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Abstract—We prove that a binary linear code of block length
n that is locally correctable with 3 queries against a fraction
δ > 0 of adversarial errors must have dimension at most
O¶(log

2 n · log log n). This is almost tight in view of quadratic
Reed-Muller codes being a 3-query locally correctable code
(LCC) with dimension Θ(log2 n). Our result improves, for the
binary field case, the O¶(log

8 n) bound obtained in the recent
breakthrough of [1] (and the more recent improvement to
O¶(log

4 n) for binary linear codes announced in [2]).

Previous bounds for 3-query linear LCCs proceed by con-
structing a 2-query locally decodable code (LDC) from the 3-
query linear LCC/LDC and applying the strong bounds known
for the former. Our approach is more direct and proceeds by
bounding the covering radius of the dual code, borrowing inspira-
tion from [3]. That is, we show that if x 7→ (v1 ·x, v2 ·x, . . . , vn ·x)
is an arbitrary encoding map F

k
2 → F

n
2 for the 3-query LCC, then

all vectors in F
k
2 can be written as a Õ¶(log n)-sparse linear com-

bination of the vi’s, which immediately implies k f Õ¶((log n)
2).

The proof of this fact proceeds by iteratively reducing the size of

any arbitrary linear combination of at least Ω̃¶(log n) of the vi’s.
We achieve this using the recent breakthrough result of [4] on
the existence of rainbow cycles in properly edge-colored graphs,
applied to graphs capturing the linear dependencies underlying
the local correction property.

Index Terms—Locally Correctable Codes, Rainbow Cycles,
Covering Radius, Lower Bounds.

I. INTRODUCTION

Local correction refers to the notion of correcting a single

bit of a received codeword by querying very few other bits

of the codeword at random. More concretely, a binary code,

which is simply a subset C ¦ {0, 1}n, is said to be locally

correctable using r ∈ N queries from a fraction ¶ ∈ (0, 1)
of errors, abbreviated (r, ¶)-LCC, if it can recover any given

bit of a codeword c ∈ C with probability noticeably higher

than 1/2 (say 2/3) by randomly reading r bits of a received

codeword y ∈ {0, 1}n that is at most ¶n away from c in

Hamming distance. Usually, we are interested in the case when

¶ is a fixed constant bounded away from 0 as the code length

n → ∞, and in this case, we refer to such a code as simply

a r-LCC.
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Mission (SACM) Scholarship, NSF CCF-2210823 and V. Guruswami’s Si-
mons Investigator Award. V. Guruswami’s Research supported by a Simons
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Throughout this paper, we will restrict our attention to

only binary linear codes, particularly binary linear r-LCCs. A

binary linear code C of block length n is simply a subspace of

F
n
2 , where F2 is the field of two elements. If the dimension of

C as a F2-subspace is k, then one refers to it as an [n, k] code.

A generator matrix of C is an n × k matrix whose columns

form a basis of C. Let us fix one such choice of generator

matrix M , and denote its rows by v1, v2, . . . , vn ∈ F
k
2 .

We then have the encoding map M : F
k
2 → C given by

Mx = [v1 · x, v2 · x, . . . , vn · x]¦.

Among its many uses, locally correctable codes play a

central role in PCP constructions, where they allow to self-

correct a function, purportedly a codeword, after a codeword

test ascertains that the function is close to a codeword.

They thus allow effective noise-free oracle access to a noisy

function, with a small price in the number of queries. We refer

the reader to the surveys [5]–[7] for more on the applications

and connections of locally correctable codes.

Despite its slew of uses, the best known r-LCCs (even

existentially) have n ≈ exp(k1/(r−1)), which is achieved

by the degree (r − 1) Reed-Muller code (evaluations of

polynomials of degree (r − 1) in m = Oq(log n) variables

at all points in F
m
q ).1 This has remained the case for constant-

query local correction since their conception. Indeed, much of

the progress on locally correctable codes for a constant number

of queries has focused on proving their limitations, specifically

for concrete values of r.2 For r = 1, it has long been known

that 1-LCCs do not exist [25]. For r = 2, it has also long been

known that one must indeed have n g exp(Ωq(k)) [26], [27],

so the Hadamard code (and the degree one Reed-Muller code)

is indeed optimal.

For r = 3 and larger, our understanding of r-LCCs

is abysmal. The known limitations of r-LCCs, which also

apply to r-query locally decodable codes (which offer the

weaker guarantee of local correction only for the k mes-

sage symbols encoded by the codeword), stood at the bound

1This code requires q g r + 1, but one can also get say binary codes by
picking q to be a power of 2 and concatenating the Reed-Muller code over
Fq with the binary Hadamard code.

2This statement holds only for the classical constant query regime. Indeed,
there have been some great works for when the number of queries r grows
with n [8]–[12] and for relaxed notions of local corrections [13]–[18]. There is
also a brighter landscape of lower bounds for harsher error models [19]–[24].
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k f Õ(n1−1/+2/r,) [27]–[29] for a long while. In particular,

for 3-LCCs, the quadratic bound k f O(
√
n) stood for more

than a decade. This was recently improved to k f Õ( 3
√
n)

in [30] (with recent logarithmic factor improvements by [31]),

and this bound also applied to 3-query locally decodable codes

(LDCs). Then, in a tour de force breakthrough, Kothari and

Manohar [1] gave an exponential improvement and showed

that k f Oq(log
8 n) for 3-query linear LCCs (over any

field Fq). Since there are beautiful constructions of 3-query

linear LDCs of block length sub-exponential in k [32]–[35],

their bound demonstrated a strong separation between local

decodability and local correctability with 3 queries for linear

codes. Nonetheless, their result left open the optimality of

degree 2 Reed-Muller codes as binary linear 3-LCCs, which

have dimension k = Θ(log2 n). Our main result is that they

are (almost) optimal.

Theorem I.1 (Main). If C is an [n, k] binary linear (3, ¶)-
LCC, then k f O(¶−2 log2 n · log logn).

Modulo the log logn factor, this settles the dimension

versus block length trade-off of 3-query binary linear LCCs.

Recently, following [1], an improved upper bound of k f
O(log4 n) was obtained for binary linear 3-LCCs in [2]. Even

more recently, an independent result of [36] shows an optimal

k f O(log2 n) bound for binary linear design 3-LCCs. Such 3-

LCCs have the additional property that the linear dependencies

of length 4 formed by the query sets (see Definition II.2) cover

each pair of indices in [n] exactly once. We note that a weaker

bound of k f O(log3 n) for binary linear design 3-LCCs was

previously shown in [2].

Our proof method additionally sheds some light on the

structure of binary linear 3-LCCs. Namely, we prove The-

orem I.1 by upper bounding the covering radius of the dual

code.3 This offers a more direct understanding of the structure

and limitations of binary linear 3-LCCs, which can be harder

to discern from recent developments [1], [2], [30], [31].

Indeed, all such works proceed by constructing a much longer

2-query LDC from the 3-query locally correctable linear code

and appealing to the known exponential lower bounds for 2-

LDCs [26], [27].4

Our main result on the covering radius of the dual code of

a binary linear 3-LCC is the following.

Theorem I.2. Let C be a binary linear (3, ¶)-LCC with

generator matrix M ∈ F
n×k
2 . Then every x ∈ F

k
2 can be

expressed as the sum of at most O(¶−2 log n · log logn) rows

of M .

Since a generator matrix of C is also a parity check matrix

of C§, Theorem I.2 as stated upper bounds the covering

3The covering radius of a linear code C0 ¦ F
n
2 is the minimum r such

that every point in F
n
2 is within Hamming distance r from some codeword

c ∈ C0. If H ∈ F
m×n
2 is a parity check matrix of a linear code C0, then it

is the minimum r for which every s ∈ F
m
2 is the sum of at most r columns

of H .
4See Appendix B of [30] and Section 7.6 of [1] for the proper formulation

of their blocklength lower bound proofs as reductions to 2-query LDCs.

radius of C§. Note that Theorem I.2 immediately implies

Theorem I.1, as it shows 2k f ∑T
j=0

(
n
T

)
f nT+1 for

T = O(¶−2 log n · log logn). We remark here that the degree

2 Reed-Muller code has a covering radius of Θ(log n), which

makes our bound in Theorem I.2 only a log logn factor away

from the optimal bound.

Our inspiration for Theorem I.2 came from a work of

Iceland and Samorodnitsky [3], who prove that the dual C§

of a binary linear (2, ¶)-LCC C has O(¶−1) covering radius

(which then immediately implies that |C| f nO(¶−1)).5 They

prove this via analysis of the “discrete Ricci curvature” of

the “coset leader graph” associated with C. We develop a

more elementary treatment of their ideas and give a similar

coupling argument to bound the diameter of the Cayley graph

Cay(Fk
2 , {v1, v2, . . . , vn}), which is isomorphic to their coset

leader graph. Note that this diameter is precisely the covering

radius of C§. Using our viewpoint, we produce a new proof of

the previously known k f O(log n) upper bound for linear 2-

query LDCs over any finite field (the proof in [3] only applied

to LCCs); we present this proof in the appendix of the full

version of the paper [37].

a) Rainbow cycles in properly edge-colored graphs: Our

proof of Theorem I.2 crucially relies on finding rainbow cycles

in properly edge-colored graphs. Rainbow cycles are simply

cycles where each color appears at most once. There has been

numerous works to that end [4], [38]–[43], culminating in the

recent breakthrough of [4] showing that any properly edge-

colored n-vertex graph with average degree Ω(log n·log logn)
must have a rainbow cycle. This bound is tight up to the

O(log log n) factor—if one colors the edges of the Boolean

hypercube with their respective direction, then one obtains a

properly edge-colored log n-regular n-vertex graph that has no

rainbow cycles.

Our O(log n · log logn) bound in our Theorem I.2 is

inherited in a black-box fashion from the rainbow cycle bound

of [4]. Should a tight Θ(log n) be established for the minimum

average degree guaranteeing a rainbow cycle, we would imme-

diately get an asymptotically tight O(log2 n) dimension upper

bound for binary linear 3-LCCs in Theorem I.1. In fact, in

our application, the concerned edge-colored graphs have the

further property that each color class has Ω(n) edges. So it

would suffice to improve the rainbow cycle bound for such

graphs.

b) LCC lower bounds from rainbow LDC lower bounds:

Our 3-LCC result based on rainbow cycles turns out to be

a specific instance of a more general reduction from lower

bounds for r-LCCs to a “rainbow” form of lower bounds for

binary linear (r − 1)-query LDCs—a stronger form of LDC

lower bounds than usual binary linear (r − 1)-LDC lower

bounds. Our main result is the r = 3 case of this phenomenon,

where we have such strong “rainbow” bounds for binary linear

2-query LDCs.

5They also deduce a covering radius upper bound of O(n(r−2)/(r−1)) for
the r-query case by reducing to the 2-query case. Note that, for r g 3, the
resulting bounds for LCCs are weaker than the best-known ones.
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As for bounds on the so-called “rainbow” binary linear r-

LDC lower bounds problem, one can prove the same bound

of k f Õ(n1−2/r) for even r g 4 known for usual r-

LDCs in nearly the same fashion! As it turns out, the direct

sum transformation of [27] from r-LDCs to 2-LDCs has the

additional property that it maintains rainbow cycles between

the two LDCs. By using the strong bounds of [4],6 we can

therefore find a rainbow cycle in the 2-LDC and revert it to

a rainbow cycle in the r-LDC. From our general reduction,

we can therefore deduce improved lower bounds of the form

k f Õ(n1−2/(r−1)) for binary linear r-LCCs for all odd r g 5,

which were previously conjectured by [1] for all r g 4. This

is the content of the following theorem.

Theorem I.3. If C is an [n, k] binary linear (r, ¶)-LCC for

odd r g 5, then k f O
(
¶−2n1− 2

r−1 log3 n
)

.

Note that the previously best known bound for binary

linear r-LCCs for odd r g 5 (which also held for binary

linear r-LDCs and even binary linear (r + 1)-LDCs) was

Õ(n1−2/(r+1)) [27], [28], [31]. We outline our general re-

duction and the proof of Theorem I.3 in Section IV.

c) Follow-up questions: Two salient follow-up ques-

tions to our work are removing the linearity assumption

in Theorem I.1 and extending Theorem I.2 to arbitrary finite

fields. Since the statement of Theorem I.2 crucially relies

on considering rows of a generator matrix of the 3-LCC,

it makes it unclear how to remove the linearity assumption

in Theorem I.1. As for extending our main results to arbitrary

finite fields, it is easy to extend Theorem I.2 to finite fields of

characteristic 2 for a poly(|F|) loss in the upper bound on the

size of the sum by considering the code defined in Appendix

A of [1]. For finite fields of higher characteristic, the presence

of negative signs presents a tricky situation for the application

of the result of [4] in the proof of Theorem I.2. We leave it as

an interesting open problem to extend Theorem I.2 to linear

3-LCCs over arbitrary finite fields.

There is additionally the problem of extending Theorem I.3

to all r g 4. In light of our proof method of Theorem I.3,

it would seem that a cubic bound of k f Õ( 3
√
n) for binary

linear [n, k] 4-LCCs is reasonable to hope for by extending the

cubic 3-LDC lower bound of [30] to their analogous “rainbow”

version and applying our general reduction from binary linear

r-LCC lower bounds to “rainbow” binary linear (r− 1)-LDC

lower bounds. However, the 3-LDC to 2-LDC transformation

in [30] creates new query sets by adding together the original

query sets, which disrupts the correspondence of the colors

between the 3-LDC and the derived 2-LDC. Nonetheless, it

would still be interesting to show a cubic “rainbow” binary

linear 3-LDC lower bound using the techniques of [30].

6Note that this reduction crucially relies on the strong bound of k f
O(logn log logn) by [4]. Indeed, if one instead uses the previous state-
of-the-art results of [41], [43] on rainbow cycles of k f O(log2 n), then this
reduction would fail to yield any non-trivial bound.

A. Proof overview

While our proof of Theorem I.1 is rather short (just 2 pages,

and self-contained modulo the rainbow cycle bound), we will

nonetheless present a proof overview of it to showcase its

key ideas. Consider a (3, ¶)-LCC whose generator matrix has

v1, v2, . . . , vn ∈ F
k
2 as rows. It is well known that any binary

linear (3, ¶)-LCC has a collection of hypergraphs H1, . . . ,Hn

over [n] such that for each i ∈ [n], the hypergraph Hi consists

of at least (¶/3)n disjoint subsets of [n] of size 3 each such

that for any hyperedge {a, b, c} ∈ Hi, we have that vi =
va + vb + vc (see Section II-A). For simplicity, suppose that

¶ g Ω(1) to ignore any ¶ dependencies. Our goal is to show

that every x ∈ F
k
2 can be represented as the sum of at most

B vectors in {v1, . . . , vn} for some B := Θ(log n log log n).

Since the vi’s span F
k
2 , x can be written as the sum of at

most k of the vi’s. Fix any such sum. Our proof proceeds in an

iterative fashion: whenever the current representation of x as a

sum of the vi’s is longer than B, we will exploit the many local

checks expressing each vi as the sum of many disjoint 3-tuples

of other vj’s to produce a shorter representation of x. Applying

this compression iteratively yields the desired conclusion.

Now, consider an arbitrary linear combination
∑

t∈T vt with

|T | > B. For any t ∈ T , we can locally modify
∑

t∈T vt
by applying the substitution vt = va + vb + vc for any

{a, b, c} ∈ Ht. This will increase the length of the sum by

(at most) 2, which defeats our initial goal. Nonetheless, since

|Ht| g Ω(n) for each t ∈ T , the abundance of choices for

the triple {a, b, c} ∈ Ht presents a possibility for producing

cancellations between substituted sums of triples of vectors.

The simplest form of such a cancellation between two

substitutions goes as follows: consider any two distinct indices

t1, t2 ∈ T such that there are triples {a1, b1, c1} ∈ Ht1

and {a2, b2, c2} ∈ Ht2 satisfying c1 = b2. Since each

hypergraph is a matching of size Ω(n), such triples do occur

whenever |T | = É(1). Now, by applying the substitutions

vt1 = va1
+vb1+vc1 and vt2 = va2

+vb2+vc2 in
∑

t∈T vt, we

obtain a new sum of length at most |T |+2 ·2−2 ·1 = |T |+2
due to vc1 and vb2 canceling each other out.

We can further generalize this form of cancellation to

multiple indices as follows: given distinct indices t1, . . . , tm ∈
T such that there exists a “path” of hyperedges Es :=
{aEs

, bEs
, cEs

} ∈ Hts for s ∈ [m] satisfying cEs
= bEs+1

for

each s ∈ [m−1], we can apply the substitutions vts = vaEs
+

vbEs
+ vcEs

for each s ∈ [m] to the sum
∑

t∈T vt and obtain

a new sum of length at most |T |+ 2m− 2(m− 1) = |T |+ 2
due to vcEs

and vbEs+1
canceling each other out for each

s ∈ [m− 1]. Thus the length of the new sum hardly deviates

from the length of the original sum. Furthermore, by a simple

counting argument, one can show that there are such “paths”

of length m = Ω(|T |). However, the length of this new sum

is not smaller or even equal to the length of the original sum.

Now, notice that if we had cEm
= bE1

(i.e., the path ‘loops

back’), then the length of the new sum will now be at most |T |.
This does not reduce the length of the original sum

∑
t∈T vt,

but it does ‘shift’ it to a new sum. In the sequel, we will
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exploit such ‘shifts’ to produce a new sum of smaller length.

For now, let us consider the feasibility of having cEm
= bE1

.

To do so, we will cast our problem in the language of

properly edge-colored graphs and rainbow cycles. Indeed,

consider the edge-colored graph GT with vertices [n] and

edges {b, c} for {a, b, c} ∈ Ht (dropping an arbitrary vertex

in each triple) forming the t’th color class of edges in GT

for each t ∈ T . As Ht is a matching, GT will therefore be a

properly edge-colored graph. In this viewpoint, the ‘path’ of

hyperedges E1, . . . , Em is in fact a rainbow path in GT with

edge colors t1, . . . , tm in that order. To have cEm
= bE1

, we

need this rainbow path to be a rainbow cycle. Since the average

degree of GT equals Ω(|T |) = Ω(B) = Ω(log n log log n),
we can therefore conclude the existence of a rainbow cycle

in GT by the recent breakthrough result of [4]. This rainbow

cycle gives an alternate representation
∑

t∈T ′ vt that equals∑
t∈T vt with |T ′| f |T |. Call such an T ′ a “shift” of T .

Since the hypergraphs {Ht}t∈T are matchings of size Ω(n),
we can in fact extract more from this argument. Specifically,

by a more careful selection of the edges of GT , we can show

that the collection of all “shifts” T ′ of T cover Ω(n) of the

indices in [n]. This is the content of Lemma III.2.

This now suffices for an actual compression of a somewhat

larger sum. Suppose x =
∑

i∈I vi for |I| > p·(B+1) for some

large enough constant p (which will depend on ¶). Splitting the

sum into p disjoint parts T1, T2, . . . , Tp, each with more than

B terms, the constant fraction ‘coverage’ of [n] by the “shifts”

of each set Tℓ means (by some simple pigeonholing) that we

can find two distinct indices ℓ1, ℓ2 ∈ [p] and “shifts” T ′
ℓ1

and T ′
ℓ2

that intersect. By replacing the sets Tℓ1 and Tℓ2 with

their respective “shifts,” we end up with a representation of x
with at most |I| − 2 of the vi’s, which concludes our iterative

compression argument. See Figure 1 for an illustration.

a) Proof comparison to [1], [2]: One salient common

feature in our work and the works of [1], [2] is the chaining

of local checks. However, our implementation of chaining

differs fundamentally from [1], [2]. In our work, we attempt

to chain local checks to form a “cyclical chain” (i.e., rainbow

cycles) in order to establish Theorem I.2, resulting in a much

shorter proof. On the other hand, [1], [2] consider a techni-

cally involved hypergraph decomposition of a superpolynomial

number of chained local checks and then proceed to undertake

a highly intricate “row pruning” analysis to ensure that each

hypergraph of chained local checks is “spread-out.” Admit-

tedly, our proof relies on black-boxing known results from the

rainbow cycle literature, some proofs of which are involved.

Nonetheless, our proof offers modularity. In particular, any

improvement to the result of [4] would immediately yield

better lower bounds on binary linear 3-LCC via our proof

of Theorem I.2. On the other hand, improvements using the

methods of [1], [2] would likely entail a re-do of their analysis

(as was the case in [2]).

B. Organization

In Section II, we state the tools we need for locally

correctable codes and edge-colored graphs. In Section III,

aEs

bEs

cEs

ts

T
′
ℓ1

T
′
ℓ2

Fig. 1. This figure indicates the cancellations that occur in our proof
of Theorem I.2 via iterative refinement of the representation of an arbitrary
vector x ∈ F

k
2 as a sum more than p(B + 1) = Ω(logn log logn) of

the vi’s. The nodes represent indices in [n], with the gray nodes indicating
‘canceled’ nodes in the sum

∑
i∈I vi, while the black nodes represent the

‘active’ nodes in the sum. The inner gray nodes in the pentagon and the
square are cancellations resulting from Lemma III.2. The cancellation of the
one outer gray node in common is the result of picking a common node
between two ‘shifts’ T ′

ℓ1
and T ′

ℓ2
of the sets Tℓ1 and Tℓ2 , which is key idea

in the proof of Theorem I.2 from Lemma III.2. In the figure, a sum of 9 terms
(the indices ts corresponding to each of the 9 colors) is compressed into a
sum of 7 terms (the black nodes).

we present the proof of Theorem I.1 and Theorem I.2. In

Section IV, we define the notion of a “rainbow” LDC lower

bound along with a generalization of Theorem I.1 and use

them to prove Theorem I.3. Finally, in ??, we present a

covering radius upper bound for linear 2-LDCs and discuss

how to obtain the exponential blocklength lower bound from

our proof.

II. PRELIMINARIES

Let N := {0, 1, 2, . . .}, and let F2 = {0, 1} denote the finite

field of size 2. For any positive integer n ∈ Z+, we denote
[ n] := {1, 2, . . . , n}. For any set X and number k ∈ N, denote(
X
k

)
:= {A | A ¦ X , |A| = k}. Given two sets A and B, let

A·B := (A\B)∪(B \A) denote their symmetric difference.

Given a vector x ∈ F
k
2 , let wt(x) denote its Hamming weight

(i.e., number of nonzero entries). For any two vectors x, y ∈
F
n
2 , let d(x, y) denote their Hamming distance (i.e., the number

of entries that they differ on). We will consider multi-sets in

this work, which are simply sets that allow elements to repeat.

For any multi-set A, the cardinality of A, denoted |A|, is the

number of elements in A (including repeated elements).

A hypergraph is simply a collection of sets H ¦ 2[n]. We

call the sets in the hypergraph hyperedges For any ℓ ∈ Z+,

we say that H is an ℓ-uniform hypergraph if |A| = ℓ for all

A ∈ H. We also say that H is a matching if A ∩ B = ∅ for

all distinct A,B ∈ H. If H is an ℓ-uniform hypergraph and a

matching, then we simply call it an ℓ-uniform matching.

A. Locally correctable codes

The following is the usual definition of a linear 3-query

locally correctable code C as having a local decoder.
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Definition II.1 (Binary Linear LCC, local decoder definition).

Given a binary linear code C ¦ F
n
2 , we say that it is a

(r, ¶)-locally correctable code (abbreviated (r, ¶)-LCC) for

r ∈ N and ¶ ∈ (0, 1) if the following holds: for any received

codeword y ∈ F
n
2 there exists a randomized algorithm Dy with

oracle access to y that takes an index i ∈ [n] as input and

satisfies the following properties: (1) Dy(i) makes at most r
queries to y, and (2) if there exists a codeword c ∈ C satisfying

d(x, c) f ¶n, then Dy(i) outputs ci with probability at least

2/3.

While Definition II.1 is the typical definition of LCCs, we

will instead be working with a more combinatorial definition

that is amenable to lower bounds.

Definition II.2 (Binary Linear LCC, combinatorial definition).

Given a linear code C with generator matrix M ∈ F
n×k
2

whose columns form a basis for C, let vi ∈ F
k
q be the i’th

row of M for i ∈ [n]. The code C is said to be a (r, ¶)-
locally correctable code (abbreviated (r, ¶)-LCC) for r ∈ N

and ¶ ∈ (0, 1) if there exists r-uniform matchings H1, . . . ,Hn

over [n] such that |Hi| g ¶n for all i ∈ [n], and for any i ∈ [n]
and {a1, . . . , ar} ∈ Hi, we have that vi =

∑r
s=1 vas

.

It is well-known from standard reductions [6], [25], [44] that

any code satisfying Definition II.1 also satisfies Definition II.2

for a multiplicative loss of 1/r in ¶. Therefore, without loss

of generality. we will assume throughout the paper that the

notion of a binary linear (r, ¶)-LCC refers to Definition II.2

rather than Definition II.1.

Remark II.1. The definition of a linear (r, ¶)-LCC in Defi-

nition II.2 is invariant of the choice of generator matrix M
for the code C. Indeed, any generator matrix for C is of the

form MB for some invertible matrix B ∈ F
k×k
q . The rows of

MB are B¦vi for i ∈ [n]. By linearity, it therefore follows that

B¦vi =
∑r

s=1 B
¦vas

for any i ∈ [n] and {a1, . . . , ar} ∈ Hi.

B. Edge-colored graphs

An undirected graph G = (V,E) consists of a set V and a

multi-set E ¦
(
V
2

)
.7 Given two edges e1, e2 ∈ E, we say that

e1 is incident to e2 if they share a common vertex. A subset

of edges E0 ¦ E is said to be a matching if no two different

edges in E0 are incident to each other. Given a set of colors T ,

we say that a graph G is edge-colored if it has an associated

function c : E → T , which we call an edge coloring. For

graphs with an associated edge coloring, we write them as

G = (V,E, c). Given a color t ∈ T , the color class of t of

G is the multi-set of edges c−1(t). We say that c is a proper

edge coloring if any two different incident edges e1, e2 ∈ E
have different colors. Equivalently, c is a proper edge coloring

if c−1(t) is a matching for all t ∈ T .

With all this terminology at hand, we can now define a

rainbow cycle.

7Note that G does not necessarily have to be simple. That is, edges are
allowed to repeat.

Definition II.3 (Rainbow Cycle). Given an edge-colored

graph G = (V,E, c), a rainbow cycle is a tuple of vertices

(i1, i2, . . . , iℓ, iℓ+1 = i1) ∈ V ℓ such that {ij , ij+1} ∈ E for

all j ∈ [ℓ] and the multi-set of edges {{ij , ij+1} : j ∈ [ℓ]} is

each assigned a different color by c.

We will now rely on the following theorem of [4]. Note that

when the graph is not simple, one can easily find a rainbow

cycle of length 2 in the graph (as it is properly edge-colored).

Theorem II.1 ( [4], Theorem 1.1). There exists a universal

constant c0 > 0 such that the following holds: any properly

edge-colored n-vertex graph G with at least c0n log n log log n
edges contains a rainbow cycle.

III. PROOF OF MAIN 3-LCC RESULT

Let C be an [n, k] binary linear (3, ¶)-LCC. Throughout

this section, fix a generator matrix M ∈ F
n×k
2 for C with row

vectors v1, . . . , vn ∈ F
k
2 and associated 3-uniform matchings

H1, . . . ,Hn over [n]. Our main result for this section is the

following theorem, which is just Theorem I.2 restated.

Theorem III.1. For any vector x ∈ F
k
2 , there exists a set

of indices I ¦ [n] satisfying x =
∑

i∈I vi and |I| f
O(¶−2 log n log logn).

Indeed, from Theorem III.1, our main result Theorem I.1

immediately follows.

Proof of Theorem I.1 from Theorem III.1. By Theorem III.1,

for each x ∈ F
k
2 , we know of a set Ix ¦ [n] of size at

most O(¶−2 log n log logn) satisfying x =
∑

i∈Ix
vi. Now,

for distinct x, y ∈ F
k
2 , it follows from the definition of

Ix that Ix ̸= Iy . Since |Ix| f O(¶−2 log n log logn), then

there are at most nO(¶−2 logn log logn) possibilities for any Ix.

Thus 2k f nO(¶−2 logn log logn), from which we conclude that

k f O(¶−2 log2 n log logn).

It therefore suffices to establish Theorem III.1. For that, we

will rely on the following key lemma.

Lemma III.2. Let c0 be the absolute constant from The-

orem II.1. For any set T ¦ [n] of size at least

2c0¶
−1 log n log logn, let W ¦ [n] be the set of indices

j ∈ [n] such that there exists a multi-set T ′ of indices in

[n] with j ∈ T ′ satisfying |T ′| f |T | and
∑

t∈T

vt =
∑

t∈T ′

vt .

Then |W | g (¶/2)n.

Indeed, assuming Lemma III.2, Theorem III.1 follows as

argued below.

Proof of Theorem III.1 from Lemma III.2. Let I ¦ [n] be a

set of minimal cardinality satisfying x =
∑

i∈I vi. Such

a set exists as the vectors v1, . . . , vn span F
k
2 (as M is

full rank). Assume (for the sake of a contradiction) that

|I| g 10c0¶
−2 log n log log n. Randomly partition I into

p := +4/¶, sets T1 . . . , Tp of equal size. Then |Tℓ| g

1878

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on June 01,2025 at 18:52:21 UTC from IEEE Xplore.  Restrictions apply. 



2c0¶
−1 log n log logn for all ℓ ∈ [p]. Thus we can apply

Lemma III.2 to find sets W1, . . . ,Wp of size at least (¶/2)n
each satisfying the property stated in Lemma III.2. Observe

that
∑p

ℓ=1 |Wℓ| g (4/¶)·(¶/2)n = 2n > n. Thus, we can find

distinct ℓ1, ℓ2 ∈ [p] such that there is an index j ∈ Wℓ1 ∩Wℓ2 .

Without loss of generality, say (ℓ1, ℓ2) = (1, 2). Then by

Lemma III.2, we can find multi-sets T ′
1, T

′
2 ¦ [n] with

j ∈ T ′
1 ∩ T ′

2 satisfying |T ′
1| f |T1|, |T ′

2| f |T2|, and
∑

i∈T1

vi =
∑

i∈T ′

1

vi , as well as
∑

i∈T2

vi =
∑

i∈T ′

2

vi . (1)

Now, define the multi-set I ′ := (T ′
1\{j})∪(T ′

2\{j})∪∪p
ℓ=3Tℓ.

From (1), we find that

x =
∑

i∈I

vi

=
∑

i∈T1

vi +
∑

i∈T2

vi +

p∑

ℓ=3

∑

i∈Tℓ

vi

=
∑

i∈T ′

1

vi +
∑

i∈T ′

2

vi +

p∑

ℓ=3

∑

i∈Tℓ

vi

=
(
vj +

∑

i∈T ′

1
\{j}

vi

)
+
(
vj +

∑

i∈T ′

2
\{j}

vi

)
+

p∑

ℓ=3

∑

i∈Tℓ

vi

=
∑

i∈I′

vi .

Thus x =
∑

i∈I′ vi. On the other hand, since |T ′
1| f |T1| and

|T ′
2| f |T2|, then we find that

|I ′| = |T ′
1 \ {j}|+ |T ′

2 \ {j}|+
p∑

ℓ=3

|Tℓ|

f (|T1| − 1) + (|T2| − 1) +

p∑

ℓ=3

|Tℓ|

= |I| − 2 .

This contradicts the minimality of I , which is what we wanted

to show.

We now turn to the proof of Lemma III.2. For this part, we

introduce some notations. For any hyperedge E ∈ ∪k
i=1Hi,

write E = {aE , bE , cE} for aE , bE , cE ∈ [n], and let eE :=
{bE , cE}.

Proof of Lemma III.2. Assume (for the sake of a contradic-

tion) that |W | < (¶/2)n. Consider the graph G consisting of

[n] as vertices, T as edge colors, and for each t ∈ T , the set

{eE : E ∈ Ht, aE /∈ W} as the edges of the color class t.
Because {Ht}t∈T are 3-uniform matchings, any color class

of edges in G will form a matching of edges, meaning that

G is properly edge-colored. Furthermore, because {Ht}t∈T

are each of size at least ¶n, each color class has at least

|Ht| − |W | > ¶n − (¶/2)n = (¶/2)n edges. Thus G has

at least (¶/2)n · |T | g c0n log n log logn edges.

By Theorem II.1, there exists a positive integer m g 2,

distinct indices t1, . . . , tm ∈ T , and hyperedges Es ∈ Hts for

s ∈ [m] such that the edges (eE1
, . . . , eEm

) form a rainbow

cycle in G. This implies that ·m
s=1eEs

= ∅. Now, define the

set T0 := T \ {t1, . . . , tm}. Then we have that

∑

t∈T

vt =
m∑

s=1

vts +
∑

t∈T0

vt

=
m∑

s=1

(
vaEs

+ vbEs
+ vcEs

)
+
∑

t∈T0

vt

=
m∑

s=1

(
vbEs

+ vcEs

)
+

m∑

s=1

vaEs
+
∑

t∈T0

vt

=
∑

i∈
⊕

m

s=1
eEs

vi +
m∑

s=1

vaEs
+
∑

t∈T0

vt

=
m∑

s=1

vaEs
+
∑

t∈T0

vt .

Thus if we define the multi-set T ′ := T0 ∪ {aE1
, . . . , aEm

},

then we see that |T ′| = |T | and
∑

t∈T vt =
∑

t∈T ′ vt.
However, since eEs

is an edge in G for each s ∈ [m], then

from the definition of G, we see that aEs
/∈ W for all s ∈ [m].

This yields a contradiction by the definitions of W and T ′.

IV. RAINBOW LDC BOUNDS AND HIGHER QUERY LCCS

In this section, we develop the notion of “rainbow” LDC

lower bounds and use the direct sum transformation of [27]

and the result of [4] to prove Theorem I.3.

One salient feature of the proof of Theorem I.2 is that it cru-

cially relies on the results of [4] (Theorem II.1) regarding the

existence of rainbow cycles in properly edge-colored graphs,

which was only feasible due to the 3-uniformity of the query

sets. For higher query complexities, we remedy this obstacle

by introducing a hypergraph generalization of Theorem II.1,

stated below.

Definition IV.1 (Rainbow LDC Lower Bound). For ¶ > 0
and r, n ∈ N with r g 2, let k

(r)
rainbow(¶, n) be the smallest

natural number such that the following holds: for any arbitrary

r-matchings H1, . . . ,Hk over [n] with k g k
(r)
rainbow(¶, n)

satisfying |Hi| g ¶n for all i ∈ [k], there exists a nonempty

collection of hyperedges E ¦ ∪k
i=1Hi such that

⊕
E∈E E = ∅

and |E ∩ Hi| f 1 for all i ∈ [k].

We dub Definition IV.1 as the rainbow LDC lower bound

problem. Our choice of naming comes from the fact that upper

bounds on k
(r)
rainbow(¶, n) formally prove limitations for binary

linear r-LDCs. This can be seen from the viewpoint of LDC

lower bounds as finding “odd even covers,” formally shown

in [31].

Proposition IV.1. [31, Lemma 2.7] For ¶ > 0 and r, n ∈ N

with r g 2, let k
(r)
odd(¶, n) ∈ N be the smallest natural number

such that the following holds: for any arbitrary r-matchings

H1, . . . ,Hk over [n] with k g k
(r)
odd(¶, n) satisfying |Hi| g ¶n

for all i ∈ [k], there exists a nonempty collection of hyperedges

E ¦ ∪k
i=1Hi such that

⊕
E∈E E = ∅ and |E ∩ Hi| is odd for
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some i ∈ [k]. Then any binary linear (r, ¶)-LDC8 of block

length n has dimension less than k
(r)
odd(¶, n).

Note that k
(r)
odd(¶, n) f k

(r)
rainbow(¶, n) as the property in

Definition IV.1 implies the property in Proposition IV.1. Now,

with Definition IV.1 at hand, we can state our generalization

of Theorem I.1.

Theorem IV.2. Let ¶ ∈ (0, 1) and r, n ∈ N with r g 3. Then

for any [n, k] binary linear (r, ¶)-LCC, we have that

k f O(¶−1 · log n · k(r−1)
rainbow(¶/2, n)) .

The proof of Theorem IV.2 follows almost identically the

proof of Theorem I.1 in Section III. Indeed, the main property

we needed from the rainbow cycle we found via Theorem II.1

was that the symmetric difference of the edges was the empty

set and that every color appeared at most once. Thus if we gen-

eralize properly edge-colored graphs to properly edge-colored

(r−1)-uniform hypergraphs9 and use Definition IV.1 in place

of Theorem II.1 in Section III, the proof of Theorem IV.2

would then follow. To avoid redundancy, we leave the full

proof of Theorem IV.2 as an exercise for the reader.

As for upper and lower bounds on k
(r)
rainbow(¶, n), we know

for r = 2 that k
(2)
rainbow(¶, n) g Ω(log n) by considering the

canonical coloring of the edges of the hypercube. Further-

more, by Theorem II.1, we also know that k
(2)
rainbow(¶, n) f

O(¶−1 log n log logn). Now, as for r g 3, it follows from

considering random r-uniform matchings that k
(r)
rainbow(¶, n) g

Ω¶(n
1−2/r) [45], which is a much higher lower bound than the

bound k
(r)
odd(¶, n) g exp(Ω¶((log log n)

2)) for r g 3 obtained

from known constructions of binary linear r-LDCs [32], [34].

Now, for the remainder of this section, we will prove the

following proposition.

Proposition IV.3. For any even r g 4 and ¶ ∈ (0, 1), we have

k
(r)
rainbow(¶, n) f O(¶−1n1−2/r log2 n).

Note that by combining Proposition IV.3 and Theorem IV.2,

we immediately deduce Theorem I.3. Thus it suffices for us

to prove Proposition IV.3.

Proof of Proposition IV.3. We proceed by applying the direct

sum transformation of [27] to produce an edge-colored graph

from the r-uniform matchings. Then using a deletion process

similar to what was done in [30], [46], [47], we will delete a

sub-constant fraction of the edges from the graph to produce

a properly edge-colored graph. We then apply Theorem II.1 to

obtain a rainbow cycle and thus recover a rainbow even cover

from it. The formal details follow.

Let c0 be the absolute constant from Theorem II.1. We

will show that for every choice of r-uniform matchings

H1, . . . ,Hk over [n] with k g 2r
2+1c0¶

−1n1−2/r log2 n and

|Hi| g ¶n for all i ∈ [k], there is a nonempty subset

8See ?? for a formal definition of a linear (r, δ)-LDC.
9We say that an edge coloring of a hypergraph H is proper if for any

distinct hyperedges e1, e2 ∈ H satisfying e1 ∩ e2 ̸= ∅, e1 and e2 are
assigned different colors.

of hyperedges E ¦ ∪k
i=1Hi satisfying ·E∈EE = ∅ and

|E ∩ Hi| f 1 for all i ∈ [k]. This will imply k
(r)
rainbow(¶, n) f

2r
2+1c0¶

−1n1−2/r log2 n = O(¶−1n1−2/r log2 n).

Define ℓ := 4−rn1−2/r and N :=
(
n
ℓ

)
. Consider an edge-

colored (not necessarily simple) graph G over
(
[n]
ℓ

)
where two

vertices A,B ∈
(
[n]
ℓ

)
share an edge of color i ∈ [k] if and only

if A · B ∈ Hi. Fix any index i ∈ [k] and hyperedge E ∈
Hi. Observe that the number of sets A,B ∈

(
[n]
ℓ

)
satisfying

A·B = E is

(
r

r/2

)(
n− r

ℓ− r/2

)
g N ·

(
ℓ

n

)r/2

= N · 2
−r2

n
. (2)

Now, let us upper bound the number of edges {A,B} in G
of color i satisfying A · B = E such that one of A or B
is incident to another edge in G of color i. Consider a set

A′ ∈
(
[n]
ℓ

)
different from B such that {A,A′} is an edge in

G of color i. Define E′ := A · A′ ∈ Hi. Because |A| =
|B| = |A′| = ℓ, then we deduce that |A ∩ E| = |B ∩ E| =
|A ∩ E′| = |A′ ∩ E′| = r/2. Furthermore, because A′ ̸= B
and Hi is a matching, we have E ̸= E′ and hence E∩E′ = ∅.

Thus we find that |A ∩ (E ∪ E′)| = r. Now, since Hi is an

r-uniform matching, then |Hi| f n/r. Thus there are at most

n/r choices for E′ and hence at most n/r choices for E∪E′.

For each such choice, there are at most
(
2r
r

)(
n−2r
ℓ−r

)
choices

for A′. By repeating the same argument for B, we therefore

deduce that the number of such edges {A,B} is at most

2n

r
·
(
2r

r

)(
n− 2r

ℓ− r

)
f n · 4r ·

(
ℓ

n

)r

·
(
n

ℓ

)

= N · 4
r(4−rn1−2/r)r

nr−1

f N · 2
−2r2+2r

n
. (3)

Now, let G′ be the edge-colored subgraph of G consisting of

all edges in G that are not incident to any other edge of the

same color. By definition, it follows that G′ is properly edge-

colored. Furthermore, by combining (2) and (3), we find that

the number of edges in G′ is at least

(
N · 2

−r2

n
−N · 2

−2r2+2r

n

)
k∑

i=1

|Hi|

g N · 2
−r2−1

n
· k · ¶n

= N · 2−r2−1¶k

g N · 2−r2−1¶(2r
2+1¶−1c0n

1−2/r log2 n)

= c0N · n1−2/r log n · log n
g c0N · logN · log logN .

Thus by Theorem II.1, we can find a rainbow cycle in G′.

That is, there exists m ∈ N and distinct indices i1, . . . , im ∈
[k] and sets A1, A2, . . . , Am, Am+1 = A1 ∈

(
[n]
ℓ

)
such that
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As · As+1 ∈ His for all s ∈ [m]. Now, define Es := As ·
As+1 ∈ His for each s ∈ [m]. Then we find that

m⊕

s=1

Es =
m⊕

s=1

(As ·As+1) =
m⊕

s=1

As ·
m⊕

s=1

As = ∅ .

Thus if we define the set E := {E1, . . . , Em}, then we see

that ·E∈EE = ∅ and |E ∩ Hi| f 1 for all i ∈ [k], which is

what we wanted to show.
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