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ABSTRACT 
Modeling the non-linear dynamics of a system from measurement data accurately is an open chal-
lenge. Over the past few years, various tools such as SINDy and DySMHO have emerged as ap-
proaches to distill dynamics from data. However, challenges persist in accurately capturing dy-
namics of a system especially when the physical knowledge about the system is unknown. A prom-
ising solution is to use a hybrid paradigm, that combines mechanistic and black-box models to 
leverage their respective strengths. In this study, we combine a hybrid modeling paradigm with 
sparse regression, to develop and identify models simultaneously. Two methods are explored, 
considering varying complexities, data quality, and availability and by comparing different case 
studies. In the first approach, we integrate SINDy-discovered models with neural ODE structures, 
to model unknown physics. In the second approach, we employ Multifidelity Surrogate Models 
(MFSMs) to construct composite models comprised of SINDy-discovered models and error-cor-
rection models.   
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INTRODUCTION 
Present modeling approaches of intricate dynamic 

systems rely on ordinary and/or partial differential equa-
tions (ODEs, PDEs) to describe their behaviors. These 
governing equations are conventionally obtained from 
rigorous first principles like conservation laws or derived 
from phenomenological knowledge-based approaches. 
However, many dynamic systems remain unexplored, 
lacking comprehensive analytical descriptions. Exploiting 
advances in data acquisition, digitization, and storage, 
data-driven 'black box' models have emerged as an al-
ternative [1, 2]. These data-driven methods excel in re-
gression and classification tasks, yet their resultant 
black-box nature commonly lacks physical insight and 
exhibits limitations in extrapolation beyond the training 
data's boundaries. Certain systems exist, such as biolog-
ical processes or intricate design problems, that neces-
sitate a deeper understanding of governing equations. 
Consequently, recent developments focus on the inte-
gration of data-driven techniques into modeling system 
dynamics. Early attempts utilized symbolic regression [3] 
and genetic programming algorithms [4]. However, 

challenges like overfitting and the computational de-
mands arising from their combinatorial nature limited 
their applicability to low-dimensional systems and small 
initial candidate sets of symbolic expressions. An alter-
native approach called SINDy [5] was proposed, that re-
constructs the underlying equations based on a large-
space library of candidate terms and transforming the 
discovery problem to sparse regression and over time, 
several extensions to SINDy and alternative approaches 
on similar ideas were also introduced [6-9]. More re-
cently, another such approach (DySMHO) [10] was pro-
posed that uses moving horizon optimization for identi-
fying the governing equations. Nevertheless, the effec-
tiveness of these techniques relies on the identification 
and selection of terms from an array of potential candi-
date terms. While an exhaustive pool covering all poten-
tial terms might aid in building a highly accurate mecha-
nistic model, this presents a challenge, especially in 
cases involving complex nonlinear systems and when the 
system dynamics are not fully known. A potential solution 
is to use hybrid modeling techniques with these methods. 
These hybrid models (HMs), also referred to as ‘grey-box’ 
models have the advantages of both mechanistic and the 
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black-box models [1, 11]. Figure 1 shows the comparison 
between the mechanistic, grey- and black-box models. 
Early implementations of these hybrid models can be 
found in works that date back to 1980’s.  

 

 
Figure 1: A comparison between white-box/mechanistic, 
grey-box and black-box models. 
 

In this work, we combine a hybrid modeling para-
digm with sparse regression, with the goal of simultane-
ous hybrid model development and model identification. 
Specifically, in our study, we investigate two distinct 
methods. In the first method, we employ the SINDy for-
mulation to establish the initial physics-based model 
from the incomplete candidate library. Subsequently, we 
integrate this with neural ordinary differential equations 
(NODEs) [12-14], to improve the accuracy of the final 
model. Leveraging the NODE formulation to model un-
known or missing physics within a mechanistic model has 
previously proven to be successful [12, 15, 16]. For the 
second approach, we employ composite structures 
known as Multifidelity Surrogate Models (MFSMs) [17, 18] 
using true data/high-fidelity (HF) and the low-fidelity (LF) 
data. The model output from SINDy constructed using 
the incomplete candidate library is treated as the LF 
model. In the subsequent step, we develop MFSMs that 
use HF and LF data to refine the model accuracy.  

In the following sections of this paper, we introduce 
the methods for our proposed HM approaches and a 
workflow to build the HMs. In the subsequent sections, 
we utilize two non-linear case studies to test our HM 
models and show their prediction accuracy. Furthermore, 
we show our analysis on the impact of sampled data den-
sity and noise on the accuracy of the HMs, as well as the 
HMs extrapolation capabilities.  

2. METHODS 

2.1 Sparse identification of nonlinear 
dynamics 

In [6], the authors leveraged the fact that most 
physical systems have only a few relevant terms that 

define the dynamics, making the governing equations 
sparse in a high-dimensional nonlinear function space. 
Consider the example first-order ODE system with 𝑛𝑛 
states which are denoted by 𝑿𝑿. We denote the derivative 
with respect to time for 𝑿𝑿 as 𝑿𝑿′. The right-hand side of 
the ODE is given by the derivative with respect to time, 𝑡𝑡, 
denoted by the function 𝑓𝑓, 

𝑿𝑿′ = 𝑑𝑑𝑿𝑿
𝑑𝑑𝑑𝑑

=  𝑓𝑓(𝑿𝑿)    (1) 

Next, a library 𝛩𝛩(𝑿𝑿), consisting of candidate nonlin-
ear functions of the columns of 𝑿𝑿 is constructed. For ex-
ample, the library may consist of constant, polynomial, 
and trigonometric terms. Finally, a sparse regression 
problem is set up to determine the sparse vectors of co-
efficients 𝜩𝜩 = [𝜀𝜀1, , 𝜀𝜀1, 𝜀𝜀1 … , 𝜀𝜀𝑛𝑛], which determines the non-
linearities that are active. 

Θ(𝐗𝐗) = �
∣    ∣    ∣    ∣        ∣    ∣                   ∣
1    𝐗𝐗    𝐗𝐗𝑃𝑃2     𝐗𝐗𝑃𝑃3     ⋯     sin (𝐗𝐗)    cos (𝐗𝐗)    ⋯
∣    ∣    ∣    ∣        ∣    ∣                  |

�    (2) 

𝑿𝑿𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺′ = Θ(𝐗𝐗)𝜩𝜩                            (3) 

𝑿𝑿𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(Θ(𝐗𝐗)𝜩𝜩,𝑋𝑋0, 𝑡𝑡)    (4) 

Discovering the mechanistic equations from state 
data with SINDy is subject to a) estimating the derivatives 
accurately with data limitations and b) formulating the 
candidate library 𝛩𝛩(𝑿𝑿) to contain all the terms that could 
potentially form an accurate mechanistic equation. While 
several extensions to SINDy have been proposed over 
the years to address the former issue, the later is still a 
challenge. This is especially a major issue when we are 
dealing with state data from non-linear systems where 
the potential terms in the candidate library are not known. 
To address this, we propose to use the following hybrid 
modeling approaches.  

2.2 Neural Ordinary Differential Equations for 
Error Correction 

Neural networks (NNs) are one of the widely used 
ML models in data-driven modeling due to their ability to 
approximate complex nonlinear relationships.  Since the 
early 90s, NNs have been used to model dynamic sys-
tems within differential equations [19]. Recently, NODEs 
have emerged, integrating NNs with automatic differen-
tiation tools [12-14]. NODEs predict system derivatives 
directly during training, capturing both state and deriva-
tive data. The potential of this approach was shown in 
better capturing curvature in dynamic data when com-
pared to data-driven models that ignore derivative infor-
mation. A neural ODE is essentially a NN used to model 
𝑓𝑓(𝑋𝑋) from Eq (1). We denote the modeled derivative by 
𝑿𝑿𝑵𝑵𝑵𝑵′ . We can obtain the predicted ODE solution 𝑿𝑿𝑵𝑵𝑵𝑵 by 
employing any preferred ODE solver.  

𝑿𝑿𝑵𝑵𝑵𝑵′ = 𝑑𝑑𝑿𝑿𝑵𝑵𝑵𝑵
𝑑𝑑𝑑𝑑

=  𝑁𝑁𝑁𝑁(𝑋𝑋)    (5) 
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𝑿𝑿𝑵𝑵𝑵𝑵 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑁𝑁𝑁𝑁,𝑋𝑋0, 𝑡𝑡)   (6) 

Training the NODE can be done either by minimizing the 
error between the predicted and true states 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑀𝑀𝑀𝑀𝑀𝑀(𝑿𝑿,𝑿𝑿𝑵𝑵𝑵𝑵) by passing the NN through an ODE solver 
[14] or, utilize a collocation-based approach [13] and 
avoid using explicit ODE solver by minimizing the loss 
function 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑀𝑀𝑀𝑀𝑀𝑀�𝑿𝑿𝒆𝒆𝒆𝒆𝒆𝒆′ ,𝑁𝑁𝑁𝑁(𝑿𝑿𝒆𝒆𝒆𝒆𝒆𝒆)�. In [13], the authors 
show that by using the collocation based approach, train-
ing a NODE is faster. We utilize this collocation-based ap-
proach to train our HM with NODE formulation for model 
identification from state data. In the first step, we gener-
ate a low-fidelity (LF) mechanistic model using SINDy by 
assuming few terms in the candidate library 𝛩𝛩(𝑿𝑿). In the 
next step, we correct the error resulting from the LF 
model with a NODE. We utilize the following formulation 
shown in Eq (7).  
 

𝑿𝑿𝑯𝑯𝑯𝑯′ = 𝑑𝑑𝑿𝑿𝑯𝑯𝑯𝑯
𝑑𝑑𝑑𝑑

=  Θ(𝑿𝑿)𝜩𝜩+ 𝑁𝑁𝑁𝑁(𝑿𝑿)                 (7) 

𝑿𝑿𝑯𝑯𝑯𝑯 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(Θ(𝑿𝑿)𝜩𝜩 + 𝑁𝑁𝑁𝑁(𝑿𝑿),𝑋𝑋0, 𝑡𝑡)   (8) 

 
To train the NODE we take the collocation-based 

approach and minimize the error between the derivatives 
directly. In the next step, we calculate the difference be-
tween the derivatives values between the HF and the LF 
derivatives at the sampled data. This derivative differ-
ence corresponds to the mismatch between the true 
model and the LF model. A NN model is then trained to 
predict this difference when given the true state data. Fi-
nally, the hybrid model states 𝑿𝑿𝑯𝑯𝑯𝑯 are estimated by using 
an ODE solver.  

2.3 Multifidelity Surrogate Models for Error 
Correction 

In recent years, hybrid composite structures that 
can learn from both HF and LF data were proposed to 
improve the LF model predictions by correcting the error 
between the HF and LF data. These composite structures 
are referred to as multi-fidelity surrogate models 
(MFSMs) [17, 18, 20]. A widely used structure of MFSMs 
is  𝑦𝑦𝐻𝐻 =  𝜌𝜌(𝑥𝑥)𝑦𝑦𝐿𝐿 +  𝛿𝛿(𝑥𝑥), where 𝑦𝑦𝐿𝐿,𝑦𝑦𝐻𝐻  represent the low 
and high-fidelity data respectively, 𝜌𝜌(𝑥𝑥) is multiplicative 
correlation surrogate and 𝛿𝛿(𝑥𝑥) is the additive surrogate. It 
can be re-written as 𝑦𝑦𝐻𝐻  =  𝐹𝐹(𝑥𝑥,𝑦𝑦𝐿𝐿). To establish a con-
nection between the HF and LF data, it's necessary to 
have both a HF model and a LF model that can produce 
this data. Similar to the NODE model correction approach, 
we use SINDy to obtain the LF model. The LF model from 
SINDy is then integrated using an ODE solver to obtain 
𝑿𝑿𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 using Eq (4). We then formulate the MFSM by uti-
lizing a NN to model the error. The NN model is trained to 
minimize the loss function 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑿𝑿,𝑿𝑿𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴), and 
takes both time and LF states as input to predict 𝑿𝑿𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴. 

𝑿𝑿𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 =   𝑁𝑁𝑁𝑁 (𝑡𝑡,𝑿𝑿𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺)           (9) 

2.3 Workflow for constructing hybrid models 
We utilize the workflow shown in Table (1) for con-

structing the hybrid models under approach 1 and ap-
proach 2. Here 𝑿𝑿𝑯𝑯𝑯𝑯 represent the true state data. 
𝛽𝛽1,𝛽𝛽2,𝛽𝛽3 are the regularization coefficients.  

Table 1: Workflow for constructing the hybrid models to 
correct error for NODE and MFSM formulations. 

Let [𝑡𝑡,𝑿𝑿𝑯𝑯𝑯𝑯]  be the complete HF dataset 

 
Generate 
SINDy model 

1. Set 𝑡𝑡 ←   Input and 𝑿𝑿𝑯𝑯𝑯𝑯 ←  HF output 

2. Estimate the derivatives 𝑿𝑿𝑯𝑯𝑯𝑯
′  from [𝑡𝑡,𝑿𝑿𝑯𝑯𝑯𝑯] data.  

3. Generate the feature library 𝜣𝜣(𝑿𝑿) and set the optimizer           

While termination criteria not true: 

𝑚𝑚𝑚𝑚𝑚𝑚(|𝑿𝑿𝑯𝑯𝑯𝑯
′ −   𝜣𝜣(𝑿𝑿)𝜩𝜩|𝟐𝟐) + 𝛽𝛽1 (𝜩𝜩) 

                            Tune 𝜩𝜩 

Set 𝑿𝑿𝑳𝑳𝑳𝑳
′ =  𝜣𝜣(𝒙𝒙)𝜩𝜩  and generate data, 𝑿𝑿𝑳𝑳𝑳𝑳 ←  LF output. 

If Approach 1: 
Correct LF 
model error 
with NODE 
formulation 

1. Initialize NN, Set 𝑿𝑿𝑯𝑯𝑯𝑯  ←  Input and 𝜟𝜟𝜟𝜟′ =  𝑿𝑿𝑯𝑯𝑯𝑯
′ − 𝑿𝑿𝑳𝑳𝑳𝑳

′ ←
 output 

2. While termination criteria not true: 

              𝑚𝑚𝑚𝑚𝑚𝑚(|𝜟𝜟𝜟𝜟′ −   𝑿𝑿𝑵𝑵𝑵𝑵
′ |𝟐𝟐) + 𝛽𝛽2 ||𝛷𝛷𝑁𝑁𝑁𝑁||2 

Set  𝑿𝑿𝑯𝑯𝑯𝑯
′ =  𝜣𝜣(𝑿𝑿)𝜩𝜩+ 𝑵𝑵𝑵𝑵(𝑿𝑿) ← final model 

If Approach 2: 
Correct LF 
model error 
with MFSM 
formulation 

1. Initialize a NN, Set [𝑡𝑡,𝑿𝑿𝑳𝑳𝑳𝑳]  ←  Input and 𝑿𝑿𝑯𝑯𝑯𝑯 ←  output 

2. While termination criteria not true: 

                      𝑚𝑚𝑚𝑚𝑚𝑚(|𝑿𝑿𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 −   𝑿𝑿𝑯𝑯𝑯𝑯|𝟐𝟐) + 𝛽𝛽3 ||𝛷𝛷𝑁𝑁𝑁𝑁||2 

Set  𝑿𝑿𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 =  𝑵𝑵𝑵𝑵(𝑡𝑡,𝑿𝑿𝑳𝑳𝑳𝑳) ← final model 

3. RESULTS AND DISCUSSION 
In this section, we first introduce the case studies 

that we use to use to test and compare the approaches 
from 2.1 – 2.3. In the subsequent sections, we show the 
analysis on the model accuracy, effect of density of data 
and noise on the model accuracy and the extrapolation 
ability of the models. 

3.1 Case Studies 
To test the two approaches, we utilize two non-lin-

ear case studies. The first case study is a non-isothermal 
continuously stirred tank reactor (CSTR) problem, and 
the second case study is a penicillin biosynthesis prob-
lem. 

3.1.1 The non-isothermal CSTR problem 
The CSTR's governing equation, Eq (11), represents 

mass conservation. But, in non-isothermal operating sce-
narios which is common in practical applications, the en-
ergy balance must also be considered. Thus, tempera-
ture is added as an extra state variable, along with ob-
taining temperature measurements in addition to compo-
sition data, as depicted in Eq (12). We utilize the model 
equations and assumptions from [10].  

 
𝑑𝑑𝐶𝐶𝐴𝐴
𝑑𝑑𝑑𝑑

= 𝑞𝑞
𝑉𝑉
�𝐶𝐶𝐴𝐴,𝑖𝑖 − 𝐶𝐶𝐴𝐴� − 𝑘𝑘0𝑒𝑒

−𝐸𝐸a
RT𝐶𝐶𝐴𝐴         (11) 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑞𝑞
𝑉𝑉

(𝑇𝑇𝑖𝑖 − 𝑇𝑇) + (−Δ𝐻𝐻R)
𝜌𝜌𝜌𝜌

𝑘𝑘0𝑒𝑒−
𝐸𝐸a
RT𝐶𝐶𝐴𝐴(𝑡𝑡) + 𝑈𝑈𝑈𝑈

𝑉𝑉𝑉𝑉𝑉𝑉
(𝑇𝑇c − 𝑇𝑇)    (12) 

3.1.2 The penicillin biosynthesis problem 
For the second case study, we chose to model the 

production of penicillin via yeast fermentation. The level 
of nonlinearity in the system differs significantly between 
state variables. The process is modeled by four differen-
tial equations on the following states: volume (𝑉𝑉), con-
centrations of biomass (𝐵𝐵), product (𝑃𝑃) and substrate (𝑆𝑆). 
The system of ODEs is defined as shown in Eq (14) and 
Eq (15). The parameter values have been taken from [12]. 

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐵𝐵(𝜇𝜇 − 𝐷𝐷 − 𝑐𝑐𝐿𝐿)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝜎𝜎𝜎𝜎 + �𝑆𝑆𝑓𝑓 − 𝑆𝑆�𝐷𝐷
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑞𝑞𝑝𝑝𝐵𝐵 − 𝑃𝑃(𝐷𝐷 + 𝑐𝑐1𝑘𝑘)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐹𝐹

         (13) 

 
𝜇𝜇 = 𝜇𝜇𝑚𝑚𝑆𝑆

𝑘𝑘𝑥𝑥𝑋𝑋+10

𝜎𝜎 = 𝜇𝜇
𝑌𝑌𝑥𝑥
𝑠𝑠

+ 𝑞𝑞𝑝𝑝
𝑌𝑌𝑝𝑝
𝑠𝑠

+ 𝑚𝑚𝑥𝑥

𝑞𝑞𝑝𝑝 = 1.5𝑞𝑞𝑝𝑝𝑝𝑝𝑆𝑆𝑆𝑆

4𝑘𝑘𝑃𝑃+𝐵𝐵𝐵𝐵�1+
𝑆𝑆
3𝑘𝑘𝑖𝑖

�

𝑐𝑐𝐿𝐿 =
𝑐𝑐𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 B exp�− 𝑆𝑆

100
�

𝐾𝐾𝐿𝐿+𝐵𝐵+1

𝑚𝑚𝑥𝑥 = 𝑚𝑚𝑥𝑥𝑥𝑥
𝐵𝐵

𝐵𝐵+10

     (14) 

3.2 Analysis with no noise in true state data 
 The case study shown in 3.1.1 and 3.1.2 were simu-
lated with the initial conditions �𝐶𝐶𝐴𝐴,0,𝑇𝑇0� =  �0.5 𝑚𝑚𝑚𝑚𝑚𝑚

𝐿𝐿
, 350𝐾𝐾� and 

[𝐵𝐵0 ,𝑆𝑆0,𝑃𝑃0,𝑉𝑉0] =  �5 𝑔𝑔
𝐿𝐿

, 525 𝑔𝑔
𝐿𝐿

, 0 𝑔𝑔
𝐿𝐿

, 0.2𝐿𝐿� respectively, to generate 50 HF 
data points for each case. In the next step, the workflow 
shown in Table (1) was utilized to generate the Hybrid 
model with NODE and MSFM formulations to correct the 
error from SINDy – LF model. The results for both the ap-
proaches are shown below. Figure (2) shows the predic-
tion using hybrid models with NODE MFSM formulation 
for case study 3.1.1 and Figure (3) shows the results for 
case study 3.1.2. In both Figures (2) and (3), the solid blue 
dots represent true (HF) state data. The green dashed 
line represents SINDy-LF model predictions. The solid or-
ange line and the dotted red lines represent the HM 
model predictions with NODE and MFSM formulations re-
spectively. 

Figures (2) and (3) illustrate the limitation of the 
constructed SINDy model in accurately predicting the 
true states. This mismatch between the HF state data 
and the SINDy model stems from the candidate library's 
inability to comprehensively encompass all potential non-
linear terms contributing to the final mechanistic model 
equation. Consequently, the mechanistic model derived 
lacks accuracy in predicting the HF states. However, the 
HMs built using this SINDy model as the LF model, 

employing both NODE and MFSM formulations, demon-
strate the ability to accurately predict the HF state pro-
files. This HM structure effectively compensates for mis-
match and missing terms within the LF model.  

 

 
Figure 2: Concentration (𝐶𝐶𝐴𝐴) and temperature (𝑇𝑇) profiles 
from SINDy model, HM-NODE and HM-MFSM formulation 
for case study 3.1.1, compared with true state data. 
 

 
Figure 3: Volume (𝑉𝑉), Biomass (𝐵𝐵), product (𝑃𝑃) and sub-
strate (𝑆𝑆) profiles from SINDy model, HM-NODE and HM-
MFSM formulation for case study 3.1.2 with 50 HF data 
points, compared with true state data. 
 

3.3 Effect of density of sampled data on HMs 
 To analyze the effect of density of sampled data on 
the HM model, we repeated the experiment from 3.2, by 
decreasing the amount of HF data available. For this anal-
ysis, we reduced the data size to 30 HF samples. The 
case study shown in 3.1.1 and 3.1.2 were simulated with 
the initial conditions in 3.2 to generate 30 HF data points. 
In the next step, using the workflow from Table (1) HMs 
are built. Figures (4) and (5) show the prediction from the 
SINDy and HMs.  
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Figure  Concentration (𝐶𝐶𝐴𝐴) and temperature (𝑇𝑇) pro-
files from SINDy model HM-NODE and HM-MFSM for-
mulations for case study  with  HF datapoints 
 

 
Figure 5: Volume (𝑉𝑉), Biomass (𝐵𝐵), product (𝑃𝑃), substrate 
(𝑆𝑆) profiles from SINDy model, HM-NODE and HM-MFSM 
formulations for case study 3.1.2, with 30 datapoints 
 

We repeat the analysis once again, but this time by 
reducing the data size to 20 HF samples. We simulate the 
case studies from 3.1.1 and 3.1.2 with the same initial 
conditions to generate 20 HF data points to train the 
SINDy and HM models. Figures (6) and (7) show the pre-
diction from the SINDy model and HMs.  
 

 
Figure 6: Concentration (𝐶𝐶𝐴𝐴) and temperature (𝑇𝑇) profiles 

from SINDy model, HM-NODE and HM-MFSM 

formulations for case study 3.1.1, with 20 HF datapoints. 

 
Figure 7: Volume (𝑉𝑉), Biomass (𝐵𝐵), product (𝑃𝑃), substrate 
(𝑆𝑆) profiles from SINDy model, HM-NODE and HM-MFSM 
formulations for case study 3.1.2, with 20 HF datapoints 
 

Figures (4-7) show that the HMs constructed with 
both NODE and MFSM approaches are robust to the low 
densities of sampled data and can still predict the true 
states with decent accuracy and capture the profile 
trends better than the SINDy model. We can also notice 
that the decrease in density of the data affects the model 
accuracy, and we start to observe a slight mismatch in 
HM predictions, and this increases as the density of sam-
pled data decreases. Among the two HM approaches, the 
HM-MFSM approach performs marginally better than the 
HM-NODE approach. This is because we take a two-step 
approach for correcting the error, and decreasing the 
density of data affects the LF model in step 1. Conse-
quently, the LF model directly affects the NODE approach 
which is aimed at correcting the derivative space error 
and results in low errors as we integrate it forward in time 
for the state profiles. On the other hand, we see an im-
proved fit with MFSMs in the training range. This is be-
cause the MFSM approach corrects the error in the state 
space and does not need integrating the states forward 
in time.  

3.3 Extrapolation of the HMs  
 To analyze the extrapolation ability of the con-

structed HMs, we show the model predictions with a test 
dataset that contains input to the HM model from outside 
the training dataset region. We also compare the results 
with the SINDy model we obtained in the first step and 
with decreasing data density. Figure (8) shows three sce-
narios aimed at illustrating extrapolation using HMs for 
the case study 3.1.1. Specifically, Figures (8A, 8B, 8C) 
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correspond to instances with 50, 30, 20 HF samples, re-
spectively. It is evident that HMs utilizing both NODE and 
MFSM formulations demonstrate better extrapolation ca-
pabilities. On the other hand, predictions obtained from 
the SINDy model show limited extrapolative power. 

We can also notice that as data density decreases, 
the extrapolation performance of these HM with NODE 
formulation is slightly better than the MFSM formulation. 
This observation can be attributed to the manner in which 
error correction is implemented in both approaches. As 
the NODE approach corrects error in the derivatives, it 
has an edge in capturing profiles compared to MFSMs 
when extrapolating the corresponding HM. 

  
Figure 8: Extrapolated (𝐶𝐶𝐴𝐴) and (𝑇𝑇) profiles from SINDy 
model, HM-NODE and HM-MFSM formulations for case 
study 3.1.1 with 50, 30, and 20 HF samples. 
 

Figure (9) shows the same analysis for the case 
study 3.1.2. Figures (9A, 9B, 9C) correspond to instances 
with 50, 30, 20 HF samples, respectively. We observe a 
similar behavior for this case study as well. HMs with 
NODE and MFSM formulations demonstrate better ex-
trapolation capabilities than the SINDy. We can also ob-
serve a similar trend that shows HM with NODE formula-
tion is slightly better than the MFSM formulation.  

3.4 Effect of noise on the HMs prediction 
 In most practical applications, there is noise associ-
ated with the true state measurements. It is necessary to 

evaluate the model performance with noise in the true 
state data and check for robustness. To test our ap-
proach, we replicate a practical scenario by adding noise 
to the simulated data. The true state dataset was modi-
fied by adding Gaussian-distributed noise to each state 
variable data for the two case studies 3.1.1 and 3.1.2. The 
noise was simulated using a normal distribution, where 
the mean was set to zero and the standard deviation was 
adjusted to represent 3%, 5% of the range of the uncor-
rupted data. To test the methods at challenging scenar-
ios, we present results with 20 HF samples and varying 
levels of noise.  

Figure (10) shows the results for this analysis. The 
legend (A) in Figure (10) represents the 3% noise and (B) 
represents 5% noise in data. We can notice the robust-
ness of the HM approach towards the noise in data and 
both HM approaches are able to still predict the profiles 
accurately in both cases studies 3.11 and 3.1.2. But we 
can also observe that increasing the noise for the same 
sparsity reduces the accuracy of predicted profiles. This 
is expected because modeling accuracy becomes a chal-
lenge with increasing sparsity and noise. When compar-
ing the two methods, the HM-MSFM approach performs 
better because the HM-MFSM structure directly fits the 
state values for each variable and proper tuning of the 
model helps in making it more robust towards noise. On 
the other hand, the HM-NODE fits the derivative values 
and estimating the derivatives in the presence of noise 
and sparsity becomes a challenge. While there exist 
many noise filtering techniques to smoothen the noisy 
data and mitigate this issue, we intend to include those 
as the future work. 

4. CONCLUSIONS 
In this work, we address the complexities inherent in 
data-driven model identification, especially when the un-
derlying physics of the model remains unknown. We in-
vestigate the limitations of current state-of-the-art tools 
like SINDy when the available candidate library inade-
quately covers all potential terms contributing to the final 
mechanistic model equation. To tackle this challenge, we 
propose combining hybrid modeling techniques with 
sparse regression with the goal of simultaneous hybrid 
model development and model identification. To achieve 
this, we outline a workflow that employs two distinct 
methods: a) utilizing a NODE formulation, and b) employ-
ing an MFSM formulation as hybrid modeling approaches 
integrated with SINDy. Our study demonstrates the ef-
fectiveness of this hybrid model architecture in con-
structing accurate models capable of predicting profiles 
that predict the true data accurately, while integrating 
the mechanistic model knowledge.  
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Figure 9: Extrapolated Volume (𝑉𝑉), Biomass (𝐵𝐵), product (𝑃𝑃), substrate (𝑆𝑆) profiles from SINDy model, HM-NODE 
and HM-MFSM formulations for case study 3.1.2 with 50, 30, and 20 HF samples. 

 
Figure 10: Predicted profiles from SINDy model, HM-NODE and HM-MFSM formulations for case study 3.1.1 (1A, 
1B), and 3.1.2 (2A, 2B) with noise in the data. A, B correspond to 3% noise and 5% noise respectively. 
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We also showcase the robustness of hybrid models 
in handling low densities in sampled data and their ability 
to extrapolate. At lower amounts of sampled data, HM-
NODE formulation can extrapolate better and HM-MFSM 
formulation can predict the states more accurately. Fur-
thermore, we investigated the effect of noise in the true 
state data on these hybrid models. While the HM formu-
lations could still predict the true profiles with a good ac-
curacy, we saw that reducing the sampling data and in-
creasing the noise can affect the model performance di-
rectly and make them less accurate. Future directions on 
this work will be focused on testing our methods with ex-
perimental data to formulate the models and proposing 
more efficient techniques to train hybrid models and im-
proving their robustness towards data sparsity and noise.  

5. ACKNOWLEDGEMENTS 
The authors acknowledge support from the National 

Science Foundation (NSF-1944678) 

REFERENCES 
1. Bradley, W., et al., Perspectives on the integration 

between first-principles and data-driven modeling. 
Computers & Chemical Engineering, 2022. 166: p. 
107898. 

2. van de Berg, D., et al., Data-driven optimization for 
process systems engineering applications. 
Chemical Engineering Science, 2022. 248: p. 
117135-117135. 

3. Quade, M., et al., Prediction of dynamical systems 
by symbolic regression. Physical Review E, 2016. 
94(1): p. 12214-12214. 

4. Koza, J., On the programming of computers by 
means of natural selection. Genetic programming, 
1992. 

5. Brunton, S., J. Proctor, and N. Kutz. Sparse 
identification of nonlinear dynamics (sindy). 

6. Brunton, S.L., J.L. Proctor, and J.N. Kutz, 
Discovering governing equations from data by 
sparse identification of nonlinear dynamical 
systems. Proceedings of the National Academy of 
Sciences, 2016. 113(15): p. 3932-3937. 

7. Champion, K., et al., Data-driven discovery of 
coordinates and governing equations. Proceedings 
of the National Academy of Sciences, 2019. 
116(45): p. 22445-22451. 

8. Chen, Z., Y. Liu, and H. Sun, Physics-informed 
learning of governing equations from scarce data. 
Nature Communications, 2021. 12(1): p. 6136-6136. 

9. Sun, F., Y. Liu, and H. Sun, Physics-informed spline 
learning for nonlinear dynamics discovery. arXiv 
preprint arXiv:2105.02368, 2021. 

10. Lejarza, F. and M. Baldea, Data-driven discovery of 

the governing equations of dynamical systems via 
moving horizon optimization. Scientific Reports, 
2022. 12(1): p. 11836. 

11. Von Stosch, M., et al., Hybrid semi-parametric 
modeling in process systems engineering: Past, 
present and future. Computers & Chemical 
Engineering, 2014. 60: p. 86-101. 

12. Bradley, W. and F. Boukouvala, Two-Stage 
Approach to Parameter Estimation of Differential 
Equations Using Neural ODEs. Industrial & 
Engineering Chemistry Research, 2021. 60(45): p. 
16330-16344. 

13. Roesch, E., C. Rackauckas, and M.P.H. Stumpf, 
Collocation based training of neural ordinary 
differential equations. Statistical Applications in 
Genetics and Molecular Biology, 2021. 20(2): p. 37-
49. 

14. Chen, R.T.Q., et al., Neural ordinary differential 
equations. Advances in neural information 
processing systems, 2018. 31. 

15. Lee, D., A. Jayaraman, and J.S. Kwon, Development 
of a hybrid model for a partially known intracellular 
signaling pathway through correction term 
estimation and neural network modeling. PLoS 
Computational Biology, 2020. 16(12): p. e1008472. 

16. Lai, Z., et al., Structural identification with physics-
informed neural ordinary differential equations. 
Journal of Sound and Vibration, 2021. 508: p. 
116196. 

17. Ravutla, S., J. Zhai, and F. Boukouvala, Hybrid 
Modeling and Multi-Fidelity Approaches for Data-
Driven Branch-and-Bound Optimization, in 
Computer Aided Chemical Engineering. 2023, 
Elsevier. p. 1313-1318. 

18. Meng, X. and G.E. Karniadakis, A composite neural 
network that learns from multi-fidelity data: 
Application to function approximation and inverse 
PDE problems. Journal of Computational Physics, 
2020. 401: p. 109020-109020. 

19. Lagaris, I.E., A. Likas, and D.I. Fotiadis, Artificial 
neural networks for solving ordinary and partial 
differential equations. IEEE transactions on neural 
networks, 1998. 9(5): p. 987-1000. 

20. Guo, M., et al., Multi-fidelity regression using 
artificial neural networks: efficient approximation of 
parameter-dependent output quantities. Computer 
methods in applied mechanics and engineering, 
2022. 389: p. 114378-114378. 

© 2024 by the authors. Licensed to PSEcommunity.org and PSE 
Press. This is an open access article under the creative com-
mons CC-BY-SA licensing terms. Credit must be given to creator 
and adaptations must be shared under the same terms. See 
https://creativecommons.org/licenses/by-sa/4.0/  

 


