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Abstract

Human diseases can kill one person at a time, but the COVID-19 pandemic showed
massacres could be possible. The climate crisis could be even worse, potentially leading to a bigger
number of deaths of the human species and all living systems on Earth. I urge us to change our
human-focused mindset to solve many problems, including the climate crisis, which humans
caused to the entire ecosystems due to our arrogance: humans own this world. In this perspective
article, I propose four recommendations to address climate issues through paradigm change and
safe and sustainable technologies.
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Main

Since the Earth was built approximately 4.5 billion years ago, many organisms and viruses
have been living in this gigantic house. Between 550,000 and 750,000 years ago[1], human
ancestors started to rent it and live with other previously residing residents. Around 200 years ago,
the Industrial Revolution made these messy residents start to destroy the old house. Unfortunately,
the destruction speed is so high that we might be at the tipping point of irreversible demolition of
the house[2]. For example, climate changes are clear and pose dire threats to the health and well-
being of the Earth and its inhabitants. Notably, more extreme, frequent, and interconnected climate
events are causing widespread vulnerabilities, damage, and loss to humans and nature, and these
adverse impacts are compounding and often becoming irreversible.

One solution to the climate crisis or emergency would be to limit further development and
plant a tremendous number of trees that can capture greenhouse gases (GHGs). However, it would
not be a viable solution for developing countries where economic development is their priority. In
addition, lands for food production are becoming limited, making traditional approaches such as
planting trees to capture GHGs impractical. Although engineering approaches would be practical
solutions to climate issues, they would contribute to climate risk mitigation, rather than absolute
risk elimination that requires eradicating the hazard and risk at its source.

I envision that engineering biology will enable climate change mitigation and adaptation
by lowering GHGs, removing pollutants, promoting biodiversity and ecosystem conservation, and
providing sustainable bioproducts in the food and agriculture sectors, transportation and energy
sectors, and manufacturing sectors[3, 4]. Notably, engineering biology is not the only solution for
sustainable growth and environmental protection, but one of the approaches to address the climate
crisis[4]. Using engineering biology, researchers can develop technologies that capture GHGs to
mitigate global warming[5], upcycle plastic waste to reduce plastic pollution in an economically



viable way[6], enable bacterial nitrogen fixation to help increase crop yields without using
chemical nitrogen fertilizers[7], and replace petroleum-based chemicals and materials with
bioproducts[3]. To this end, multiple factors should be considered, and I propose the following
four recommendations.

First, climate change is a global problem that should be solved by international
collaboration. To this end, we should understand climate inequality[8]. For example, just 10% of
the world population is responsible for almost 50% of global GHG emissions, while the top 1% of
global GHG emitters are responsible for 15% of the emissions. While the traditional GHG emitters
see it as a climate crisis or emergency, the developing countries may see it as an unfortunate
byproduct of urgent economic development. However, economic growth and planet conservation
might not necessarily be incompatible if we adopt and implement the concept of sustainable
growth and clean technology such as renewable energy generation and green chemistry. The key
change to make is our human-focused mindset; we should first admit that humans caused global
issues such as climate change and should realize that our planet belongs not only to us but also to
other living residents, including bacteria, insects, plants, and animals. Additionally, we should note
the complexity and challenges of climate issues in terms of political, economic, and societal
dynamics between different nations and generations. Nevertheless, I cautiously hope that it will be
possible to enable harmonization between humans and other living systems as well as among
nations with different political, economic, and societal interests to mitigate the climate problems.

Second, more technological infrastructure should be formed, including engineering
biology research centers, incubators for climate technology start-up companies, and scale-up
facilities for bioproduction[9]. Additionally, technology developers, especially researchers in
academia, will benefit from experts in techno-economic analysis (TEA) and life-cycle analysis
(LCA). Government labs that support TEA and LCA will be another useful infrastructure.
Furthermore, we should consider absolute sustainability assessments when evaluating biobased
solutions to climate problems[10-15]. To enable these activities, governments should increase
funding for fundamental and applied research as well as commercialization efforts of climate-
related technologies. Given the interdisciplinary and global nature of projects and activities
focusing on climate issues, center-scale funding and international funding support will be
important. Additionally, mid-size grants (e.g., 3M USD) that emphasize technological disruption
or innovation will facilitate diverse high-risk and high-return projects to be initiated. Notably, a
recent report shows the reduced proportion of disruptive technologies in the past decades[16]. The
climate emergency may need innovative and even disruptive technologies, and funding agencies
such as the U.S. ARPA-C and German SPRIND will have an important role in nurturing
environments that encourage diverse and innovative ideas.

Third, we must shift our paradigm from individual bioproduction based on a single
feedstock using a single microbe to consortium engineering in order to solve ecosystem-scale
problems such as climate crisis and waste issues[3]. In other words, the entire planet can be
considered a huge bioreactor[3], where photosynthetic or C1 organisms capture greenhouse
gases[5, 17], nitrogen-fixing bacteria store the limiting nitrogen source for diverse other
organisms[7, 18], and plastic-eating microbes convert plastic wastes into value-added chemicals
and materials[6, 19, 20]. Notably, we should quantify the impact of consortium engineering on
solving the climate issues. To achieve this ambitious goal, I suggest the following technological



development: 1) developing microbiota engineering tools that have species- or strain-level
specificity and spatiotemporal accuracy by improving machine-learning-based computational and
experimental tools[21, 22]; 2) using such strain-level knock-out and knock-in tools to determine
the function and role of individual community members and the microbial consortium
dynamics[21, 23]; 3) constructing or optimizing ecosystems that help solve global problems,
including the climate crisis, food shortage, waste issue, and sustainable bioproduction[24, 25]; 4)
ensuring biocontainment through the use of technologies such as auxotrophy and kill switches[26,
27]. Obviously, developing such technologies requires multidisciplinary and international
collaborative efforts of many experts, including systems and synthetic biologists, soil, water, and
atmospheric scientists, environmental engineers, and systems engineers, with funding support.
Notably, researchers should also consider the limitations and risks of engineering biology-based
solutions, such as biocontainment issues of genetically engineered cells[26, 28] and antibiotic
resistance spread potentially caused by antibiotic resistance genes released into the environment
from biological research laboratories[3, 29, 30], avoid the hype of technological solutions[31, 32],
and think about dual use research of concerns[9, 30, 33].

Fourth, we must focus on workforce development and education to generate the well-
educated public and future leaders who are passionate about solving climate issues and ensuring
sustainability together. Although generating future educators is critical for continued workforce
training, we should also encourage and nurture future entrepreneurs. For example, Nucleate is a
student-run organization that helps entrepreneurs form companies. Industry, academy, and
government leaders should pay attention to and support such activities to nurture future industry
leaders. Importantly, to allow for diverse solutions to the complex climate issues, educators must
consider diversity, equity, and inclusion when our next generations are educated[9]. Notably,
climate issues can be addressed the most effectively by collaborative efforts by governments,
industries, academia, NGOs, and the public.

Despite the serious and urgent climate issues, I am cautiously optimistic because of the
younger generation’s awareness of climate problems and passion for solving them as well as the
current international efforts to solve climate issues through policy implementation, education, and
technology development. Using engineering biology that is often scalable and easily accessible,
our future leaders are working hard to address challenges in climate-related research, technology
development, commercialization efforts, and policymaking. Obviously, despite the complexity of
climate issues as discussed above, they can be addressed by harmonic collaborative efforts by all
generations and all stakeholders This article provides the global research labs, industry, and
governments with visions and potential solutions to climate problems. Sustainable growth along
with solving climate issues is possible with global collaborations that implement the suggested
visions.
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