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Societal Impact Statement

Grapevine leaves are emblematic of the strong visual associations people make with

plants. Leaf shape is immediately recognizable at a glance, and therefore, this is used

to distinguish grape varieties. In an era of computationally enabled machine learning-

derived representations of reality, we can revisit how we view and use the shapes

and forms that plants display to understand our relationship with them. Using com-

putational approaches combined with time-honored methods, we can predict theo-

retical leaves that are possible, enabling us to understand the genetics, development,

and environmental responses of plants in new ways.

Summary

• Grapevine leaves are a model morphometric system. Sampling over 10,000 leaves

using dozens of landmarks, the genetic, developmental, and environmental basis

of leaf shape has been studied and a morphospace for the genus Vitis predicted.

Yet, these representations of leaf shape fail to capture the exquisite features of

leaves at high resolution.

• We measure the shapes of 139 grapevine leaves using 1672 pseudo-landmarks

derived from 90 homologous landmarks with Procrustean approaches. From hand

traces of the vasculature and blade, we have derived a method to automatically

detect landmarks and place pseudo-landmarks that results in a high-resolution
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representation of grapevine leaf shape. Using polynomial models, we create con-

tinuous representations of leaf development in 10 Vitis spp.

• We visualize a high-resolution morphospace in which genetic and developmental

sources of leaf shape variance are orthogonal to each other. Using classifiers, Vitis

vinifera, Vitis spp., rootstock and dissected leaf varieties as well as developmental

stages are accurately predicted. Theoretical eigenleaf representations sampled

from across the morphospace that we call synthetic leaves can be classified using

models.

• By predicting a high-resolution morphospace and delimiting the boundaries of leaf

shapes that can plausibly be produced within the genus Vitis, we can sample syn-

thetic leaves with realistic qualities. From an ampelographic perspective, larger

numbers of leaves sampled at lower resolution can be projected onto this high-

resolution space, or, synthetic leaves can be used to increase the robustness and

accuracy of machine learning classifiers.

K E YWORD S

ampelography, grapevine, leaf development, leaf shape, morphospace, Vitis

1 | INTRODUCTION

The field of ampelography (after the Greek ampelos, άμπελος, literally

vine) identifies grapevines by their phenotypic features. A focus, from

the beginning, has been on leaf shape not only because it is easily dis-

cerned but because shape varies so dramatically between varieties.

Uniquely, ampelographers quantified geometric features in leaves.

When the field first arose in Europe to distinguish American rootstock

varieties resistant to Phylloxera (Ravaz, 1902), measurements of the

angles between veins, particularly those defining the petiolar sinus,

were made (Goethe, 1876, 1878). In the twentieth century, Pierre

Galet used comprehensive measurements of vascular angles,

dimensions, and serrations combined with extensive discussion of

origin, synonyms, and other traits to catalog Vitis vinifera varieties

(Galet, 1979, 1985, 1988, 1990, 2000). These approaches inspired

further mathematical and morphometric approaches, such that mean

leaves preserving details like serrations could be calculated, visualized,

and used as ideal representations of varieties (Martínez &

Grenan, 1999). The shape of grapevine leaves is important in func-

tional ways beyond just purposes of identification. The genetic and

developmental basis of grapevine leaf shape influences responses to

abiotic stresses (MacMillan et al., 2021), including climate change

(Chitwood et al., 2021), and ultimately can influence canopy architec-

ture and temperature (Migicovsky et al., 2024). Because of the history

of ampelography, grapevine leaves serve as a model system for mor-

phometric approaches that can applied to other crop species.

Our previous work has capitalized on the grapevine leaf as a mor-

phometric model that can be used to explore the ways that genetic,

developmental, and environmental influences shape complex traits

(Chitwood & Sinha, 2016). Leveraging the fact that every grapevine

leaf has five major veins—a midvein, two distal veins, and two

proximal veins (Figure 1a)—the distance between corresponding

points found in every leaf can be minimized through the geometric

functions of translation, rotation, scaling, and reflection. Such a super-

imposition of two shapes is known as a Procrustes analysis, and

results from minimizing the Procrustes distance, which is a measure of

overall similarity between two sets of points (Goodall, 1991). A large

group of shapes can be superimposed against each other using a Gen-

eralized Procrustes Analysis (GPA; Gower, 1975). An arbitrary refer-

ence shape is selected, against which all samples are superimposed by

Procrustes analysis and a new mean shape calculated. All samples are

superimposed against the new mean shape, and another mean is cal-

culated. When the Procrustes distance between the mean shapes

resulting from two successive iterations falls below an arbitrarily low

value, the shape is taken to represent the mean against which all sam-

ples are superimposed for further analysis.

Over the last decade, we have successively increased the resolu-

tion of our morphometric techniques, the number of leaves we study,

and the axes of genetic, developmental, and environmental variation

which we measure that modulate leaf morphology (Table 1). We

began by examining the genetic basis of leaf shape between

V. vinifera varieties in the United States Department of Agriculture

(USDA) Agricultural Research Services (ARS) National Clonal Germ-

plasm Repository at Wolfskill (Winters, California, USA), using 10 land-

marks across both sides of the leaf (Chitwood et al., 2014). We

subsequently analyzed leaves from the USDA Cold-Hardy Grape

(Vitis) Collection in Geneva (New York, USA), which in contrast to

Wolfskill contains mostly North American and Asian Vitis spp., and for

which we collected leaves from an entire shoot as a developmental

series (which was not done for the Wolfskill leaves) and measured

using 17 landmarks across the whole leaf (Chitwood, Klein,

et al., 2016). In follow-up work, we increased the landmark number to

134 CHITWOOD ET AL.

 25722611, 2025, 1, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1002/ppp3.10561, W

iley O
nline Library on [01/06/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



F IGURE 1 Procrustes analysis. (a) The mean grapevine leaf calculated using generalized Procrustes analysis. Vein identities are indicated by
color. Lowercase letters indicate vein tip landmarks, and numbers indicate internal vein landmarks. The numbers indicate the order the internal
landmarks were detected for one side of the leaf. (b) Negative, linear, allometric relationship between the natural log of the ratio of vein to blade
area as a function of the natural log of leaf area. Data categories are indicated by color. (c) Histogram showing the average Procrustes distance of
each leaf to every other leaf. Color indicates data categories. Note that border leaves, which were purposely chosen as lying far from the center
of data, have higher average Procrustes distances than other leaf types. (d) The average Euclidean distance of each point to its counterpart
between leaf halves superimposed using Procrustes analysis. (e) The actual mean and a distribution of 1000 bootstrap simulations of the
Procrustes distance of each leaf half to its counterpart. (f) The average Eulcidean distance of each point to its counterpart between leaf pairs from
20 varieties. (g) The actual mean and a distribution of 1000 bootstrap simulations of the Procrustes distance of each leaf to its counterpart for the
20 pairs.
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21 to only half of the leaf, marking the bases of the veins that allowed

us to measure the area occupied by vasculature relative to blade and

to observe the exponential decrease in the ratio of vein-to-blade area

as leaves expand during development (Chitwood et al., 2021;

Chitwood, Rundell, et al., 2016). We next created continuous develop-

mental models of leaf shape, modeling each x and y coordinate value

as a polynomial function of node position in the shoot and using the

resulting “composite” leaf shapes to show that they discriminate spe-

cies identity better than individual leaves (Bryson et al., 2020). Using

21 landmarks on the Geneva leaves and in comparison to V. vinifera

leaves derived from California breeding populations, we calculated a

morphospace: a continuous representation that can be used to visual-

ize and demarcate the extent of genetic, developmental, and environ-

mental variation in the genus Vitis (Chitwood & Mullins, 2022).

The above studies rely on a small number of homologous land-

mark points to represent leaf shape. The intricate curves and details

of leaves that captivate our eyes are missing. By placing a high num-

ber of pseudo-landmarks—equidistant points along line segments con-

necting landmarks—we can analyze the remaining details that

comprise leaf morphology. This approach uses tracing and is more

time-consuming and results in a different strategy: instead of measur-

ing thousands of leaves at a resolution of dozens of landmarks, hun-

dreds of leaves are measured using thousands of pseudo-landmarks.

Previously, we measured half the leaf of representative wine and table

grape varieties (Chitwood, 2021). Here, we extend high-resolution

morphometric analysis to the entire leaf across both V. vinifera varie-

ties as well as wild Vitis spp., and for the first time measure leaves

from rootstock varieties in the Teaching Vineyard at the Robert Mon-

davi Institute for Wine and Food Science at University of California at

Davis (UC Davis). We create continuous developmental models for

10 Vitis spp. and project these models onto a visualized morphospace.

Classifiers accurately predict genotype and developmental identities

of leaves. Using models, we classify leaves from the morphospace and

use it to create synthetic leaves: high-resolution leaf representations

that are theoretically possible based on the known borders of the Vitis

morphospace. We end with a discussion about how synthetic leaves

can be incorporated into workflows to improve studies of leaf shape

using machine learning approaches.

2 | MATERIALS AND METHODS

2.1 | Plant material and data collection

Leaves from V. vinifera varieties, rootstock varieties, and wild Vitis

spp. were sampled from the Teaching Vineyard at the Robert

Mondavi Institute for Wine and Food Science at UC Davis. Original

scans with scale for each leaf sampled from the UC Davis teaching

vineyard are available (Chitwood, 2024). Leaves from the USDA

Wolfskill, CA, and Geneva, NY, collections were measured by select-

ing leaves from previously published data (Chitwood, 2020;

Chitwood et al., 2020).

Leaves were categorized in two different ways. In the first,

leaves were factored by how they were measured and the intention

of including them in the data. The factor levels and their descriptions

are “V. vinifera,” representative leaves from V. vinifera varieties in the

Wolfskill collection; “Vitis spp.,” representative leaves from wild Vitis

spp. in the Geneva collection; “Border,” leaves from both the

Wolfskill and Geneva datasets that were sampled because they lie

far from the center of the morphospace; “node 1,” “node 2,” “node
3,” and “node 4” leaves which represent developmental series from

ten wild Vitis spp. from the first four nodes counting from the grow-

ing tip; “MSU” and “UC Davis,” which are leaves traced by students

at Michigan State University and University of California at Davis,

respectively, from the UC Davis Teaching Vineyard. In the second

factorization, leaves are classified by their genetic or developmental

identities. Each leaf has exactly one assigned genetic and develop-

ment factor level. Genetically, leaves are classified as arising from

“V. vinifera,” “Vitis spp.,” “rootstock,” or “dissected” types. Develop-

mentally, leaves are classified, as counting from the growing tip, as

arising from “node 1,” “node 2,” “node 3,” “node 4,” or as “mature”
if greater than node 4.

2.2 | Automatic landmark detection

For each leaf, starting on one side of the petiolar junction (point “a”
or “y” in Figure 1a), in ImageJ (Schneider et al., 2012) or Fiji

TABLE 1 Previous ampelographic work and leaves analyzed.

Publication

Chitwood

et al. (2014)

Chitwood, Klein,

et al. (2016)

Chitwood, Rundell,

et al. (2016)

Bryson

et al. (2020)

Chitwood

(2021)

Chitwood and

Mullins (2022)

This

manuscript

Landmarks 10 17 21 21 24 21 90

Pseudo-landmarks 0 0 0 0 5999 0 1672

Whole or half leaf Whole Whole Half Half Half Half Whole

Vein-to-blade ratio No No Yes Yes Yes Yes Yes

Developmental modeling No No No Yes No Yes Yes

Predicted morphospace No No No No No Yes Yes

No. leaves Wolfskill, CA >9500 9548 0 0 240 0 14

No. Leaves Geneva, NY 0 3292 >5500 8465 0 6284 66

No. leaves UC Davis, CA 0 0 0 0 0 0 59
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(Schindelin et al., 2012), a trace of the vein and blade was made using

the line segment tool and stored as a.txt file. An information file,

storing species or variety name, the dataset the leaf scan originated

from, the vine, developmental stage, file name of the associated

image, dataset source, and scaling information, was stored as a.csv

file. All three files have a three digit identifier indicating if they are

from the Wolfskill or Geneva datasets (starting with “0”) or the UC

Davis vineyard dataset traced by MSU (starting with “1”) or UC

Davis (starting with “2”) students separated by underscore and

followed by the species or variety name in capital letters. Another

underscore separates an identifier indicating if the file is a blade or

vein trace or information file (“blade,” “vein,”, and “info,” respec-

tively). File names from a data folder were read in and used to store

raw data and associated metadata. All analyses were performed in

Python (version 3.10.9), Numpy (Harris et al., 2020), and Pandas

(McKinney & Team, 2015) using a Jupyter notebook (Kluyver

et al., 2016). Matplotlib (Hunter, 2007) and Seaborn (Waskom, 2021)

were used for data visualization.

Ninety landmarks (25 from the vein tips, 40 internal vein land-

marks, and 25 blade landmarks) were automatically detected. Vein

and blade traces were interpolated with 1000 equidistantly spaced

points to increase the resolution of the data using the interp1d func-

tion SciPy (Virtanen et al., 2020). The petiolar junction was calculated

as the mean of the first (“a”) and last (“y”) coordinate in the vein trace

file. The Euclidean distance of each vein trace point to the petiolar

junction was calculated as a function of geodesic distance along the

trace. The SciPy find_peaks function was used to find the 25 vein tip

indices in the trace using the above plot. The 25 blade landmarks cor-

respond closely to the 25 vein tip landmarks, and are identified by

index as the closest point in the interpolated blade trace to an identi-

fied vein tip landmark. The 25 vein tip landmarks are labeled “a”
through “y” in Figure 1a.

Forty internal landmarks, placed on each side of the base of a

vein, were calculated in the order indicated in Figure 1a. The landmark

on the more distal side (farthest away from the petiolar junction) of

the base of a vein was calculated before the proximal side (closer to

the petiolar junction). The first calculated internal landmark of the

base of a vein was used in reference to calculate the other. Internal

landmarks were calculated by specifying a start and end index along a

segment of the vein trace and a reference index. Calculating the

Euclidean distance for each point along the segment from start to end

to the reference index, the index with either a maximum or minimum

distance value was assigned as the landmark. For example, internal

landmark “1” was calculated using landmark “b” as the start index,

landmark “c” as the end index, and landmark “c” as the reference

index (Figure 1a). Internal landmark “1” was calculated as the index

with the maximum Euclidean distance along this segment from land-

mark “c.” Landmark 2 was calculated using landmark “a” as the start

index, landmark “b” as the end index, and internal landmark “1” as the
reference index. Internal landmark “2” was calculated as the index

with the minimum Euclidean distance along this segment from

landmark “1.” The rest of the internal landmarks were calculated in a

similar way, specifying the segment of the trace using previously

calculated landmarks on which they fall, and calculating the minimum

or maximum Euclidean distance from a reference landmark.

Along each line segment of the vein trace defined by internal and

tip landmarks, and each line segment of the blade trace defined by

blade landmarks, 20 equidistant pseudo-landmarks were calculated.

Redundant landmarks at the beginning and end of each segment were

eliminated. There were 1672 pseudo-landmarks total: 1216 vein and

456 blade.

2.3 | Vein-to-blade ratio, Procrustes analysis, and
biological reproducibility

The ratio of the vein area to the blade area (vein-to-blade ratio) was

calculated using Gauss' area formula (or, the shoelace algorithm;

Braden, 1986; Meister, 1769). Vein-to-blade ratio is an allometric indi-

cator with a negative, linear relationship to leaf area (Figure 1b);

Chitwood et al., 2021). The vein and blade pseudo-landmarks were

treated as vertices of a polygon from which area was calculated,

which were used as the area of the venation and leaf, respectively.

The blade area was calculated by subtracting the vein area from the

leaf area. The natural log of vein-to-blade ratio was plotted against

the natural log of leaf area to which a line was fitted using the SciPy

curve_fit function.

The mean Procrustes distance of each leaf to every other leaf

was calculated using the Procrustes function from SciPy and plotted

as a histogram (Figure 1c). To assess the ability of our morphometric

method to measure biological reproducibility, we compared the two

halves of each leaf to each other (Figure 1d,e) as well as a set of

20 pairs of leaves originating from the same variety (Figure 1f,g) in the

UC Davis collection and calculated Procrustes distances. For each of

the two analyses, 1000 bootstrap calculations of the average Procrus-

tes distance were calculated by randomizing one set of the data

against the other and comparing the distribution to the actual average.

For each pseudo-landmark from each comparison, a Euclidean dis-

tance was calculated and projected back onto generalized Procrustes

analysis mean leaf to visualize the spatial contribution of each

pseudo-landmark to the alignment.

2.4 | Developmental modeling, principal
component analysis, and linear discriminant analysis

Developmental modeling was undertaken using the same techniques

as Bryson et al. (2020). For 10 wild Vitis spp., using the first four

expanded leaves from the growing tip, for each of 3344 x and

y coordinate values from 1672 pseudo-landmarks, a second degree

polynomial model was fitted as a function of node number counting

from the tip (1, 2, 3, 4) using the Numpy polyfit function. One hundred

leaves were modeled from nodes 1 to 4 and used in subsequent

analyses.

The PCA function from Scikit-learn (Pedregosa et al., 2011)

was used for principal component analysis (PCA). Eigenleaf
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representations were calculated using the inverse_transform function.

The LinearDiscriminantAnalysis function from Scikit-learn was used

for linear discriminant analysis (LDA). The predict function was used

on resulting models to classify leaf identities. The confusion_matrix

function was used to calculate and visualize confusion matrices. To

calculate a convex hull in a nine-dimensional principal component

space, the ConvexHull function from SciPy was used followed by the

Delaunay function to find simplices. A uniform distribution of points

was sampled using the Dirichlet distribution using the SciPy Dirichlet

function.

F IGURE 2 Leaf trace data. Original trace data for each leaf. Vein identities are indicated by color, and 1 cm scale bar is provided. Leaves are
arranged by data category, left-to-right, top-to-bottom. Species or variety name is indicated. (a) Vitis vinifera and Vitis spp. leaves. (b) Border
leaves. (c–l) Developmental series leaves. Leaves are grouped in fours counting from the growing tip: node 1, node 2, node 3, and node
4. Developmental series for 10 species were measured: (c) V. cinerea, (d) V. rupestris, (e) V. riparia, (f ) V. labrusca, (g) V. acerifolia, (h) V. amurensis,
(i) V. vulpina, (j) V. aestivalis, (k) V. coignetiae, and (l) V. palmata.
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3 | RESULTS

Using automatic landmark detection, continuous representations of

the size and shape of leaves identifying specific veins can be visual-

ized, allowing differences in leaf morphology between V. vinifera vari-

eties and Vitis spp. (Figure 2a), atypical leaves bordering the known

Vitis morphospace (Figure 2b), developmental series of leaves from

the first four nodes at the growing tip of 10 Vitis spp. (Figure 2c–l),

and V. vinifera and rootstock variety leaves from the UC Davis collec-

tion traced by MSU (Figure 3a) and UC Davis (Figure 3b) students to

be qualitatively compared at a glance. In addition to visual inspection,

we used a number of other approaches to verify the quality of our

input data. As previously shown for all Vitis spp. leaves (Chitwood

et al., 2021), our leaves follow a negative linear relationship between

the natural log of the ratio of vein-to-blade area as a function of the

natural log of leaf area (Figure 1b). Calculating the average Procrustes

distance of each leaf to all other leaves, border leaves had a higher

distance from other leaves, which is expected as they were purposely

chosen to lie far from the center of the morphospace (Figure 1c). To

determine if our method could detect biological reproducibility, we

compared the Procrustes distances of (1) each half of every leaf to the

other (Figure 1d,e) and (2) 20 pairs of leaves from the UC Davis collec-

tion that originate from the same variety (Figure 1f,g). In both cases,

the actual mean Procrustes distance was less than �1000 bootstrap

simulations. Comparing Euclidean distances of superimposed leaf

halves, it was the leaf tips that more closely aligned with each other

and contributed to the biological reproducibility (Figure 1d), whereas

comparing leaf pairs originating from the same variety, it was the

overall blade outline, but especially the vein tips and the distal sinuses

(Figure 1f).

For 10 Vitis spp., we modeled each x and y coordinate value

across the first four nodes from the growing tip of the vine as

F IGURE 3 Leaf trace data. Original trace data for each leaf. Vein identities are indicated by color, and 1 cm scale bar is provided. Leaves are
arranged by data category, left-to-right, top-to-bottom. Species or variety name is indicated. (a) Leaves traced by Michigan State University
students and (b) leaves traced by University of California at Davis students.
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F IGURE 4 Legend on next page.
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polynomial functions, creating continuous representations of leaf

development (Figure 4a). Decreases in vein-to-blade ratio value are

observed across each series, which allometrically reflects increases in

leaf size during development. To visualize these models in the context

of shape variation represented among all the measured leaves, we

performed a PCA, which not only is a dimension reduction technique

that allows more variation to be analyzed using fewer axes but also

through an inverse transformation allows the underlying morphospace

to be visualized (based on “eigenleaf” representations). The first prin-

cipal component explains 46.9% of total variation and is associated

with shape variation ranging from a V. rupestris/V. riparia-like leaf

shape with a shallow petiolar sinus and reduced lobing to a more

V. vinifera-like leaf shape with an overlapping petiolar sinus and dee-

per lobes (Figure 4b). PC2, explaining 10.6% of total variation, shows

a more dynamic range of vein-to-blade ratios and ranges from a devel-

opmentally mature, orbicular leaf type with no lobing and deep petio-

lar sinus to a developmentally younger leaf type with a shallow

petiolar sinus and pronounced midvein that is relatively long.

Although somewhat confounded, as previously described

(Chitwood & Mullins, 2022) axes explaining genetic differences

between species and varieties vs. developmental differences are

orthogonal to each other. Genotype differences (between V. vinifera,

Vitis spp., rootstock, and dissected classes) mostly vary across PC1

and diagonally from low PC1/PC2 to high PC1/PC2 values (Figure 4

(c)). Contrastingly, developmental differences vary from small, young

leaves (high vein-to-blade ratio) to large, mature leaves (low vein-

to-blade ratio) across PC2 and diagonally from low PC1/high PC2 to

high PC1/low PC2 values. If continuous developmental models of

leaves (Figure 4a) are projected onto the morphospace (Figure 4d),

they confirm the direction of developmental trajectories.

The orthogonality of genotypic and developmental variation sug-

gests that these axes can be independently predicted from each other.

We created classifiers for leaves based on genotypic (Figure 5) and

developmental (Figure 6) identity using LDA which we then used to

predict the identities of theoretical morphospace leaves. Average leaf

shapes across genotype classes (remembering that Vitis spp. leaves

contain developing leaf shapes from nodes 1–4 not represented in

other classes) mostly vary by the degree of lobing (Figure 5a). Except

for three leaves, all leaves are correctly classified by their genotypic

class (Figure 5b) and show separation in the LDA space (Figure 5c,d).

If 200 theoretical eigenleaves from the morphospace are synthesized

and classified, the separation of genotype classes across low PC1/PC2

to high PC1/PC2 values is evident. Contrastingly, variation across

average leaf shapes by developmental node (remembering that nodes

1–4 are mostly represented by Vitis spp.) is more gradual, with a

shallow-to-deeper petiolar sinus and a midvein which shortens in

relative length as leaves mature and grow in size, in addition to strong

reductions in the ratio of vein-to-blade area (Figure 6a). All but one

leaf is correctly predicted by its developmental class (Figure 6b).

Leaves from different nodes separate by class in LDA space

(Figure 6c,d), but especially by LD2 vs. LD1, and are continuously con-

nected to each other when developmental models are projected onto

the space (Figure 6c). If eigenleaf representations are classified by

developmental stage, a gradient from small and young leaves to large

and mature leaves is observed along low PC1/high PC2 to high

PC1/low PC2 values.

4 | DISCUSSION

Ampelography relies on trained, human cognition to identify corre-

sponding features that vary by variety (Bodor-Pesti et al., 2023).

Although human-derived ampelographic data is highly accurate, it is

constrained by the time to manually measure it: either thousands of

leaves using dozens of landmarks or hundreds of leaves with thou-

sands of landmarks (as in this work) can be measured (Table 1).

Although we automate the detection of landmarks and veins from

trace data, truly automatic detection of ampelographic features

remains elusive. Not only does background noise prevent accurate

classification of vein and blade pixels but occlusion (for example, over-

lapping lobes) prevents detecting key features. We note that the vein

and blade traces we produce on raw images are the perfect training

set for automatic feature detection by machine learning models. Con-

trastingly, machine learning and convolutional neural networks can

achieve high classification rates directly from images (Magalhães

et al., 2023). They also overcome problems associated with noise and

leverage high numbers of de novo features. However, while machine

learning can achieve high classification rates and requires little data

manipulation to use, it is difficult to interpret the features used for

classification, much less within an established ampelographic frame-

work that can be extrapolated to other contexts.

Previously, using thousands of leaves with only 21 landmarks

(Chitwood & Mullins, 2022), we similarly sampled the Vitis morpho-

space as we have done here. Consistent between both works, genetic

and developmental contributions to leaf shape are orthogonal and can

be predicted independently of the other. Unlike our previous work, by

sampling both sides of the leaf and with a saturating number of

pseudo-landmarks, the resulting morphospace is defined by realistic

eigenleaf representations. We can sample this space beyond just the

first two PCs to create synthetic leaves that represent morphological

diversity within Vitis. As an example, we consider the first nine PCs

representing 88% of all shape variation (Figure 4b). To estimate the

F IGURE 4 Morphospace. (a) Continuous models of leaf development for 10 Vitis spp. From node 1 to node 4 counting from the growing tip,
100 leaves were modeled, for which 10 equally spaced indices are shown. (b) Eigenleaf representations at �2, �1, 0, +1, and +2 standard
deviations and percent variance explained for the first nine principal components. (c) Morphospace onto which data colored by genotype is
projected. (d) Morphospace onto which data colored by developmental stage is projected. Developmental models for 10 species, which are not
included in the calculation of the morphospace, are projected onto it as curves, indicated by color. Values of the natural log of the ratio of vein to
blade area are consistent between panels and figures, as indicated.
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borders of this nine-dimensional space, we can calculate a convex hull

and uniformly sample synthetic leaves within it (Figure 7). Each of

these synthetic leaves is unique and represents a position within the

genetic and developmental boundaries of the Vitis morphospace. Each

is a theoretical representation of a possible grapevine leaf, the fea-

tures of which are already defined.

Such synthetic leaves offer new opportunities in data analysis.

Because they are sampled from within the boundaries of a known

F IGURE 5 Linear discriminant analysis (LDA) model by genotype. (a) Generalized Procrustes analysis mean leaves by genotype levels,
indicated by color and text: Vitis vinifera, Rootstock, Vitis spp., and dissected. (b) Confusion matrix plotting actual by predicted categories with
numbers of each class and indicated by color. (c) Data colored by genotype projected onto a plot of LD2 vs. LD1 and (d) LD3 vs. LD2. (e) Principal
component analysis (PCA) morphospace. Eigenleaf representations are colored by genotype prediction using the LDA classifier. Data is plotted
and bounded by a convex hull.
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morphospace, it is possible to predict and visualize leaves we have

not sampled. For example, in our own data, we have yet to sample

developmental series from V. vinifera varieties the same way we have

for Vitis spp. Yet, because we can estimate developmental variation in

relation to variation that defines differences between species and

varieties (Figures 4–6), we look forward to predicting developmental

series of wine and table grape varieties and comparing them to empir-

ically sampled leaves, as we previously proposed (Chitwood &

Mullins, 2022). Another possibility is to bypass manual measurements

by projecting onto a precalculated morphospace. Because synthetic

F IGURE 6 Linear discriminant analysis (LDA) model by developmental stage. (a) Generalized Procrustes analysis mean leaves by
developmental stage, indicated by color and text: node 1, node 2, node 3, node 4, and mature. (b) Confusion matrix plotting actual by predicted
categories with numbers of each class and indicated by color. (c) Data colored by developmental stage and projected onto a plot of LD2 vs. LD1
and (d) LD4 vs. LD3. Continuous developmental models for 10 species from node 1 to node 4 and their predicted developmental stage are
indicated by smaller points. (e) Principal component analysis (PCA) morphospace. Eigenleaf representations are colored by developmental stage
prediction using the LDA classifier. Data is plotted and bounded by a convex hull.
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F IGURE 7 Synthetic leaves. Using the inverse transform of the morphospace on uniform sampling of a convex hull of the data calculated
using the first nine principal components, 500 synthetic leaves are shown. Vasculature is colored by the natural log of the vein to blade area ratio
as indicated.
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leaves already contain most the features found in grapevine leaves,

subsets of features can be projected back onto the high resolution

morphospace. For example, pseudo-landmarks around the blade out-

line using tip and petiolar junction landmarks, or the large number of

leaves we have previously landmarked using 21 points, can be calcu-

lated in synthetic leaves as well. The best match between an empiri-

cally sampled leaf with a synthetic leaf can then be found using the

Procrustes distance between the two and projected back into the high

resolution space. Finally, because synthetic leaves are realistic and

capture intricate features of leaf morphology, they could be used as

inputs into convolutional neural network classifiers to increase robust-

ness and accuracy by augmenting and broadening training data.

5 | CONCLUSION

The ability to create realistic, synthetic leaves with intricate features

arises from the constrained morphology of grapevine leaves with

numerous homologous features that lends itself to morphometric

analysis. While manual ampelographic measurements and convolu-

tional neural network approaches are forward approaches that detect

features first to classify leaves, the approach we describe here is

reverse: by estimating an underlying morphospace that can predict

synthetic leaves, we can use such theoretical leaves to anticipate the

leaves we have yet to sample and develop tools that increase our abil-

ities to classify varieties and learn about the underlying biology of

grapevines.

AUTHOR CONTRIBUTIONS

Data collection: DHC, ETL, MGFA, SA, SWB, DPC, EEC, AJE, MFF,

QF, ESH, CH, JJ, BMK, NSK, AL, BLM, JTP, WLGP, SIR, SER, FLS, YS,

CCS, MKS, CSS, PW, JW, LDG. Student advising and supervision:

DHC, ETL, LDG. Conceptualization: DHC, LDG. Data analysis: DHC,

ETL, LDG. Writing: DHC. Reading and revising: DHC, ETL, MGFA, SA,

SWB, DPC, EEC, AJE, MFF, QF, ESH, CH, JJ, BMK, NSK, AL, BLM,

JTP, WLGP, SIR, SER, FLS, YS, CCS, MKS, CSS, PW, JW, LDG.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation Plant

Genome Research Program award numbers IOS-2310355, IOS-

2310356, and IOS-2310357.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in

github at https://github.com/DanChitwood/synthetic_leaves.

ORCID

Daniel H. Chitwood https://orcid.org/0000-0003-4875-1447

Efrain Torres-Lomas https://orcid.org/0009-0003-5905-7730

Ebi S. Hadi https://orcid.org/0009-0002-4221-9281

Wolfgang L. G. Peterson https://orcid.org/0009-0007-1103-8222

Sydney E. Rogers https://orcid.org/0009-0005-2393-9007

Michael G. F. Acierno https://orcid.org/0009-0007-7771-0800

Seth Wayne Benjamin https://orcid.org/0009-0007-7650-2129

Devendra Prasad Chalise https://orcid.org/0000-0001-7712-5176

Alex J. Engelsma https://orcid.org/0000-0002-1440-7827

Qiuyi Fu https://orcid.org/0000-0002-9525-5182

Jirapa Jaikham https://orcid.org/0009-0004-8357-7098

Bridget M. Knight https://orcid.org/0009-0004-8381-1841

Brenda L. Muñoz https://orcid.org/0009-0005-2265-9812

Justin T. Patterson https://orcid.org/0009-0005-5687-1053

Francis L. Schumann https://orcid.org/0009-0001-3612-8319

Mallory K. St. Clair https://orcid.org/0000-0001-9418-571X

Patrick Whitaker https://orcid.org/0009-0002-9484-7183

Luis Diaz-Garcia https://orcid.org/0000-0002-3984-5516

REFERENCES

Bodor-Pesti, P., Taranyi, D., Deák, T., Nyitrainé Sárdy, D. Á., & Varga, Z.
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