fig. 1).

Specifically, we highlight four exemplary points within these Pareto 
solutions, which we have denoted as Cases A through D. Table 6 presents 
the results of validating the surrogate predictions against simulations for 
Cases A through D. The errors between estimation and simulation are 
sufficiently small (< 5.17 %) except for Case D of BSF. The reasons for 

the relatively large errors of over 5 % for BSF Cases D are as follows: first, 
unlike other performance indicators, BSF has a wide range of 90–900 
kgads/TPDCO2, where Cases A and D are near the maximum and mini
mum of the BSF, respectively. A specific cause for the relatively large 
error of −12.8 % shown by Case D is because of Eq. (20): which was 
implemented to enable computational convergence of the PDAEs. The 
max function in Eq. (20) introduces nonlinearity and non-smoothness 
when the desorption times becomes shorter than 150 s, i.e., when BSF 
is small, such as Case D, non-negligible error is observed between esti
mation and simulation. However, when the desorption time exceeds 150 
s, as in Cases A-C, the function does not affect BSF.

Each of Cases A through D exhibits distinctive operating strategies. 
Case A minimizes power consumption by maintaining low feed pressure 
(Pfeed = 719.1 [kPa]) while employing the high desorption pressure (Cdes 

Fig. 7. The Pareto-optimal solutions of the multi-objective optimization problem: (a) Power consumption vs. recovery; (b) BSF vs. power consumption; (c-1) BSF vs. 
recovery; (c-2) zoomed BSF vs. recovery.
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= 0.523 [-], resulting in Pdes = 12.73 [kPa]). As seen in Table 6, which 
outlines other operating conditions from simulations, Case A shows a 
higher Cdes compared to the other cases, conserving the energy of the 
vacuum pump. However, setting a high Cdes results in an increased 
desorption time (tdes = 3800 [s]), leading to the highest BSF among all 
cases, at 823.6 kgads/TPDCO2. On the other hand, Case B maximizes 
recovery; by setting the Pfeed near its upper limit of 1500 kPa and the 
Twall and Cdes close to their respective lower limits of 273 K and 0.200, 
this case shows the highest recovery of 84.61 [%]. However, power 
consumption is relatively high at 2.878 GJe/tonneCO2. Case C balances 
power consumption and recovery; as in Case B, by setting Twall and Cdes 
near the lower limit while setting Phigh to a medium value 847.4 kPa, 
high recovery of 80.17 % and low power consumption of 2.165 GJe/ 
TPDCO2 are achieved. Finally, Case D is a scenario where BSF is low. In 
this case, by setting Twall to a relatively high value of 292.0 K and 
keeping Cdes low at 0.2107, desorption time is reduced to 150 s. This 
reduction in cycle time contributes to the reduction of BSF.

The recovery is <80 % in many cases due to the slipping-off problem 
common in flexible MOFs, where CO2 below the gate pressure tends to 
slip through, resulting in lower recovery. One way to address this issue is 
to use the flexible MOF with another adsorbent in series (Hiraide et al., 
2020). However, this paper investigates the achievable recovery for the 
single-column VPSA process using ELM-11.

5. Conclusion

In this study, we carried out multi-objective optimization analysis for 
a unique adsorbent, Elastic Layer-structured Metal-organic Framework- 
11 (ELM-11), in a Vacuum Pressure Swing Adsorption (VPSA) process. 
This is the first study to investigate the optimal performance of a VPSA 
process using a flexible MOF. To handle the complex characteristics of 
ELM-11 such as sigmoidal isotherms with hysteresis that pose consid
erable challenges in dynamic simulation and optimization, we employed 

a state-of-the-art optimization technique using Automated Machine 
Learning (AutoML) and surrogate model optimization, which allowed us 
to identify optimal operations for the four objective functions: purity, 
recovery, bed size factor (BSF), and power consumption. The trade-offs 
of the four objective functions of the flexible MOF were analyzed 
carefully.

Our surrogate model, which was found to give the highest prediction 
accuracy from 18 candidates, enabled us to examine the impacts of four 
decision variables on the performance indicators of the VPSA process. 
This investigation facilitated understanding of the relationship between 
operating parameters (decision variables) and performance indicators.

Distinct trends of the VPSA process using ELM-11 were found in the 
analysis using Shapley Additive Explanations (SHAP). Unlike the con
ventional VPSA processes where the purity is highly influenced by the 
feed volume amount, the CO2 purity of our process remains always high, 
owing to the high selectivity of ELM-11. Furthermore, it was found that 
the column wall temperature and feed pressure have the most significant 
impact on recovery, and reducing desorption pressure can increase the 
recovery rate by up to 8 %.

Optimal operating conditions were identified through multi- 
objective optimization. The surrogate model was validated against the 
rigorous model at four exemplary points on the Pareto front. However, 
some errors were identified, particularly in the Bed Size Factor (BSF) 
ranging in an order of magnitude, which can be a subject in a future 
study. While this study considered single-stage compression, it is worth 
noting that multi-stage compression can potentially reduce the power 
consumption. Furthermore, as demonstrated in the study by Hiraide 
et al. (2020), combining multiple adsorbents can lower the pressure, 
thereby further reducing power consumption.

The application of a surrogate model-based optimization for the 
VPSA process is an effective and computationally efficient approach to 
design a CO2 capture system using an adsorbent with sigmoidal isotherm 
shapes with hysteresis. Some issues are left for future work, such as 
investigations into the capabilities of other flexible MOFs in adsorption 
processes.
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Table 6 
Comparison among the cases A–D.

Case A (Low 
energy)

B (High 
recovery)

C 
(Balanced)

D (Low 
BSF)

Pfeed [kPa] 719.1 1494 847.4 874.0
Twall [K] 273.2 273.3 273.3 292.0
Cads [-] 1.114 1.257 1.233 1.643
Cdes [-] 0.523 0.2010 0.2070 0.2107
Other operational conditions from simulation
Pdes [kPa] 12.73 4.896 4.970 9.639
ηvacuum [-] 0.3984 0.2372 0.2394 0.3488
tads [s] 280 410 350 320
tdes [s] 3800 650 700 150

Performance indexes comparison
Estimated recovery [%] 71.33 83.03 80.17 69.20
Simulated recovery [%] 72.01 84.61 81.10 67.56
Error [%] −0.956 −1.91 −1.16 2.36
​ ​ ​ ​ ​
Estimated power 

consumption [GJe/ 
tonne-CO2]

1.982 2.878 2.165 2.497

Simulated power 
consumption [GJe/ 
tonne-CO2]

1.984 2.875 2.261 2.496

Error [%] −0.0787 0.133 −4.45 0.069
​ ​ ​ ​ ​
Estimated BSF [kgads/ 

TPDCO2]
868.5 132.8 163.2 94.3

Simulated BSF [kgads/ 
TPDCO2]

823.6 131.8 161.9 106.4

Error [%] 5.17 0.764 0.803 −12.8
​ ​ ​ ​ ​
Estimated purity [%] 99.65 99.97 99.80 99.85
Simulated purity [%] 99.61 99.96 99.89 99.87
Error [%] 0.0399 0.0126 0.0901 −0.0115
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