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representation of grapevine leaf shape. Using polynomial models, we create con-
tinuous representations of leaf development in 10 Vitis spp.

We visualize a high-resolution morphospace in which genetic and developmental
sources of leaf shape variance are orthogonal to each other. Using classifiers, Vitis
vinifera, Vitis spp., rootstock and dissected leaf varieties as well as developmental
stages are accurately predicted. Theoretical eigenleaf representations sampled
from across the morphospace that we call synthetic leaves can be classified using
models.

By predicting a high-resolution morphospace and delimiting the boundaries of leaf
shapes that can plausibly be produced within the genus Vitis, we can sample syn-
thetic leaves with realistic qualities. From an ampelographic perspective, larger
numbers of leaves sampled at lower resolution can be projected onto this high-
resolution space, or, synthetic leaves can be used to increase the robustness and

accuracy of machine learning classifiers.

KEYWORDS

1 | INTRODUCTION

The field of ampelography (after the Greek ampelos, aurelog, literally
vine) identifies grapevines by their phenotypic features. A focus, from
the beginning, has been on leaf shape not only because it is easily dis-
cerned but because shape varies so dramatically between varieties.
Uniquely, ampelographers quantified geometric features in leaves.
When the field first arose in Europe to distinguish American rootstock
varieties resistant to Phylloxera (Ravaz, 1902), measurements of the
angles between veins, particularly those defining the petiolar sinus,
were made (Goethe, 1876, 1878). In the twentieth century, Pierre
Galet used comprehensive measurements of vascular angles,
dimensions, and serrations combined with extensive discussion of
origin, synonyms, and other traits to catalog Vitis vinifera varieties
(Galet, 1979, 1985, 1988, 1990, 2000). These approaches inspired
further mathematical and morphometric approaches, such that mean
leaves preserving details like serrations could be calculated, visualized,
and used as ideal representations of varieties (Martinez &
Grenan, 1999). The shape of grapevine leaves is important in func-
tional ways beyond just purposes of identification. The genetic and
developmental basis of grapevine leaf shape influences responses to
abiotic stresses (MacMillan et al., 2021), including climate change
(Chitwood et al., 2021), and ultimately can influence canopy architec-
ture and temperature (Migicovsky et al., 2024). Because of the history
of ampelography, grapevine leaves serve as a model system for mor-
phometric approaches that can applied to other crop species.

Our previous work has capitalized on the grapevine leaf as a mor-
phometric model that can be used to explore the ways that genetic,
developmental, and environmental influences shape complex traits
(Chitwood & Sinha, 2016). Leveraging the fact that every grapevine

leaf has five major veins—a midvein, two distal veins, and two

ampelography, grapevine, leaf development, leaf shape, morphospace, Vitis

proximal veins (Figure 1a)—the distance between corresponding
points found in every leaf can be minimized through the geometric
functions of translation, rotation, scaling, and reflection. Such a super-
imposition of two shapes is known as a Procrustes analysis, and
results from minimizing the Procrustes distance, which is a measure of
overall similarity between two sets of points (Goodall, 1991). A large
group of shapes can be superimposed against each other using a Gen-
eralized Procrustes Analysis (GPA; Gower, 1975). An arbitrary refer-
ence shape is selected, against which all samples are superimposed by
Procrustes analysis and a new mean shape calculated. All samples are
superimposed against the new mean shape, and another mean is cal-
culated. When the Procrustes distance between the mean shapes
resulting from two successive iterations falls below an arbitrarily low
value, the shape is taken to represent the mean against which all sam-
ples are superimposed for further analysis.

Over the last decade, we have successively increased the resolu-
tion of our morphometric techniques, the number of leaves we study,
and the axes of genetic, developmental, and environmental variation
which we measure that modulate leaf morphology (Table 1). We
began by examining the genetic basis of leaf shape between
V. vinifera varieties in the United States Department of Agriculture
(USDA) Agricultural Research Services (ARS) National Clonal Germ-
plasm Repository at Wolfskill (Winters, California, USA), using 10 land-
marks across both sides of the leaf (Chitwood et al., 2014). We
subsequently analyzed leaves from the USDA Cold-Hardy Grape
(Vitis) Collection in Geneva (New York, USA), which in contrast to
Wolfskill contains mostly North American and Asian Vitis spp., and for
which we collected leaves from an entire shoot as a developmental
series (which was not done for the Wolfskill leaves) and measured
using 17 landmarks across the whole leaf (Chitwood, Klein,

et al., 2016). In follow-up work, we increased the landmark number to

ASUAOIT suowwo)) dANLaI)) [qesrjdde Yy Aq pauIaA03 a1 SA[ONIR Y SN JO SANI 10J ATRIqIT dUI[UQ AJ[IA\ UO (SUOIIPUOI-PUR-SWULID)/W00 AJ[1M" ATRIqI[aul[uo//:sd)y) SUonIpuo)) pue sWLd I, a4 33 ‘[5702/90/10] uo Areiqr auruQ A3[ip ‘19501 ¢ddd/zo01°01/10p/wod Kapim: Areiqiauruo-yduy/:sdny woly papeojumod ‘[ ‘Sz0T ‘11927LST



CHITWOOD ET AL.

M 1° proximal M 1° distal
M 2° proximal M 2° distal
M 3° proximal M 3° distal
M Proximal

M Distal

M 1° midvein
M 2° midvein
¥ 3° midvein
[ Midvein

Euclid. dist.

= Actual mean
M x1000 bootstrap

35 45 55

FIGURE 1

0432 0434 0436 0438 0.440
Average Procrustes distance

Plants People Planet PPPJﬁ

In(vein area / blade area)

1 2 3 4 5
In(leaf area), cm

Count

M V. vinifera
I Vitis spp.
Border

M Node 1
M Node 2
M Node 3
M Node 4
MSU

UC Davis

-

Euclid. dist.
HEEN
54 60 6.6

0 ’
0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

Average Procrustes distance

0.02 0.03 0.04 0.05
Average Procrustes distance

Procrustes analysis. (a) The mean grapevine leaf calculated using generalized Procrustes analysis. Vein identities are indicated by

color. Lowercase letters indicate vein tip landmarks, and numbers indicate internal vein landmarks. The numbers indicate the order the internal
landmarks were detected for one side of the leaf. (b) Negative, linear, allometric relationship between the natural log of the ratio of vein to blade
area as a function of the natural log of leaf area. Data categories are indicated by color. (c) Histogram showing the average Procrustes distance of
each leaf to every other leaf. Color indicates data categories. Note that border leaves, which were purposely chosen as lying far from the center
of data, have higher average Procrustes distances than other leaf types. (d) The average Euclidean distance of each point to its counterpart
between leaf halves superimposed using Procrustes analysis. (e) The actual mean and a distribution of 1000 bootstrap simulations of the
Procrustes distance of each leaf half to its counterpart. (f) The average Eulcidean distance of each point to its counterpart between leaf pairs from
20 varieties. (g) The actual mean and a distribution of 1000 bootstrap simulations of the Procrustes distance of each leaf to its counterpart for the

20 pairs.
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TABLE 1  Previous ampelographic work and leaves analyzed.
Chitwood Chitwood, Klein,  Chitwood, Rundell, Bryson Chitwood Chitwood and  This

Publication et al. (2014) et al. (2016) et al. (2016) et al. (2020) (2021) Mullins (2022)  manuscript
Landmarks 10 17 21 21 24 21 90
Pseudo-landmarks 0 0 0 0 5999 0 1672
Whole or half leaf Whole Whole Half Half Half Half Whole
Vein-to-blade ratio No No Yes Yes Yes Yes Yes
Developmental modeling  No No No Yes No Yes Yes
Predicted morphospace No No No No No Yes Yes
No. leaves Wolfskill, CA >9500 9548 0 (0] 240 0 14
No. Leaves Geneva, NY 0 3292 >5500 8465 0 6284 66
No. leaves UC Davis, CA 0 0 0 0 0 0 59

21 to only half of the leaf, marking the bases of the veins that allowed
us to measure the area occupied by vasculature relative to blade and
to observe the exponential decrease in the ratio of vein-to-blade area
as leaves expand during development (Chitwood et al, 2021;
Chitwood, Rundell, et al., 2016). We next created continuous develop-
mental models of leaf shape, modeling each x and y coordinate value
as a polynomial function of node position in the shoot and using the
resulting “composite” leaf shapes to show that they discriminate spe-
cies identity better than individual leaves (Bryson et al., 2020). Using
21 landmarks on the Geneva leaves and in comparison to V. vinifera
leaves derived from California breeding populations, we calculated a
morphospace: a continuous representation that can be used to visual-
ize and demarcate the extent of genetic, developmental, and environ-
mental variation in the genus Vitis (Chitwood & Mullins, 2022).

The above studies rely on a small number of homologous land-
mark points to represent leaf shape. The intricate curves and details
of leaves that captivate our eyes are missing. By placing a high num-
ber of pseudo-landmarks—equidistant points along line segments con-
necting landmarks—we can analyze the remaining details that
comprise leaf morphology. This approach uses tracing and is more
time-consuming and results in a different strategy: instead of measur-
ing thousands of leaves at a resolution of dozens of landmarks, hun-
dreds of leaves are measured using thousands of pseudo-landmarks.
Previously, we measured half the leaf of representative wine and table
grape varieties (Chitwood, 2021). Here, we extend high-resolution
morphometric analysis to the entire leaf across both V. vinifera varie-
ties as well as wild Vitis spp., and for the first time measure leaves
from rootstock varieties in the Teaching Vineyard at the Robert Mon-
davi Institute for Wine and Food Science at University of California at
Davis (UC Davis). We create continuous developmental models for
10 Vitis spp. and project these models onto a visualized morphospace.
Classifiers accurately predict genotype and developmental identities
of leaves. Using models, we classify leaves from the morphospace and
use it to create synthetic leaves: high-resolution leaf representations
that are theoretically possible based on the known borders of the Vitis
morphospace. We end with a discussion about how synthetic leaves
can be incorporated into workflows to improve studies of leaf shape

using machine learning approaches.

2 | MATERIALS AND METHODS

2.1 | Plant material and data collection

Leaves from V. vinifera varieties, rootstock varieties, and wild Vitis
spp. were sampled from the Teaching Vineyard at the Robert
Mondavi Institute for Wine and Food Science at UC Davis. Original
scans with scale for each leaf sampled from the UC Davis teaching
vineyard are available (Chitwood, 2024). Leaves from the USDA
Wolfskill, CA, and Geneva, NY, collections were measured by select-
ing leaves from previously published data (Chitwood, 2020;
Chitwood et al., 2020).

Leaves were categorized in two different ways. In the first,
leaves were factored by how they were measured and the intention
of including them in the data. The factor levels and their descriptions
are “V. vinifera,” representative leaves from V. vinifera varieties in the
Wolfskill collection; “Vitis spp.,” representative leaves from wild Vitis
spp. in the Geneva collection; “Border,” leaves from both the
Wolfskill and Geneva datasets that were sampled because they lie
far from the center of the morphospace; “node 1,” “node 2,” “node
3,” and “node 4” leaves which represent developmental series from
ten wild Vitis spp. from the first four nodes counting from the grow-
ing tip; “MSU” and “UC Davis,” which are leaves traced by students
at Michigan State University and University of California at Davis,
respectively, from the UC Davis Teaching Vineyard. In the second
factorization, leaves are classified by their genetic or developmental
identities. Each leaf has exactly one assigned genetic and develop-
ment factor level. Genetically, leaves are classified as arising from

» 2 G

“V. vinifera,” “Vitis spp.,” “rootstock,” or “dissected” types. Develop-
mentally, leaves are classified, as counting from the growing tip, as
arising from “node 1,” “node 2,” “node 3,” “node 4,” or as “mature”

if greater than node 4.

2.2 | Automatic landmark detection

e

For each leaf, starting on one side of the petiolar junction (point “a

or “y” in Figure 1a), in ImageJ (Schneider et al., 2012) or Fiji
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(Schindelin et al., 2012), a trace of the vein and blade was made using
the line segment tool and stored as a.txt file. An information file,
storing species or variety name, the dataset the leaf scan originated
from, the vine, developmental stage, file name of the associated
image, dataset source, and scaling information, was stored as a.csv
file. All three files have a three digit identifier indicating if they are
from the Wolfskill or Geneva datasets (starting with “0”) or the UC
Davis vineyard dataset traced by MSU (starting with “1”) or UC
Davis (starting with “2”) students separated by underscore and
followed by the species or variety name in capital letters. Another
underscore separates an identifier indicating if the file is a blade or
vein trace or information file (“blade,” “vein,”, and “info,” respec-
tively). File names from a data folder were read in and used to store
raw data and associated metadata. All analyses were performed in
Python (version 3.10.9), Numpy (Harris et al., 2020), and Pandas
(McKinney & Team, 2015) using a Jupyter notebook (Kluyver
et al., 2016). Matplotlib (Hunter, 2007) and Seaborn (Waskom, 2021)
were used for data visualization.

Ninety landmarks (25 from the vein tips, 40 internal vein land-
marks, and 25 blade landmarks) were automatically detected. Vein
and blade traces were interpolated with 1000 equidistantly spaced
points to increase the resolution of the data using the interp1d func-
tion SciPy (Virtanen et al., 2020). The petiolar junction was calculated
as the mean of the first (“a”) and last (“y”) coordinate in the vein trace
file. The Euclidean distance of each vein trace point to the petiolar
junction was calculated as a function of geodesic distance along the
trace. The SciPy find_peaks function was used to find the 25 vein tip
indices in the trace using the above plot. The 25 blade landmarks cor-
respond closely to the 25 vein tip landmarks, and are identified by
index as the closest point in the interpolated blade trace to an identi-
fied vein tip landmark. The 25 vein tip landmarks are labeled “a”
through “y” in Figure 1a.

Forty internal landmarks, placed on each side of the base of a
vein, were calculated in the order indicated in Figure 1a. The landmark
on the more distal side (farthest away from the petiolar junction) of
the base of a vein was calculated before the proximal side (closer to
the petiolar junction). The first calculated internal landmark of the
base of a vein was used in reference to calculate the other. Internal
landmarks were calculated by specifying a start and end index along a
segment of the vein trace and a reference index. Calculating the
Euclidean distance for each point along the segment from start to end
to the reference index, the index with either a maximum or minimum
distance value was assigned as the landmark. For example, internal
landmark “1” was calculated using landmark “b” as the start index,
landmark “c” as the end index, and landmark “c” as the reference
index (Figure 1a). Internal landmark “1” was calculated as the index
with the maximum Euclidean distance along this segment from land-
mark “c.” Landmark 2 was calculated using landmark “a” as the start
index, landmark “b” as the end index, and internal landmark “1” as the
reference index. Internal landmark “2” was calculated as the index
with the minimum Euclidean distance along this segment from
landmark “1.” The rest of the internal landmarks were calculated in a

similar way, specifying the segment of the trace using previously

P 137

calculated landmarks on which they fall, and calculating the minimum

People P

or maximum Euclidean distance from a reference landmark.

Along each line segment of the vein trace defined by internal and
tip landmarks, and each line segment of the blade trace defined by
blade landmarks, 20 equidistant pseudo-landmarks were calculated.
Redundant landmarks at the beginning and end of each segment were
eliminated. There were 1672 pseudo-landmarks total: 1216 vein and
456 blade.

2.3 | Vein-to-blade ratio, Procrustes analysis, and
biological reproducibility

The ratio of the vein area to the blade area (vein-to-blade ratio) was
calculated using Gauss' area formula (or, the shoelace algorithm;
Braden, 1986; Meister, 1769). Vein-to-blade ratio is an allometric indi-
cator with a negative, linear relationship to leaf area (Figure 1b);
Chitwood et al., 2021). The vein and blade pseudo-landmarks were
treated as vertices of a polygon from which area was calculated,
which were used as the area of the venation and leaf, respectively.
The blade area was calculated by subtracting the vein area from the
leaf area. The natural log of vein-to-blade ratio was plotted against
the natural log of leaf area to which a line was fitted using the SciPy
curve_fit function.

The mean Procrustes distance of each leaf to every other leaf
was calculated using the Procrustes function from SciPy and plotted
as a histogram (Figure 1c). To assess the ability of our morphometric
method to measure biological reproducibility, we compared the two
halves of each leaf to each other (Figure 1d,e) as well as a set of
20 pairs of leaves originating from the same variety (Figure 1f,g) in the
UC Davis collection and calculated Procrustes distances. For each of
the two analyses, 1000 bootstrap calculations of the average Procrus-
tes distance were calculated by randomizing one set of the data
against the other and comparing the distribution to the actual average.
For each pseudo-landmark from each comparison, a Euclidean dis-
tance was calculated and projected back onto generalized Procrustes
analysis mean leaf to visualize the spatial contribution of each

pseudo-landmark to the alignment.

24 | Developmental modeling, principal
component analysis, and linear discriminant analysis

Developmental modeling was undertaken using the same techniques
as Bryson et al. (2020). For 10 wild Vitis spp., using the first four
expanded leaves from the growing tip, for each of 3344 x and
y coordinate values from 1672 pseudo-landmarks, a second degree
polynomial model was fitted as a function of node number counting
from the tip (1, 2, 3, 4) using the Numpy polyfit function. One hundred
leaves were modeled from nodes 1 to 4 and used in subsequent
analyses.

The PCA function from Scikit-learn (Pedregosa et al, 2011)
was used for principal component analysis (PCA). Eigenleaf
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FIGURE 2 Leaf trace data. Original trace data for each leaf. Vein identities are indicated by color, and 1 cm scale bar is provided. Leaves are
arranged by data category, left-to-right, top-to-bottom. Species or variety name is indicated. (a) Vitis vinifera and Vitis spp. leaves. (b) Border
leaves. (c-1) Developmental series leaves. Leaves are grouped in fours counting from the growing tip: node 1, node 2, node 3, and node

4. Developmental series for 10 species were measured: (c) V. cinerea, (d) V. rupestris, (e) V. riparia, (f) V. labrusca, (g) V. acerifolia, (h) V. amurensis,
(i) V. vulpina, (j) V. aestivalis, (k) V. coignetiae, and (I) V. palmata.
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representations were calculated using the inverse_transform function. calculate a convex hull in a nine-dimensional principal component
The LinearDiscriminantAnalysis function from Scikit-learn was used space, the ConvexHull function from SciPy was used followed by the
for linear discriminant analysis (LDA). The predict function was used Delaunay function to find simplices. A uniform distribution of points
on resulting models to classify leaf identities. The confusion_matrix was sampled using the Dirichlet distribution using the SciPy Dirichlet
function was used to calculate and visualize confusion matrices. To function.
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3 | RESULTS

Using automatic landmark detection, continuous representations of
the size and shape of leaves identifying specific veins can be visual-
ized, allowing differences in leaf morphology between V. vinifera vari-
eties and Vitis spp. (Figure 2a), atypical leaves bordering the known
Vitis morphospace (Figure 2b), developmental series of leaves from
the first four nodes at the growing tip of 10 Vitis spp. (Figure 2c-l),
and V. vinifera and rootstock variety leaves from the UC Davis collec-
tion traced by MSU (Figure 3a) and UC Davis (Figure 3b) students to
be qualitatively compared at a glance. In addition to visual inspection,
we used a number of other approaches to verify the quality of our
input data. As previously shown for all Vitis spp. leaves (Chitwood
et al., 2021), our leaves follow a negative linear relationship between
the natural log of the ratio of vein-to-blade area as a function of the

natural log of leaf area (Figure 1b). Calculating the average Procrustes

distance of each leaf to all other leaves, border leaves had a higher
distance from other leaves, which is expected as they were purposely
chosen to lie far from the center of the morphospace (Figure 1c). To
determine if our method could detect biological reproducibility, we
compared the Procrustes distances of (1) each half of every leaf to the
other (Figure 1d,e) and (2) 20 pairs of leaves from the UC Davis collec-
tion that originate from the same variety (Figure 1f,g). In both cases,
the actual mean Procrustes distance was less than x 1000 bootstrap
simulations. Comparing Euclidean distances of superimposed leaf
halves, it was the leaf tips that more closely aligned with each other
and contributed to the biological reproducibility (Figure 1d), whereas
comparing leaf pairs originating from the same variety, it was the
overall blade outline, but especially the vein tips and the distal sinuses
(Figure 1f).

For 10 Vitis spp., we modeled each x and y coordinate value

across the first four nodes from the growing tip of the vine as
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polynomial functions, creating continuous representations of leaf
development (Figure 4a). Decreases in vein-to-blade ratio value are
observed across each series, which allometrically reflects increases in
leaf size during development. To visualize these models in the context
of shape variation represented among all the measured leaves, we
performed a PCA, which not only is a dimension reduction technique
that allows more variation to be analyzed using fewer axes but also
through an inverse transformation allows the underlying morphospace
to be visualized (based on “eigenleaf” representations). The first prin-
cipal component explains 46.9% of total variation and is associated
with shape variation ranging from a V. rupestris/V. riparia-like leaf
shape with a shallow petiolar sinus and reduced lobing to a more
V. vinifera-like leaf shape with an overlapping petiolar sinus and dee-
per lobes (Figure 4b). PC2, explaining 10.6% of total variation, shows
a more dynamic range of vein-to-blade ratios and ranges from a devel-
opmentally mature, orbicular leaf type with no lobing and deep petio-
lar sinus to a developmentally younger leaf type with a shallow
petiolar sinus and pronounced midvein that is relatively long.
Although
(Chitwood & Mullins, 2022) axes explaining genetic differences

somewhat confounded, as previously described
between species and varieties vs. developmental differences are
orthogonal to each other. Genotype differences (between V. vinifera,
Vitis spp., rootstock, and dissected classes) mostly vary across PC1
and diagonally from low PC1/PC2 to high PC1/PC2 values (Figure 4
(c)). Contrastingly, developmental differences vary from small, young
leaves (high vein-to-blade ratio) to large, mature leaves (low vein-
to-blade ratio) across PC2 and diagonally from low PC1/high PC2 to
high PC1/low PC2 values. If continuous developmental models of
leaves (Figure 4a) are projected onto the morphospace (Figure 4d),
they confirm the direction of developmental trajectories.

The orthogonality of genotypic and developmental variation sug-
gests that these axes can be independently predicted from each other.
We created classifiers for leaves based on genotypic (Figure 5) and
developmental (Figure 6) identity using LDA which we then used to
predict the identities of theoretical morphospace leaves. Average leaf
shapes across genotype classes (remembering that Vitis spp. leaves
contain developing leaf shapes from nodes 1-4 not represented in
other classes) mostly vary by the degree of lobing (Figure 5a). Except
for three leaves, all leaves are correctly classified by their genotypic
class (Figure 5b) and show separation in the LDA space (Figure 5c,d).
If 200 theoretical eigenleaves from the morphospace are synthesized
and classified, the separation of genotype classes across low PC1/PC2
to high PC1/PC2 values is evident. Contrastingly, variation across
average leaf shapes by developmental node (remembering that nodes
1-4 are mostly represented by Vitis spp.) is more gradual, with a

shallow-to-deeper petiolar sinus and a midvein which shortens in

P 141

relative length as leaves mature and grow in size, in addition to strong

People P

reductions in the ratio of vein-to-blade area (Figure 6a). All but one
leaf is correctly predicted by its developmental class (Figure éb).
Leaves from different nodes separate by class in LDA space
(Figure 6c,d), but especially by LD2 vs. LD1, and are continuously con-
nected to each other when developmental models are projected onto
the space (Figure 6c). If eigenleaf representations are classified by
developmental stage, a gradient from small and young leaves to large
and mature leaves is observed along low PC1/high PC2 to high
PC1/low PC2 values.

4 | DISCUSSION

Ampelography relies on trained, human cognition to identify corre-
sponding features that vary by variety (Bodor-Pesti et al., 2023).
Although human-derived ampelographic data is highly accurate, it is
constrained by the time to manually measure it: either thousands of
leaves using dozens of landmarks or hundreds of leaves with thou-
sands of landmarks (as in this work) can be measured (Table 1).
Although we automate the detection of landmarks and veins from
trace data, truly automatic detection of ampelographic features
remains elusive. Not only does background noise prevent accurate
classification of vein and blade pixels but occlusion (for example, over-
lapping lobes) prevents detecting key features. We note that the vein
and blade traces we produce on raw images are the perfect training
set for automatic feature detection by machine learning models. Con-
trastingly, machine learning and convolutional neural networks can
achieve high classification rates directly from images (Magalhaes
et al., 2023). They also overcome problems associated with noise and
leverage high numbers of de novo features. However, while machine
learning can achieve high classification rates and requires little data
manipulation to use, it is difficult to interpret the features used for
classification, much less within an established ampelographic frame-
work that can be extrapolated to other contexts.

Previously, using thousands of leaves with only 21 landmarks
(Chitwood & Mullins, 2022), we similarly sampled the Vitis morpho-
space as we have done here. Consistent between both works, genetic
and developmental contributions to leaf shape are orthogonal and can
be predicted independently of the other. Unlike our previous work, by
sampling both sides of the leaf and with a saturating number of
pseudo-landmarks, the resulting morphospace is defined by realistic
eigenleaf representations. We can sample this space beyond just the
first two PCs to create synthetic leaves that represent morphological
diversity within Vitis. As an example, we consider the first nine PCs

representing 88% of all shape variation (Figure 4b). To estimate the

FIGURE 4 Morphospace. (a) Continuous models of leaf development for 10 Vitis spp. From node 1 to node 4 counting from the growing tip,
100 leaves were modeled, for which 10 equally spaced indices are shown. (b) Eigenleaf representations at —2, —1, 0, +1, and +2 standard
deviations and percent variance explained for the first nine principal components. (c) Morphospace onto which data colored by genotype is
projected. (d) Morphospace onto which data colored by developmental stage is projected. Developmental models for 10 species, which are not
included in the calculation of the morphospace, are projected onto it as curves, indicated by color. Values of the natural log of the ratio of vein to

blade area are consistent between panels and figures, as indicated.
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FIGURE 5 Linear discriminant analysis (LDA) model by genotype. (a) Generalized Procrustes analysis mean leaves by genotype levels,

indicated by color and text: Vitis vinifera, Rootstock, Vitis spp., and dissected. (b) Confusion matrix plotting actual by predicted categories with
numbers of each class and indicated by color. (c) Data colored by genotype projected onto a plot of LD2 vs. LD1 and (d) LD3 vs. LD2. (e) Principal
component analysis (PCA) morphospace. Eigenleaf representations are colored by genotype prediction using the LDA classifier. Data is plotted

and bounded by a convex hull.

borders of this nine-dimensional space, we can calculate a convex hull
and uniformly sample synthetic leaves within it (Figure 7). Each of
these synthetic leaves is unique and represents a position within the
genetic and developmental boundaries of the Vitis morphospace. Each

is a theoretical representation of a possible grapevine leaf, the fea-
tures of which are already defined.
Such synthetic leaves offer new opportunities in data analysis.

Because they are sampled from within the boundaries of a known
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categories with numbers of each class and indicated by color. (c) Data colored by developmental stage and projected onto a plot of LD2 vs. LD1
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indicated by smaller points. (e) Principal component analysis (PCA) morphospace. Eigenleaf representations are colored by developmental stage
prediction using the LDA classifier. Data is plotted and bounded by a convex hull.

morphospace, it is possible to predict and visualize leaves we have
not sampled. For example, in our own data, we have yet to sample
developmental series from V. vinifera varieties the same way we have
for Vitis spp. Yet, because we can estimate developmental variation in

relation to variation that defines differences between species and

varieties (Figures 4-6), we look forward to predicting developmental
series of wine and table grape varieties and comparing them to empir-
ically sampled leaves, as we previously proposed (Chitwood &
Mullins, 2022). Another possibility is to bypass manual measurements

by projecting onto a precalculated morphospace. Because synthetic
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leaves already contain most the features found in grapevine leaves,
subsets of features can be projected back onto the high resolution
morphospace. For example, pseudo-landmarks around the blade out-
line using tip and petiolar junction landmarks, or the large number of
leaves we have previously landmarked using 21 points, can be calcu-
lated in synthetic leaves as well. The best match between an empiri-
cally sampled leaf with a synthetic leaf can then be found using the
Procrustes distance between the two and projected back into the high
resolution space. Finally, because synthetic leaves are realistic and
capture intricate features of leaf morphology, they could be used as
inputs into convolutional neural network classifiers to increase robust-

ness and accuracy by augmenting and broadening training data.

5 | CONCLUSION

The ability to create realistic, synthetic leaves with intricate features
arises from the constrained morphology of grapevine leaves with
numerous homologous features that lends itself to morphometric
analysis. While manual ampelographic measurements and convolu-
tional neural network approaches are forward approaches that detect
features first to classify leaves, the approach we describe here is
reverse: by estimating an underlying morphospace that can predict
synthetic leaves, we can use such theoretical leaves to anticipate the
leaves we have yet to sample and develop tools that increase our abil-
ities to classify varieties and learn about the underlying biology of

grapevines.
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