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Table 2. Atomic coordinates, and equivalent displacement parameters of Mn2.26Cr1.74Al11.

Atom SOF Site x y z Ueq (Å2)

M1 0.64(2) Mn + 0.36(2) Cr 2i 0.39103(1) 0.13371(1) 0.33691(1) 0.0052(1)
M2 0.49(2) Mn + 0.51(2) Cr 2i 0.85724(1) 0.40322(1) 0.70032(1) 0.0074(1)
Al1 1 2i 0.53337(5) 0.12502(3) 0.84648(5) 0.0082(1)
Al2 1 2i 0.89627(5) 0.12517(3) 0.48745(5) 0.0084(1)
Al3 1 2i 0.33311(5) 0.37307(3) 0.57533(5) 0.0082(1)
Al4 1 2i 0.71916(5) 0.36904(3) 0.18271(5) 0.0095(1)
Al5 1 2i 0.16997(5) 0.31883(3) 0.05623(5) 0.0109(1)
Al6 1 1a 0 0 0 0.0100(1)

Figure 1. Unit cell of Mn2.26Cr1.74Al11 viewed along the c-axis. The
mixed metal sites are colored blue and magenta and display the
mixing ratios where Mn is represented by the magenta and Cr by the
blue color. M1 comprises 0.64(2) Mn and 0.36(2) Cr while M2
comprises 0.49(2) Mn and 0.51(2) Cr. The Al atoms are colored
gray. The inset shows a single crystal of no particular shape, which
was typical for this compound.

Figure 2. Local atomic environment around (a) M1 and (b) M2
viewed along the (111) axis. Each metal site is surrounded by ten Al
atoms. The anisotropic displacement ellipsoids are drawn at the
95% probability level.

3.2. Magnetism

The magnetism of the binary Mn4Al11 has been explored
previously [39] but—as far as we can tell—no magnetic study
has been performed on the Cr4Al11 and Re4Al11 binaries, nor

Figure 3. Ternary Al–Cr–Mn phase diagram at 800 ◦C in the
Al-rich region. Adapted from [50], with permission from Springer
Nature.

on any sample in the (Mn,Cr)4Al11 phase range described in
[42, 50]. It was shown that Mn4Al11 has a one-dimensional
magnetic character evidenced by a smooth cusp at around
100 K in both magnetic susceptibility and electric resistivity
[39]. In addition, the authors reported no long-range mag-
netic order below that temperature based on neutron diffrac-
tion collected at 4.2 K. A plausible explanation for the one-
dimensional character was given based on the crystal struc-
ture in which the Mn atoms arrange themselves roughly in
…AABBAABB… chains where A and B are the two metal sites
and with distances 3.188 Å, 3.198 Å, and 3.053 Å for AA, AB,
and BB, respectively.

Figure 4(a) displays our structure again but without the
Al-atoms to highlight the transition metals and the distances
between them. The view is along the a-axis and in perspect-
ive mode. We have an M1–M1 distance of 3.216 Å (altern-
ating gray and green and equivalent to the AA distance in
[39]), an M2–M2 distance of 2.980 Å (alternating gray and
red and equivalent to the BB distance), and an M1–M2 dis-
tance of 3.199 Å (solid gray and equivalent to the AB dis-
tance). These three distances define the chains while the

4
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Figure 4. (a) View in perspective mode along the a-axis of the Mn2.26Cr1.74Al11 structure but without the Al atoms. The atom colors are as
in figure 1. The alternating gray and green ‘bond’ defines the M1–M1 distance of 3.216 Å, the alternating gray and red bonds define the
M2–M2 distances of 2.980 Å and 3.381 Å (roughly along the c-axis), and the solid gray defines the M1–M2 distance of 3.199 Å. (b) View
along (110).

M2–M2 distance of 3.381 Å (also alternating gray and red)
links the chains together along the (113) direction. The chains
are along the (110) axis as can be viewed in figure 4(b) (into
the page).While it is clear what Dunlop andGrüner [39] meant
by one-dimensional chains, in our structure the interchain
M2–M2 distance 3.381 Å is not very much longer than the
intrachain distances, plausibly resulting in a two-dimensional
arrangement of metal sites instead. The next shortest inter-
chain distance is approximately 4.63 Å. An argument for one-
dimensional character could be regarding the locations of the
Al atoms (not shown in figure 4). Al5 and Al6 atoms separ-
ate the chains from each other in the [001] plane while Al3
atoms separate the chains from each other in the

[
11̄0

]
plane;

the other Al atoms are located roughly within the chains. The
presence of the Al5 and Al6 atoms in the plane separating the
chains could be why Dunlop and Grüner declared the presence
of one-dimensional chains. They did not specify the nature of
the ordered state, whether the coupling between neighboring
Mn-atoms along the chain was of ferro-, antiferro-, or ferri-
magnetic nature; however, one can surmise from their suscept-
ibility plot (figure 1 in [39]) that the interaction seems to be of
antiferromagnetic nature.

We performed magnetic measurements on our mixed-site
sample comprising several randomly oriented crystals of vary-
ing composition as discussed above in connection with the
ternary phase diagram. Figure 5 displays the magnetization
as a function of temperature from 2 K to 300 K, obtained at
an applied field of 0.1 T. The curve looks paramagnetic or
possibly ferromagnetic down to the lowest temperature [51],
and we observed no smooth cusp and therefore no evidence
for a low-dimensional character. It is possible that the Mn/Cr
mixing at the two metal sites in Mn4–xCrxAl11 and the mix of
crystals with differentMn:Cr disorder removed or smeared out
the low-dimensional magnetic character, especially since Mn
and Cr couple differently to each other (parallel vs. antiparal-
lel). The situation is also more complex since the two sites are
mixed in unequal amounts and differ from crystal to crystal.

Looking at the inverse susceptibility as a function of tem-
perature (figure 5 inset), however, reveals a hyperbolic curve,
a signature of ferrimagnetism [52–55]. Ferrimagnetism in this

Figure 5. Magnetization as a function of temperature at an applied
field of 0.1 T. Inset: Inverse susceptibility as a function of
temperature. The hyperbolic trend is a sign of ferrimagnetism. The
red line is a fit to equation (1).

material is plausible with the two different metal sites com-
prising different mixings of Mn and Cr. The addition of Cr
into a Mn site will change the magnetic moment of that site
so that—if the two sites originally had equal and antiparallel
magnetic moments—the moments now become unequal.

Assuming two sublattices for simplicity (the situation is of
course more complex with different mixings at the two sites
and with a sample comprising crystals of varying compos-
itions), the inverse susceptibility can be expressed with the
molecular field theory as [52–55]

1
χ

=
T θ

C
ζ

T θ ′ , (1)

where C is the Curie constant and related to the effective
moment µeff viaC= NAµ

2
Bµ

2
eff/3kB, θ is the Curie–Weiss tem-

perature, and ζ and θ′ are parameters containing information
about the magnetization of the two sublattices. The parameter
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spin-polarization character in these compounds, on the basis
of the generalized Slater–Pauling rule. Even though we have
stressed the importance of M-site-mixing to the accuracy of
calculated results, there is still knowledge to be gained from
exploring the electronic behavior of these ‘base’ single unit-
cell magnetic states. This is because we have performed pre-
liminary DOS calculations for the magnetic ground states of
the two stoichiometric endpoints, Mn4Al11 and Cr4Al11; the
two compounds exhibit striking similarities in broad DOS fea-
tures and a spin-up bandgap (both compounds are metallic in
the spin-down channel). Based on this observation, we posit
that a spin-up bandgap appears in each other fractional Mn:Cr
ratios (2:2, 3:1, etc) as well.

To explore this possibility, we selected the magnetic ground
states for each possible Mn:Cr (1 Cr to all Cr) for DOS cal-
culations. The spin-polarized DOS, plotted in figures 7(a)–
(d) respectively, confirmed our suspicion (the spin-up gap
shaded in grey): Mn–Mn–Mn–Mn (no Cr), Mn–Mn–Cr–Mn
(1 Cr; magnetic ground state), Mn–Mn–Cr–Cr (2 Cr; magnetic
ground state), and Cr–Cr–Cr–Cr (4 Cr). Of note, ‘3 Cr’ is not
shown, as we did not observe meaningful differences between
the DOS for the magnetic ground states of ‘3 Cr’ and ‘4 Cr’,
especially regarding the position and width of the spin-up gap.

We observed two phenomena that seemed to correlate with
the addition of Cr atoms: (1) a general energy shift of DOS
features towards higher energies, and (2) the gradual widening
of a bandgap in the spin-up channel near the Fermi level. The
energy shift of DOS features can be explained as a shift in the
Fermi level towards lower energy due to a decrease in total
number of valence electrons per molecular formula.

Regarding the bandgap, while a thorough understanding
of its emergence with the introduction of Cr requires band
structure calculations and likely some form of a molecular
orbital hybridization model, we can nevertheless acquire some
basic information simply from atom-specific projected DOS
(PDOS) data (figure 8).

Near the Fermi level (±2 eV), the M-site PDOS are dom-
inated by d-orbital states regardless of atomic configurations
(figures 8(a)–(f)); only a vanishing small number of states
are associated to s- and p-orbitals (not shown). Similarly, Al
PDOS are majorly p-orbital states (figures 8(g)–(j)). For each
compound, one finds a high degree of similarity between the
general shapes of M-site d-orbital and Al p-orbital PDOS: in
both spin channels, a lobe below and above the Fermi level,
joining near the Fermi level with the presence of a small spin-
up gap. When comparing the total DOS (figure 7) and all
atomic PDOS for each compound, one sees that both the lower
and upper band edges of this spin-up gap consistently com-
prise a fair mixture of M-site and Al valence states. We under-
stand this as a sign that extensive p–d hybridization is present
betweenM-site (Mn and/or Cr) d-electrons andAl p-electrons.
Thus, it is understandable that when one replaces a given Mn
atom with a Cr atom within a unit cell, one would also alter
the observed bandgap.

The presence of a gap in only one spin channel defines
a half-metal. Half-metallicity entails fully spin-polarized

Figure 7. DOS for (a) Mn4Al11, (b) Mn3CrAl11, (c) Mn2Cr2Al11,
and (d) Cr4Al11. The solid gray line is the Fermi energy while the
grey box is a guide-to-eye for the majority-band gap. In each figure,
the upper (lower) curve represents the spin-up (spin-down) channel,
where the positive z-direction is defined as the direction of the total
magnetic moment. Zero energy is set at the Fermi level.

conductance, which has non-volatile memory applications.
Half-metallicity was first predicted in Mn-containing Heusler
alloys [20], and has been subsequently predicted in many
more Mn-containing Heusler systems. On the other hand, the
experimental observation of half-metallicity requires a more
elaborated setup: the direct probing of a fully spin-polarized
Fermi surface can be done by spin-polarized photoemission
spectroscopy; less direct ways involve the observation of high
magnetoresistance due to spin–orbit torque transfer in a half-
metallic ferromagnet tunnel junction, or high spin-current gen-
eration in nonlocal measurements. It has been proposed that
the resistivity of half-metals features a characteristic temper-
ature scaling due to the inhibition of spin-flips [60]. This
has been observed in at least one study, of the disordered
Mn-containing Heusler alloy CoMnVAl [23]. Another Mn-
containing alloy (not Heusler), Mn3Al, has been calculated to
feature half-metallicity [26, 28]; In [26], magnetic properties
of Mn3Al thin films were studied, though its half-metallicity
were not characterized. Based on our DFT results, we can
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