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Abstract

Group Fairness-aware Continual Learning (GFCL) aims to
eradicate discriminatory predictions against certain demo-
graphic groups in a sequence of diverse learning tasks. This
paper explores an even more challenging GFCL problem —
how to sustain a fair classifier across a sequence of tasks with
covariate shifts and unlabeled data. We propose the MacFRL
solution, with its key idea to optimize the sequence of learn-
ing tasks. We hypothesize that high-confident learning can
be enabled in the optimized task sequence, where the classi-
fier learns from a set of prioritized tasks to glean knowledge,
thereby becoming more capable to handle the tasks with sub-
stantial distribution shifts that were originally deferred. Theo-
retical and empirical studies substantiate that MacFRL excels
among its GFCL competitors in terms of prediction accuracy
and group fairness metrics.

Code — https://github.com/X1aoLian/MacFRL

Introduction

Group Fairness-aware Continual Learning (GFCL) has re-
cently garnered significant attention due to its applications in
societal decision-making (Chowdhury and Chaturvedi 2023;
Truong et al. 2023b; Zhao et al. 2023). GFCL enables learn-
ing model to adapt to shifting data distributions, jointly opti-
mizing classification accuracy and group fairness (Mehrabi
et al. 2021). The key idea of GFCL is to eradicate superfi-
cial correlation between class labels and protected charac-
teristics, such as gender, age, or ethnicity (Malleson 2018),
across various tasks. To do that, Fair Representation Learn-
ing (FRL) has emerged as an important technique due to its
ease of implementation and reproduction (Oh et al. 2022;
Zhao et al. 2023; Chowdhury and Chaturvedi 2023; Truong
et al. 2023b). Given a sequence of tasks, FRL aims to rep-
resent data from any task into a shared latent space so that
1) the data representations are invariant across all tasks, en-
abling continual learning, and 2) the protected feature infor-
mation is not included, ensuring fair predictions.
Unfortunately, the existing FRL methods for GFCL
mostly suffer from two major drawbacks. First, they heavily
depend on the availability of labeled data, which are costly
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and time-intensive to obtain across multiple tasks, making
them non-sustainable over time. Second, they falter in han-
dling tasks with substantial covariate shifts. Consider, for ex-
ample, a hiring system with different occupations as tasks.
The FRL models require to learn very different representa-
tions to disentangle correlations between protected feature
(e.g., gender) and label (e.g., hire or not), which can vary
significantly across occupations. Enforcing an FRL model
learned from one occupation (e.g., marketing) to make pre-
diction on another very different occupation (e.g., engineer-
ing) may incur a brittle trade-off between stability and plas-
ticity (Kim et al. 2023). That is, the model either persists
in the previously learned representations and hence makes
highly unfair or inaccurate predictions in the new occupa-
tion, or it adapts to the new occupation completely and for-
gets how to make fair predictions on all previous tasks.

In this paper, we aim to overcome the two drawbacks at
once by exploring a new GFCL problem, namely, how to
sustain a fair classifier across a sequence of tasks with co-
variate shifts and unlabeled data?

Our key insight to resolve the problem is drawn from hu-
man learning behaviors. We argue that, like human-beings
who rarely handle tasks in arbitrary orders (Elman 1993),
GFCL should follow an optimized sequence — tasks with
data distributions similar to those previously seen by the
classifier should be prioritized, while tasks with substan-
tially different distributions should be deferred. Such op-
timized task sequence encourages high-confident learning,
where the classifier after learning from multiple prioritized
tasks can gradually become more knowledgeable to handle
the deferred task. We cast this insight into a novel GFCL
approach, termed Metric-agnostic continual Fair Represen-
tation Learning (MacFRL), which proceeds in three main
steps. First, a fair classifier is initialized with its training
dataset retained, and a set of subsequent tasks are fetched
in the buffer. Second, MacFRL gauges the distance between
the retained dataset and each buffered task, selecting the
most similar task as the next candidate to be learnt. A shared
representation space is induced from the classifier and the
selected task using domain adaptation with group fairness
constraints. Third, data instances predicted with high con-
fidence from the selected task are merged into the retained
dataset, enlarging the classifier’s knowledge scope to pre-
pare it for the less similar tasks. The learned task is then



replaced by an incoming task in the buffer. The second and
third steps iterates until the task sequence ends.

The remaining questions are 1) how to gauge task dis-
tance with no label in the selected task and 2) how to mea-
sure the prediction confidence. For 1), MacFRL employs an
elastic representation learning network with adaptive learn-
ing capacity, allowing it to operate without relying on any
specific distance metric. The task distance is measured by
the dynamics of learning invariant fair representations be-
tween the retained dataset and the selected task. If a highly
complex network is required for invariance extraction, their
distance is large. For 2), MacFRL uses density-based con-
fidence measurement based on the representations learned
from the elastic networks in different capacities, where the
predicted instances with high confidence are those falling
into high-density regions with the same predicted class.

Specific contributions of this paper are as follows:

i) We explore a new GFCL problem with sustainable la-
beling effort, where only one task is labeled to initialize
the fair classifier, and all other tasks with shifted distri-
butions are unlabeled.

ii) We propose a novel MacFRL algorithm with optimized
task sequence to mitigate the stability and plasticity
trade-off. Task distances are measured through learning
dynamics of a tailored elastic network, making MacFRL
label independent and metric agnostic.

iii) We analyze the empirical risk bounds of the elastic net-

work design and the usefulness of task reordering, de-

ferred to Section 2 of supplementary material.

Our empirical studies on eight benchmark datasets sub-

stantiate that MacFRL outperforms its five state-of-the-

art competitors on average by 12.7%, 42.8%, and 28.4%

in terms of prediction accuracy, demographic parity, and

equalized odds, respectively.

iv)

Preliminaries

Given a sequence of tasks {7; | ¢ = 0,1,..., N}, in which
only the first task 7o = (Xo,¥yo0,Po) has labeled data, and
the other tasks {7; = (X;,p;)}Y remain unlabeled. Let
X; € RI7ilxd and p; € {0, 1}/ denote the d-dimensional
instance vectors and the protected feature of the i-th task,
respectively, and yo € {0,1}/70! be the true labels of task
To. Let the joint probabilities P(Y;, P;) # P(Yj, P;) for any
i # j, reflecting the shifting distributions across tasks.

At each round i, the model predicts a task 7; and returns
the predicted labels y;. After N rounds, the true labels of
all tasks are revealed y1,...,yn. The goal of sustainable
group fairness learning is to learn a fair classifier f : X —
y with empirical risk minimization (ERM) constrained by
group fairness measurement (GFM), defined as:

min B, yoepryy, Vi # FXol,

N
subject to Z GFM(T;) <e,
i=1
where € is the fairness threshold and the GFM constraint

can be implemented with demographic parity (DP) (Feld-
man et al. 2015), equalized odds (EO) (Hardt, Price, and

ey
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Srebro 2016; Alghamdi et al. 2022), or other metrics based
on the domain requirements. In this paper, we employ DP
and EO differences:

App(Ti) =[P(Y; =1| P =0)—P(¥; =1| P =1)],
Apo(T) = Y;rl{%ﬁ}{\IP’(ﬁ; =1|P, =0,Y) - P(Y; =1|P; = 1,Y)]},

where minimizing App ensures all groups enjoy equal
probability of being predicted as positive. Note, App fo-
cuses on the predicted results only, regardless of the predic-

tion accuracy (e.g., can incur many }72 =Y cases). To avoid
such cases, Ago requires the all groups have equal proba-
bilities to be classified (or misclassified) as positive, which
eliminates the negative affect.

Note, our method can be easily extended to handle multi-
class scenarios, including multiple protected features and
multiple label categories. First, if the data contains various
protected features, e.g., gender and age, the group fairness
difference for each feature is calculated, and the maximum
value among them is reported. Second, if a protected feature
or label consists of multiple classes, for instance (e.g., the
ethnicity feature includes various ethnic groups), the differ-
ence for each pair of ethnic groups is computed. The overall
fairness measure is determined by taking the largest differ-
ence among these pairs (Denis et al. 2021).

Proposed Approach

Unsupervised Domain Adaptation with Protected
Feature Obfuscation

In scenarios where new tasks arrive without labels and un-
der different distributions, our method ensures continuous
learning without performance degradation. We illustrate this
with an example involving two tasks in an unsupervised do-
main adaptation (UDA) regime (Ganin and Lempitsky 2015;
Madras et al. 2018a; Truong et al. 2023a), showcasing how
our approach adapts to these challenges. Specifically, let
R denote a retained dataset at the i-th round, and the la-
beled Ty = R© for initialization. Given a new task 7;, UDA
seeks to learn a latent representation that aligns closely be-
tween R(® and T;, even in the presence of distributional
discrepancies. Let m = {0, 1} denote the task membership,
where m = 0 corresponds to instances originating from R(*)
and m = 1 to those from 7;. The target is for the model to
produce representations such that a classifier D : X — m
is unable to distinguish the task membership of any instance.
A representation is considered task-invariant if a mapping ¢
effectively obfuscates its task membership.

We leverage this idea to debias the protected feature in-
formation in latent representation as well. Consider any in-
stance x € R+ that includes the protected variable p € P.
Upon its learned task-invariant representation ¢(x), we train
a classifier g : X + p that treats the protected feature
as target variable. A maximin game ensues between ¢ and
g (Zemel et al. 2013; Madras et al. 2018a; Rezaei et al.
2021), where g endeavors to maximize its prediction accu-
racy for p while ¢ strives to obfuscate g by minimizing its
performance. The crux of this adversarial setup lies in the
ability of g to predict g(x) = p by discerning demographic
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Figure 1: T-SNE visualization of (a) original data and (b)
latent representations of the Bias-MNIST dataset, adapted
from Section 4. Shape and color represent different digital
types and background colors (i.e., protected feature), respec-
tively. The dash line indicates classification boundary. The
classifier in (a) is biased, because the digits are classified
based on their different background color. Adversarial learn-
ing results in more fair classifier in (b), where the protected
feature information is obfuscated, with classifications made
based on digital types (i.e., class labels).

information, such as p = 1 or p = 0, from the original x.
However, if g struggles to predict the representation ¢(x),
it indicates that the protected feature information has been
debiased from ¢(x). We frame this intuition in an objective
function, defined as follows:

max min EFairUDA

9,D o.f = E(xvy)eR(” [é(y, f(¢(x))>]

“ME o crou [ DOG)) + et (p. g(6(x)))]

@)
where f, D, and g are classifiers trained by treating the
groundtruth label y, task membership m, and protected fea-
ture p as target variables, respectively. The loss function
(-,-) gauges the discrepancies between the true and pre-
dicted variables. Two positive parameters A\; and A, balance
the scales of different terms. Note the minus sign that indi-
cates the maximization of the prediction losses on m and p.
After optimizing Eq. (2), we envision the learned represen-
tation ¢(x) to i) satisfy f by enabling accurate prediction on
the labeled retained dataset R(*) and ii) obfuscate D and p
so as to make ¢(x) a task-invariant and debiased represen-
tation of the original input x across R(*) and 7;. To validate,
we adapt experimental results from Section 4, as shown in
Figure 1. Digit numbers 0 and 4 after optimizing Eq. (2) are
represented in a latent space, where the superficial correla-
tion between protected features (i.e., background color) and
labels (i.e., digit types) is eliminated.

Elastic Fair Representation Learning Network

To avoid negative transfer, the model must select the new
task most similar to the current retained dataset distribu-
tion, even without labels. To achieve this, we propose the
elastic fair representation learning (EFRL) network, which
is tailored to intermediately gauges task-wise distances. A
key trait of our EFRL design is its adaptive learning capac-
ity (Ganin and Lempitsky 2015; Long et al. 2015), which
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differs from traditional neural networks that mostly employ
static and predetermined architecture. Unlike traditional net-
works that use a fixed number of hidden layers for represen-
tation learning, the network depth of EFRL is a learnable
parameter. Intuitively, EFRL expands or contracts its depth
in response to the complexity of the task at hand. Specifi-
cally, if the incoming 7; is more distant from R(?) in terms of
protected feature distribution, a more complex mapping ¢ is
necessitated to satisfy the equilibrium of task-invariance and
fairness between them as outlined in Eq. (2). Hence, EFRL
responds by deepening its representation layers to approxi-
mate the required complex ¢ mapping.

To implement the intuition behind EFRL, we build an
over-complete neural network consisting of L layers (with
L sufficiently large). Each of its [-th layer is assigned with a
weight parameter ("), The output of each intermediate layer
is fed into the classifiers f, D, and g. The predictions from f,
D, and g at the [-th layer are denoted as (V) = £ (¢ (x)),
i@ = DGO ), and pO = gO (G (x)), respec-
tively. The mapping ¢!) receives the representation learned
from the previous layer in a recursive formulation:

oV(x) =00 " M (x), ¢V(x) =x, 3)

where 0; parametrizes the [-th representation layer and o de-
notes a non-linear activation such as sigmoid, ReL.U, etc.

The learned depth of EFRL is reflected by the dynamics of
the layer weights {a("), ..., a%)}. In this paper, we lever-
age Hedge BackPropagation (HBP) (Freund and Schapire
1997; Sahoo et al. 2018) to update the weight oY) for each
layer, with the updating function defined as follows.

vl € [L],

!
a(l)/@LI(EF)RL
= 5

) s
o'’ + max T (o
L Zf:l a(”/BLEFRL

}, val € (0,1), @)

Lippr, = Z [z(%g(l)

T

)= [e(m,mn®) + 22t(p,5V)]], 6

where 1" denotes a fixed number of training epochs across
all layers. The parameters 5 € (0,1) and s € (0, 1) are the
discount rate and smoothing threshold of HBP, respectively,
which control the aggressiveness for updating layer weights.
It is trivial to observe from Eq. (4) that ), a® = 1. We
further draw comparison between Eq. (2) and Eq. (5) to ob-
serve that the EFRL network strives to expedite convergence
in the maximin optimization by instilling a competitive dy-
namic among representations derived from all intermediate
layers. This is achieved by weighting representations based

on their loss performance EI(EQRL within an epoch window
of size T Intermediate representations that ensure accurate
label prediction, task invariance, and debiasing of protected
features are prioritized, with higher weights assigned to the
layers producing these representations.

Intuition: the learning dynamics of EFRL network. We
conceptualize the layer weight dynamics during three EFRL
learning phases as follows. First, at initial stage, shallower
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Figure 2: Layer weight dynamics of EFRL network during
training. Three tasks 7y (i.e., R(©)), 77, and T3 are reduced
from the Bias-MNIST dataset, where R(®) is more similar
to 77 and distant from 75. Given different UDA settings, the
layers that converge with large weights are (a) shallow or (b)
deep. After learning , R() = R() U 77 gleans knowledge
from it, and EFRL now (c) uses shallower layers for UDA.

layers (denoted by smaller /) tend to dominate due to faster
convergence rates. This is attributed to the diminishing fea-
ture reuse phenomenon (Huang et al. 2016; Larsson, Maire,
and Shakhnarovich 2017), where deeper layers can dilute the
semantic meanings of raw inputs through random parame-
ter initialization. Second, as learning progresses, deeper lay-
ers begin to take over by gradually increasing their associ-
ated weights o). This is because deeper layers with expan-
sive learning capacity are adept at yielding representations
that obscure protected features and extract task-invariant in-
formation, i.e., enlarging £(p, p*)) and ¢(m,m"), respec-
tively. This dual capacity empowers these layers to optimize
Eq. (5) at their respective depths. Third, in post-convergence
phase, the weights oY) of excessively deep layers (i.e., very
high /) remain minimal. Despite their depth, these layers ac-

crue substantial loss ) . Ll(ilgRL over the epoch window. This
loss culmination results in an experiential (albeit discounted
by /3) decrease in the value of o).

Verification of EFRL intuitions. We carry out both theo-
retical and empirical studies to rationale our EFRL design.
Theoretically, we derive Theorem 1 in Section , which sug-
gests the existence of an optimal, intermediate layer {* €
[1, L], and that our EFRL network can approximate a net-
work trained with fixed-depth [*, while knowing the exact
value of [* across all tasks is impossible beforehand. Exper-
imentally, we follow the study by (He et al. 2021) to visual-
ize the dynamics of layer weights during training, as shown
in Figure 2. We make three observations. First, while the
incoming task 77 is close to R(?), shallow layers would suf-
fice to approximate a simple mapping ¢, with deeper lay-
ers stay non-activated. Second, enforcing UDA from R(®)
to a dissimilar task 75 is likely to incur negative transfer,
as the EFRL network ends up with assigning large weights
on the deepest layers. Third, with 75 postponed after 77
learning, the shallower layers in EFRL can approximate a
comparatively simpler mapping ¢, where the deepest layer
has a lower weight value. These observations support using
learned layer weights in EFRL to quantify the relative dis-
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tance between retained data and incoming tasks. An over-
complete network is not employed to enhance the model’s
representation learning capacity. Instead, it is used to pro-
vide greater flexibility in adaptively adjusting the model’s
depth through HBP, with a focus on learning dynamics.
NAS (Liu et al. 2018) offers a similar function, however,
its higher computational cost limits the efficiency in CL.

Sustaining Group Fairness with Task Reordering

Layer weights, computed using labels, protected attributes,
and task membership, can represent the depth of the model
through the largest weight. However, using only the learned
EFRL network depth to quantify similarity is insufficient,
considering the case that two tasks require the same num-
ber of layers for UDA with the current retained dataset R(").
We propose to use weighted entropy @ (Guiagu 1971) for
this scalar, defined as Q = — 3.1, 1 - o loga®. Con-
ceptually, a larger @ reflects two possible converged states —
either that 1) deep layers are with large weights thus domi-
nate the predictions or that 2) the weights of all layers fol-
low a uniform distribution. Otherwise if () is small, all large
weights are converged to shallow layers, making deep lay-
ers trivial in learning representations. As such, a buffer with
size k is used to contain k new coming tasks with & values of
@’s, each of which is resulted from training EFRL between
its corresponding task 7; and R(*). We can now prioritize
the task with the lowest @) value for UDA, transferring label
information from R(*) to 7;, with respect to group fairness
constraints. Tasks with substantial distribution shifts are de-
ferred. Upon completion, the instances from the learned task
are assimilated into R() for knowledge augmentation, en-
riching the subsequent task selection and learning phases.
The size of the buffer balances the efficacy of task reorder-
ing and the sequential nature of CL.

There are two reasons for using a selective approach to
augment the retained dataset R(). First, the default/orig-
inal task sequence may present in more harsh setting for
CL. In practice, most tasks waiting in the buffer could be
considerably distant from R, to the extent that no in-
stance fosters a task-invariant and debiased representation
between them. Enforcing UDA between two tasks with dif-
ferent distributions can lead to erroneous and unfair predic-
tions, which could cascade through subsequent tasks and
compromise the entire CL pipeline. Second, as our model
learns from an increasing number of tasks, the size of the
retained dataset increases sharply, potentially leading to un-
manageable memory overhead. To enable selective knowl-
edge augmentation for better task sequencing, we integrate
the instances predicted with high confidence, with the con-
fidence level gauged by margin (Elsayed et al. 2018; Yan,
Guo, and Zhang 2019):

L Egnog [~ 6069 6 ()l

- , (6
S e D [~ 16060 — g0 )] @

max
x~Ti

=1

where 7; is the selected task. At the {-th layer, x/ € N (x)

is a data point in x’s nearest neighbors, predicted as §7 =



FW(¢®(x7)). From a geometric perspective, the prediction
confidence of an instance correlates with its margin from
the decision boundary. Eq. (6) reflects this measurement. In
Eq. (6), an instance x garners high value (confidence) if 1)
it is close to its nearest neighbors, indicating dense cluster
(low denominator) and 2) its neighbors mostly fall within the
same class, signifying a large margin (high numerator). Inte-
grating instances with a large margin thus equates to choos-
ing those predicted with high confidence. The continuum
of EFRL training, task prioritizing, and selective knowledge
augmentation executes until the task sequence is exhausted.

Theorem

We firstly investigate the performance gap between EFRL
that learns the optimal model depth from data and the oracle-
powered model that is always initialized with optimal depth.

Theorem 1 In epoch window T, MacFRL suffers cumula-

tive loss:
4 InL
. 1),t
Lyacrrr < Cp - Hll*ln{ t§:1 ‘CEFRL} 1-5

where Cz = In(1/8)/(1 — 8) > 0 is a monotonically de-
creasing scalar.

L

(N

=1

Remark 1. A hindsight optimal model of which the op-
timal depth [* that yields the least learning loss over T’
rounds, presented as the above equation, provides a natu-
ral upper bound of our MacFRL model. Theorem 1 sug-
gests that our model is comparable to this optimal model
(¢f limg_,1 Cg =1, InL/(1 — ) < 0). As in practice the
optimal [* is unknown and can vary according to datasets,
it is not realistic to conduct a set of experiments to decide
the optimal depth for each dataset. Instead, our method can
help the model automatically learn the optimal depth at each
round and achieve the comparable cumulative loss. Hence,
MacFRL strictly enjoys a lower CL risk over neural archi-
tectures with depth fixed in ad-hoc.
Second, we analyze the usefulness of task reordering.

Theorem 2 Denoted by eg:)(h) and er;(h) the empirical
risks suffered by using h to predict data in R\ and T;, re-
spectively. Let H be a hypothesis space on X with VC di-
mension d. |[R™| and |T;| are samples of size n from two
domains R and T; respectively. For any § € (0,1), with
probability at least 1 — 9,

. 1. .
e, (h) < egy(h) + idHA’H (|R(l)\> \ﬁ)

dlog (2n) + log (2
+4\/ g (2n) g(5)+7

®

4n

Remark 2. This bound establishes a relationship between the
empirical risks and the H-divergence of enriching dataset
and the candidate task. It indicates that the additional risks
associated with EFRL are solely influenced by the distance
between R(*) and 7T;. In particular, if this distance is no
greater than (1/2)dyas (R, |7;]), our MacFRL model
enjoys an O(y/dlogn/n) empirical risk of UDA, which di-
minishes in a CL continuum with more task inputs.

18652

Experiments

Data Sets. Eight real-world datasets from various domains
set up the benchmark, with their statistics summarized in
the table below. We follow (Le Quy et al. 2022) to define
the protected features. Details of the studied datasets are de-
ferred to Section 3 of supplementary material.

No. Dataset #Samples  # Features #Tasks y|0:1 p|0:1
1 Adult 30010 15 12 75:25 32:68
2 KDD Census-Income | 199523 41 9 94:6 52:48
3 Bank marketing 31647 17 12 88:12 40:60
4 Dutch census 42125 12 10 52:48 50:50
5 Diabetes 71236 50 9 54:46 46:54
6 Law School 14298 23 6 5:95 16:84
7 Bias-MNIST 60000 28.28-3 5 10:...:10  68:32
8 CelebA 100000 178 -218-3 5 49:51 42:58

Table 1: Statistics of the 8 datasets.

Experimental Setup Our experimental results are ob-
tained through 5 repeated runs to ensure reliability and min-
imize the effects of randomness. All experiments are con-
ducted on virtual machines configured with 4 x Intel(R)
Xeon(R) Gold 6148 CPUs, one Nvidia V100 GPU, and
16GB of RAM. The model for FaDL is implemented using
the Fairlearn package (Bird et al. 2020).

Competitors. Five rival models are employed for compar-
ative study. ULLC (He et al. 2021) is a CL method which
only focuses on maximizing accuracy. Group fairness con-
straints are applied on learned representations after training.
FaDL (Zhang, Lemoine, and Mitchell 2018) employs ad-
versarial training to debias intermediate representation with
fully labeled data. FalRL (Chowdhury and Chaturvedi 2023)
prevents forgetting in CL with data replay. Partial instances
from previous tasks are randomly sampled for later tasks. It
postulates full access to labels. UnFalRL ablates FaIRL by
removing the labels of subsequent tasks. To wit the perfor-
mance skyline, we let the method Skyline jointly learn all
tasks in an offline, multi-task learning setting with full la-
bels, building an upper bound in both accuracy and fairness.

Metrics. We use three metrics tailored for continual learn-
ing. For prediction accuracy, we use the average accu-
racy (Lopez-Paz and Ranzato 2017) across all tasks up to the
current task 7;, defined as Accuracy = 1/N Ziv Acc(T;),
where Acc(7;) returns the accuracy on 7;. We extend the
group fairness metrics A pp and A go in CL contexts as fol-
lows: DP = SN (w0, App(T;), EO = SN |wiAgo(T),
and w; = |T;|/ va |Ti|, where App(T;) and Ago(T;) re-
turn the demographic parity and equalized odds differences
on the predicted 7;, respectively, as defined in Section 2.
| 7;| denotes the number of instances in 7;. w; represents the
proportion of each task’s sample size in the entire dataset,
which alleviates the negative impact of different task sizes.
For multiple-class datasets such as Bias-MNIST, we fol-



No. | Dataset Skyline ULLC ‘ FaDL FalRL UnFalRL MacFRL
Evaluation Metric = Accuracy (1) where higher values are better.
1 | Adult 799 £.000 | .780+.006 | .720 £ .001 651 £.082 | .728+£.007 | .733 £.013
2 | KDD Census-Income | .944 +.000 | .792 +.013 | .678 4+.000 .605 £.133 | .714+.006 | .722 4 .006
3 | Bank marketing .891 £.000 | .710 £ .022 .684 £ .000 .b80 £.072 | 722+ .006 | .730 £+ .006
4 | Dutch census 789 £.000 | .717+£.011 | .526 £.000* | .472+.116 | .747+.001 | .752 4+ .001
5 | Diabetes .618 £.000 | .565 +£ .005 459 £ .002 501 £.030 | .584 £.001 | .590 +.001
6 | Law School 936 £.000 | .924 £ .006 .905 £ .000 .640 £.088 | .933 £.001 | .939 £+ .002
7 | Bias-MNIST 973 £.087 | 913 £.062 .888 £ .066 N/A** .895 £.078 | .929 + .088
8 | CelebA 715 £.005 | .762 £ .002 542 £ .058 | .631 +.024 | .603 +.021 | .630 £ .032
Evaluation Metric = Demographic Parity (|) where lower values are better.
1 | Adult .062 £.000 | .127+£.038 155 £.001 160 £.095 | 122+ .023 | .042 +.007
2 | KDD Census-Income | .003 £.000 | .170 £ .016 .067 £ .000 122 £.093 | .041+.011 | .020 £+ .003
3 | Bank marketing .016 £.000 | .049+.020 | .0324+.000 | .138+.127 | .052+.004 | .046 4 .005
4 | Dutch census .049 +£.000 | .143+£.015 | .011 +.001* | .266 £ .246 | .099 +.002 | .107 £ .005
5 | Diabetes .043 £.000 | .042 +£.034 037 £.012 137 £.106 | .047£.004 | .004 +.001
6 | Law School .016 £.000 | .149+£.018 .279 £ .000 225 £.153 | .034 £ .001 | .002 £+ .000
7 | Bias-MNIST 136 £.022 | .302+.071 267 £ .054 N/A** 239 £.061 | .151+.010
8 | CelebA 228 £.017 | .409+.001 | .1454+.012 | .231+.016 | .226 +.008 | .215 =4 .005
Evaluation Metric = Equalized Odds (]) where lower values are better.
1 | Adult 163 £.000 | .214 £.018 218 £.001 196 £.082 | .210+.014 | .178 +.005
2 | KDD Census-Income | .220 £.000 | .256 + .021 .087 £ .000 168 £.101 | .163 +.011 | .077 +.003
3 | Bank marketing .209 £.000 | .153 £.031 131 £ .000 124 £.094 | 143+ .005 | .122 4+ .008
4 | Dutch census .3624+.000 | .171+£.016 | .009 +£.000* | .167 £.155 | .136 +£.001 | .115+.007
5 | Diabetes .038 £.000 | .078 £.029 .027 £ .001 073 £.032 | .060+.001 | .022 4+ .002
6 | Law School .366 £.000 | .514 £ .025 .285 £ .000 228 £.133 | .168 £.002 | .096 +.001
7 | Bias-MNIST 139 +£.043 | .333+£.110 319 £ .092 N/A** 243 £.098 | .141 + .100
8 | CelebA 110 £.008 | .263 £ .002 322 £ .016 167 £.019 | .190 +.011 | .160 £+ .012

++ N/A indicates that FaIRL is not applicable on the Bias-MNIST dataset as it is tailored for binary classification, while Bias—-MNIST has ten class labels.

*: Note, FaDL suffers substantial tradeoff between accuracy and fairness; in settings where FaDL obtains the best DP/EO performance, it incurs substantial accuracy decrease.

Table 2: Comparative results on 8 datasets with 3 metrics in mean * standard deviation format. Bold values represent the best

results except for Skyline with less restrictive settings.

low (Hardt, Price, and Srebro 2016) to take the most unfair
class that returns maximal EO value for calculation.

RQ 1: How does our MacFRL approach compare to
the state-of-the-art group fairness methods?

We make three observations from Table 2 and Figure 3.
We compare our MacFRL with three fairness-oriented com-
petitors, FaDL, FalRL and UnFaIRL. To ensure level com-
parison, confidently labeled instances (in Section ) are re-
played across all three methods. Against FaDL, MacFRL
outperforms on all 8 datasets in terms of accuracy, ex-
ceeding FaDL by over 5% on KDD Census-—income,
Dutch, Diabetes, and CelebA. MacFRL leads on 4 and
7 datasets for DP and EO, respectively. While FaDL has
lower DP on Dut ch, its accuracy is only 52.6%, nearly 20%
lower than ours. Compared to FaIRL, MacFRL surpasses in
20 out of 21 results, notably achieving an average DP reduc-
tion of 12.4%. While UnFalRL matches our accuracy, it falls

short in DP and EO in 14 of 16 cases.

Second, Skyline and ULLC, which are evaluated in less
restrictive settings, outperform our MacFRL only at minor
margins. However, Skyline only outperforms MacFRL on
both EO and accuracy in 2 out of 8 datasets, with 1% and 5%
increases, respectively. MacFRL enjoys the highest accuracy
with 93.9% and lowest DP and EO with 2% and 9.6% on
Law School, respectively. ULLC only excels in accuracy
on two datasets, however, MacFRL outperforms ULLC in
DP and EO by decreasing them by 12.3% and 12.7% on
average, respectively. In Dut ch, the DP of ULLC is 37.8%,
nearly 4x greater than ours.

Third, in Bias-MNIST, MacFRL only ties with Sky-
line by achieving 92.9% prediction accuracy and 14.1% EO,
which outperforms all other methods on average by 3.0%
and 17.9%, respectively. In CelebA, MacFRL lowers the
values of DP and EO of ULLC, from 40.9% and 26.3% to
22.3% and 19.1%, respectively. Only FaDL achieves better
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Figure 3: The trends of Accuracy (top row), Demographic Parity (middle row) and Equalized Odds (bottom row) of our MacFRL
approach and its 5 competitors on 5 datasets w.r.t. the input sequence of tasks.

performance than our MacFRL in terms of DP. However, its
corresponding accuracy and EO are worse than ours by 9%
and 16.2%, respectively. These results demonstrate the su-
perior generalization performance of our MacFRL on both
traditional tabular data and high-dimensional images in a CL
context with one-time labeling effort only.

RQ 2: How does similarity-based task reordering
sustain group fairness in continual learning?

We answer this question by comparing our MacFRL with
three rival models, FaDL and FalRL and UnFalRL. First,
although none of the three competitor models possess re-
ordering, FalRL shows the worst performance, providing
higher DP and standard deviations in all settings. This in-
stability suggests that, without task re-ordering, FaIRL is
either unable to make fair and accurate predictions in new
tasks with distribution shifts.

Second, FaDL performs better than FaIRL but stays infe-
rior to our MacFRL. MacFRL outperforms FaDL in 20 out
of 24 settings. Particularly in Dutch census, the accu-
racy of FaDL is only 52.6% while that of MacFRL is 75.2%.
As shown in Figure 3c, the performance of FaDL on each
task exhibits a trend opposite to that of our method. When
examining tasks 77 and 75, which display distributions dif-
ferent from the other tasks, our method reorders the learning
sequence to postpone learning 7; and 7> until the end. In
contrast, FaDL forces itself to learn these two tasks early
on because they are adjacent to 7. As a result, FaDL only
propagated knowledge related to fairness to the next task but
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ignored label information. Although FaDL performs better
accuracy on the first four tasks of Bank marketing, its
result declines after undergoing the learning of 74, and be-
comes worse than ours in Figure 3b. Without re-ordering,
their learning process cannot avoid negative transfer cause
by 74. To compare, although our method makes more mis-
takes during 7; and 72, these mistakes do not impact the
model performance on other tasks.

Third, as shown in Table 2, MacFRL outperforms Un-
FalRL across most settings and achieves higher accuracy
on all datasets. This advantage is especially evident in
Diabetes and Law School, where MacFRL achieves
DP of 0.4% and 0.2% compared to UnFalRL’s 4.7% and
3.4%, respectively. These results suggest that MacFRL can
offer superior prediction accuracy and group fairness be-
cause it reorders the learning sequence.

RQ 3: How sensitive are the tuned parameters to
the tradeoff between accuracy and fairness?

We first evaluate the accuracy-fairness tradeoff on Bank
marketing by sweep g in [0.1, 0.08, 0.06, 0.04, 0.02].
Figure 4 shows the tradeoff curves (left to right) for all three
methods as A\, decreases. Because this hyper-parameter also
controls the accuracy-fairness balance for two rivals FaIRL
and FaDL, the same range is used. FaDL demonstrates mini-
mal sensitivity to changes in Ao, maintaining stable accuracy
but at the cost of lower fairness, as indicated by small im-
provements in DP and EO. On the other hand, FaIRL shows
that its accuracy decreases as fairness improves, which is



more sensitive to the A2 change. Our method MacFRL also
shows that the larger (small) Ao, the better (worse) model
fairness and the worse (better) model accuracy. Moreover,
MacFRL maintains the highest accuracy among the three
methods while still improving fairness. Second, the exper-
imental results of Bank marketing shown in Table 3
demonstrate the impact of A;. As stated in Eq. (5), increas-
ing A1 will also make the model more inclined toward fair-
ness requirements. Therefore, we can observe that increas-
ing A; from 0.01 to 0.05 improves the fairness of the drop
in DP from 8.4% to 4.6% and EO from 7.9% to 6.4%. How-
ever, the model tends to focus more on similar representa-
tions with continuously increasing A; to 0.5, reducing DP to
17.3% and EO to 18.1% and accuracy to 71.3%. When \;
reaches 1, the model collapses, with accuracy at 65%, DP at
59.8%, and EO at 60.5%.

" o wm
0.72 FalRL 0.72
> —k— MacFRL > Sy Macrhl
Boes M (0.68 A—iA
— —_
S =]
O 0.64 L 0.64
3 g
< 0.60 0.60

0.04 0.08 0.12 0.16

Equalized Odds
(b) Accuracy vs EO

0.00 0.06 0.12  0.18,
Demographic Parity

0.24
(a) Accuracy vs DP

Figure 4: Results of accuracy-fairness tradeoffs on Bank
marketing sweeping over a range of Ao.

A1 | | 001 | 003 | 005 | o1 | 05 | 1

Acc | 745 | 740 | 730 | 721 | 713 | 650

Bank marketing | DP | .084 | .055 | .046 | .122 | .173 | .598
EO | .079 | .070 | .064 | .142 | .181 | .605

Table 3: Results of accuracy-fairness tradeoffs on Bank
marketing sweeping over a range of \;

Related Work

Fair Representation Learning (FRL) Fairness issues in
data-driven models arise at various stages, including data
preparation, model training, and user interaction (Mehrabi
et al. 2021). FRL methods focus on ensuring fair predic-
tive modeling by extracting debiased intermediate represen-
tations from biased raw data, as introduced by (Zemel et al.
2013). While FRL can address both group and individual
fairness, our study emphasizes group fairness, aiming for eq-
uitable treatment of protected demographic groups (Malle-
son 2018; Barocas and Selbst 2016). Later studies (LLouizos
et al. 2015; Moyer et al. 2018; Jaiswal et al. 2018; Xu
et al. 2018; Madras et al. 2018b; Amini et al. 2019) lever-
aged deep generative models, using discriminators to distin-
guish protected groups. Adversarial training for group fair-
ness has been explored since (Edwards and Storkey 2016;
Beutel et al. 2017; Madras et al. 2018a; Elazar and Goldberg
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2018; Zhang, Lemoine, and Mitchell 2018), aiming to ob-
fuscate protected feature information. However, most exist-
ing FRL methods focus on a single task (Barrett et al. 2019)
and struggle with adapting to tasks with distribution shifts.
Recent studies (Jing, Xu, and Ding 2021; Singh et al. 2021;
Paul et al. 2022; Deka and Sutherland 2023) propose align-
ing intermediate representations across tasks based on simi-
larities. Modeling shifted distributions as a weighted combi-
nation of training data is proposed in (Mandal et al. 2020) to
minimize worst-case fairness loss. However, these methods
rely on controlled task-wise distances, which may not hold
as tasks diverge significantly in continual task sequences,
leading to fair adaptation failures.

Continual Learning (CL) CL aims to build systems that
learn incrementally (Kirkpatrick et al. 2017; Li and Hoiem
2017; Rolnick et al. 2019; Hao et al. 2013; Mitchell et al.
2018; Abujabal et al. 2018), addressing catastrophic forget-
ting, where new knowledge disrupts previously learned in-
formation. CL methods generally fall into three categories:
First, regularization-based methods, which regularize model
parameters to avoid drastic updates, searching for Pareto-
effective solutions that balance performance across tasks,
thus mitigating forgetting (Kirkpatrick et al. 2017; Aljundi,
Chakravarty, and Tuytelaars 2017; Shmelkov, Schmid, and
Alahari 2017; Li and Hoiem 2017; Aljundi et al. 2018). Sec-
ond, rehearsal methods, which store instances from previous
tasks in external memory (i.e.,the retained dataset) for joint
training with current task instances (Gepperth and Karaoguz
2016; Schaul et al. 2016; Rebuffi et al. 2017; Lopez-Paz and
Ranzato 2017; Rolnick et al. 2019; Hayes, Cahill, and Kanan
2019). Third, model expansion, which expands the model
by increasing the network size (Li et al. 2019; Rao et al.
2019; Zhao et al. 2022), or designing sub-networks for each
task (Ke, Liu, and Huang 2020; Mallya and Lazebnik 2018;
Serra et al. 2018; Wang et al. 2020). There are some most
recent works addressing gradient interference between tasks
via scaled gradient projection (Saha and Roy 2023) or lever-
age pre-trained models (PTMs) instead of random initial-
ization (McDonnell et al. 2024). However, most CL meth-
ods focus more on classification accuracy issue but ignore
the importance of group fairness. FaIRL (Chowdhury and
Chaturvedi 2023) addresses both issues by task rehearsal,
but requires that all tasks are fully labeled. Our MacFRL re-
moves these assumptions, requiring labels from one initial
task, making the CL more cost-effective and sustainable.

Conclusion

This paper presents MacFRL, a novel algorithm to sustain
group fairness in continual learning, with all incoming tasks
unlabeled. The key idea of MacFRL lies in its strategic task
reordering inspired by human learning, prioritizing similar
tasks to glean knowledge and become gradually more capa-
ble to handle the originally deferred, more dissimilar tasks.
We analyzed the theoretical risk bounds of MacFRL to ra-
tionalize the design of task sequence optimization. Extensive
experiments on eight benchmark datasets substantiate the vi-
ability, effectiveness, and sustainability of MacFRL in both
accuracy and group fairness metrics.
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