
IFAC PapersOnLine 58-28 (2024) 1019–1024

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2025.01.130

1. INTRODUCTION

Many human manipulation tasks that we would like robots
to perform involve moving objects that are too large to
grasp in the robot’s gripper. For example, moving objects
whose every dimension is larger than the gripper’s width,
like a large box. Such manipulation tasks are referred to as
non-prehensile motion tasks that are not within the hand,
from the taxonomy in Bullock and Dollar (2011).

Successful task execution under nonprehensile manipula-
tion requires complex reasoning about how forces applied
on the object interact with its natural dynamics and the
forces applied by the environment at contact locations.
This reasoning is challenging to carry out due to the multi-
plicity of possible contact modes and the uncertain contact
dynamics governing each mode. Recent advances automate
this reasoning over multiple modes, like the work by Cheng
et al. (2022), resulting in high-quality plans for achieving
a task using a sequence of contact modes. However, to
achieve computational tractability, these methods simplify
the robot-object dynamics by assuming that the robot-
and-object are either always in equilibrium (quasi-static),
or moving with constant velocity (quasi-dynamic), which
constrain the versatility of nonprehensile manipulation.
Moreover, the execution of this sequence typically relies
on applying low-level position controllers. As pointed out
in Cheng et al. (2022), this mismatch between the dy-
namics used for planning and the true dynamics during
execution leads to task failure. However, designing robust
feedback controllers with the full system state as input is

⋆ This work was supported by NSF IIS award #2330794.

too challenging using manual methods, due to the size of
the state space and the complexity of the dynamics.

The complexity of the dynamics underlying contact-rich
manipulation scenarios has led to an increase in compu-
tational approaches for synthesizing controllers for these
scenarios Hogan and Rodriguez (2020); Tian et al. (2019).
One example in this domain is reinforcement learning
(RL) (see Sutton and Barto (2018)). The resulting state-
based policies act as feedback controllers, providing some
robustness to uncertainty during task execution. While
RL methods evidently offer more applicability to a wide
range of dynamical systems, such as in Heess et al. (2017);
Andrychowicz et al. (2020); Lillicrap et al. (2015), many
of them discard any potential geometric or physics struc-
tures that may be useful in control synthesis. This pro-
hibitively increases the sample complexity of the learning
process while risking suboptimal solutions, as pointed out
in Levine and Koltun (2013).

In this work, we combine learning-based controller syn-
thesis with contact-aware motion-planning to construct
feedback control laws for contact-rich manipulation. The
contact-aware motion planning algorithm, namely Contact-
Mode Guided Motion Planning (CMGMP) proposed
in Cheng et al. (2022), identifies contact mode sequences
that are valuable for completing the task, despite the
actual plan being dynamically infeasible. This identifi-
cation reduces the challenge of exploration faced by RL
algorithms, and is a key insight of our approach. The
learning-based algorithm, namely policy search, addresses
the challenge of learning controllers for complex high-
dimensional dynamics.

Keywords: Robotics, machine learning, artificial intelligence, motion planning, robust control.

Abstract: Learning policies for contact-rich manipulation is a challenging problem due to
the presence of multiple contact modes with different dynamics, which complicates state and
action exploration. Contact-rich motion planning uses simplified dynamics to reduce the search
space dimension, but the found plans are then difficult to execute under the true object-
manipulator dynamics. This paper presents an algorithm for learning controllers based on guided
policy search, where motion plans based on simplified dynamics define rewards and sampling
distributions for policy gradient-based learning. We demonstrate that our guided policy search
method improves the ability to learn manipulation controllers, through a task involving pushing
a box over a step.

∗ Boise State University, Boise, ID 83725 USA
(e-mail: {christopherdaghe,chandikasilva}@u.boisestate.edu).

∗∗ Boise State University, Boise, ID 83725 USA
(e-mail: aykutsatici@boisestate.edu).

∗∗∗ University of Kentucky, Lexington, KY 40506 USA
(e-mail: hasan.poonawala@uky.edu).

Christopher Dagher ∗ Chandika Silva ∗ Aykut C. Satici ∗∗

Hasan A. Poonawala ∗∗∗

Guided Policy Search for Stabilizing
Contact-rich Motion Plans

Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

1020 Christopher Dagher et al. / IFAC PapersOnLine 58-28 (2024) 1019–1024

Fig. 1. A 2D representation of the step environment.

Contributions. The first contribution is to define a mech-
anism for guiding policy search algorithms using motion
plans for contact rich manipulation. This work involves
defining appropriate loss functions and sampling mecha-
nisms relevant to contact-rich manipulation. The second
contribution is demonstrate that our proposed guided pol-
icy search algorithm makes the training converge faster
wile simultaneously improving task performance. This
demonstration uses the task of manipulating a box with a
robotic finger in contact with the box, over a step.

2. PROBLEM FORMULATION

This paper addresses the problem of learning a robust
controller at the force/torque level for a robotic end-
effector that is capable of moving a box from an initial
pose qo

0 to a desired final pose qo
d, where qo

0,q
o
d ∈ SE(2),

the 2-dimensional special Euclidean group. The object and
end-effector are confined to a vertical plane, where gravity
affects the dynamics, in contrast to work in Hogan and
Rodriguez (2020) where contact-rich manipulation focuses
on pushing an object on horizontal surfaces. The nontrivial
nature of this problem is due to the facts that (i) the
end-effector is assumed to make a point contact with the
object only, and (ii) the goal pose qo

d is located on top
of a step fixture, which is elevated from the table on
which the box initially rests (see Figures 1 or 2). In other
words, the manipulator cannot perform a force-closure
grasp (see Murray et al. (2017)) of the box; requiring the
manipulation plan be informed and take advantage of the
natural contact-rich dynamics of the system. Due to use of
a single contact, we model the end-effector as an actuated
sphere.

Figure 1 sketches the system setup with the relevant con-
figuration variables. The system comprises the manipu-
lator finger and the box, henceforth denoted M, and B,
respectively. The configuration space of the system is the
product space Q = SE(2) × SE(2), the set of box and
manipulator configurations, q = (qo,qm). The system’s
state space X is the tangent bundle of its configuration
space X = TQ. Please see Table 1 for the definition of
all state variables. We assign a frame to the goal state
and denote it by G. This controller must map the state of
the system to the forces or torques to be produced by the
manipulator’s actuators. In this work, we parametrize the
controller P = Pφ as a multilayer perceptron.

3. BACKGROUND

3.1 Contact-Mode Guided Motion Planning (CMGMP)

The CMGMP algorithm proposed by Cheng et al. (2022)
is a variant of the widely used RRT planning algorithm

Table 1. Nomenclature for state variables.

State

Configuration Velocity

Rigid Body Position Orientation

Manipulator qm Rm vm

Object qo Ro vo

Goal qg Rg -

proposed by Karaman and Frazzoli (2011) that accounts
for the differences in dynamics corresponding to different
contact modes between the object, manipulator, and envi-
ronment. The existence of multiple contact modes makes
the robot-object-environment a hybrid system instead of
a continuous dynamical system, and the CMGMP algo-
rithm modifies the standard steps of the RRT algorithm
to account for this difference. An important innovation
by Huang et al. (2020) is to be able to enumerate all possi-
ble contact modes in a state efficiently, enabling appropri-
ate sampling of the hybrid state space. However, to reduce
the complexity of the search, CMGMP uses a Quasidy-
namic model for the extend operation in the standard RRT
algorithm, instead of the full nonlinear object-manipulator
dynamics. This practical modification results in planned
trajectories that may not be dynamically feasible, and for
which standard position-based controllers will often fail,
as Cheng et al. (2022) reports.

3.2 MJX Physics Engine

We use the MJX physics engine which is an implementa-
tion of MuJoCo (Todorov et al. (2012)), written in JAX
(Bradbury et al. (2018)). This physics engine is differen-
tiable through contact, and can be combined with machine
learning techniques in order to develop controllers through
analytical, data-driven gradient-based methods.

3.3 Policy Gradient Algorithms

Policy gradients, a form of policy search proposed in Sut-
ton et al. (1999), involve training controllers by performing
gradient descent (or ascent) over the parameters of the
controller, in this case φ, with respect to the expected
rewards. A controller synthesis methodology that utilizes
policy gradients for updating controller parameters and
DAgger (Ross (2011)) for state-space sampling was used
in Deits et al. (2019). In this paper, we use a similar
approach for state-space sampling. Our main improvement
is to use the plan from CMGMP to define a loss function
that guides parameter updates, which enables tackling
the potentially exponentially many “modes” of the system
dynamics.

4. METHODOLOGY

Our proposed algorithm modifies the guided policy search
algorithm in Deits et al. (2019), described in Section 3.3,
by defining rewards using an expert trajectory found using
the CMGMP algorithm.

We design two loss functions, one for unguided (no expert)
training, and another for guided policy training, which
makes use of the trajectory provided by CMGMP. These

Christopher Dagher et al. / IFAC PapersOnLine 58-28 (2024) 1019–1024 1021

loss functions are then differentiated and the gradient
backpropagated to update the controller parameters for
improved closed-loop performance.

4.1 Neural Network Policy

The neural-network policy, denoted by P is the mapping
that takes the system state to the wrenches (forces and
torques) exerted on the manipulator finger by the robotic
manipulator, i.e.,

P : X → U ⊆ se∗(2), x #→ P (x;φ) = (f(x;φ), τ(x;φ)),

where f : X → R2 and τ : X → so∗(2) are functions,
parametrized by φ. These wrenches are then assumed to be
generated by the joint torques of the robot using the Jaco-
bian mapping J ; for example, if robot manipulator is fully
actuated then its joint torques are assigned according to
τjoint = J⊤P . The function P = P (x;φ) is parametrized
by using a multilayer perceptron in this work.

4.2 Loss Function

The loss function for a sampled state x has the following
form:

L(x,xd;φ) =wog∥qo − qg∥2+woo∗∥qo − qo
d∥2+ · · ·

+ wmm∗∥qm − qm
d ∥2+wov∥vo∥2+ · · ·

+ wmv∥vm∥2+wmo|g(x)|, (1)

where the first term penalizes distance of object (o) to
the goal (g), the second term penalizes error in position
of the object as defined by the planned path, the third
term does the same for the manipulator, the fourth and
fifth terms penalize velocities, and the last term penalizes
loss of contact between object and manipulator through
the gap function g(x). When the learning is not guided by
the planned motion, the second and third terms are not
included.

4.3 Generating Training Data

Similar to Deits et al. (2019), we use DAgger (Ross et al.
(2011)) to generate samples for training the policy neural
network πφ using the loss function in (1). To use DAgger,
we must specify a method to sample initial conditions for
the trajectories.

Sampling A State: Uniformly sampling over the object-
manipulator state space (with configuration in SE(2) ×
SE(2)) would be inefficient, since states that exhibit con-
tact between the robot, object, and environment cor-
respond to a thin (measure-zero) subset of the object-
manipulator configuration space. Similar to Cheng et al.
(2022), we use a sequential procedure to generate a sample
by sampling an object configuration first and then using
contact to guide sampling of the manipulator configura-
tion. This procedure is given in Algorithm 1, where U(S)
corresponds to a uniform distribution over the set S, and
described below.

The CMGMP algorithm returns a finite sequence of states
{xk}1,...,N at times tk. Let qo

k be the object configuration
at these times, and consider a projection of the object
configuration onto the ground plane:

Pz(q
o) = (xo, yo). (2)

Algorithm 1. Sampling a state x. Point xc ∈ R3 is the contact
point between object and manipulator.
Input: Maximum contact gap ε ≥ 0
Input: Sampling region G
Input: Floor height function h
Input: Set of admissible contact locations C∂O(qo)
Input: Set of admissible velocities V (qo,qm)
Input: Set of preferred object orientations R(po)
Input: Manipulator forward kinematics function fm
(xo, yo) ∼ U(G)
zo ← h(xo, yo) + U([0, ϵ])
po ← (xo, yo, zo)
Ro ← U (R(po))
qo ← (po,Ro)
xc ∼ U (C∂O(qo))
qm ← f−1

m (xc);
vo,vm ∼ U (V (qo,qm))
return x = (qo,qm,vo,vm)

We define G to be the convex hull of the points Pz(qo
k) for

times tk, where k ∈ {1, . . . , N}. To generate a position
for the object, we sample uniformly from G, and then
perturb the object along the positive z direction from the
ground, through a random distance sampled from U([0, ϵ]).
The ‘ground’ at the sample from G need not be at zero
height. The orientation is sampled from a restricted set
R(po), where all elements are such that the bottom of
the object is tangent to the ground surface beneath it,
but without incurring collision with the surface. We then
sample a point pc on a subset C∂O(qo) of the boundary ∂O
of the object. This subset typically excludes inaccessible
points on the object boundary, and therefore depends on
the object configuration. The manipulator configuration is
chosen to ensure contact occurs at pc within some distance
of the object, where this distance is given by a gap function
g: SE(2)× SE(2)→ R≥0.

Once the configurations of the manipulator and object
are obtained, velocities of the manipulator and object
are sampled uniformly from the set of allowable ve-
locities V (qo,qm) based on the contact conditions for
the manipulator-object configuration, where the set is
bounded. Note that the contact conditions are determined
by the unperturbed configuration of the object. The fact
that the object may not be in actual contact with the
environment at the sampled configuration is intentional,
and we believe it drives learning of contact stabilization.

Defining a Target State: In the guided case, we de-
termine the distance from each configuration along the
CMGMP trajectory to the configuration in the sampled
state. Then, we find the state which minimizes these dis-
tances to use as the start of qo

d. In the unguided case, qo
d

is set to the goal position of the box. This definition can
also be thought of as labeling the state.

Generating Data D for a Training Epoch: Within a
training epoch, we first generate a mini-batch B of data,
of size |B|, using one of two methods:

(1) Sample using Algorithm 1 |B| times.
(2) Sample once using Algorithm 1, and then use a

modified DAgger algorithm (Sirichotiyakul and Satici

1022 Christopher Dagher et al. / IFAC PapersOnLine 58-28 (2024) 1019–1024

(2023)) to obtain |B| states, discarding the initial
state.

The training loop, detailed in Algorithm 2, then simulates
the object-manipulator system using the current policy for
N time steps. The data D comprises these |B| trajectories,
so that it has size |D|= |B|×N .

In a training epoch, we randomly choose between the two
methods of generating B, using a Bernoulli distribution
with parameter ϵ.

Sampling Using DAgger Throughout the learning pro-
cess, we utilize the modified DAgger sampling strategy
proposed by Sirichotiyakul and Satici (2023) to obtain a
batch B of initial states from the state-space X . DAgger
is used to sample states along a trajectory from a random
initial state given the current control policy. In order to
prevent B from being “poisoned,” which we define to be
B being either partially or entirely consistent of states
outside of G, a trimming function is used before including
states from the observed trajectory in the dataset D. The
trimming function, explicitly provided in Algorithm 3,
excludes all samples from a trajectory after the first time
at which the projection of the trajectory under Pz in (2)
exits G. This trimming function effectively mitigates the
risk of dataset poisoning, and allows the learning process
to converge more reliably.

4.4 Training Algorithm

We combine the steps above into Algorithm 2 which de-
scribes a single update step (training epoch). Full training
involves executing a selected number of epochs.

5. CASE STUDY/RESULTS

We model a simplified manipulation scenario where a
manipulator must push a box up a step, as depicted in
Figure 1. The simplification consists of restricting the
motion to remain in a vertical plane. The motion of the
box and manipulator are both restricted to translation and
rotation in the plane.

CMGMP Modifications. We use a modified version of
the CMGMP algorithm presented in Cheng et al. (2022).
There are three differences from the available implemen-
tation of CMGMP. First, we define costs based only on
position error of the manipulated object; arbitrary orien-
tations incur no cost. The reason is that reaching a desired
orientation can be achieved in the controller synthesis
stage instead, and removing it from the planning stage
reduces the number of samples that CMGMP needs to
collect to find a trajectory. Second, the time resolution
between points on the CMGMP trajectory was increased
to facilitate training of the controller in Section 4.4.

Simulator Modifications. The MJX environment inher-
ently supports 3D environments, but allows for applying
these motion constraints by adding degrees of freedom
to bodies; if a degree of freedom is not added, motion
along that degree of freedom is not allowed. We use this
mechanism to achieve constrained motion. Instead of cre-
ating a custom CMGMP implementation to match the
planar scenario modeled here, we add costs that penalize

Algorithm 2. Training epoch

Input: Mini-batch size |B|, simulation steps N , learning
rate η, sampling parameter ϵ ∈ [0, 1]

Input: Loss function L(φ), control policy P (x;φ)

B ← ∅ // Initialize the batch
y ∼ U ([0, 1])

if y > ϵ then
foreach i = {1, 2, . . . , |B|} do

x← Algorithm 1;
B.append(x)

else
x← Algorithm 1
γ ← sample trajectory starting at x via DAgger, with
length |B|

B.append(γ)

L← ∅ // Initialize the losses
G← ∅ // Initialize the gradients
i← 1
foreach s ∈ B do

x← s
γ ← ∅
for 1 ≤ n ≤ N do

integration-step(x) with controller P (x;φ)
γ.append(x)

Li ← L(γ)
Gi ← ∂Ls

∂φ
i← i+ 1

φ← φ− η
|B|

∑|B|
i=1 Gi

deviation from a vertical plane, namely a cost of the form
wy2o where w is a large weight.

5.1 Algorithmic Details

State. We parametrize the configuration space projected
onto the inertial x−z−axis by q = (xo, zo, θo, xm, zm, θm) ∈
SE(2)2, which stand for the x − z−coordinates of the
manipulator and the box with respect to the inertial co-
ordinate system W and their rotation angles about the
inertial y−axis.

Neural Network. The neural network has the architec-
ture described in Table 2. The neural network was initial-
ized with random weights and biases, which are then scaled
by some user-settable parameter. This was motivated by
the need for the network to output relatively large forces in
order to move the manipulator and box, and was treated
as a hyperparameter for training.

Loss Function. The loss function is also specialized to
manipulation in the plane and the weights in equation (1)
are selected as wog = 30, wov = 1/2, wmv = 1/2, and
wmo = 1 for unguided training and woo∗ = 25, wmm∗ = 2,
wov = 1/8, wmv = 0, and wmo = 0 for the guided training.

Partitioning G. We seed the training using two discrete
subsets of G, G1 and G2. We partition G such that G1 is
the region on the ground before the step fixture and G2

is the region on the step fixture. This method samples the
state space near the target, and near the start of the step.
This enables the training of the controller to more quickly

Christopher Dagher et al. / IFAC PapersOnLine 58-28 (2024) 1019–1024 1023

Algorithm 3. Trimming function used in DAgger

Input: Observed trajectory γ, Sampling region G
Input: Gap function g between manipulator and the box
c1 = argminxo /∈ G
c2 = argmin ẋo > 4
c3 = argmin g((xo, zo), (xm, zm)) ≥ 0.1
c = minimum({c1, c2, c3})
return γ[1 : c]

converge to a desirable solution than using DAgger alone.
These two sampling areas were chosen for the following
reasons:

(1) Near the goal position: This was chosen so that the
controller learns to control the manipulator such that
the box slows down due to friction, as the manipulator
cannot slow down the box through means such as
grasping or pushing to oppose motion beyond the
goal.

(2) Near the start of the ramp or step: This was
chosen so that the controller would learn to push with
enough force to start moving the box in order to reach
the step.

DAgger sampling is performed for 62.5% of epochs as
described in section 4.3.4. For the remaining 37.5% of
epochs, we equally split sampling between G1 and G2 such
that B consists only of states from one set in a given epoch.

Allowable Contacts and Orientations. The set of allowed
sample orientations R(po) is {0◦, 90◦}. When the box is
not on the step, the possible contacts lie along the vertical
side away from the step, at heights in the interval (zo −
0.2, zo + 0.2), with a gap from the face uniformly sampled
from the interval [0, 0.1]. If the box is on the step, then
either the manipulator makes contact on the side of the
box closer to x = 0 using the same procedure above, or
it nearly makes contact on the top face of the box at
a location xm along the x-axis uniformly sampled from
the interval (xo − 0.2, xo + 0.2), with a gap from the face
uniformly sampled from the interval [0, 0.1].

Training vs. Validation. For training, we consider states
in both G1 and G2 as valid initial states in B. For
validation, only G1 is considered for initial states.

5.2 Results

Figure 2 graphically depicts typical final box positions
achieved by trained policies under the guided (orange
boxes) and unguided trainings (blue boxes). It also depicts
the final position of the box when using position control
for the end-effector with desired states from the CMGMP
motion plan. The guided training is able to achieve the
task, manipulating the box to its desired state (green
wireframe) from the initial state (red wireframe). On the
other hand, the unguided training almost always gets
stuck in local minima, preventing convergence to the
desired state. This behavior is observed to be independent
of learning rate. Table 3 provides the average error in
position under the three different strategies. The CMGMP
trajectory assumes that the manipulator instantaneously
resets its contact location when needed; without manual
relocation of the end-effector, this approach fails to achieve
the task.

Table 2. The policy’s multilayer perceptron
architecture (both guided and unguided).

Layer Type # Neurons # Parameters Activation

Input 12 N/A N/A
Hidden 32 416 Elu
Hidden 16 528 Elu
Hidden 8 136 Elu
Output 3 27 Linear

Tally: 71 1107

Fig. 2. Comparison of the controllers trained with and
without guidance from a motion plan. Red wireframe
is the initial box position. Green wireframe is the goal
position. Blue boxes are states converged using the
controller trained without guidance. Orange boxes are
states converged using the controller training with
guidance. The cyan box is the state converged by
using position control of the end-effector with targets
from the CMGMP trajectory. The end-effector was
removed for clarity.

Fig. 3. Training and validation losses for a training with
and without guidance from a motion plan. An averag-
ing window of width 25 was used to smooth the plots.

Table 3. The final position error under various
policies. (EE: End-effector)

CMGMP
Unguided Guided

EE relocation No relocation

Loss 0.0707 0.8945 2.5306 0.0305

Figure 3 shows the training and validation loss curves for
the unguided and guided cases respectively. The higher
final losses for the unguided case reflect the inability to
reach the step.

1024 Christopher Dagher et al. / IFAC PapersOnLine 58-28 (2024) 1019–1024

Figure 4 graphically depicts a time-lapse sequence showing
the box’s transition from its initial position to its goal
position using a controller trained with guidance from
a motion plan. This visualization demonstrates the con-
troller’s effectiveness in executing manipulation to achieve
the desired final state.

Fig. 4. Depiction of multiple states from the resulting
trajectory using a controller trained with guidance.
The end-effector was removed for clarity.

6. CONCLUSION

This paper presents a guided policy search algorithm for
learning manipulation controllers. The main idea is to
learn a controller based on trying to stabilize a contact-
rich manipulation plan found using simplified dynamics
assumptions.

Through a non-prehensile manipulation task involving
pushing a box over a step, we show our guided policy
search algorithm outperforms basic policy search. One
interpretation is that the motion plan helps solve the issue
of state exploration that plagues typical policy gradient
algorithms, an issue that is exacerbated by the presence of
multiple contact modes.

This work presented a proof-of-concept data-driven ma-
nipulation strategy that robustly stabilizes a specific ma-
nipulation task. Extending the algorithm to more general
classes of manipulation will be the subject of future work.

7. ACKNOWLEDGEMENTS

The authors thank Benton Clark for assistance in gener-
ating the CMGMP trajectory used in the case study.

REFERENCES

Andrychowicz, O.M., Baker, B., Chociej, M., Jozefowicz,
R., McGrew, B., Pachocki, J., Petron, A., Plappert, M.,
Powell, G., Ray, A., et al. (2020). Learning dexterous
in-hand manipulation. The International Journal of
Robotics Research, 39(1), 3–20.

Bradbury, J., Frostig, R., Hawkins, P., Johnson,
M.J., Leary, C., Maclaurin, D., Necula, G.,
Paszke, A., VanderPlas, J., Wanderman-Milne,
S., and Zhang, Q. (2018). JAX: composable
transformations of Python+NumPy programs. URL
http://github.com/google/jax.

Bullock, I.M. and Dollar, A.M. (2011). Classifying human
manipulation behavior. In 2011 IEEE international
conference on rehabilitation robotics, 1–6. IEEE.

Cheng, X., Huang, E., Hou, Y., and Mason, M.T. (2022).
Contact mode guided motion planning for quasidynamic
dexterous manipulation in 3d. In 2022 International
Conference on Robotics and Automation (ICRA), 2730–
2736. IEEE.

Deits, R., Koolen, T., and Tedrake, R. (2019). Lvis:
Learning from value function intervals for contact-aware
robot controllers. In 2019 International Conference on
Robotics and Automation (ICRA), 7762–7768. IEEE.

Heess, N., TB, D., Sriram, S., Lemmon, J., Merel, J.,
Wayne, G., Tassa, Y., Erez, T., Wang, Z., Eslami, S.,
et al. (2017). Emergence of locomotion behaviours in
rich environments. arXiv preprint arXiv:1707.02286.

Hogan, F.R. and Rodriguez, A. (2020). Reactive planar
non-prehensile manipulation with hybrid model predic-
tive control. The International Journal of Robotics
Research, 39(7), 755–773.

Huang, E., Cheng, X., and Mason, M.T. (2020). Efficient
contact mode enumeration in 3d.

Karaman, S. and Frazzoli, E. (2011). Sampling-
based algorithms for optimal motion planning. The
International Journal of Robotics Research, 30(7),
846–894. doi:10.48550/ARXIV.1105.1186. URL
https://arxiv.org/abs/1105.1186.

Levine, S. and Koltun, V. (2013). Guided policy search.
In S. Dasgupta and D. McAllester (eds.), Proceedings of
the 30th International Conference on Machine Learning,
volume 28 of Proceedings of Machine Learning Research,
1–9. PMLR, Atlanta, Georgia, USA.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. (2015).
Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971.

Murray, R.M., Li, Z., and Sastry, S.S. (2017). A mathemat-
ical introduction to robotic manipulation. CRC press.

Ross, S. (2011). No-Regret Methods for Learning Sequen-
tial Predictions. Ph.D. thesis, Citeseer.

Ross, S., Gordon, G., and Bagnell, D. (2011). A reduction
of imitation learning and structured prediction to no-
regret online learning. In Proceedings of the fourteenth
international conference on artificial intelligence and
statistics, 627–635. JMLR Workshop and Conference
Proceedings.

Sirichotiyakul, W. and Satici, A.C. (2023). Data-driven
passivity-based control of underactuated mechanical
systems via interconnection and damping assignment.
International Journal of Control, 96(6), 1448–1456.

Sutton, R.S. and Barto, A.G. (2018). Reinforcement
learning: An introduction. MIT press.

Sutton, R.S., McAllester, D., Singh, S., and Mansour,
Y. (1999). Policy gradient methods for reinforcement
learning with function approximation. In S. Solla,
T. Leen, and K. Müller (eds.), Advances in Neural
Information Processing Systems, volume 12. MIT Press.

Tian, S., Ebert, F., Jayaraman, D., Mudigonda, M., Finn,
C., Calandra, R., and Levine, S. (2019). Manipulation
by feel: Touch-based control with deep predictive mod-
els. In 2019 International Conference on Robotics and
Automation (ICRA), 818–824.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mu-
joco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 5026–5033. IEEE.

