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ABSTRACT

Modeling the non-linear dynamics of a system from measurement data accurately is an open chal-
lenge. Over the past few years, various tools such as SINDy and DySMHO have emerged as ap-
proaches to distill dynamics from data. However, challenges persist in accurately capturing dy-
namics of a system especially when the physical knowledge about the system is unknown. A prom-
ising solution is to use a hybrid paradigm, that combines mechanistic and black-box models to
leverage their respective strengths. In this study, we combine a hybrid modeling paradigm with
sparse regression, to develop and identify models simultaneously. Two methods are explored,
considering varying complexities, data quality, and availability and by comparing different case
studies. In the first approach, we integrate SINDy-discovered models with neural ODE structures,
to model unknown physics. In the second approach, we employ Multifidelity Surrogate Models
(MFSMs) to construct composite models comprised of SINDy-discovered models and error-cor-

rection models.

Keywords: Data-driven modeling, Model identification, Hybrid modeling, Multifidelity, Sparse regression

INTRODUCTION

Present modeling approaches of intricate dynamic
systems rely on ordinary and/or partial differential equa-
tions (ODEs, PDEs) to describe their behaviors. These
governing equations are conventionally obtained from
rigorous first principles like conservation laws or derived
from phenomenological knowledge-based approaches.
However, many dynamic systems remain unexplored,
lacking comprehensive analytical descriptions. Exploiting
advances in data acquisition, digitization, and storage,
data-driven 'black box' models have emerged as an al-
ternative [1, 2]. These data-driven methods excel in re-
gression and classification tasks, yet their resultant
black-box nature commonly lacks physical insight and
exhibits limitations in extrapolation beyond the training
data's boundaries. Certain systems exist, such as biolog-
ical processes or intricate design problems, that neces-
sitate a deeper understanding of governing equations.
Consequently, recent developments focus on the inte-
gration of data-driven techniques into modeling system
dynamics. Early attempts utilized symbolic regression [3]
and genetic programming algorithms [4]. However,

https://doi.org/10.69997/sct.151585

challenges like overfitting and the computational de-
mands arising from their combinatorial nature limited
their applicability to low-dimensional systems and small
initial candidate sets of symbolic expressions. An alter-
native approach called SINDy [5] was proposed, that re-
constructs the underlying equations based on a large-
space library of candidate terms and transforming the
discovery problem to sparse regression and over time,
several extensions to SINDy and alternative approaches
on similar ideas were also introduced [6-9]. More re-
cently, another such approach (DySMHO) [10] was pro-
posed that uses moving horizon optimization for identi-
fying the governing equations. Nevertheless, the effec-
tiveness of these techniques relies on the identification
and selection of terms from an array of potential candi-
date terms. While an exhaustive pool covering all poten-
tial terms might aid in building a highly accurate mecha-
nistic model, this presents a challenge, especially in
cases involving complex nonlinear systems and when the
system dynamics are not fully known. A potential solution
is to use hybrid modeling techniques with these methods.
These hybrid models (HMs), also referred to as ‘grey-box’
models have the advantages of both mechanistic and the
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black-box models [1, 11]. Figure 1 shows the comparison
between the mechanistic, grey- and black-box models.
Early implementations of these hybrid models can be
found in works that date back to 1980's.
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Figure 1: A comparison between white-box/mechanistic,
grey-box and black-box models.

In this work, we combine a hybrid modeling para-
digm with sparse regression, with the goal of simultane-
ous hybrid model development and model identification.
Specifically, in our study, we investigate two distinct
methods. In the first method, we employ the SINDy for-
mulation to establish the initial physics-based model
from the incomplete candidate library. Subsequently, we
integrate this with neural ordinary differential equations
(NODEs) [12-14], to improve the accuracy of the final
model. Leveraging the NODE formulation to model un-
known or missing physics within a mechanistic model has
previously proven to be successful [12, 15, 16]. For the
second approach, we employ composite structures
known as Multifidelity Surrogate Models (MFSMs) [17, 18]
using true data/high-fidelity (HF) and the low-fidelity (LF)
data. The model output from SINDy constructed using
the incomplete candidate library is treated as the LF
model. In the subsequent step, we develop MFSMs that
use HF and LF data to refine the model accuracy.

In the following sections of this paper, we introduce
the methods for our proposed HM approaches and a
workflow to build the HMs. In the subsequent sections,
we utilize two non-linear case studies to test our HM
models and show their prediction accuracy. Furthermore,
we show our analysis on the impact of sampled data den-
sity and noise on the accuracy of the HMs, as well as the
HMs extrapolation capabilities.

2. METHODS

2.1 Sparse identification of nonlinear
dynamics

In [6], the authors leveraged the fact that most
physical systems have only a few relevant terms that
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define the dynamics, making the governing equations
sparse in a high-dimensional nonlinear function space.
Consider the example first-order ODE system with n
states which are denoted by X. We denote the derivative
with respect to time for X as X'. The right-hand side of
the ODE is given by the derivative with respect to time, t,
denoted by the function f,

X' == fX) (1)

Next, a library 6(X), consisting of candidate nonlin-
ear functions of the columns of X is constructed. For ex-
ample, the library may consist of constant, polynomial,
and trigonometric terms. Finally, a sparse regression
problem is set up to determine the sparse vectors of co-
efficients & = [g, , &, & ..., &, Which determines the non-
linearities that are active.

[ | I | I

ex)=|1 X XxP XxP sin(X) cos(X) | (2)
[ I | | |

Xsivpy = 0XE (3)

Xsinpy = ODEsolver(0(X)E, Xy, t) (4)

Discovering the mechanistic equations from state
data with SINDy is subject to a) estimating the derivatives
accurately with data limitations and b) formulating the
candidate library 6(X) to contain all the terms that could
potentially form an accurate mechanistic equation. While
several extensions to SINDy have been proposed over
the years to address the former issue, the later is still a
challenge. This is especially a major issue when we are
dealing with state data from non-linear systems where
the potential terms in the candidate library are not known.
To address this, we propose to use the following hybrid
modeling approaches.

2.2 Neural Ordinary Differential Equations for
Error Correction

Neural networks (NNs) are one of the widely used
ML models in data-driven modeling due to their ability to
approximate complex nonlinear relationships. Since the
early 90s, NNs have been used to model dynamic sys-
tems within differential equations [19]. Recently, NODEs
have emerged, integrating NNs with automatic differen-
tiation tools [12-14]. NODEs predict system derivatives
directly during training, capturing both state and deriva-
tive data. The potential of this approach was shown in
better capturing curvature in dynamic data when com-
pared to data-driven models that ignore derivative infor-
mation. A neural ODE is essentially a NN used to model
f(X) from Eq (1). We denote the modeled derivative by
Xyn- We can obtain the predicted ODE solution Xyy by
employing any preferred ODE solver.

dXnn
X, = =
NN dt

NN(X) (5)
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Xyn = ODEsolver(NN, X,, t) (6)

Training the NODE can be done either by minimizing the
error between the predicted and true states Error =
MSE(X,Xyn) by passing the NN through an ODE solver
[14] or, utilize a collocation-based approach [13] and
avoid using explicit ODE solver by minimizing the loss
function Error = MSE(X,s, NN (Xes,)). In [13], the authors
show that by using the collocation based approach, train-
ing a NODE is faster. We utilize this collocation-based ap-
proach to train our HM with NODE formulation for model
identification from state data. In the first step, we gener-
ate a low-fidelity (LF) mechanistic model using SINDy by
assuming few terms in the candidate library 6(X). In the
next step, we correct the error resulting from the LF
model with a NODE. We utilize the following formulation
shown in Eq (7).

Xigy = ZH = 0(X)E + NN(X) (7)
Xym = ODEsolver(0(X)E + NN(X), X,, t) (8)

To train the NODE we take the collocation-based
approach and minimize the error between the derivatives
directly. In the next step, we calculate the difference be-
tween the derivatives values between the HF and the LF
derivatives at the sampled data. This derivative differ-
ence corresponds to the mismatch between the true
model and the LF model. A NN model is then trained to
predict this difference when given the true state data. Fi-
nally, the hybrid model states Xy, are estimated by using
an ODE solver.

2.3 Multifidelity Surrogate Models for Error
Correction

In recent years, hybrid composite structures that
can learn from both HF and LF data were proposed to
improve the LF model predictions by correcting the error
between the HF and LF data. These composite structures
are referred to as multi-fidelity surrogate models
(MFSMs) [17, 18, 20]. A widely used structure of MFSMs
is yy= p)y,+ 6§(x), where y,,yy represent the low
and high-fidelity data respectively, p(x) is multiplicative
correlation surrogate and §(x) is the additive surrogate. It
can be re-written as y; = F(x,y,). To establish a con-
nection between the HF and LF data, it's necessary to
have both a HF model and a LF model that can produce
this data. Similar to the NODE model correction approach,
we use SINDy to obtain the LF model. The LF model from
SINDy is then integrated using an ODE solver to obtain
Xsivpy Using Eq (4). We then formulate the MFSM by uti-
lizing a NN to model the error. The NN model is trained to
minimize the loss function Error = MSE(X, Xysry), and
takes both time and LF states as input to predict Xysgpy-
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Xuskm = NN (¢, Xsivpy) (9)

2.3 Workflow for constructing hybrid models

We utilize the workflow shown in Table (1) for con-
structing the hybrid models under approach 1 and ap-
proach 2. Here Xpyr represent the true state data.
B1, B2, Bs are the regularization coefficients.

Table 1: Workflow for constructing the hybrid models to
correct error for NODE and MFSM formulations.

Let [t,Xyr] be the complete HF dataset

1. Sett « Input and X, « HF output
2. Estimate the derivatives X} from [¢, Xr] data.
3. Generate the feature library @(X) and set the optimizer

Generate

SINDy model While termination criteria not true:

min(|Xpr — OX)E?) + B, (8)

Tune &

Set X;r = @(x)E and generate data, X, « LF output.

1. Initialize NN, Set X « Inputand AX' = X}y — Xjp «
/f Approach 1: output
Correct LF 2. While termination criteria not true:
model error
with NODE min(|AX' — Xyn|?) + B2 [|Punll2
formulation "
Set Xyy = O(X)E + NN(X) < final model
/f Approach 2: 1. Initialize a NN, Set [¢, X,z] « Input and X, « output
Correct LF 2. While termination criteria not true:
model error )
with MFSM min(|Xyrsu — Xurl?) + Bs ||@anllz
formulation

Set Xyrsy = NN(t, X, p) « final model

3. RESULTS AND DISCUSSION

In this section, we first introduce the case studies
that we use to use to test and compare the approaches
from 2.1 - 2.3. In the subsequent sections, we show the
analysis on the model accuracy, effect of density of data
and noise on the model accuracy and the extrapolation
ability of the models.

3.1 Case Studies

To test the two approaches, we utilize two non-lin-
ear case studies. The first case study is a non-isothermal
continuously stirred tank reactor (CSTR) problem, and
the second case study is a penicillin biosynthesis prob-
lem.

3.1.1 The non-isothermal CSTR problem

The CSTR's governing equation, Eq (11), represents
mass conservation. But, in non-isothermal operating sce-
narios which is common in practical applications, the en-
ergy balance must also be considered. Thus, tempera-
ture is added as an extra state variable, along with ob-
taining temperature measurements in addition to compo-
sition data, as depicted in Eq (12). We utilize the model
equations and assumptions from [10].

dCy q

Ea
ac ;(CA,L’ - CA) — koe RTCy (m
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ar _ q
dt v

- _Ea
(T =) + S koe W0+ (T =T)  (12)

3.1.2 The penicillin biosynthesis problem

For the second case study, we chose to model the
production of penicillin via yeast fermentation. The level
of nonlinearity in the system differs significantly between
state variables. The process is modeled by four differen-
tial equations on the following states: volume (V), con-
centrations of biomass (B), product (P) and substrate (S).
The system of ODEs is defined as shown in Eq (14) and
Eq (15). The parameter values have been taken from [12].

dB

P - Bu-D-c)
ds
—=-0B+(5—-S)D (13)
dp
o= B - P(D + c;k)
W _
dat

__UmS
K= kyX+10
o=ty my

Yx Yp

g, = 1.5qp,SB

b 4kp+BS[1+%] (14)

_ CLmax B exp(—%)
L= K +B+1
B

My = Mam 5376

3.2 Analysis with no noise in true state data

The case study shown in 3.1.1 and 3.1.2 were simu-
lated with the initial conditions [c, 7] = [0.5%%,350k]| and
[Bo, So Po, Vol = [52,5252,0%,0.2L respectively, to generate 50 HF
data points for each case. In the next step, the workflow
shown in Table (1) was utilized to generate the Hybrid
model with NODE and MSFM formulations to correct the
error from SINDy — LF model. The results for both the ap-
proaches are shown below. Figure (2) shows the predic-
tion using hybrid models with NODE MFSM formulation
for case study 3.1.1 and Figure (3) shows the results for
case study 3.1.2. In both Figures (2) and (3), the solid blue
dots represent true (HF) state data. The green dashed
line represents SINDy-LF model predictions. The solid or-
ange line and the dotted red lines represent the HM
model predictions with NODE and MFSM formulations re-
spectively.

Figures (2) and (3) illustrate the limitation of the
constructed SINDy model in accurately predicting the
true states. This mismatch between the HF state data
and the SINDy model stems from the candidate library's
inability to comprehensively encompass all potential non-
linear terms contributing to the final mechanistic model
equation. Consequently, the mechanistic model derived
lacks accuracy in predicting the HF states. However, the
HMs built using this SINDy model as the LF model,
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employing both NODE and MFSM formulations, demon-
strate the ability to accurately predict the HF state pro-
files. This HM structure effectively compensates for mis-
match and missing terms within the LF model.
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®  CApe 350 o, ®  Tie
0.85) ——- CAgipy / DX === Tsipy
ca / \ Tina,n
0.80 \HM, NODE Vi 345 \._ HM,NODE |
R ceee CA & / A\ ) T
\HM, MFSM' .. /' \\“ HM, MFSM
& %
0.75 / >
);' . 340 "
« 0.70 Y% 1 I\
o b, = N
0.65 oi' 333 )\
) ' \
5
3 K
0.60 A 330 %
Sop \"
0.55 Ry d Y,
- o Lo,
0.50] el . s
0 i 2 3 1 5 0 1 2 3 1 5
time time

Figure 2: Concentration (C,) and temperature (T) profiles
from SINDy model, HM-NODE and HM-MFSM formulation
for case study 3.1.1, compared with true state data.
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Figure 3: Volume (V), Biomass (B), product (P) and sub-
strate (S) profiles from SINDy model, HM-NODE and HM-
MFSM formulation for case study 3.1.2 with 50 HF data
points, compared with true state data.

3.3 Effect of density of sampled data on HMs

To analyze the effect of density of sampled data on
the HM model, we repeated the experiment from 3.2, by
decreasing the amount of HF data available. For this anal-
ysis, we reduced the data size to 30 HF samples. The
case study shown in 3.1.1 and 3.1.2 were simulated with
the initial conditions in 3.2 to generate 30 HF data points.
In the next step, using the workflow from Table (1) HMs
are built. Figures (4) and (5) show the prediction from the
SINDy and HMs.
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Figure 4: Concentration (C,) and temperature (T) pro-
files from SINDy model, HM-NODE and HM-MFSM for-
mulations for case study 3.1.1, with 30 HF datapoints.
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Figure 5: Volume (V), Biomass (B), product (P), substrate
(8) profiles from SINDy model, HM-NODE and HM-MFSM
formulations for case study 3.1.2, with 30 datapoints

We repeat the analysis once again, but this time by
reducing the data size to 20 HF samples. We simulate the
case studies from 3.1.1 and 3.1.2 with the same initial
conditions to generate 20 HF data points to train the
SINDy and HM models. Figures (6) and (7) show the pre-
diction from the SINDy model and HMs.
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Figure 6: Concentration (C,) and temperature (T) profiles
from SINDy model, HM-NODE and HM-MFSM
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formulations for case study 3.1.1, with 20 HF datapoints.
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Figure 7: Volume (V), Biomass (B), product (P), substrate
(S) profiles from SINDy model, HM-NODE and HM-MFSM
formulations for case study 3.1.2, with 20 HF datapoints

Figures (4-7) show that the HMs constructed with
both NODE and MFSM approaches are robust to the low
densities of sampled data and can still predict the true
states with decent accuracy and capture the profile
trends better than the SINDy model. We can also notice
that the decrease in density of the data affects the model
accuracy, and we start to observe a slight mismatch in
HM predictions, and this increases as the density of sam-
pled data decreases. Among the two HM approaches, the
HM-MFSM approach performs marginally better than the
HM-NODE approach. This is because we take a two-step
approach for correcting the error, and decreasing the
density of data affects the LF model in step 1. Conse-
quently, the LF model directly affects the NODE approach
which is aimed at correcting the derivative space error
and results in low errors as we integrate it forward in time
for the state profiles. On the other hand, we see an im-
proved fit with MFSMs in the training range. This is be-
cause the MFSM approach corrects the error in the state
space and does not need integrating the states forward
in time.

3.3 Extrapolation of the HMs

To analyze the extrapolation ability of the con-
structed HMs, we show the model predictions with a test
dataset that contains input to the HM model from outside
the training dataset region. We also compare the results
with the SINDy model we obtained in the first step and
with decreasing data density. Figure (8) shows three sce-
narios aimed at illustrating extrapolation using HMs for
the case study 3.1.1. Specifically, Figures (8A, 8B, 8C)
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correspond to instances with 50, 30, 20 HF samples, re-
spectively. It is evident that HMs utilizing both NODE and
MFSM formulations demonstrate better extrapolation ca-
pabilities. On the other hand, predictions obtained from
the SINDy model show limited extrapolative power.

We can also notice that as data density decreases,
the extrapolation performance of these HM with NODE
formulation is slightly better than the MFSM formulation.
This observation can be attributed to the manner in which
error correction is implemented in both approaches. As
the NODE approach corrects error in the derivatives, it
has an edge in capturing profiles compared to MFSMs
when extrapolating the corresponding HM.
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Figure 8: Extrapolated (C,) and (T) profiles from SINDy
model, HM-NODE and HM-MFSM formulations for case
study 3.1.1 with 50, 30, and 20 HF samples.

Figure (9) shows the same analysis for the case
study 3.1.2. Figures (9A, 9B, 9C) correspond to instances
with 50, 30, 20 HF samples, respectively. We observe a
similar behavior for this case study as well. HMs with
NODE and MFSM formulations demonstrate better ex-
trapolation capabilities than the SINDy. We can also ob-
serve a similar trend that shows HM with NODE formula-
tion is slightly better than the MFSM formulation.

3.4 Effect of noise on the HMs prediction

In most practical applications, there is noise associ-
ated with the true state measurements. It is necessary to
Ravutla et al. /| LAPSE:2024.1548
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evaluate the model performance with noise in the true
state data and check for robustness. To test our ap-
proach, we replicate a practical scenario by adding noise
to the simulated data. The true state dataset was modi-
fied by adding Gaussian-distributed noise to each state
variable data for the two case studies 3.1.1and 3.1.2. The
noise was simulated using a normal distribution, where
the mean was set to zero and the standard deviation was
adjusted to represent 3%, 5% of the range of the uncor-
rupted data. To test the methods at challenging scenar-
ios, we present results with 20 HF samples and varying
levels of noise.

Figure (10) shows the results for this analysis. The
legend (A) in Figure (10) represents the 3% noise and (B)
represents 5% noise in data. We can notice the robust-
ness of the HM approach towards the noise in data and
both HM approaches are able to still predict the profiles
accurately in both cases studies 3.11 and 3.1.2. But we
can also observe that increasing the noise for the same
sparsity reduces the accuracy of predicted profiles. This
is expected because modeling accuracy becomes a chal-
lenge with increasing sparsity and noise. When compar-
ing the two methods, the HM-MSFM approach performs
better because the HM-MFSM structure directly fits the
state values for each variable and proper tuning of the
model helps in making it more robust towards noise. On
the other hand, the HM-NODE fits the derivative values
and estimating the derivatives in the presence of noise
and sparsity becomes a challenge. While there exist
many noise filtering techniques to smoothen the noisy

data and mitigate this issue, we intend to include those
as the future work.

4. CONCLUSIONS

In this work, we address the complexities inherent in
data-driven model identification, especially when the un-
derlying physics of the model remains unknown. We in-
vestigate the limitations of current state-of-the-art tools
like SINDy when the available candidate library inade-
quately covers all potential terms contributing to the final
mechanistic model equation. To tackle this challenge, we
propose combining hybrid modeling techniques with
sparse regression with the goal of simultaneous hybrid
model development and model identification. To achieve
this, we outline a workflow that employs two distinct
methods: a) utilizing a NODE formulation, and b) employ-
ing an MFSM formulation as hybrid modeling approaches
integrated with SINDy. Our study demonstrates the ef-
fectiveness of this hybrid model architecture in con-
structing accurate models capable of predicting profiles
that predict the true data accurately, while integrating
the mechanistic model knowledge.
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Figure 9: Extrapolated Volume (V), Biomass (B), product (P), substrate (S) profiles from SINDy model, HM-NODE
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Figure 10: Predicted profiles from SINDy model, HM-NODE and HM-MFSM formulations for case study 3.1.1 (1A,

1B), and 3.1.2 (2A, 2B) with noise in the data. A, B correspond to 3% noise and 5% noise respectively.
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We also showcase the robustness of hybrid models
in handling low densities in sampled data and their ability
to extrapolate. At lower amounts of sampled data, HM-
NODE formulation can extrapolate better and HM-MFSM
formulation can predict the states more accurately. Fur-
thermore, we investigated the effect of noise in the true
state data on these hybrid models. While the HM formu-
lations could still predict the true profiles with a good ac-
curacy, we saw that reducing the sampling data and in-
creasing the noise can affect the model performance di-
rectly and make them less accurate. Future directions on
this work will be focused on testing our methods with ex-
perimental data to formulate the models and proposing
more efficient techniques to train hybrid models and im-
proving their robustness towards data sparsity and noise.
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