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ABSTRACT: To further the ability to manipulate the properties of open-shell molecules, logical

and incremental modifications to molecular structure are key steps that provide fine-tuning of
established diradicaloid scaffolds. We report the synthesis of an electronically “pure” diradicaloid
based on a 2,6-anthroquinoidal core where the once necessary ethynyl “wings” are removed.
Through the simplification of the overall electronic structure, the singlet—triplet energy gap
increases by 0.3—0.4 kcal mol™" in the reported diradicaloids while avoiding significant disruption

to their optoelectronic properties.

pen-shell polycyclic conjugated hydrocarbons are mole-

cules that have unpaired 7-electrons in their ground-state
electron configurations, and, in the case of diradicaloids, there
are two unpaired electrons available for through-space and
through-bond communication. These molecules are important
for an intimate understanding of 7-bonding and spin—spin
interactions.'~” Narrow highest occupied molecular orbital
(HOMO)/lowest unoccupied molecular orbital (LUMO)
energy gaps,”” amphoteric redox behavior,'”"" strong low
energy absorption in the UV—vis region,”'” and usually strong
magnetic coupling'”'* are associated properties of this unique
class of molecules, which contribute to the deep interest in
developing these systems. Due to their properties, organic
diradicaloids are thought to be suitable in nanoscale
electronics,'>*¢ spintronics,”’18 nonlinear optics,19’20 and
singlet fission.”"””” The first of these diradicaloids was Thiele’s
hydrocarbon,” followed quickly by Tschitschibabin’s hydro-
carbon”* as an extension to the quinoidal conjugation, lending a
proaromatic nature to these systems. Many diradicaloids have
been synthesized and studied since, such as zethrenes,?>*°
bisphenalenyls,”’28 anthenes,””*° extended quinodime-
thanes,”"** and diindenoacenes.** ™ Stability in these systems
is accomplished by the inclusion of bulky groups on the high-
spin density carbon centers to slow decomposition, thus
allowing for thorough study of stable, novel, open-shell scaffolds.
In 2016, we reported the synthesis and properties of
diindenoanthracene 1 (DIAn, Figure 1), a diradical with
excellent stability, a narrow HOMO/LUMO energy gap
(Egyp), strong absorption within the red region of visible light
and weak absorption into the near-infrared region due to a
doubly excited state, and a singlet—triplet energy gap (AEgr)
that allows for a thermally accessible triplet excited state above
room temperature.”” From design principles learned with 1 and
a desire to rationally tune AEgr, a library of DIAn derivatives
(2—5) was prepared featuring varied arene fusion to the
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anthracene core while maintaining the same 2,6-diradical
orientation (Figure 1).° Through judicious adjustments of
the electronic parameters dictating the diradical character (y,)
and AEgr, a rational, stepwise fine-tuning of AEgr resulted in an
overall range of 1.6 kcal mol™ for 1—5. Despite this success,
their syntheses required the presence of bulky
(triisopropylsilyl)ethynyl (TIPSethynyl) groups to ensure
correct Friedel—Crafts ring closure to complete the requisite
core, as well as to impart added solubility. Fortuitously, a recent
publication described the synthesis of an anthracene core
without diethynyl substitution,”” providing the means of
simplifying the electronic structure of the quinoidal backbone
of DIAn. The current study of “alkyne-free” DIAns 6 and 7 aims
to answer the influence alkyne substitution has on molecule
properties and whether there are significant consequences in
omitting the alkynes.

The ability to study an electronically “pure” DIAn core
requires an anthracene-based building block with advantageous
substitution on the 2,3/6,7 positions. Granhq} et al. recently
reported a synthetic route to bis-triflate 8,”" which can be
subjected to Suzuki—Miyaura cross-coupling conditions with 4-
methylphenylboronic acid to reach diester 9 (Scheme 1). The
2,3/6,7 substitution pattern of the esters and pendant tolyl
groups negates the need of the directing effect from the
TIPSethynyl groups present on the 9 and 10 positions in the
original DIAn synthesis to avoid unproductive ring closure at the
1 and $ positions.” Saponification of the diester to 10 followed
by Friedel—Crafts acylation gave dione 11. This ketone
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Figure 1. Structures of the known DIAn family 1—5 and new DIAn derivatives 6 and 7 lacking the alkyne groups. The common 2,6-anthroquinoidal/

diyl relationship in all molecules is denoted by the bolded bonds.

Scheme 1. Synthesis of Diindeno[1,2-b:1’,2'-i]anthracenes 6 and 7
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functionality permits the final two transformations: nucleophilic
addition of the lithiate of 2-bromo-4-t-butyl-1,3-dimethylben-
zene followed by trifluoroacetic acid-catalyzed SnCl, reduction
of the diol intermediate to afford diradicaloid 6. Similarly, use of
4-bromo-3,5-dimethylthioanisole38 in the lithiate reaction
results in the formation of DIAn derivative 7. The low yields
of 6 and 7 are due to material loss during the removal of residual
Sn salts during purification, which we attribute to the
significantly reduced solubility caused by the absence of the
two TIPSethynyl groups.

The structural differences between 1, 6, and 7 allow us to
rationalize changes in optoelectronic properties as a conse-
quence of TIPSethynyl substitution, or lack thereof. As
expected, the absorbance profiles in the UV—vis region for 6

14516

and 7 resemble those of other acene-based quinoids and are very
similar to that of 1 (Figure 2a). The A,,,, values in the red region
of the UV—vis spectra are at 659 and 661 nm for 6 and 7,
respectively, followed by second absorption deeper into the red
(~720 nm), compared to a single broad absorption for 1 (690
nm). It is reasonable to attribute both the broader absorption
and the ~30 nm red-shift to the two ethynyl groups in 1, seeing
as the spectra of both 6 and 7 illustrate multiple defined
absorbance features in the same lower energy region. In
addition, common to diradicaloids is the weak shoulder band
(~760 nm), indicative of a double-excitonic state,'>****~*!
This low-energy shoulder is present regardless of substitution
and has a strikingly similar shape between all three DIAn
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Figure 2. (a) Electronic absorption spectra for 1, 6, and 7 in CH,Cl, at
room temperature. (b) CV of 1, 6, and 7 in CH,Cl, showing two quasi-
reversible one-electron reductions and two quasi-reversible one-
electron oxidations. Voltammograms are generated according to
IUPAC plotting convention; the starting point for each voltammogram
is 0.0 V, and scans proceed from oxidizing to reducing potentials.

derivatives, suggesting a nearly identical doubly excited
electronic configuration within the polycyclic core.

Cyclic voltammetry (CV) of DIAns 6 and 7 exhibits two one-
electron oxidations and reductions with symmetry between both
processes that match parent DIAn 1 (Figure 2b). Notable
differences between CV traces of 1 and 6 are their redox
potentials. Quasi-reversible reductions occur at —0.93 and
—1.31 V (vs SCE) without ethynyl substitution; however,
analogous reductions are shifted upward to —0.81 and —1.20 V
(vs SCE) with ethynyl substitution (see the Supporting
Information for additional CV details). The oxidations of
these systems also are shifted from 0.51 and 0.99 V in 6 to 0.63
and 1.17 V in 1. HOMO energy levels are estimated as —5.19
and —5.32 eV for 6 and 1, respectively, whereas LUMO energy
levels are estimated as —3.72 and —3.87 eV. The electrochemi-
cally derived E,,, for DIAn 6 is 1.47 eV, which is very close to the
reported E,,, of 1.45 eV for the bis-ethynyl substituted analogue
1.In the case of 7, the potentials for all four possible redox events
are shifted slightly up from both 1 and 6, making it more
susceptible to electrochemical reduction, but also more resistant
to oxidation (see Table S1 for full electrochemical data of 7), yet
it too has an E,,;, of 1.47 eV. The equivalent energy gap between
6 and 7 can be rationalized by poor overlap between the
orthogonal, bulky pendent aryl groups and the quinoidal core,
rendering any electronic influence of the electron-rich sulfur
atom in 7 on the gap itself negligible. There is very little change
to the E,,, of DIAn diradicaloids despite substitution on the
apical carbon of the five-membered rings and substitution on the
central six-membered ring, analogous to related indeno[1,2-
b]fluorenes featuring bulky substituents.*”

Single-crystal X-ray diffraction (XRD) of crystals of 6 grown
by vapor diffusion of heptane into a CH,Cl, solution at room
temperature successfully afforded its molecular structure
(Figure 3a). Similar to 1, analogue 6 is centrosymmetric, planar,
and retains roughly 1D stacking with overlapping peripheral six-

Figure 3. (a) Crystal structure of DIAn 6 drawn with 50% thermal
ellipsoids; hydrogen atoms are omitted for clarity. (b) Comparison of
selected bond lengths (A) of 1 (brown)* and 6 (blue); pendant aryl
groups have been truncated to show only the DIAn core.

membered rings (Figure S3). Bond lengths within the quinoidal
core of 6 alternate as was observed for 1, which reflect the
closed-shell structure well (Figure 3b). Within 6, the bond
distances vary between 1.352—1.460 A and tend to be slightly
shorter than those of DIAn 1, indicating minimal changes in the
ground-state structure between alkyne substituted and unsub-
stituted quinoidal cores. The bond distance between the apical
carbon and the anthracene core (C6—C8), which can indicate
contributions from both an open-shell and a closed-shell
structure, is roughly the same (1.396 A) as the values found in
DIAn derivatives 1—4 (1.391—1.406 A).>® A discussion of the
differences in the molecular packing of 1 and 6 (Figure S9) can
be found in the Supporting Information.

Prior computational studies on simplified models of 1 and 6/7
have suggested that omission of the alkynyl substituents will
have minimal effect on the diradical character index, y, (0.623 vs
0.61S, respectively (PUHF/6-311G*)), yet will have an
appreciable impact on AEg ((SF-NC)-TDDFT PBES0/6-
311G*), raisinég it from —4.71 kcal mol™ in 1 to —5.42 kcal
mol~" in 6/7.2° To this end, the magnetic properties of 6 and 7
were studied using superconducting quantum interference
device (SQUID) magnetometry. While 6 and 7 do contain
two additional methyl groups in the core, their presence should
have very little influence on magnetic properties based on the
computed odd-electron density map of 1.>° As expected, the two
analogues have very similar SQUID magnetic responses (Figure
4) since the only difference is t-butyl- versus thiomethyl-
substitution on the pendant phenyl rings. When fit to the
Bleaney—Bowers equation,*” the data better fit to a dimer model
from which AEg; values of —4.6 and —4.5 kcal mol™ are
obtained for 6 and 7, respectively, numbers that are in fairly good
agreement with the previously calculated AEgp of —5.4 kcal
mol™'.*° DIAns 6 and 7 exhibit a thermally accessible triplet
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Figure 4. SQUID data of 1, 6, and 7 (O) and the corresponding
Bleaney—Bowers fit (—).

excited state from a singlet ground state, which is consistent with
the larger library of DIAn derivatives from our lab.** Comparing
the AEgr of 6 and 7 to that of 1 (—4.2 kcal mol™),” there is a
difference of less than 0.4 kcal mol ™!, indicating a fine-tuning of
the AEgy in these anthracene-based diradicaloids.

In summary, we report the facile synthesis and study of DIAns
6 and 7 without ethynyl substitution. In depth characterization
was completed with single-crystal XRD, UV—vis spectroscopy,
CV, and magnetic measurements with computational support
from previously reported theoretical values providing exper-
imental corroboration to a long-standing curiosity toward the
influence of bis-ethynyl substitution. Further fine-tuning of
AEg; extends the intrigue of this family of diradicaloids and
parallels widespread interest of open-shell molecules in the
realm of spintronics.
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