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ARTICLE INFO ABSTRACT
Keywords: This study presents a process optimization study for a vacuum pressure swing adsorption (VPSA) process using a
Carbon capture flexible metal-organic framework (MOF), which is gaining attention as a material to realize energy-efficient

Surrogate model

Process simulation and optimization
Vacuum pressure swing adsorption (VPSA)
Flexible metal-organic frameworks (MOFs)

carbon dioxide capture processes. Many flexible MOFs exhibit sigmoidal adsorption isotherms with hysteresis,
posing a challenge for simulation and optimization using a rigorous process model. In this study, we employ
surrogate model optimization, where surrogate models using machine-learning algorithms were constructed
from simulation of 903 operating conditions generated by Latin hypercube sampling. The surrogate models with
the best performance were identified from 18 different surrogate options considering four design varia-
bles—adsorption pressure, desorption pressure, adsorption time, and desorption time. Using the best surrogate
models, a multi-objective optimization problem was solved to identify the Pareto front among recovery, energy
consumption, and bed size factor. Our analysis identified a distinct characteristic of VPSA using a flexible-MOF
where purity and recovery are hardly affected by the feed volume.

frameworks (MOFs) for their highly tunable and customizable nature,
have attracted considerable attention as potential adsorbents. Specif-
ically, flexible MOFs have demonstrated promise for CO5 capture owing
to their unique "gate-opening/closing" property triggered by adsorption
(Fig. 1) (Coudert et al., 2013; Horike et al., 2009; James, 2003;
Majchrzak-Kucgba et al., 2019; Schneemann et al., 2014; Zhou and
Kitagawa, 2014). This distinctive feature, giving rise to sigmoidal
adsorption isotherms, achieves high working capacity and selectivity. In
these isotherms, once the CO; pressure exceeds the “gate pressure”, the
amount of adsorption increases sharply. Flexible MOFs also exhibit
intrinsic thermal management, where the exothermic heat generated
during adsorption is counterbalanced by the endothermic expansion of
the framework (Hiraide et al., 2017; Mason et al., 2015). Furthermore,
isotherms of flexible MOFs often have hysteresis, where adsorption and
desorption do not follow the same trajectory. These distinctive charac-
teristics of flexible MOFs require special attention in mathematical
modeling, as discussed below. Among the various flexible MOFs, Elastic
Layer-structured Metal-organic Framework-11 (ELM-11) is particularly

1. Introduction

Carbon dioxide (CO2) emissions constitute a significant environ-
mental concern due to their contribution to global warming. These
emissions arise predominantly from industrial activities, with thermal
power plants and manufacturing facilities being major point sources
(Aaron and Tsouris, 2005). Capture of CO; from flue gas presents an
essential technology in efforts to mitigate these emissions. To date,
various methodologies for COy capture, such as amine absorption,
membrane separation, and cryogenic separation, have been proposed.
Among these technologies, the vacuum pressure swing adsorption
(VPSA) process is considered as particularly promising due to its po-
tential for lower energy consumption (Shen et al., 2011).

Various kinds of adsorbents have been tested in VPSA processes.
Historically, zeolites and activated carbons have been used in VPSA
processes due to their high adsorption capacity and durability (Ko et al.,
2005; Shen et al., 2012; Xu et al.,, 2019). Recently, metal-organic
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Nomenclature

bL imaginary adsorption isotherm parameter for CO5
[molCOy,/(kgags-kPa)]

by temperature dependent value for imaginary CO,
adsorption isotherm [kPa']

by imaginary adsorption isotherm parameter for CO, [kPa™']

bu imaginary adsorption isotherm parameter for CO5
[molCO4/(kg.qs-kPa)]

b, adsorption isotherm parameter for Ny [molNs/(kgaqs-kPa)]

Cpg heat capacity of gas [J/(kg-K)]

Cps heat capacity of solid [J/(kg-K)]

Cads coefficient for adsorption time [-]

Cdes coefficient for desorption pressure [-]

Dy axial dispersion coefficient [m?/s]

Ecom power consumption for the compressor [GJ./tonne-CO5]

Ey imaginary adsorption isotherm parameter for CO5 [kJ/
molCO5]

Evac power consumption for the vacuum pump [GJ./tonne-
CO2]

feed amount of CO, feed gas [molCO5]

h heat transfer coefficient [J/(m?s-K)]

Hgiep j enthalpy of the phase transitions [kJ/molCO-]

i component

impurity amount of N, gas in the product [molN5]

j mode of hysteretic isotherms

ki overall mass transfer coefficient of component i [1/s]

K; axial thermal conductivity [J/(m-s-K)]

L column length [m]

mode binary variable for mode of hysteretic isotherms [-]

ng imaginary adsorption isotherm where the gate is always
closed [molCO5/kgqgs]

ny imaginary adsorption isotherm where the gate is always
open [molCOy/kgads]

n adsorption/desorption isotherms of CO5 [mol/kgags]

ny saturated amount of CO5 adsorption [molCOs/kg.qs]

Ndes—ads Secondary or higher-order adsorption isotherm [molCO,/
kgads]

Nads—des Secondary or higher-order desorption isotherm [molCO,/
kgads]

Nsat saturated amount of CO5 adsorption [molCOs/kg.q4s]

NMswitch

Nsar(T)

Pco2
Dco2,tar
Paes
Preed

Dfoot,ads(T) foot CO, pressure at a temperature T for adsorption [kPa]
Droot,des(T) foot CO,, pressure at a temperature T for desorption [kPa]

product

qi
qi*
qco2,tar

R

tads
tcycle
tdes
Ldepress
tdes
Ldes ’

T
Tteed
Twall
u

Wi
Yifeed
Zz

Vi

Xj
Ebed
Ncom
Nvac
Pads
Ppellet
Pwall
H

14

amount of CO, adsorbed at switched point [molCO2/kgags]
saturated amount of CO, adsorption at a temperature T
[molCO2/kgads]

partial pressure of CO, [kPa]

target partial pressure of CO5 during adsorption step [kPa]
desorption pressure [kPa]

feed gas pressure [kPa]

amount of CO, product in one cycle at a steady state
[molCO,]

amount of component i adsorbed [mol/kgags]
equilibrium amount of component i adsorbed [mol/kg,qs]
target amount of CO5 adsorbed during desorption step
[molCO2/kgads]

gas constant [J/(mol-K)]

adsorption time [s]

cycle time [s]

desorption time [s]

depressurization time [s]

desorption time [s]

time needed until the amount of CO, adsorbed at the inlet
reaches the target value [s]

temperature [K]

feed temperature [K]

column wall temperature [K]

gas velocity [m s™]

weight [-]

feed mole fraction of component i [-]

axial position in column [m]

weighting function parameter [-]

parameter for the weighting function w; [-]

bed void [-]

efficiency of compressor [-]

efficiency of vacuum pump [-]

adsorbent density without binder [kg,qs/m?]

pellet density [kg/m®]

wall density [kg/m3]

gas viscosity [kg/(m-s)]

heat capacity ratio [-]

CO, desorption
isotherm

closed gate

Adsorption amount

Gate pressure
(desorpiton)

b

Gate pressure
(adsorption)

High purity region

CO, adsorption

open gate

['¢ Q"": 5;

isotherm

CO, pressure

Fig. 1. Isotherm hysteresis with the gate-opening/closing property.
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promising. As first reported by Li and Kaneko (2001), ELM-11 has su-
perior COy working capacity and selectivity, which have been exten-
sively explored by many researchers (Bon et al., 2015; Kondo et al.,
2006; Kultaeva et al., 2018; Tanaka et al., 2015; Yang et al., 2012).

Dynamic simulation of adsorption processes in flexible MOFs, char-
acterized by sigmoidal isotherms and isotherm hysteresis, is a chal-
lenging task. Rigorous dynamic models, represented by partial
differential algebraic equations (PDAEs), pose significant challenges due
to nearly discrete and non-differentiable changes within the system.
These challenges arise from the sigmoidal isotherm shapes and switch-
ing of isotherm trajectories caused by the hysteresis in flexible MOFs.
Despite these difficulties, our team has successfully modeled the equi-
librium and kinetics, and developed a dynamic simulation of the VPSA
process with ELM-11 using advanced mathematical methods (Fujiki
et al., 2023; Sugimoto et al., 2023; Takakura et al., 2022).

In the above dynamic simulation, the VPSA process using ELM-11
was analyzed in detail and compared with a conventional adsorbent
zeolite 13X, reporting the following: (1) the ELM-11 isotherms for CO at
temperatures ranging from —10 °C to 25 °C and a Nj isotherm were
measured (the isotherms and its fittings are shown in Supplementary
Material (S.2)); (2) models were created from the isotherms data,
showing different adsorption equilibrium states due to hysteresis in
cyclic operation; (3) due to the large working capacity of CO5 and the
small amount of Ny adsorbed, the purity is above 98 % in all cases in the
region where the feed CO, pressure exceeds the gate pressure (“high
purity region” in Fig. 1); (4) the CO5 recovery rate was found to depend
greatly on how much higher the feed CO, pressure is compared to the
gate pressure, requiring careful control of temperature and pressure; and
(5) the validity of the adsorption rate equation was also examined. While
this advancement enabled us to evaluate effective operations and assess
process performance using ELM-11, optimization of the process using a
rigorous dynamic model has yet to be addressed, which is an even more
difficult computational challenge. The sigmoidal isotherms with hys-
teresis, which are implemented as a hybrid model (Barton and Pan-
telides, 1994; Peszynska and Showalter, 1998) would not allow
Newton-based optimization that requires computations of derivatives
(gradients and Jacobians) of functions. Furthermore, attaining a
cyclic-steady-state (CSS), for example, necessitates a sequence of
repeated cyclic operations (Kim et al., 2022; Takakura et al., 2022). The
computational demand is further exacerbated in optimization, which
requires iterative computation for CSSs under different operating
conditions.

In recent years, optimization using surrogate modeling has been
reported for PSA processes. Several researchers have employed different
surrogate modeling methods to address similar challenges (Table 1). For
example, Kim et al. (2022) implemented various machine-learning
methodologies using Pycaret, a versatile Python-based framework, for
the separation of carbon monoxide from steel-mill off-gas, achieving a
cost-effective operation. Agarwal et al. (2009) proposed a reduced-order

Table 1
Surrogate modeling studies for PSA processes.

Refs. Separation process Separation system

Kim et al. (2022)

Kim et al. (2022)
Agarwal et al. (2009)
Beck et al. (2015)
Sant Anna et al. (2017)
Ye et al. (2019)

Leperi et al. (2019)
Subraveti et al. (2019)
(Pai et al., 2020)

Xiao et al. (2020)

Vo et al. (2020)

Hao et al. (2021)
Tong et al. (2021)

Yu et al. (2021)

Four-bed six-step VPSA
Four-step VPSA
Two-bed four-step PSA
Two-bed six-step VPSA
Single bed four-step PSA
Single bed four-step PSA
Three to five step PSA
Four to ten step PSA
Two-bed four-step VPSA
Two-bed six-step PSA
Two-bed six-step PSA
Four-step PSA

Two-bed six-step PSA
Four-bed six-step PSA

CO separation

CO;, capture

H, purification
Post-combustion CO, capture
Ny rejection from natural gas
H, purification
Post-combustion CO, capture
Post combustion CO, capture
Post-combustion CO, capture
H, purification

H, recovery and CO, capture
CO,, capture

H, purification

H, purification
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model using proper orthogonal decomposition (POD) for hydrogen (Hs)
purification. Beck et al. (2015) adopted kriging regression for handling
output uncertainty and demonstrated a comparable Pareto front. Arti-
ficial neural networks (ANNs) have been used in many studies, such as
Sant Anna et al. (2017) for achieving target purity of nitrogen (N5), and
Ye et al. (2019) for obtaining high-purity Hy from multicomponent
mixtures. Leperi et al. (2019) applied ANNs for CO, capture assessing
PSA systems, while Subraveti et al. (2019) used partial least square (PLS)
regression for surrogate model development. A variety of surrogate
models developed by machine-learning algorithms, including ANN,
have been used with a focus on CO; capture systems, as reported by Pai
et al. (2020). Xiao et al. (2020) compared ANN and polynomial
regression surrogate models, emphasizing superior performance of ANN
in Hy purification. Vo et al. (2020) achieved feasible Hy recovery and
CO4 capture solutions using ANN optimizations and model order
reduction via singular value decomposition (SVD). Kim et al. screened
75 adsorbent options using ANN regression (Kim et al, 2022).
Furthermore, Hao et al. (2021) proposed a hybrid framework for PSA
optimization using Gaussian process and gradient-based algorithm,
while Tong et al. (2021) and Yu et al. (2021) used ANN for optimization
of Hy purification. Nevertheless, optimization of a PSA process using a
flexible MOF has not been reported.

In this study, we analyze optimal operations of the VPSA process for
CO: capture using the flexible metal-organic framework ELM-11 for the
first time, where the numerical challenges for the sigmoidal isotherms
with hysteresis were resolved by a surrogate model optimization
approach by machine learning. Utilizing Latin hypercube sampling
(LHS), we generated a diverse dataset from 903 distinct operating con-
ditions to construct reliable surrogate models. The predictability of the
surrogate model was carefully validated, and the most reliable surrogate
model was identified from 18 candidates of surrogate models. Using the
surrogate model, multi-objective optimization was performed for four
objective functions: recovery, bed size factor (BSF), power consumption,
and purity. The solution of the optimization problem, a four-
dimensional Pareto front, allows us to analyze the trade-off of the four
objective functions. Our analysis identifies unique characteristics of
adsorption processes using flexible MOFs which cannot be seen in those
using conventional adsorbents.

2. Process descriptions and analysis
2.1. Isotherm modeling

ELM-11 exhibits complex hysteresis behavior, causing shifts in the
isotherm trajectory between adsorption and desorption. This results in
infinite variations of isotherm trajectories influenced by the historical
cycles of adsorption and desorption, significantly complicating the
analysis of the adsorption process.

Our previous work classified the infinite patterns of adsorption/
desorption isotherm exhibited by ELM-11 into four main categories
(Takakura et al., 2022), as shown in Fig. 2(a). The primary isotherm for
adsorption, shown as (I) in the figure, is generated from the origin, or a
clean state, with monotonically increasing CO, pressure. Similarly, the
primary isotherm for desorption, shown as (II) in the figure, is generated
from a saturated state with monotonically decreasing CO, pressure.

The trajectories shown as (III) and (IV) in Fig. 2(a), are the secondary
isotherms, categorized as generated when a switch occurs between
adsorption and desorption at an intermediary point between the clean
and saturated states. For example, in the secondary isotherm (III),
adsorption is carried out from the origin until reaching the light-blue
circle, and then desorption is carried out. Similarly in the secondary
isotherm (IV), desorption is carried out from the saturated state until
reaching the orange circle, and then adsorption is carried out. Moreover,
when switching between adsorption/desorption is repeated on the tra-
jectories of second-order isotherms, the isotherm follows an even higher-
order trajectory. Thus, the equilibrium depends on the history of
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Fig. 2. Adsorption and desorption isotherms of ELM-11: (a) hysteresis given by primary and secondary isotherms; (b) modeling approach for sigmoidal isotherm
using imaginary isotherms; (c¢) modeling of a secondary adsorption isotherm; and (d) modeling of a secondary desorption isotherm.

switching between adsorption and desorption, and there exists an
infinite number of isotherm trajectories for hysteretic adsorbents.

For the primary isotherms, the sigmoidal shape is modeled using the
approach proposed by Hefti et al. (2016) which have been validated in
our previous studies (Fujiki et al., 2023; Sugimoto et al., 2023; Takakura
et al., 2022). We consider imaginary adsorption isotherms in Fig. 2(b).
There, the lower isotherm ny, is an imaginary adsorption isotherm where
the structures always remain closed regardless of the CO5 partial pres-
sure. On the other hand, the upper isotherm ny is another imaginary
isotherm where the structures remain open, and the molecules can enter
the internal space. We consider the weighted sum of uptakes given by
these two imaginary isotherms:

n; = nyw; +n (1 —w;), j € (ads, des). (¢))

where j is mode of isotherms (adsorption and desorption), and w; € [0, 1]
is the weight. The imaginary isotherms ny, and ny are given by:

n, = bipco, , 2
ny = m + bupco 3
1 + bypco, >
e Ey
by = by~exp (ﬁ‘)’ (€)]

where by, b, by, and Ey are parameters for the imaginary adsorption
isotherms; pco, is partial pressure of COy; T is temperature. The weight
wj is modeled as follows:

1+ exp (M)

()

Wj:

Zj

where y; is a parameter for the weight; psiep j(T) is the step pressure of
isotherm j at temperature T. The step pressure is modeled as follows:

Hyepj (1 1
pstepj(T) = pstepO.jeXp ( - Itsz (Tio - 7—.) ) i (6)

where pgtepo,j is the step pressure of isotherm j at To = 273.15 [K]; and
Hjtep,j is the enthalpy of the phase transition.

The secondary isotherms are given by vertically compressing the pri-
mary isotherms. The equilibrium follows the branched trajectory
Nges—ads Shown as the orange line in Fig. 2(c) when desorption is carried
out from the saturated state until reaching orange circle, and then
adsorption occurs. We obtain the secondary isotherm nges_,aqs by verti-
cally compressing the primary isotherm nygs from the bottom to the top as
follows:

(nsat - nswitch)

} =+ Nswitch (7)
Ngat

Ndes—ads = Mads* {

where ngyitch is the amount of CO, adsorbed at the time of the switch
between adsorption and desorption; ng, is a saturated amount of CO,
uptake. Similarly, the equilibrium follows the trajectory nads—des Shown
as a light-blue line in Fig. 2(d), where adsorption is carried out from the
clean state until reaching the light blue circle, and then desorption is
carried out. The secondary isotherm can be modeled similarly by
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vertically compressing the primary isotherm nges, but this time from the
top to the bottom, as follows:

Nswitch
Nads—des = MNdes* (7 . ®

sat

Finally, the equilibrium amount of adsorption g¢,, is given by:

qz;()2 = ndes—>ads'm0de + nads—>des'(1 - mOde)-, (9)

where mode is a binary variable. Here, gco,* is equal to the adsorption
isotherm nges—.ads When mode = 1, and the desorption isotherm nygs— des
when mode = 0. The variable mode takes the value of 1 only in the steps
where the adsorption operation in a VPSA process is carried out:

: ; 10
0 if tpress + tads <t< tpress + tags + tdepress + tdes

{ 1 if 0 < € < tyress + tads
mode =

where tyress, fads, tdepress; and tges are pressurization, adsorption,
depressurization, and desorption times, as shown in Section 2.1. The
adsorption isotherm of N3 is approximated by the following linear model
without temperature dependence:

q,*qz = bNZPNZ-, (11)

where by, is a parameter; gy, is the equilibrium uptake of Ny; and py, is
partial pressure of Nj.

2.2. VPSA process model

This study considers a four-step VPSA process shown in Fig. 3. This
process configuration without rinse and purge steps was designed due to
the intrinsic adsorption property of ELM-11, which has nearly zero CO,
adsorption capacity at low pressures, as illustrated in Fig. 2(b). This
unique property allows for the omission of rinse or purge steps often
necessary in VPSA processes with conventional adsorbents (Takakura
et al., 2022). By reducing the process to the four simple steps, we
anticipate significant benefits, including shortening of cycle times and
preventing purity drop of recovered CO,. Operating conditions
including the feed CO5 concentration are shown in the Supplementary
Material (S.5).

In this process, the column is enveloped by a jacket maintained at a
temperature of Ty, [K], which is assumed to be equal to feed temper-
ature Tfeeq [K]. Note that the energy required for cooling is not consid-
ered in this study due to the difficulty in estimating it accurately.
Furthermore, since the heat of adsorption for ELM-11 is low (Hiraide
et al. 2017) the cooling cost would be relatively small. This process

Cqumn Jac.;ket

-1 N 1

CO,/N,
mixture

Step 1
pressurization

Step 2
adsorption

N2 rich gas
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undergoes the following cyclical steps until a cyclic steady state is
achieved:

Step 1 Pressurization: A gas mixture of CO, and N is introduced
from the bottom inlet of the column until the desired pressure is ach-
ieved. During this stage, the top outlet of the column remains closed.

Step 2 Adsorption: The gas mixture continues to be fed from the
inlet, while the outlet is opened to vent nitrogen-rich gas, thereby
allowing CO4 adsorption onto the adsorbent in the column.

Step 3 Depressurization: The outlet is closed, and the column is
depressurized to atmospheric pressure, preparing the system for the
subsequent desorption step.

Step 4 Desorption: The column pressure is further reduced using a
vacuum pump, which results in the desorption and collection of CO,
product from the bottom of the column.

This study aims to optimize this simple four-step VPSA process by
exploiting the unique CO3 adsorption attributes of ELM-11, leading to
the development of a high-performance CO; capture system.

In a typical VPSA process, CO- is recovered from the outlet to prevent
N, contamination. However, in this process, CO5 is recovered from the
inlet due to the high selectivity of ELM-11, which results in almost no Ny
contamination when recovering CO2 from the feed inlet. Additionally,
the sigmoidal desorption isotherm causes fast CO, desorption which
increases the gas which increases the gas COy concentration sharply
during desorption, which would lead to a larger amount of CO; re-
adsorption if the product was recovered from the opposite end. By
recovering CO5 from the feed inlet, this process effectively prevents re-
adsorption and pressure loss, offering significant advantages.

The Partial Differential Algebraic Equation (PDAE) model is shown
in Table 2. Boundary conditions and design parameters used in this
study are presented in Section S.1 in the Supplementary Material.
Further descriptions on the model can be found in the literature
(Takakura et al., 2022).

2.2. Performance indicators

To evaluate the efficiency of the process design and operation, four
performance indicators are defined as shown in Table 2. These in-
dicators have been widely utilized in some past studies (Bon et al., 2014;
Hiraide et al., 2020, 2016; Kim et al., 2022; Takakura et al., 2022). Two
commonly utilized metrics, purity and recovery, were selected to
ascertain the influence of operating variables, such as operating pressure
and temperature, on the overall effectiveness of the process. Details on
these four performance indicators are shown in the Supplementary
Material (S.4).

The four performance indicators in Table 3 are defined as follows:

CO
proéuct
gas
Step 3 Step 4
depressurization desorption

Fig. 3. Four-step cycle of the VPSA process.
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Table 2
Model equations for the VPSA simulation.

P, a (12)
o ()R}
0.},1 il
) () ()
dyi ﬁ}q 1 RT 0g; oq; B
+ ot UG T o PP (E ¥y, at) 0
Overall mass balance ou uoP T 9 (1) 4 4 (1) 1 0P (13)

ot 0z
wrau\r) T a\T) Tha

o (1\  10°P
D T— (= 2
L{ 022 (T) +P02:2 +

o) () (2 (X
P)\oz)\oz \T
1 RT ag
oea P2 igr T 0
Ergun equation — 2 14
gun eq _OP g (- ewa)’ (14)
oz 4Ry eved®
(A~ evea)
ZRpt‘bd

LDF model O
i =ki(qi* — ai)

Component mass
balance

1.75 3 UlUlpgas

(15)

Heat balance equation (16)

JaT aT
{€beap 5asCpg T Ppellet Cps } ot + PgasCpgbedl %

K -
L oz2

J 2h
- /)adsz Hi—+ q.

Rbed

(T — Twan) =0

Purity: This metric represents the quality of the captured CO2. A
high purity indicates a greater concentration of CO; in the product gas,
improving the usability of the captured gas for downstream
applications.

Recovery: This index reflects the proportion of COy successfully
extracted from the feed. A higher recovery implies effective removal of
CO; from the gas mixture.

The remaining performance indicators, Bed Size Factor (BSF) and
Power Consumption, pertain more directly to the operational efficiency
and environmental and economic impact of the process.

Bed Size Factor (BSF): This index is measured in kg,qs/TPDCO>,
where TPDCO; represents tonnes per day CO,. BSF is the amount of
adsorbent needed to recover a tonne of CO, in one day. A lower BSF
indicates a more economically efficient process, as less adsorbent ma-
terial is needed to capture a given amount of CO5 per unit time.

Power Consumption: Expressed in GJ./tonne-CO,, this perfor-
mance indicator quantifies the amount of electrical energy required for
compression and vacuum operations per unit weight of CO5 recovered.
Importantly, it considers the efficiencies of the compressor #¢om and that
of the vacuum pump #y,c, with a particular emphasis on the fact that 7y,c
varies in response to changes in desorption pressure (Section S4 in the
Supplementary Material). A lower value of power consumption indicates
a more sustainable and economically efficient process.

International Journal of Greenhouse Gas Control 138 (2024) 104260

3. Methods
3.1. Surrogate modeling

3.1.1. Decision variables

The surrogate model in this study analyzes the influences of four
decision variables, which are operating conditions for the PVSA opera-
tion. The decision variables are feed pressure Pgeq [kPa], column wall
temperature Ty, [K], coefficient for adsorption time Cuqs [-] which
increases the adsorption time while the feed flow rate is set constant,
and coefficient for desorption pressure Cges [-] which are defined later.
The learning datasets were obtained from variable ranges shown in
Table 4. The ranges of Pgeq [kPa] and Ty [K] were chosen from
adsorption and desorption isotherms of ELM-11. The ranges of Cygs [-]
and Cges [-] were chosen to be sufficiently wide.

One of the decision variables Cy4s [-] is for choosing the optimal
adsorption time. In the VPSA process operation, the adsorption time is
terminated when the outlet CO pressure reaches a threshold value pcoo,
ar [kPa] (see Fig. 4(a)):

pC02 star — Cads *Pfoot.ads (Twall) (1 7)

where proot,ads(Twall) [kPa] is the foot CO; pressure at which equilibrium
CO3 adsorption amount reaches 2 % of saturation at the column wall
temperature Ty, [K] (see Fig. 4(b)):

pfoot,ads( wall) 0.02- nsat( wall) (18)

where ng(Twa) [mMolCO2/kgags] is the saturated amount of COg
adsorption at Ty, [K]. This method of determining the adsorption time
is based on the sigmoidal adsorption isotherm of ELM-11; it is observed
that fast breakthrough of CO5 begins when the CO; partial pressure at
the outlet reaches 1.00 — 1.75 times the pgoot,ads(Twan) [kPa], which is
represented by the value of Cygs in Table 4.

Another decision variable Cqes [-] is for choosing the optimal
desorption pressure Pges [kPa] (see Fig. 4(c)):

Pdes = Cdes ‘Pfoot des (Twall)- (19)

where Proot,des(Twail) [kPa] is the foot CO, pressure at which the equi-
librium CO» desorption amount reaches 2 % of saturation at column wall
temperature Tyay [K] (see Fig. 4(b)). The range of Cqes [-1, 0.20 — 0.70,
was set after running some simulation trials to choose the conditions
that give reasonable values of power consumption and desorption effi-
ciency. Here, we found that a too short desorption time leads to unstable
simulation. To enable computational convergence of the PDAEs, the
desorption time tges [s] is determined by the following equation:

Table 4
The four decision variables and search ranges.

Variables Ranges
Feed Pressure Peeq [kPa] 500 - 1500
Feed temperature Tyan [K] 273.15 - 298.15
Coefficient for adsorption time Cyqs [-] 1.0-1.75
Coefficient for desorption pressure Cges [-] 0.20 - 0.75
Table 3
Four performance indicators.
Index Definition Unit
Recovery Amount of CO; in product per cycle %
Amount of CO; in feed per cycle
Purity Amount of CO, in product per cycle %
Amount of CO; and inpurity in product per cycle
BSF Mass of adsorbent kgads/TPDCO2

Amount of CO> in product per cycle / teyee X 3600 x 24

Power consumption NeomEcom + MyacEvac

GJe/tonne-CO,
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qdco, 4

CICOZ,tar

>

Column Iengtﬁ

(a)

Pfootdes Pfootads

Pco,

(b) (c)

Column length

Fig. 4. Operation methods of the VPSA process: (a) CO, partial pressure at the outlet approaching pcog, tar; (b) definition of peoot,ads, Proot,dess and Ngae(Twar); and (c)

amount of CO, adsorbed at the inlet approaching qcoz,tar-

Ldes = max(tdesys ]50), (20)

where tges” [s] is the time when the following condition is met, where the
amount of CO, adsorbed at the inlet reaches qcog,tar [m01CO2/kgads]:

qCOz,ta.r = 0~30'nsat(Twall)- (21)

In Egs. (20)-(21), the desorption time was set to be at least 150 s to
avoid numerical difficulties. The vacuum operation is relatively time-
consuming, and we believe enforcing a lower bound of 150 s, which is
relatively short compared to the cycle time of approximately 600 s, is a
reasonable assumption.

3.1.2. Data generation for machine-learning

A total of 1511 points were collected for the ranges of the decision
variables shown in Table 4. From the collected data, 608 points, in the
range of Pgeeq = 500-700 kPa and Cges = 0.70-0.75, which gave unsat-
isfactory performance indicators, were eliminated a priori, resulting in
903 points to be used by the surrogate models. These sample points were
determined by Latin hypercube sampling (LHS), which generate samples
from a multidimensional domain, ensuring a more uniform coverage
compared to simple random sampling (Kim et al., 2022). It divides each
dimension into equispaced intervals and randomly selects one point
from each interval, creating a set of stratified samples. LHS offers the

Surrogate model construction and validation

903 datasets
Training Validation
(70 %) (30 %)

advantage of achieving sufficient accuracy with a smaller number of
samples compared to other sampling techniques (Diwekar and Kalag-
nanam, 1997).

3.1.3. Surrogate models

In this study, multiple surrogate models were constructed utilizing
the PyCaret library (Hao et al., 2021). PyCaret is an open-source library
for automated machine learning (AutoML) in Python that offers auto-
mation and simplification of processes from data preprocessing to model
building, evaluation, and tuning. Various predictive modeling method-
ologies were employed using this library, including linear regression,
tree-based algorithms such as decision trees and random forests,
gradient-based algorithms such as XGBoost and LightGBM, and poly-
nomial projection. These models provide a range of complexity and
flexibility, suitable for different types of data and prediction tasks. We
opted to use the default hyperparameters in PyCaret, which are derived
from extensive empirical testing and optimization across a wide range of
datasets and scenarios. This approach leverages the general applicability
of these parameters, avoiding the potential overfitting that can result
from extensive hyperparameter tuning. To avoid potential data bias and
ensure the reliability of the model, a 10-fold cross-validation was con-
ducted. The collected data points were partitioned into a 70 % training
set, which was used to build the model, and a 30 % validation set, which

Multi-objective optimization,
Pareto front generation,
and model test

| A i
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Fig. 5. Surrogate model construction, validation, multi-objective optimization, and test.
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was employed to test the predictive accuracy of the models. The above
procedure was repeated 10 times shifting the division between the
training and validation sets (Fig. 5). Finally, the predictability of the
surrogate models was tested by comparing the performance indicators
with the rigorous models at four points on the parent front.

3.2. Multi-objective optimization

To identify optimal operating conditions, the following multi-
objective optimization problem was solved.

max Recovery
min Power consumption
min BSF.

(22)

It should be noted that the purity was omitted from the objective
function and constraint equations, as it consistently exceeded 98 %
across all the 903 samples. This high purity is due to the very high COy/
Ng selectivity of ELM-11. Even when we attempted to lower the feed
pressure down to 500 kPa, purity remained above 98 % in every case.
The optimization procedure was implemented within the Python 3.7.9
environment using the Optuna library (Akiba et al., 2019). The repro-
ducibility of the optimization was ensured using the Tree-Structured
Parzen Estimator (TPE) algorithm. The TPE algorithm is a form of
Bayesian optimization designed for efficient optimization of model
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hyperparameters. Specifically, it utilizes the results of past trials to
suggest new parameter combinations to maximize model performance.
Through iterative model building and evaluation, the algorithm pro-
gressively identifies the optimal set of hyperparameters (Lundberg et al.,
2020).

4. Results
4.1. Algorithm selection and validation

By using Pycaret, the most suitable surrogate model developed by
machine learning algorithms was selected considering prediction accu-
racy. First, the training accuracy of the algorithms was evaluated using
mean absolute error (MAE), mean squared error (MSE), root mean
squared error (RMSE), and coefficient of determination (R?) (Table 5(a)
and (b)). These metrics represent the average results from the ten cross-
fold-validation training runs. These metrics show a very similar trend
across the multiple surrogate models, and in this study, the models with
the highest R? values were chosen for further optimization. The Gradient
Boosting Regressor algorithm was chosen for recovery, purity, and BSF,
while the Extra Tree Regressor algorithm was chosen for power
consumption.

Fig. 6 presents parity plots of the predicted results from the surrogate
models and simulation results for the four performance indicators. These

Table 5

Comparison of 18 surrogate models: (a) recovery and power consumption, (b) purity and BSF.
(a)
Recovery of CO2 [%] Power consumption [GJ./tonne-CO-]
Algorithm MAE MSE RMSE R? Algorithm MAE MSE RMSE R?
Gradient Boosting Regressor 0.7629 1.224 1.096 0.9798 Extra Trees Regressor 0.0301 0.0029 0.0516 0.9771
Extra Trees Regressor 0.7303 1.299 1.117 0.9790 Light Gradient Boosting Machine 0.0337 0.003 0.0533 0.9762
Light Gradient Boosting Machine 0.7327 1.326 1.134 0.9784 Gradient Boosting Regressor 0.0369 0.003 0.0538 0.9761
Random Forest Regressor 0.9767 1.798 1.331 0.9701 Random Forest Regressor 0.0383 0.0034 0.0571 0.9726
K Neighbors Regressor 1.355 3.693 1.906 0.9388 K Neighbors Regressor 0.0579 0.0076 0.0856 0.9402
Decision Tree Regressor 1.639 5.226 2.270 0.9109 Decision Tree Regressor 0.06300 0.0083 0.0901 0.9336
AdaBoost Regressor 2.034 6.362 2.507 0.8933 AdaBoost Regressor 0.0835 0.0115 0.107 0.9073
Least Angle Regression 1.987 7.580 2.739 0.8730 Least Angle Regression 0.0932 0.0179 0.1324 0.8563
Bayesian Ridge 1.986 7.580 2.739 0.8730 Bayesian Ridge 0.0932 0.0179 0.1324 0.8563
Ridge Regression 1.985 7.580 2.739 0.8730 Ridge Regression 0.0932 0.0179 0.1324 0.8563
Linear Regression 1.987 7.580 2.739 0.8730 Linear Regression 0.0932 0.0179 0.1324 0.8563
Huber Regressor 1.951 7.744 2.765 0.8712 Huber Regressor 0.0885 0.0189 0.1358 0.8489
Lasso Regression 2.323 11.10 3.305 0.8167 Passive Aggressive Regressor 0.1078 0.0229 0.1494 0.8172
Passive Aggressive Regressor 2.712 13.75 3.672 0.7603 Orthogonal Matching Pursuit 0.1995 0.0575 0.2395 0.538
Elastic Net 3.177 17.80 4.212 0.7034 Lasso Regression 0.2881 0.1279 0.3572 —0.0228
Orthogonal Matching Pursuit 3.930 28.77 5.352 0.5157 Elastic Net 0.2881 0.1279 0.3572 —0.0228
Lasso Least Angle Regression 6.245 61.60 7.822 —0.0266 Lasso Least Angle Regression 0.2881 0.1279 0.3572 —0.0228
Dummy Regressor 6.245 61.60 7.822 —0.0266 Dummy Regressor 0.2881 0.1279 0.3572 —0.0228
(b)
Purity of product CO5 [%] BSF [kga4s/ TPDCO]
Algorithm MAE MSE RMSE R? Algorithm MAE MSE RMSE R?
Gradient Boosting Regressor 0.0427 0.0066 0.0796 0.9099 Gradient Boosting Regressor 33.57 4285 62.20 0.9729
Extra Trees Regressor 0.0406 0.0072 0.0818 0.9069 Light Gradient Boosting Machine 31.71 4490 63.82 0.9715
Light Gradient Boosting Machine 0.0425 0.0075 0.0839 0.8982 Extra Trees Regressor 31.10 5006 65.46 0.9686
Random Forest Regressor 0.0436 0.0076 0.0858 0.8948 Random Forest Regressor 36.96 5942 73.85 0.9622
Decision Tree Regressor 0.0551 0.0115 0.1029 0.8516 K Neighbors Regressor 61.76 9733 97.38 0.9356
K Neighbors Regressor 0.0669 0.0188 0.1326 0.7638 Decision Tree Regressor 57.40 11,441 104.4 0.9243
AdaBoost Regressor 0.1143 0.0190 0.1372 0.7271 AdaBoost Regressor 91.63 13,579 115.1 0.9092
Bayesian Ridge 0.1393 0.0378 0.1921 0.4875 Ridge Regression 93.21 16,431 126.8 0.8926
Ridge Regression 0.1395 0.0378 0.1921 0.4871 Bayesian Ridge 93.27 16,431 126.8 0.8926
Linear Regression 0.1396 0.0378 0.1921 0.4869 Lasso Regression 92.97 16,433 126.8 0.8926
Least Angle Regression 0.1396 0.0378 0.1921 0.4869 Linear Regression 93.33 16,431 126.8 0.8925
Huber Regressor 0.1221 0.0456 0.2084 0.4194 Least Angle Regression 93.33 16,431 126.8 0.8925
Orthogonal Matching Pursuit 0.1579 0.0494 0.2197 0.3281 Huber Regressor 87.91 18,109 132.1 0.8833
Passive Aggressive Regressor 0.1706 0.0593 0.2354 0.2287 Passive Aggressive Regressor 88.70 18,674 134.1 0.8799
Lasso Regression 0.1989 0.0773 0.2737 —0.0175 Lasso Least Angle Regression 91.54 18,862 135.1 0.8778
Elastic Net 0.1989 0.0773 0.2737 —-0.0175 Orthogonal Matching Pursuit 109.7 24,850 155.5 0.8370
Lasso Least Angle Regression 0.1989 0.0773 0.2737 —0.0175 Elastic Net 129.5 32,665 178.7 0.7873
Dummy Regressor 0.1989 0.0773 0.2737 —0.0175 Dummy Regressor 322.3 153,789 390.9 —0.0245
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plots were obtained using a 10-fold cross-validation method, where the
R? values are averaged across the 10-fold runs. The predictability of the
chosen surrogate models was examined using the validation data. As can
be seen in Fig. 6(a) and (d), generally accurate predictions are obtained
for recovery and power consumption. On the other hand, in Fig. 6(b) and
(d), there are samples with significant errors for purity in the lower
range, and for BSF in the higher range. However, these were deemed
acceptable; operating conditions that give such low purity or high BSF
are unpractical and not employed in this study. The Ry value of 0.9099
for purity is relatively low, which is due to the narrow range of purity
which consistently exceeds 98 % because of the very high selectivity of
ELM-11. The predictability of the surrogate models was further tested

Recovery of CO,: Gradient Boosting Regressor
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using four different points on the Pareto front, as shown in Section 4.2.
4.2. Multi-objective optimization

The surrogate models formulated in the previous section are used for
multi-objective optimization here. The Pareto-optimal solutions ob-
tained from our multi-objective optimization formulation given in Eq.
(22), using the non-dominated sorting genetic algorithm II (NSGA-II)
solver in the Optuna package, are visualized in Fig. 7. This exploration,
conducted over a population of 10,000 points, yielded results that were
subsequently plotted in two dimensions.

Some distinctive trends can also be seen in the Pareto fronts in Fig. 7,

Purity of CO,: Gradient Boosting Regressor
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Fig. 6. Parity plot between the simulations using rigorous model of PDAEs with the surrogate model predictions: (a) recovery of COs; (b) purity of CO»; (c) BSF; and

(d) power consumption.
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Fig. 7. The Pareto-optimal solutions of the multi-objective optimization problem: (a) Power consumption vs. recovery; (b) BSF vs. power consumption; (c-1) BSF vs.

recovery; (c-2) zoomed BSF vs. recovery.

which cannot be seen in adsorption processes using conventional ad-
sorbents. In Fig. 7(b) where the power consumption is plotted against
BSF, an “elbow” can be seen in the Pareto front. This indicates that when
we try to save the power consumption below a critical value of
approximately 2.0 GJ./TPDCO2, the BSF increases significantly.
Furthermore, in Fig. 7(c-1), the Pareto front of recovery is nearly ver-
tical. These trends are due to the sigmoidal shape of the isotherm of
ELM-11, where the uptake increase sharply once the pressure exceeds
the gate pressure (Fig. 1).

Specifically, we highlight four exemplary points within these Pareto
solutions, which we have denoted as Cases A through D. Table 6 presents
the results of validating the surrogate predictions against simulations for
Cases A through D. The errors between estimation and simulation are
sufficiently small (< 5.17 %) except for Case D of BSF. The reasons for
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the relatively large errors of over 5 % for BSF Cases D are as follows: first,
unlike other performance indicators, BSF has a wide range of 90-900
kgads/TPDCO,, where Cases A and D are near the maximum and mini-
mum of the BSF, respectively. A specific cause for the relatively large
error of —12.8 % shown by Case D is because of Eq. (20): which was
implemented to enable computational convergence of the PDAEs. The
max function in Eq. (20) introduces nonlinearity and non-smoothness
when the desorption times becomes shorter than 150 s, i.e., when BSF
is small, such as Case D, non-negligible error is observed between esti-
mation and simulation. However, when the desorption time exceeds 150
s, as in Cases A-C, the function does not affect BSF.

Each of Cases A through D exhibits distinctive operating strategies.
Case A minimizes power consumption by maintaining low feed pressure
(Pfeed = 719.1 [kPa]) while employing the high desorption pressure (Cges
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Table 6
Comparison among the cases A-D.
Case A (Low B (High C D (Low
energy) recovery) (Balanced) BSF)
Preeq [kPa] 719.1 1494 847.4 874.0
Twan [K] 273.2 273.3 273.3 292.0
Cags [-] 1.114 1.257 1.233 1.643
Cdes [-] 0.523 0.2010 0.2070 0.2107
Other operational conditions from simulation
Pges [kPa] 12.73 4.896 4.970 9.639
Nvacuum [-] 0.3984 0.2372 0.2394 0.3488
tads [S] 280 410 350 320
tdes [s] 3800 650 700 150
Performance indexes comparison
Estimated recovery [%] 71.33 83.03 80.17 69.20
Simulated recovery [%] 72.01 84.61 81.10 67.56
Error [%] —0.956 -1.91 -1.16 2.36
Estimated power 1.982 2.878 2.165 2.497
consumption [GJe/
tonne-CO5]
Simulated power 1.984 2.875 2.261 2.496
consumption [GJe/
tonne-CO5]
Error [%] —-0.0787 0.133 —4.45 0.069
Estimated BSF [Kgads/ 868.5 132.8 163.2 94.3
TPDCO,]
Simulated BSF [kgaqs/ 823.6 131.8 161.9 106.4
TPDCO,]
Error [%] 5.17 0.764 0.803 -12.8
Estimated purity [%] 99.65 99.97 99.80 99.85
Simulated purity [%] 99.61 99.96 99.89 99.87
Error [%] 0.0399 0.0126 0.0901 —-0.0115

= 0.523 [-], resulting in Pges = 12.73 [kPa]). As seen in Table 6, which
outlines other operating conditions from simulations, Case A shows a
higher Cg4es compared to the other cases, conserving the energy of the
vacuum pump. However, setting a high Cges results in an increased
desorption time (tges = 3800 [s]), leading to the highest BSF among all
cases, at 823.6 kg,qs/TPDCO,. On the other hand, Case B maximizes
recovery; by setting the Pgeq near its upper limit of 1500 kPa and the
Twan and Cges close to their respective lower limits of 273 K and 0.200,
this case shows the highest recovery of 84.61 [%]. However, power
consumption is relatively high at 2.878 GJ/tonneCO5. Case C balances
power consumption and recovery; as in Case B, by setting Ty and Cges
near the lower limit while setting Ppigy to a medium value 847.4 kPa,
high recovery of 80.17 % and low power consumption of 2.165 GJe/
TPDCOs, are achieved. Finally, Case D is a scenario where BSF is low. In
this case, by setting Ty, to a relatively high value of 292.0 K and
keeping Cges low at 0.2107, desorption time is reduced to 150 s. This
reduction in cycle time contributes to the reduction of BSF.

The recovery is <80 % in many cases due to the slipping-off problem
common in flexible MOFs, where CO, below the gate pressure tends to
slip through, resulting in lower recovery. One way to address this issue is
to use the flexible MOF with another adsorbent in series (Hiraide et al.,
2020). However, this paper investigates the achievable recovery for the
single-column VPSA process using ELM-11.

5. Conclusion

In this study, we carried out multi-objective optimization analysis for
a unique adsorbent, Elastic Layer-structured Metal-organic Framework-
11 (ELM-11), in a Vacuum Pressure Swing Adsorption (VPSA) process.
This is the first study to investigate the optimal performance of a VPSA
process using a flexible MOF. To handle the complex characteristics of
ELM-11 such as sigmoidal isotherms with hysteresis that pose consid-
erable challenges in dynamic simulation and optimization, we employed
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a state-of-the-art optimization technique using Automated Machine
Learning (AutoML) and surrogate model optimization, which allowed us
to identify optimal operations for the four objective functions: purity,
recovery, bed size factor (BSF), and power consumption. The trade-offs
of the four objective functions of the flexible MOF were analyzed
carefully.

Our surrogate model, which was found to give the highest prediction
accuracy from 18 candidates, enabled us to examine the impacts of four
decision variables on the performance indicators of the VPSA process.
This investigation facilitated understanding of the relationship between
operating parameters (decision variables) and performance indicators.

Distinct trends of the VPSA process using ELM-11 were found in the
analysis using Shapley Additive Explanations (SHAP). Unlike the con-
ventional VPSA processes where the purity is highly influenced by the
feed volume amount, the CO; purity of our process remains always high,
owing to the high selectivity of ELM-11. Furthermore, it was found that
the column wall temperature and feed pressure have the most significant
impact on recovery, and reducing desorption pressure can increase the
recovery rate by up to 8 %.

Optimal operating conditions were identified through multi-
objective optimization. The surrogate model was validated against the
rigorous model at four exemplary points on the Pareto front. However,
some errors were identified, particularly in the Bed Size Factor (BSF)
ranging in an order of magnitude, which can be a subject in a future
study. While this study considered single-stage compression, it is worth
noting that multi-stage compression can potentially reduce the power
consumption. Furthermore, as demonstrated in the study by Hiraide
et al. (2020), combining multiple adsorbents can lower the pressure,
thereby further reducing power consumption.

The application of a surrogate model-based optimization for the
VPSA process is an effective and computationally efficient approach to
design a CO5 capture system using an adsorbent with sigmoidal isotherm
shapes with hysteresis. Some issues are left for future work, such as
investigations into the capabilities of other flexible MOFs in adsorption
processes.
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