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Abstract—Aiming at learning from a sequence of data instances
over time, online learning has attracted increasing attention in the
big data era. As two important variants, sparse online learning
has been extensively explored by facilitating sparse constraints for
online models such as truncated gradient, ¢; -norm regularization,
¢1-ball projection, and regularized dual averaging; while online
active learning aims to build an online prediction model with a
limited number of labeled instances, deploying the so called query
strategies to select informative instances over time. However,
most existing studies consider sparse online learning or online
active learning with fixed feature spaces, whereby in real practice
the features may be dynamically evolved over time. To the end,
we propose a novel unified one-pass online learning framework
named OASF for simultaneously online active learning and sparse
online learning tailored for data streams described by open
feature spaces, where new features can emerge constantly, and old
features may be vanished over various time spans. Specifically, we
technically develop an effective online CUR matrix decomposition
based on the /; > mixed norm constraint for simultaneously
selecting important up-to-date samples in a sliding window and
facilitating stable and meaningful features in open feature spaces
over time. If the loss function is simultaneously Lipschitz and
convex, a sub-linear regret bound of our proposed algorithm is
guaranteed with. Extensive experiments that are conducted with
multiple streaming datasets have demonstrated the effectiveness
of the proposed OASF compared with state-of-the-art online
active learning and sparse online learning methods.

Index Terms—online learning, active learning, CUR matrix
decomposition, streaming sparse learning, /; » mixed-norm

I. INTRODUCTION

Advanced information technologies have enhanced the abil-
ity to collect, store, integrate, and analyze a large amount
of data, introducing the emergence of new challenges for
data mining and machine learning techniques [2]. In the
big data era, data streams are ubiquitous, for example, the
amount of data captured by sensors, smart phones, and other
digital technologies has skyrocketed [28], [29]. Such streaming
data coming from diverse domains such as financial and
web applications are characterized by high velocity, large
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volume, infinite length and concept drift, providing a real-
time description of our communities, cities, and natural and
societal environments that constantly evolve. Traditional al-
gorithms achieved remarkable performance on static datasets
based on the rigorous assumption that the training and test
sets come from the same distribution and their statistical
properties will be unchanged over time [53]. Nevertheless,
in streaming scenarios, these static characteristics no longer
hold but are more likely evolving in an unpredictable way. To
analyze the streaming data with varying patterns, many Online
Learning (OL) algorithms [1] have been investigated to enable
real time decision-making process, thereby making learning
efficient, scalable and adaptable when processing incoming
instances on-the-fly. In summary, the online algorithms [19],
[26], [39], [45], [49], [51], [53], [58], [64] are more efficient
and comfortable, comparing with the batch offline learning
algorithms, to retrain any existing model with new receiving
data instances.

However, most existing studies [1] consider online learning
with fixed feature spaces, whereby in real practice the features
may be dynamically evolved over time. Though some OL
algorithms [7] can handle an incremental sample space, where
the instances of training data emerge one after the other and
are processed in a single pass, all data instances are posited to
reside in a fixed feature space. Thus, this assumption may not
hold in practice, leading to the traditional OL methods failing
to deal with streaming data with dynamically evolved features.
To wit, consider an urban disaster monitoring system aided
by OL, where streaming data are sent from crowd-sensing
devices such as smart phones and sensor kits/sites that scatter
across a geographically wide region in real time. Fixing the
set of features to be used in a prior is next to impossible for
two reasons. First, new users join the sensing effort would
commit data collected by their own devices (e.g., a new-brand
cellphone), thus introducing new sensory features. Second, as
users may stop sending data for reasons like battery exhaustion
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or network malfunction, any pre-existing features can become
unobserved in later time snapshots. In this study, we coin such
data inputs as streaming data in open feature spaces (SDOFS).

To enable learning in an SDOFS setting, we propose a novel
OL approach that encourages a sparse model solution and
promotes an active learning strategy, termed sparse Online
Active Learning for data streams with Streaming Features
(OASEF, for short). Our key idea is two-fold. First, to tame the
feature space dynamics, we tailor an online passive-aggressive
(PA) program based on the margin-maximum principle. The
proposed PA program reweighs the learning weights at each
iteration only if the increment or decrement of feature space
would incur prediction loss. Second, to encourage model
sparsity, we impose an ¢ o-norm constraint on the PA program
and solve it with a closed-from solution. We leverage an
incremental matrix with memory of the learned feature weights
and apply the proximal operator on it to stabilize the resultant
sparse solution. In the matrix, the learning weights of a
feature should be set to zero consistently over the memory
length, if the feature is irrelevant. We show that our OASF
enjoys a closed form solution, which lends itself amenable for
implementation. Theoretical and empirical studies are carried
out to substantiate the effectiveness of our proposed method.

Specific contributions of this paper are as follows:

1) We explore the sparse active online learning problem in
open feature spaces, with key challenge imposed by the
emergence of new features and the disappearance of old
features over time.

A new algorithm termed OASF is proposed to yield
sparse model solution in the wildly evolving data envi-
ronment. Our solution enjoys a closed form thus compu-
tational efficiency. Details are given in Section III.
Theoretical analysis substantiates the sub-linear regret
bound of OASF. Main results are in Section IV.
Extensive experiments demonstrate the superiority of our
proposal over four the state-of-the-art OL competitors in
error rates, documented in Section V.

2)

3)

4)

The rest of the paper is organized as follows. The related
work is discussed in Section II. Our proposed method and the
theoretical regret bound analysis are elaborated in Sections III
and IV, respectively. The experimental results are reported in
Section V. The conclusion and future work are summarized
in Section VI.

II. RELATED WORK

We relate our proposed OASF approach to two research
threads: online learning in open feature spaces, which per-
forms OL in the same data environment as we do, and sparse
active online learning, which aims to reduce the OL model
dimension and study query strategy but mostly in fixed feature
spaces, while ours are open. Note, we are aware of another
thread of studies termed online streaming feature selection
(OSFES) [43], [44], [46], [47], which are seemingly similar to
our study but essentially different in two aspects. First, OSFS
allows incremental feature input but posits a fixed instance
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space, i.e., all instances are given in advance before feature
selection starts. In our setting, however, the data instances are
presented one after the other like normal streams. Second,
OSFS decouples feature selection and learning, i.e., it selects
a set of highly relevant features at first and then trains and
evaluates a predictive model on it in an offline fashion. Our
setting is more challenging as we need to perform active
learning and feature selection jointly in an online fashion. Due
to the clear disparities, we do not discuss nor compare with
any OSFS studies in this paper.

A. Online Learning in Open Feature Spaces

Combining online learning and streaming feature selection,
Zhang et al. [7] propose an online learning with streaming
features algorithm (OLSF) and its two variants to enable
learning from trapezoidal data streams with infinite training
instances and increasing features. Learning with incremental
and decremental features is crucial but rarely studied, par-
ticularly when the data comes like a stream and thus it is
infeasible to keep the whole data for optimization [8], [9],
[11], [12], [40]. To address the issue, Hou and Zhou [40] study
this challenging problem and present the OPID approach.
OPID attempts to compress important information of vanished
features into functions of survived features, and then expand
to include the augmented features. To handle capricious data
streams with an arbitrarily varying feature space, He et al.
[8] develop an online learning with capricious data streams
algorithm (OCDS) by training a learner based on a universal
feature space that includes the features appeared at each
iteration. Hou et al. [9] propose a Feature Evolvable Streaming
Learning (FESL) paradigm, where old features would vanish
and new features would occur. Rather than relying on only
the current features, FESL attempts to recover the vanished
features and exploit it to improve performance. To explore
online learning from data streams with an varying feature
space, He et al. [11] propose the OVFM method to model
the complex joint distribution underlying mixed data with
Gaussian copula, where the observed features with arbitrary
marginals are mapped onto a latent normal space.

However, few online learners [48] thus have been tailored
for the feature correlations among old feature, survival fea-
tures, and new features when introducing sparsity in the online
models. The main challenge lies in that there is no good mech-
anisms to fairly consider the interactions among these time-
evolving features when they are described by different feature
spaces, which is the gap that our OASF attempt to explore and
fulfill. To that end, we leverage the proximal operator of the
1,2 mixed norm and show that it can be computed in a closed
form by applying the well-known soft-thresholding operator
to each column of the matrix, addressing the challenges in
feature-evolving data streams. OASF employs /1 2-norm as the
distance metric for the suffered loss, and solves the optimal
solution by a non-greedy algorithm, which has a closed-
form solution in each iteration. This mechanism retains OASF
desirable properties for handling feature-evolving data streams
and is robust to outliers as well.
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B. Sparse Online Learning

The goal of sparse online learning is to induce sparsity
in the weights of online learning algorithms [17], ensuring
the prediction model only contains a limited size of active
features. The existing solutions for sparse online learning
can be categorized into two main groups: truncation gradient
based methods and regularized dual averaging based methods.
The former group follows the general idea of subgradient
descent with truncation. For example, Langford et al. [18]
propose a simple yet efficient modification of the standard
stochastic gradient via truncated gradient (TG) to achieve
sparsity in online learning. Duchi and Singer [20] further
propose a forward-backward splitting (FOBOS) algorithm to
solve the sparse online learning problems. However, with high-
dimensional streaming data, the TG and FOBOS methods
suffer from slow convergence and high variance due to het-
erogeneity in feature sparsity. To the end, Ma and Zhang [21]
introduce a stabilized truncated stochastic gradient descent
(STSGD) algorithm. Chen et al. [17] extend TG to cost-
sensitive online learning via truncated gradient (CSTG) and
further propose asymmetric truncated gradient (ATG) [60] for
adaptive online learning. The latter group focuses on the dual
averaging methods that can explicitly exploit the regularization
structure. One representative method is the regularized dual
averaging (RDA) proposed in [22], which learns the variables
by solving a regularized optimization problem that involves
the average of all past subgradients. Lee and Wright [23]
further extend RDA to RDA+ by using a more aggressive
truncation threshold. Ushio and Yukawa [24] propose the
projection based regularized dual averaging (PDA) method
to exploit a sparsity-promoting regularizer. Zhou et al. [25]
propose an online algorithm GraphDA for graph-structured
sparsity constraint problems.

C. Online Active Learning

Active learning has attracted the data mining and machine
learning community in the past decades. This is because it
served for important purposes to increase practical applica-
bility of machine learning techniques, such as (i) to reduce
annotation and measurement costs, (ii) to reduce manual
labeling effort for experts and (iii) to reduce computation
time for model training. Almost all of the current techniques
focus on the classical pool-based approach, which is off-
line by nature as iterating over a pool of unlabeled reference
samples a multiple times to choose the most promising ones
for improving the performance of the classifiers. For the online
and streaming cases, the challenge is that the sample selection
strategy has to operate in a fast, ideally single-pass manner.
Some online active learning approaches have been proposed
in connection with the paradigm of evolving models during
the last decade. For example, Chu et al. [56] propose an
unbiased online active learning to study selective labeling in
data streams. Lu et al. [57] investigate a new online active
learning algorithm (PAA) by adapting the PA algorithm in
online active learning settings. Hao et al. [S9] propose a
second-order online active learning (SOAL) by fully exploiting
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both the first-order and second-order information. Krawczyk
et al. [61] propose three improved active learning strategies
based on learner uncertainty, dynamic allocation of budget
over time and search space randomization for mining drifting
data streams. Shan et al. [62] propose a new online active
learning ensemble framework for drifting data streams based
on a hybrid labeling strategy. Krawczyk et al. [63] propose an
novel active learning approach based on ensemble algorithms
that is capable of using multiple base classifiers during the
label query process, and further improve the instance selection
by measuring the generalization capabilities of the classifiers
to better adapt to concept drifts. Liu et al. [65] develop an
active learning framework (CogDQS) based on a dual-query
strategy and Ebbinghaus’s law of human memory cognition.
Zhang et al. [66] propose a novel online active learning
framework based on sample representativeness.

Unfortunately, none of these methods can be generalized to
open feature spaces. Specifically, for a new feature, its weight
either is initialized as zero, which can be interpreted as irrel-
evant, or is randomly initialized, which would require a suffi-
ciently large number of instances to converge. Likewise, for an
old feature becoming unobserved, no gradient information is
available on its entry, thus its weight is not updated. Both cases
lead to statistical bias. Our OASF approach outperforms the
prior studies by leveraging a passive-aggressive (PA) learner
that 1) apportions the weights from other existing features to a
new feature for its better initialization and 2) redistributes the
weight of an unobserved old feature to other features. Closed-
form solutions are available for both cases, which lends our
OASF an advantage of fast convergence and be integrative to
the tailored sparsity constraints.

IIT. PROPOSED METHODS

A. Problem Statement

We start with a typical SDOFS modeling. Write an input
sequence {(x,y;) | t € [T]}. Bach data instance x; € R% re-
ceived at the ¢-th round is a vector of d;-dimension, associated
with a true class label y; € {—1,+1}. We hereby follow prior
art [8], [10] to restrict our interest in a binary classification
problem, as multi-class setups can be trivially reduced to
binary cases with One-vs-One or One-vs-Rest strategies [16].

At each round, the learner observes x; and returns a
prediction §; = sign(w, x;). The true label y; is then
revealed, and the learner suffers a risk if the prediction
was incorrect, e.g., gauged by hinge loss £ (wy, (@, y:)) =
max (0,1 — y;(w,/ =;)). The learner then is updated to w1
based on the loss information and gets ready to the next round.
Our goal is to find an updating strategy A that minimizes
empirical risk and, more importantly, yields a sparse model
solution over 7" rounds, namely:

(D

min By cipy [l (we, (x4, y1))] + [[wello,
w ERIt

where the fp-norm counts the number of nonzero entries in
weight vector wy.
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The main challenge is imposed by the fact that the feature
space is open and can be either decremental (d;11 < d;) or
incremental (d¢41 > d;), due to newly emerging features or
unobserved old features, respectively. The survived features
are represented by xf, | = @y N @1 Or Wi = Wy N Wiyt
the vanished features are represented by =}, ; = x; \ ;41 or
wy,, = wy \ w41, and the new features are represented by
T = Tpp1 \ Ty OF Wiy = Wri1 \ Wi

B. Online Passive-Aggressive Feature Reweighing

If the feature dimension is decreased from the ¢-th round to
the (¢ + 1)-th round (i.e., d; > d;41), then we decompose the
instance x; = [x{; x| and the corresponding weight vector
w; = [w}; wf], where x§ € R+ is the vector with survival
features and x¢ € R%~d+1 is the vector with vanished
features. That is, 7 and w; have the same dimension as
;41 and w;y;. Moreover, to make the model be robust to
the noise, we use the soft-margin technique by introducing a
slack variable £ into the optimization problem. In this case, we
extend the passive-aggressive (PA) algorithm to update w;
by solving the following optimization task:
argmin llw—wilf+ g @
weR%+1 0,1 < €€R

W41 =

where 1 > 0 is a penalty parameter that can tradeoff
the rigidness and slackness of the online model. A larger
value of p implies a more rigid update step, and (41 =
Cipr(w, (o1, ye01)) = max (0,1 =y (waqq)) is the
loss at round ¢ + 1. Then, we derive the closed-form solution
for the above equation in Theorem 1.

Theorem 1 (Closed-form Solution of Eq. (2)). The closed-
Sform solution for minimizing Eq. (2) is w1 = w; +

L1 (Wi, (Te41,Y641))
x where v; = L .
YtYt+1Tt+1, Yt ”wt+1“§+ﬁ

If the feature dimension is increased from the ¢-th round to
the (¢t + 1)-th round (i.e., d¢ < d;1), then we decompose the
instance xy1 = [x,;x}, ;] and the corresponding weight
vector wy41 = [wi,;wy, ], where @7, € R% is the vector
with survival features and @}, € R%+17% is the vector
with newly-observed features. That is, =}, and wj,; have
the same dimension as x; and w;. In this case, similarly,
we extend the PA algorithm to update w;;; by solving the
following optimization task:

argmin sllw® — w3 + llw™ 3 +pe*  (3)

w=[wwnr]ERMH 414 <€ EER

Wit1 =

where ;1 > 0 is a penalty parameter, and ¢, 11 =
by (w, (o1, y001)) = max (0,1 — g1 (whey)) =
max (0,1 — ye1 (w*) @fy) = yepr (W) T2y y)) is the
loss at round ¢t + 1. Then, we derive the closed-form solution
for the above equation in Theorem 2.

Theorem 2 (Closed-form Solution of Eq. (3)). The gen-
eral update strategy is the closed-form solution of Eq. (3),

Wiy = ['wf+1;’w7§5r1] = [wy +’Ytyt+190f+1§’7tyt+1$?+1],
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max (0,1—yepr1w/ @y 1) Lepr (Wi, (@54 1,y041))
gy I3+ 15+ 5, g I3+, 15+ 57
4 ;0
1 ((wy; ]7(9;t+11:yt+1)), and [wy; 0] € R+,

@1 l3+ 5 :

where v, =

Hence, using the above two strategies with closed-form
solutions, we can alternately update the online model in an
SDOFS setup with widely evolving vanish, survival, and new
features.

C. Memory-aware {1 2-Norm Model Sparsifying

In this section, we consider the problem setting of the
online binary classification task for SDOFS and present the
OASF method to achieve sparse solution by leveraging the
l1- and /5-mixed regularizer. We observe that when using
the /5 norm as the regularization function, we obtain an all
zeros vector if ||lwl|s < A (Theorem 3). The zero vector
does not carry any generalization properties, which surfaces
a concern regarding the usability of the these norms as a form
of regularization. This seemingly problematic phenomenon
can, however, be useful in the incremental online setting. In
many applications, the set of weights can be grouped into
subsets where each subset of weights should be dealt with
uniformly. For example, in the sparse online learning problem
for SDOFS, each sliding window is associated with a different
weight vector w' € R% (I =1,2,---,L). The prediction for
a new instance x is a vector (w!, x), (w? x), ---, (wh x),
where L is the length of a specific sliding window. The
predicted class is the index of the inner-product attaining the
largest of the L values, argmax;c ... 7L}<wl, x). Since all
the weight vectors operate over the same instance space, in
order to achieve a sparse solution, it may be beneficial to tie
the weights corresponding to the input features. That is, we
would like to employ a regularization function that tends to
zero the row of weights w!, wh, ---, wﬁll (l=1,2,---,L)
simultaneously. In these circumstances, the nullification of
the entire weight vector by the /5 regularization becomes a
powerful tool.

Formally, let W € R4*L represent a d x L matrix where the
I-th (Il =1,2,---, L) column of the matrix is the weight vector
w!, where d is the total number of all evolvable features. Thus,
the i-th (: = 1,2, --- , d) row corresponds to the weight of the
i-th feature with respect to all instances. The mixed ¢; o-norm
of W, denoted ||W]|,, ,, is obtained by computing the (o-
norm of each row of W and then applying the ¢;-norm to the
resulting d dimensional vector, i.e., [[W |y, , = Z?:l l|w;||2.
Thus, in a mixed-norm regularized optimization problem, we
seek the minimizer of the objective function,

FW) + AW, )

where f(W) is a loss function, we define specifically
f(W) = Z|W — W% in our study.

Given the specific variants of various norms, the model
update for the ¢; o mixed-norm is readily available. Let

w' € R? denote the I-th (I = 1,2,---,L) column of the
matrix W € R>L je, W = [whw? - w’], and
w' € RY denote the i-th (i = 1,2,---,d) row of the
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matrix W € R¥E je, W = [w';w?; - ;w. Anal-
ogously to the standard norm-based regularization, we let
W, = [[wt_L+1; 0}, [wt_L+2; 0], s [wt; 0]] € R™L be the
incremental matrix with all good feature alignment, where
[w;_141;0] € RY and w;_;qq € R¥-—+1 (1 = 1,2,--- L),
which can be obtained by online learning with decremental or
incremental features or mixed features (Section III-B). For the
{12 mixed-norm, we need to solve the problem,

. 1 2
min W - W AW )
where | - ||% is the Frobenius norm of a matrix and A > 0 is

the regularization parameter.
This problem is equivalent to

d
: [T — i
wetor g epas 210"~ Wil + AR} ©
where w! is the i-th row of Wy. It is immediate to see
that the problem given in Eq. (5) is decomposable into d
separate problems of dimension L in Eq. (6), each of which
can be solved by the procedures described in the following
Theorem 3. The end result of solving these types of mixed-
norm problems is a sparse matrix with numerous zero rows.
In this way, OASF can not only alleviate the curse of di-
mensionality by the incremental learning strategy, but also
promote the sparsity of decremental and incremental features
by considering feature correlations over time. Hence, OASF
has a big potential to improve the prediction performance
compared with most existing methods.

Theorem 3 (Closed-form Solution of OASF). The closed-
form solution of the following (3-norm minimization: w: =

. Lilani  _ ami||2 i -
argming:cge {30 — wilz + A[w'(lo}, where i =
1,2,---,d, is:

iy {0
w, = A —i
(A = e )i

t

if |lwill2 <A

i 7
0 olwil>x

Remark 1: It is worth noting that the {5 regularization
results in a zero weight vector under the condition that
||w¢|l2 < A. This condition is rather more stringent for sparsity
than the condition for ¢; (where a weight is sparse based only
on its value, while here, sparsity happens only if the entire
weight vector has ¢s-norm less than \), so it is unlikely to
hold in high dimensions. However, it does constitute a very
important building block when using a mixed ¢; /¢2-norm as
the regularization function.

In summary, the pseudo codes of the proposed OASF
method are present in Algorithm 1.

D. Online Active Learning through CUR Decomposition

The CUR decomposition [54] provides a low-rank approx-
imation to a data matrix W € R*L. In particular, CUR
decomposes the data matrix W into the form of a product of
three matrices as W ~ CUR, where C € R%*¢ U e R¢*",
and R € R™L (¢ < L and r < d). Unlike other low-rank
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approximations such as Singular Value Decomposition (SVD),
CUR extracts C' and R as small numbers of the column and
row vectors of W, respectively. In other words, C' and R are
subsets of ¢ columns and r rows of the original data matrix
W, respectively. This property helps practitioners to interpret
the result more easily than that in the case of SVD.

Algorithm 1 The OASF Algorithm
Online input: streaming instance x;, 1; true label y,1; reg-
ularization parameter A, penalty parameter i, and sliding
window size L.
Online output: sparse solution, w; 1.
1: Initialization: wy = 0 € R
2. fort=0,1,..., 7 —1 do
3 receive ;1 € R+,
4:  if (dy > dy41) then
5: predict ;41 = sign((w3)T 2,1 1) and receive ;41 €

{_17 +1},
Suffer IOSS Et (’UJt) = €t+1(w§7 (wt+1, yt+1));
7: update wyr; = wi + VYi+1Tip1, Where =

Ligr (Wi (T4, Ye41)) .
[ ’

8: sparse update w1 = argmingcps{sllw’ —
71’%-&-1”% =+ A||,LB1||2}(Z = 1?2a"' 7dt+1) through
Eq. (7);

9:  else if (d; < d;y1) then

10: predict §;41 = sign([ws; 0172, 1) and receive
Yrr1 € {—1,+1};

11: suffer loss £¢(wy) = o1 ([we; O], (@1, Yy1));

12: update  wiiq = [w?, ;wi ] =
(we A+ VYT YT where

_ L ([wei0],(@eq1,ye41) .

e 21 ll3+5 ’ ‘

13: sparse update w;y; = argminu—,ieRL{%Hw’ —
w%+1”% + )‘”wZHQ}(Z = 1a27"' adtJrl) through
Eq. (7);

14:  end if

15: end for

Since the R has been determined by the ¢; > constraint
(r rows of W will be zero vectors in Section III-C), which
imposes sparse rows of the incremental matrix W € RI*Z,
For the selection of C, the optimization problem is defined as
follows

.1
min —

L

i=1

where X € RE*E is the parameter matrix, and 1 > 0 is a
regularization parameter. Given the matrix W, W(;, € RIxE
and W) € R4*! denote the i-th row vector and i-th column
vector of W, respectively. Similarly, given a set of indices J,
Wy and W denote the submatrices of W containing only
J rows and columns, respectively. The term || X ; [|2 induces
X ;) to be a zero vector, where X ;) € R'*% is the i-th row
vector of X. The regularization constant 1 controls the degree
of sparsity of the parameter matrix X. If X(;) = 0 is a zero
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vector, the corresponding column of the data matrix W () can
be considered as an unimportant column for problem (8). On
the other hand, W) is important when the corresponding
X () is a nonzero vector. Therefore, we can select columns
C as W7, where J C [L] = {1,2,---, L} represents the
indices corresponding to the nonzero row vectors of X. Hence,
the proposed OASF algorithm can select more informative
instances in the sliding window incrementally.

E. Coordinate Descent

Problem (8) can be solved by using the coordinate descent
[55]. The algorithm iteratively updates each parameter vector
X ;) corresponding to each row of the parameter matrix X
until X converges. Then, the following equation is used to
update X ;) € RE:

<. _Jo i [Juills < 7 o)
DTV - ) i e >

lwill2
where u; € R'% is computed as follows:

(W)

L
U = (W — WD X ).

j=1.j#i

(10)

where W) e R4*! denote the i-th column vector of W.
Algorithm 2 shows the pseudocode of coordinate descent.
The inner loop (lines 3—4) performs Equation (9) to update
each row of X, and the outer loop (lines 2-5) repeats the
update process until X converges. The computation cost of
Equation (10) is O(L?d) time. Therefore, Equation (9) also
requires O(L2d) time. Equation (9) can be modified to have
O(Ld) time by updating the CUR every L rounds.

Algorithm 2 The CUR Decomposition Algorithm
S [L)={1,2,--- L}, X + 0 € RLXL;
repeat
for i € [L] do
Update X ;) by Equation (9);
end for
until X converges.

AN A > Ao

IV. THEORETICAL ANALYSIS

Clearly, for the online update of decremental features, the
regret of OASF can be bounded by O(+/T) as the conventional
online gradient descent with fixed feature space. Here, we
introduce Lemma 1 and derive the regret bound of OASF with
incremental features in Theorem 4.

Lemma 1. Let (x1,y1), (€2,y2), - , (@7, yr) be a sequence
of training instances, where x; € R%, d; < d;,1, and
ye € {—1,+1} for all t € [T). Let the learning rate -y,
for the online learning with incremental features. Then, the
following bound holds for any w € R (dy < dy < --- <
dy < dp < dr), S0 20 ([we; 0], (@641, Y041)) —
Vell#e1 3 — 201 (M, W, (Teg1,9241))) < [wl]3, where
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My, , ,w =1y, we RYe+1 js the sub-vector of w and has
the same dimension as wyy1 and 4.

Theorem 4 (Regret Bound of OASF). Let
(x1,91), (L2,92), -, (T, y1) be a sequence of training
instances, where ¢, € R¥, d; < dyyy, y; € {—1,+1},
and ||zi||3 < R? (R > 0) for all t € [T). Let

i _ Lo ([wes0], (e 1,8 41))
the learning rate = or the
g " laetil3+s,; I

OASF with online learning with incremental features.
Then, the following regret bound Rrp(w) holds for any
w € R (dy < dy <o < dp <00 < dpoy < dp),

RTT(’Ui) = Z,ET=701 gt—&-l(['wt; 0]7 ($t+17 yt+1) -
t=0 L1 (M, w, (Tes1, Ye41)) < ﬁ(% +

+ (3 + R?)||lwl|]3,  where Ur =

Ur) =z
T—1
\/Zt:o Gy (o, w, (eg 1, Yet1)).

Remark 2: Theorem 4 indicates that the regret bound
of OASF is upper bounded by a sub-linear bound plus
(7 + RB?)|wlf3. If we assume that for any w € R‘T, we
have ||w||3 < C? (C > 0), we can obtain that Ry (w) <
VT($ +Ur) + (ﬁ + R?)C?, which implies that the regret
bound of OASF enjoys O(v/T). Hence, the average regret
bound of OASF is O(\/LT), which will converge to zero as

the number of streaming samples 7" — oo.

V. EXPERIMENTS
A. Datasets and Evaluation Metrics

Eight real-world streaming datasets are utilized in the ex-
periments. Table I summarizes the corresponding number of
samples and features for each dataset. These datasets are also
utilized as real-world streaming benchmarks in many state-of-
the-art studies for mining data streams. We follow the same
protocol of prior studies [7], [8] to simulate the streaming
feature dynamics, where the later inputs tend to carry incre-
mentally more features and decrementally less features. We
split the original datasets into twenty chunks, where in the i-th
(i=1,2,---,10) chunk only the first i x 10% features would
be retained, i.e., the first data batch will retain the first 10%
features and so forth. In the i-th (¢ = 11,12,---,20) chunk
only (21—14) x 10% features would be retained. All the datasets
are implemented with 10% outliers for the experiments. We
use dynamic classification error rate and running time as the
comparison metrics.

B. Competing Algorithms

In the experiments, we compare OASF with four state-
of-the-art online learning algorithms for data streams with
streaming features: OLSF [7], OPID [10], OCDS [8], and
SOAL [59].

C. Experimental Settings

We implement OASF in MATLAB. The MATLAB im-
plementations of OLSF [7], OPID [10], OCDS [8], and

Uhttp://archive.ics.uci.edu/ml/datasets.php
Zhttps://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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TABLE 1
SUMMARY OF THE DATASETS USED IN THE EXPERIMENTS.

Dataset #Samples | #Features | #Classes
dvd books? 2,000 473,857 2
internetads? 1,960 1,558 6
MITFace? 6,977 361 2
musk? 3,062 166 2
nslkdd? 14, 000 122 2
spambase? 4,601 56 2
splice? 1,000 60 2
uspslall? 7,291 256 2

SOAL [59] are conducted from existing studies. For a fair
comparison, the same experimental setup is applied to all
algorithms. After the preliminary studies, we set the length of
the sliding window by L = 100, and regularized parameters
are tested by X\ = 20, u 10, » = 1, and L 100
for OASFE. All other parameter values are determined based
upon the recommendations in existing studies. One hundred
independent runs for each dataset are performed, and the
average result of each method is reported. We perform all
experiments on a Windows machine with a 3.7-GHz Intel Core
processor and 64.0-GB main memory.

D. Dynamic Error Rate Comparisons

As shown in Fig. 1, we investigate the dynamic clas-
sification error rate of all algorithms with the progression
of a data stream. For these eight data streams, the online
average error rate curves of OASF consistently dominate
the corresponding curves of other algorithms without much
variation. The superiority of OASF over others is evident on
the “dvd-books” (1st row, left panel), “internetads™ (1st row,
right panel), “spambase” (3rd row, right panel), and “splice”
(4th row, left panel) streaming datasets. This indicates that
OASF are able to capture the underlying structure of varied
feature spaces associated with the ever-evolving distributions
of streaming data.

E. Dynamic Running Time Comparisons

Fig. 2 presents the online average running time of one
hundred independent runs for all methods on those eight
datasets. The average time consumptions of SOAL, OVFM
and OASF are approximately 2-3 times that of the most
efficient online algorithm OLSF, making the proposed methods
relatively fast to process high-throughput data streams. In addi-
tion, the average time consumed by OASF is still competitive
compared with the second-order sparse online active learning
method SOAL. These results validate the efficiency of OASF
compared with state-of-the-art methods.

F. Parameter Sensitivity Analysis

To run OASF one needs to specify a set of parameters A,
u, 1, and L. Taking the high-dimensional dataset “internetads”
as the example, we summarize the performance of OASF
using the grid search. In Fig. 3, we compare the dynamic
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average error rates when varying these parameters. It is evident
that the performances of OASF are relatively stable without
much variation and the curve is flat when A is in the range
of [0.1,10]. However, the average error rates of OASF are
fluctuated with a general “n” shape as proper p is vital to de-
termine performance of the model. Similarly, the performances
of OASF are relatively stable without much variation when 7
and L are veried in a relatively wide range. Overall, OASF
is relatively robust to parameters p and 7 but is somewhat
sensitive to parameters A and L.

VI. CONCLUSION

In this paper, we focus on a general and challenging setting
- online learning from SDOFS with dynamically vanished,
survived and new features over time by proposing OASF.
By leveraging the power of the ¢; »-norm constraint, we
exploit sparse "non-zero’ weights of the memory-aware matrix,
resulting in truly sparse solutions in this complex prediction
problem. We further utilize the CUR decomposition based
online active learning to select informative instances in the
sliding window over time. We theoretically prove the regret
bound of the proposed OASF method with a sub-linear setup.
Experiments on multiple benchmark datasets demonstrate the
effectiveness of the proposed OASF method over three ad-
vanced state-of-the-art online methods. As part of future work,
we plan to improve the stability of OASF by incorporating
ensemble learning strategies. Also, we may introduce a general
and adaptive robust loss function for OASF to address the
challenges in SDOFS with noise. Another potential direction
is to investigate local adaptive OASF for streaming data in
open feature spaces with concept drifts.
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