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Abstract—We prove that a binary linear code of block length
n that is locally correctable with 3 queries against a fraction
6 > 0 of adversarial errors must have dimension at most
Os(log® n - loglogn). This is almost tight in view of quadratic
Reed-Muller codes being a 3-query locally correctable code
(LCC) with dimension ©(log”n). Our result improves, for the
binary field case, the O;(log®n) bound obtained in the recent
breakthrough of [1] (and the more recent improvement to
Os(log* n) for binary linear codes announced in [2]).

Previous bounds for 3-query linear LCCs proceed by con-
structing a 2-query locally decodable code (LDC) from the 3-
query linear LCC/LDC and applying the strong bounds known
for the former. Our approach is more direct and proceeds by
bounding the covering radius of the dual code, borrowing inspira-
tion from [3]. That is, we show that if z — (vi-z,v2 -2, ..., 05 )
is an arbitrary encoding map F5 — 3 for the 3-query LCC, then
all vectors in F5 can be written as a Os(log n)-sparse linear com-
bination of the v;’s, which immediately implies & < Os((logn)?).
The proof of this fact proceeds by iteratively reducing the size of
any arbitrary linear combination of at least Q25(log n) of the v;’s.
We achieve this using the recent breakthrough result of [4] on
the existence of rainbow cycles in properly edge-colored graphs,
applied to graphs capturing the linear dependencies underlying
the local correction property.

Index Terms—Locally Correctable Codes, Rainbow Cycles,
Covering Radius, Lower Bounds.

I. INTRODUCTION

Local correction refers to the notion of correcting a single
bit of a received codeword by querying very few other bits
of the codeword at random. More concretely, a binary code,
which is simply a subset C' C {0,1}", is said to be locally
correctable using r € N queries from a fraction § € (0,1)
of errors, abbreviated (r,0)-LCC, if it can recover any given
bit of a codeword ¢ € C with probability noticeably higher
than 1/2 (say 2/3) by randomly reading r bits of a received
codeword y € {0,1}" that is at most on away from c in
Hamming distance. Usually, we are interested in the case when
0 is a fixed constant bounded away from 0 as the code length
n — 0o, and in this case, we refer to such a code as simply
a r-LCC.
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Throughout this paper, we will restrict our attention to
only binary linear codes, particularly binary linear 7-LCCs. A
binary linear code C' of block length n is simply a subspace of
F%, where Iy is the field of two elements. If the dimension of
C as a Fo-subspace is k, then one refers to it as an [n, k] code.
A generator matrix of C' is an n x k matrix whose columns
form a basis of C. Let us fix one such choice of generator
matrix M, and denote its rows by wvi,ve,...,v, € ]FIQC
We then have the encoding map M : F5 — C given by
Mz =[v,-z,v-2,...,0, 2]".

Among its many uses, locally correctable codes play a
central role in PCP constructions, where they allow to self-
correct a function, purportedly a codeword, after a codeword
test ascertains that the function is close to a codeword.
They thus allow effective noise-free oracle access to a noisy
function, with a small price in the number of queries. We refer
the reader to the surveys [5]-[7] for more on the applications
and connections of locally correctable codes.

Despite its slew of uses, the best known 7-LCCs (even
existentially) have n =~ exp(k'/("~1)), which is achieved
by the degree (r — 1) Reed-Muller code (evaluations of
polynomials of degree (r — 1) in m = Ogy(logn) variables
at all points in ]F;"‘)‘l This has remained the case for constant-
query local correction since their conception. Indeed, much of
the progress on locally correctable codes for a constant number
of queries has focused on proving their limitations, specifically
for concrete values of r.2 For r = 1, it has long been known
that 1-LCCs do not exist [25]. For » = 2, it has also long been
known that one must indeed have n > exp(Q,(k)) [26], [27],
so the Hadamard code (and the degree one Reed-Muller code)
is indeed optimal.

For » = 3 and larger, our understanding of r-LCCs
is abysmal. The known limitations of r-LCCs, which also
apply to r-query locally decodable codes (which offer the
weaker guarantee of local correction only for the k£ mes-
sage symbols encoded by the codeword), stood at the bound

IThis code requires ¢ > r -+ 1, but one can also get say binary codes by
picking g to be a power of 2 and concatenating the Reed-Muller code over
F4 with the binary Hadamard code.

2This statement holds only for the classical constant query regime. Indeed,
there have been some great works for when the number of queries r grows
with n [8]-[12] and for relaxed notions of local corrections [13]-[18]. There is
also a brighter landscape of lower bounds for harsher error models [19]-[24].
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k < O(n*=Y/12/71) [27]-[29] for a long while. In particular,
for 3-LCCs, the quadratic bound k < O(/n) stood for more
than a decade. This was recently improved to k < O({/n)
in [30] (with recent logarithmic factor improvements by [31]),
and this bound also applied to 3-query locally decodable codes
(LDCs). Then, in a tour de force breakthrough, Kothari and
Manohar [1] gave an exponential improvement and showed
that £k < Oq(log8 n) for 3-query linear LCCs (over any
field IF,). Since there are beautiful constructions of 3-query
linear LDCs of block length sub-exponential in & [32]-[35],
their bound demonstrated a strong separation between local
decodability and local correctability with 3 queries for linear
codes. Nonetheless, their result left open the optimality of
degree 2 Reed-Muller codes as binary linear 3-LCCs, which
have dimension & = ©(log?n). Our main result is that they
are (almost) optimal.

Theorem L1 (Main). If C is an [n, k] binary linear (3,6)-
LCC, then k < O(6—21og®n - loglog n).

Modulo the loglogn factor, this settles the dimension
versus block length trade-off of 3-query binary linear LCCs.
Recently, following [1], an improved upper bound of k <
O(log* n) was obtained for binary linear 3-LCCs in [2]. Even
more recently, an independent result of [36] shows an optimal
k < O(log® n) bound for binary linear design 3-LCCs. Such 3-
LCCs have the additional property that the linear dependencies
of length 4 formed by the query sets (see Definition II.2) cover
each pair of indices in [n] exactly once. We note that a weaker
bound of k& < O(log®n) for binary linear design 3-LCCs was
previously shown in [2].

Our proof method additionally sheds some light on the
structure of binary linear 3-LCCs. Namely, we prove The-
orem I.1 by upper bounding the covering radius of the dual
code.? This offers a more direct understanding of the structure
and limitations of binary linear 3-LCCs, which can be harder
to discern from recent developments [1], [2], [30], [31].
Indeed, all such works proceed by constructing a much longer
2-query LDC from the 3-query locally correctable linear code
and appealing to the known exponential lower bounds for 2-
LDCs [26], [27].4

Our main result on the covering radius of the dual code of
a binary linear 3-LCC is the following.

Theorem L2. Let C' be a binary linear (3,6)-LCC with
generator matrix M € F3**. Then every x € T can be
expressed as the sum of at most O(6~2logn - loglogn) rows
of M.

Since a generator matrix of C'is also a parity check matrix
of Ct, Theorem L2 as stated upper bounds the covering

3The covering radius of a linear code Cy C F3 is the minimum 7 such
that every point in % is within Hamming distance  from some codeword
ceCy. If He ]Fg"x" is a parity check matrix of a linear code Cj, then it
is the minimum r for which every s € F5* is the sum of at most 7 columns
of H.

4See Appendix B of [30] and Section 7.6 of [1] for the proper formulation
of their blocklength lower bound proofs as reductions to 2-query LDCs.

radius of C*. Note that Theorem 1.2 immediately implies
Theorem L1, as it shows 2¢F < Z;F:o (;) < pT+1 for
T = O(6 %logn - loglogn). We remark here that the degree
2 Reed-Muller code has a covering radius of ©(logn), which
makes our bound in Theorem 1.2 only a loglogn factor away
from the optimal bound.

Our inspiration for Theorem 1.2 came from a work of
Iceland and Samorodnitsky [3], who prove that the dual C+
of a binary linear (2,6)-LCC C has O(5~!) covering radius
(which then immediately implies that |C| < n©®@ )5 They
prove this via analysis of the “discrete Ricci curvature” of
the “coset leader graph” associated with C'. We develop a
more elementary treatment of their ideas and give a similar
coupling argument to bound the diameter of the Cayley graph
Cay(F5, {v1,va,...,v,}), which is isomorphic to their coset
leader graph. Note that this diameter is precisely the covering
radius of C*. Using our viewpoint, we produce a new proof of
the previously known k& < O(logn) upper bound for linear 2-
query LDCs over any finite field (the proof in [3] only applied
to LCCs); we present this proof in the appendix of the full
version of the paper [37].

a) Rainbow cycles in properly edge-colored graphs: Our
proof of Theorem 1.2 crucially relies on finding rainbow cycles
in properly edge-colored graphs. Rainbow cycles are simply
cycles where each color appears at most once. There has been
numerous works to that end [4], [38]-[43], culminating in the
recent breakthrough of [4] showing that any properly edge-
colored n-vertex graph with average degree 2(log n-loglogn)
must have a rainbow cycle. This bound is tight up to the
O(loglogn) factor—if one colors the edges of the Boolean
hypercube with their respective direction, then one obtains a
properly edge-colored log n-regular n-vertex graph that has no
rainbow cycles.

Our O(logn - loglogn) bound in our Theorem 1.2 is
inherited in a black-box fashion from the rainbow cycle bound
of [4]. Should a tight ©(log n) be established for the minimum
average degree guaranteeing a rainbow cycle, we would imme-
diately get an asymptotically tight O(log2 n) dimension upper
bound for binary linear 3-LCCs in Theorem I.1. In fact, in
our application, the concerned edge-colored graphs have the
further property that each color class has Q(n) edges. So it
would suffice to improve the rainbow cycle bound for such
graphs.

b) LCC lower bounds from rainbow LDC lower bounds:
Our 3-LCC result based on rainbow cycles turns out to be
a specific instance of a more general reduction from lower
bounds for r-LCCs to a “rainbow” form of lower bounds for
binary linear (r — 1)-query LDCs—a stronger form of LDC
lower bounds than usual binary linear (r — 1)-LDC lower
bounds. Our main result is the » = 3 case of this phenomenon,
where we have such strong “rainbow” bounds for binary linear
2-query LDCs.

5They also deduce a covering radius upper bound of O(n<r_2)/<7"_1)) for
the r-query case by reducing to the 2-query case. Note that, for » > 3, the
resulting bounds for LCCs are weaker than the best-known ones.
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As for bounds on the so-called “rainbow” binary linear r-
LDC lower bounds problem, one can prove the same bound
of k < O(n'~2/") for even r > 4 known for usual r-
LDCs in nearly the same fashion! As it turns out, the direct
sum transformation of [27] from r-LDCs to 2-LLDCs has the
additional property that it maintains rainbow cycles between
the two LDCs. By using the strong bounds of [4],5 we can
therefore find a rainbow cycle in the 2-LDC and revert it to
a rainbow cycle in the r-LDC. From our general reduction,
we can therefore deduce improved lower bounds of the form
k < O(n*=2/"=1) for binary linear r-LCCs for all odd r > 5,
which were previously conjectured by [1] for all » > 4. This
is the content of the following theorem.

Theorem L3. If C is an [n, k] binary linear (r,6)-LCC for
odd r > 5, then k < O (5*2n1_% log3 n)

Note that the previously best known bound for binary
linear 7-LCCs for odd r» > 5 (which also held for binary
linear 7-LDCs and even binary linear (r + 1)-LDCs) was
O(n1*2/(7"+1>) [27], [28], [31]. We outline our general re-
duction and the proof of Theorem 1.3 in Section IV.

¢) Follow-up questions: Two salient follow-up ques-
tions to our work are removing the linearity assumption
in Theorem 1.1 and extending Theorem 1.2 to arbitrary finite
fields. Since the statement of Theorem 1.2 crucially relies
on considering rows of a generator matrix of the 3-LCC,
it makes it unclear how to remove the linearity assumption
in Theorem I.1. As for extending our main results to arbitrary
finite fields, it is easy to extend Theorem 1.2 to finite fields of
characteristic 2 for a poly(|F|) loss in the upper bound on the
size of the sum by considering the code defined in Appendix
A of [1]. For finite fields of higher characteristic, the presence
of negative signs presents a tricky situation for the application
of the result of [4] in the proof of Theorem 1.2. We leave it as
an interesting open problem to extend Theorem 1.2 to linear
3-LCCs over arbitrary finite fields.

There is additionally the problem of extending Theorem 1.3
to all » > 4. In light of our proof method of Theorem .3,
it would seem that a cubic bound of k& < O({/n) for binary
linear [n, k] 4-LCCs is reasonable to hope for by extending the
cubic 3-LDC lower bound of [30] to their analogous “rainbow”’
version and applying our general reduction from binary linear
r-LCC lower bounds to “rainbow” binary linear (r — 1)-LDC
lower bounds. However, the 3-LDC to 2-LDC transformation
in [30] creates new query sets by adding together the original
query sets, which disrupts the correspondence of the colors
between the 3-LDC and the derived 2-LDC. Nonetheless, it
would still be interesting to show a cubic “rainbow” binary
linear 3-LDC lower bound using the techniques of [30].

%Note that this reduction crucially relies on the strong bound of k <
O(lognloglogn) by [4]. Indeed, if one instead uses the previous state-
of-the-art results of [41], [43] on rainbow cycles of k < O(log2 n), then this
reduction would fail to yield any non-trivial bound.

A. Proof overview

While our proof of Theorem I.1 is rather short (just 2 pages,
and self-contained modulo the rainbow cycle bound), we will
nonetheless present a proof overview of it to showcase its
key ideas. Consider a (3, §)-LCC whose generator matrix has
V1,V2, ...,V € F5 as rows. It is well known that any binary
linear (3,0)-LCC has a collection of hypergraphs Hi, ..., H,
over [n] such that for each ¢ € [n], the hypergraph #; consists
of at least (6/3)n disjoint subsets of [n] of size 3 each such
that for any hyperedge {a,b,c} € H;, we have that v; =
Vg + Up + v (see Section II-A). For simplicity, suppose that
0 > (1) to ignore any § dependencies. Our goal is to show
that every = € F5 can be represented as the sum of at most
B vectors in {v1,...,v,} for some B := O(lognloglogn).

Since the v;’s span IF’;, x can be written as the sum of at
most k of the v;’s. Fix any such sum. Our proof proceeds in an
iterative fashion: whenever the current representation of x as a
sum of the v;’s is longer than B, we will exploit the many local
checks expressing each v; as the sum of many disjoint 3-tuples
of other v;’s to produce a shorter representation of x. Applying
this compression iteratively yields the desired conclusion.

Now, consider an arbitrary linear combination ZteT vy with
|T| > B. For any t € T, we can locally modify », . v
by applying the substitution v; = v, + vy + v. for any
{a,b,c} € H;. This will increase the length of the sum by
(at most) 2, which defeats our initial goal. Nonetheless, since
|H:| > Q(n) for each t € T, the abundance of choices for
the triple {a,b,c} € H; presents a possibility for producing
cancellations between substituted sums of triples of vectors.

The simplest form of such a cancellation between two
substitutions goes as follows: consider any two distinct indices
ti,ta € T such that there are triples {a1,b1,c1} € Hy,
and {ag,ba,ca} € Hy, satisfying ¢ = be. Since each
hypergraph is a matching of size £2(n), such triples do occur
whenever |T| = w(1). Now, by applying the substitutions
Vg, = Vay +0h; +0c, and vy, = Vg, 4V, +Vc, N D, Vg, We
obtain a new sum of length at most |T'|+2-2—2-1 = |T|+2
due to v., and v, canceling each other out.

We can further generalize this form of cancellation to
multiple indices as follows: given distinct indices ¢y, ...,¢,, €
T such that there exists a “path” of hyperedges E, =
{ag,,bg,,cp,} € My, for s € [m] satisfying cp, = bg,, for
each s € [m —1], we can apply the substitutions v;, = va,_ -+
Vpy, + Ve, for each s € [m] to the sum }, ;. v; and obtain
a new sum of length at most |T'| +2m —2(m — 1) = |T| + 2
due to v,y and Vb, canceling each other out for each
s € [m — 1]. Thus the length of the new sum hardly deviates
from the length of the original sum. Furthermore, by a simple
counting argument, one can show that there are such “paths”
of length m = Q(|T|). However, the length of this new sum
is not smaller or even equal to the length of the original sum.

Now, notice that if we had cg,, = bg, (i.e., the path ‘loops
back’), then the length of the new sum will now be at most |T'|.
This does not reduce the length of the original sum ZteT Vt,
but it does ‘shift’ it to a new sum. In the sequel, we will
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exploit such ‘shifts’ to produce a new sum of smaller length.
For now, let us consider the feasibility of having cg,, = bg, .

To do so, we will cast our problem in the language of
properly edge-colored graphs and rainbow cycles. Indeed,
consider the edge-colored graph G with vertices [n] and
edges {b,c} for {a,b,c} € H, (dropping an arbitrary vertex
in each triple) forming the ¢’th color class of edges in Gr
for each t € T. As H; is a matching, G will therefore be a
properly edge-colored graph. In this viewpoint, the ‘path’ of
hyperedges Fn, ..., E,, is in fact a rainbow path in G with
edge colors t1,...,t,, in that order. To have cg, = bg,, we
need this rainbow path to be a rainbow cycle. Since the average
degree of G equals Q(|T]) = Q(B) = Q(lognloglogn),
we can therefore conclude the existence of a rainbow cycle
in G by the recent breakthrough result of [4]. This rainbow
cycle gives an alternate representation ), .. vy that equals
Y ier e With |T| < |T|. Call such an T" a “shift” of 7.
Since the hypergraphs {#;}+cr are matchings of size (n),
we can in fact extract more from this argument. Specifically,
by a more careful selection of the edges of G, we can show
that the collection of all “shifts” T" of T cover Q(n) of the
indices in [n]. This is the content of Lemma IIL.2.

This now suffices for an actual compression of a somewhat
larger sum. Suppose x =y, v; for |I| > p-(B+1) for some
large enough constant p (which will depend on §). Splitting the
sum into p disjoint parts 17,75, ...,T),, each with more than
B terms, the constant fraction ‘coverage’ of [n] by the “shifts”
of each set T, means (by some simple pigeonholing) that we
can find two distinct indices £1,¢> € [p] and “shifts” Ty
and Tlf2 that intersect. By replacing the sets Ty, and Ty, with
their respective “shifts,” we end up with a representation of x
with at most |I| — 2 of the v;’s, which concludes our iterative
compression argument. See Figure 1 for an illustration.

a) Proof comparison to [1], [2]: One salient common
feature in our work and the works of [1], [2] is the chaining
of local checks. However, our implementation of chaining
differs fundamentally from [1], [2]. In our work, we attempt
to chain local checks to form a “cyclical chain” (i.e., rainbow
cycles) in order to establish Theorem 1.2, resulting in a much
shorter proof. On the other hand, [1], [2] consider a techni-
cally involved hypergraph decomposition of a superpolynomial
number of chained local checks and then proceed to undertake
a highly intricate “row pruning” analysis to ensure that each
hypergraph of chained local checks is “spread-out.” Admit-
tedly, our proof relies on black-boxing known results from the
rainbow cycle literature, some proofs of which are involved.
Nonetheless, our proof offers modularity. In particular, any
improvement to the result of [4] would immediately yield
better lower bounds on binary linear 3-LCC via our proof
of Theorem 1.2. On the other hand, improvements using the
methods of [1], [2] would likely entail a re-do of their analysis
(as was the case in [2]).

B. Organization

In Section II, we state the tools we need for locally
correctable codes and edge-colored graphs. In Section III,

ag, ( J

b, Té1 Tﬁ’2 ®
® | 7
, \ ®

Fig. 1. This figure indicates the cancellations that occur in our proof
of Theorem 1.2 via iterative refinement of the representation of an arbitrary
vector € F% as a sum more than p(B + 1) = Q(lognloglogn) of
the v;’s. The nodes represent indices in [n], with the gray nodes indicating
‘canceled’ nodes in the sum Zie 1 Vi, while the black nodes represent the
‘active’ nodes in the sum. The inner gray nodes in the pentagon and the
square are cancellations resulting from Lemma IIL.2. The cancellation of the
one outer gray node in common is the result of picking a common node
between two ‘shifts’ Tlfl and Té2 of the sets Ty, and T}, , which is key idea
in the proof of Theorem 1.2 from Lemma III.2. In the figure, a sum of 9 terms
(the indices ts corresponding to each of the 9 colors) is compressed into a
sum of 7 terms (the black nodes).

we present the proof of Theorem I.1 and Theorem I1.2. In
Section 1V, we define the notion of a “rainbow” LDC lower
bound along with a generalization of Theorem I.1 and use
them to prove Theorem [.3. Finally, in ??, we present a
covering radius upper bound for linear 2-LDCs and discuss
how to obtain the exponential blocklength lower bound from
our proof.

II. PRELIMINARIES

Let N:={0,1,2,...}, and let F; = {0, 1} denote the finite
field of size 2. For any positive integer n € Z,, we denote
[ n] :={1,2,...,n}. For any set X and number k € N, denote
(%) ={A| AC X, |A| = k}. Given two sets A and B, let
A®B = (A\B)U(B\ A) denote their symmetric difference.
Given a vector = € F%, let wt(z) denote its Hamming weight
(i.e., number of nonzero entries). For any two vectors z,y €
F2, let d(z,y) denote their Hamming distance (i.e., the number
of entries that they differ on). We will consider multi-sets in
this work, which are simply sets that allow elements to repeat.
For any multi-set A, the cardinality of A, denoted |A|, is the
number of elements in A (including repeated elements).

A hypergraph is simply a collection of sets H C 2. We
call the sets in the hypergraph hyperedges For any ¢ € Z.,
we say that H is an f-uniform hypergraph if |A| = ¢ for all
A € H. We also say that H is a matching if AN B = @ for
all distinct A, B € H. If H is an f-uniform hypergraph and a
matching, then we simply call it an (-uniform matching.

A. Locally correctable codes

The following is the usual definition of a linear 3-query
locally correctable code C' as having a local decoder.
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Definition II.1 (Binary Linear LCC, local decoder definition).
Given a binary linear code C C T3, we say that it is a
(r,8)-locally correctable code (abbreviated (r,8)-LCC) for
r € Nand § € (0,1) if the following holds: for any received
codeword y € F3 there exists a randomized algorithm DY with
oracle access to y that takes an index i € [n] as input and
satisfies the following properties: (1) DY (i) makes at most r
queries to y, and (2) if there exists a codeword c € C satisfying
d(x,c) < on, then DY(i) outputs c¢; with probability at least
2/3.

While Definition II.1 is the typical definition of LCCs, we
will instead be working with a more combinatorial definition
that is amenable to lower bounds.

Definition I1.2 (Binary Linear LCC, combinatorial definition).
Given a linear code C with generator matrix M € F3**
whose columns form a basis for C, let v; € IF’; be the i’th
row of M for i € [n]. The code C is said to be a (r,?)-
locally correctable code (abbreviated (r,d)-LCC) for r € N
and § € (0,1) if there exists r-uniform matchings Hi, ..., Hn,
over [n] such that |H;| > én for all i € [n)], and for any i € [n]
and {a1,...,a,} € H;, we have that v; =Y., Vq,.

It is well-known from standard reductions [6], [25], [44] that
any code satisfying Definition II.1 also satisfies Definition 1.2
for a multiplicative loss of 1/r in §. Therefore, without loss
of generality. we will assume throughout the paper that the
notion of a binary linear (r,d)-LCC refers to Definition I1.2
rather than Definition IL.1.

Remark II.1. The definition of a linear (r,8)-LCC in Defi-
nition I1.2 is invariant of the choice of generator matrix M
for the code C. Indeed, any generator matrix for C' is of the
Jorm M B for some invertible matrix B € F’;Xk. The rows of
M B are B v; fori € [n). By linearity, it therefore follows that
BTv; =Y"_  BTw,, foranyi € [n] and {a1,...,a,} € H,.

B. Edge-colored graphs

An undirected graph G = (V, E)) consists of a set V and a
multi-set ¥ C (‘2/)7 Given two edges e, ez € E, we say that
ey 18 incident to ey if they share a common vertex. A subset
of edges Ey C F is said to be a matching if no two different
edges in Ey are incident to each other. Given a set of colors 7',
we say that a graph G is edge-colored if it has an associated
function ¢ : E — T, which we call an edge coloring. For
graphs with an associated edge coloring, we write them as
G = (V,E,c). Given a color t € T, the color class of ¢ of
G is the multi-set of edges c~1(t). We say that c is a proper
edge coloring if any two different incident edges e;,e2 € E
have different colors. Equivalently, c is a proper edge coloring
if ¢c71(t) is a matching for all ¢ € T

With all this terminology at hand, we can now define a
rainbow cycle.

"Note that G' does not necessarily have to be simple. That is, edges are
allowed to repeat.

Definition IL.3 (Rainbow Cycle). Given an edge-colored
graph G = (V, E,c), a rainbow cycle is a tuple of vertices
(i1,d9, ... i0yie41 = 11) € V¥ such that {ij,ij41} € E for
all j € [{] and the multi-set of edges {{i;,1j41} : j € [(]} is
each assigned a different color by c.

We will now rely on the following theorem of [4]. Note that
when the graph is not simple, one can easily find a rainbow
cycle of length 2 in the graph (as it is properly edge-colored).

Theorem II.1 ( [4], Theorem 1.1). There exists a universal
constant co > 0 such that the following holds: any properly
edge-colored n-vertex graph G with at least con logn loglogn
edges contains a rainbow cycle.

III. PROOF OF MAIN 3-LCC RESULT

Let C be an [n, k] binary linear (3,d)-LCC. Throughout
this section, fix a generator matrix M € IF’;Xk for C' with row
vectors vy, ...,v, € F ’5 and associated 3-uniform matchings
Hi,...,Hn, over [n]. Our main result for this section is the
following theorem, which is just Theorem I.2 restated.

Theorem IIl.1. For any vector © € Fg, there exists a set
of indices 1 C [n] satisfying x = >, ;v; and |I| <
O(672lognloglogn).

Indeed, from Theorem III.1, our main result Theorem 1.1
immediately follows.

Proof of Theorem 1.1 from Theorem III.1. By Theorem III.1,
for each x € F%, we know of a set I, C [n] of size at
most O(6~2lognloglogn) satisfying © = Y., v;. Now,
for distinct z,y € ]F’;, it follows from the definition of
I, that I, # I,. Since |I,| < O(6~2lognloglogn), then
there are at most nO(% ~lognloglogn) possibilities for any 1.
Thus 2% < pO@ *lognloglogn) from which we conclude that
k < O(6-2log? nloglogn). O

It therefore suffices to establish Theorem III.1. For that, we
will rely on the following key lemma.

Lemma IIL2. Let ¢y be the absolute constant from The-
orem IL1. For any set T C [n] of size at least
2cod tlognloglogn, let W C [n] be the set of indices
j € [n] such that there exists a multi-set T’ of indices in
[n] with j € T' satisfying |T'| < |T| and

=Y.

teT teT”
Then |W| > (6/2)n.

Indeed, assuming Lemma III.2, Theorem III.1 follows as
argued below.

Proof of Theorem III.1 from Lemma II1.2. Let I C [n] be a
set of minimal cardinality satisfying x = ). ;v;. Such
a set exists as the vectors vi,...,v, span ]F’§ (as M is
full rank). Assume (for the sake of a contradiction) that
[I| > 10cod~2lognloglogn. Randomly partition I into
p = [4/0] sets Ty ..., T, of equal size. Then [T, >

Authorized licensed use limited to: Carnegie Mellon University Libraries. Downloaded on June 01,2025 at 18:52:21 UTC from IEEE Xplore. Restrictions apply.



2cod L lognloglogn for all £ € [p]. Thus we can apply
Lemma IIL.2 to find sets Wy,..., W), of size at least (6/2)n
each satisfying the property stated in Lemma III.2. Observe
that >-0_, |Wy| > (4/6)-(5/2)n = 2n > n. Thus, we can find
distinct ¢1, {2 € [p] such that there is an index j € Wy, NWy,.
Without loss of generality, say (¢1,¢2) = (1,2). Then by
Lemma III.2, we can find multi-sets 77,75 C [n] with
j € T{ NTy satisfying |T7| < |T1|, |T5] < |T»|, and

Zvi:Zvi, as well as Zvi:Zvi. (1)

= €T i€y i€T}

Now, define the multi-set I' := (T7\{j})U(T5\{7})VU}_;T%.
From (1), we find that

IZEU'L

iel

:Zvrl—zvﬁ-izvi

€Ty i€Ts (=3 1€T,

:Zvi+2vi+i2vi

ieT] €T} (=3 €T,

= (Uj =+ Z Ui) + (Uj + Z
ieT)\{j} i€Ts\ {5}
iel’
Thus « = ), v;. On the other hand, since |T7| < |T1| and
|T5| < |T3], then we find that

'] =TI\ G + T3\ {33+ D 1T
(=3

p
< (T =)+ (Tl = 1) + Y _IT]
(=3
=|1-2.

This contradicts the minimality of I, which is what we wanted
to show. O

We now turn to the proof of Lemma IIL.2. For this part, we
introduce some notations. For any hyperedge £ € Uf:ﬂ-[i,
write £ = {ag,bg,cg} for ap,bg,cp € [n], and let ep =
{bE, CE}.

Proof of Lemma II1.2. Assume (for the sake of a contradic-
tion) that |W| < (§/2)n. Consider the graph G consisting of
[n] as vertices, T as edge colors, and for each ¢t € T, the set
{eg : E € Hi,ap ¢ W1 as the edges of the color class t.
Because {H;}+cr are 3-uniform matchings, any color class
of edges in G will form a matching of edges, meaning that
G is properly edge-colored. Furthermore, because {H;}ier
are each of size at least dn, each color class has at least
[He| — W] > dn — (6/2)n = (§/2)n edges. Thus G has
at least (6/2)n - |T'| > conlognloglogn edges.

By Theorem II.1, there exists a positive integer m > 2,
distinct indices t1,...,%,, € T, and hyperedges E/; € H;_ for

s € [m] such that the edges (eg,,...,en,, ) form a rainbow
cycle in G. This implies that @72, e, = &. Now, define the
set Tp := T\ {t1,...,tm}. Then we have that

> vi= ths L
teT teTo
m

= Z (’UGES + Vb, t ’UCES) + Z Vs

s=1 teTy
m

:Z(UbES + Ve, —i—ZvaE + th

s=1 teTy

= Z vl+ZUGE +th

ieeag”:l ep, teTo

:ZvaE +th.

teTy

Thus if we define the multi-set 77 := To U {ag,,...,an,, },
then we see that |7”| IT| and Y ,crve = > e Ve
However, since e, is an edge in G for each s € [m], then
from the definition of G, we see that ag, ¢ W for all s € [m)].
This yields a contradiction by the definitions of W and 7. [

IV. RAINBOW LDC BOUNDS AND HIGHER QUERY LCCs

In this section, we develop the notion of “rainbow” LDC
lower bounds and use the direct sum transformation of [27]
and the result of [4] to prove Theorem 1.3.

One salient feature of the proof of Theorem 1.2 is that it cru-
cially relies on the results of [4] (Theorem II.1) regarding the
existence of rainbow cycles in properly edge-colored graphs,
which was only feasible due to the 3-uniformity of the query
sets. For higher query complexities, we remedy this obstacle
by introducing a hypergraph generalization of Theorem II.1,
stated below.

Definition IV.1 (Rainbow LDC Lower Bound). For § > 0
and r,n € N with r > 2, let l~<;rambow((57 n) be the smallest
natural number such that the following holds: for an arbztrary
r-matchings Hi,...,Hy over [n] with k > krambcw(5 n)
satisfying |H;| > on for all i € [k], there exists a nonempty
collection of hyperedges £ C Uk _1Hi such that Qe E = @
and |ENH;| <1 foralliec [k:]

We dub Definition IV.1 as the rainbow LDC lower bound
problem. Our choice of naming comes from the fact that upper
bounds on kr(:i)“bow(é, n) formally prove limitations for binary
linear r-LDCs. This can be seen from the viewpoint of LDC
lower bounds as finding “odd even covers,” formally shown

in [31].

Proposition IV.1. [31, Lemma 2.7] For § > 0 and r,n € N
with v > 2, let kgg&(& n) € N be the smallest natural number
such that the following holds: for any arbitrary r-matchings
Hi, ..., Hy over [n] with k > kﬁgd@ n) satisfying |H;| > dn
for alli € [k], there exists a nonempty collection of hyperedges
E C UL\ H; such that @ peg E = @ and |E N H;| is odd for
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some i € [k]. Then any binary linear (r,5)-LDC? of block
length n has dimension less than k:ég&(& n).

Note that kgg(é, n) < kr(;zlbow(& n) as the property in
Definition I'V.1 implies the property in Proposition IV.1. Now,
with Definition IV.1 at hand, we can state our generalization

of Theorem I.1.

Theorem IV.2. Let ¢ € (0,1) and r,n € N with r > 3. Then
for any [n, k| binary linear (r,8)-LCC, we have that
Jdogn - kY (5/2,0))

rainbow

E<O@t

The proof of Theorem IV.2 follows almost identically the
proof of Theorem 1.1 in Section III. Indeed, the main property
we needed from the rainbow cycle we found via Theorem II.1
was that the symmetric difference of the edges was the empty
set and that every color appeared at most once. Thus if we gen-
eralize properly edge-colored graphs to properly edge-colored
(r — 1)-uniform hypergraphs® and use Definition V.1 in place
of Theorem II.1 in Section III, the proof of Theorem IV.2
would then follow. To avoid redundancy, we leave the full
proof of Theorem IV.2 as an exercise for the reader.

As for upper and lower bounds on k'mmbow(é n), we know
for r = 2 that kr(flibow(é, n) > Q(logn) by considering the
canonical coloring of the edges of the hypercube. Further-
more, by Theorem IL1, we also know that kr(fh)lbow(& n) <
O(57tlognloglogn). Now, as for r > 3, it follows from
considering random 7-uniform matchings that krdmbow(é, n) >
Qs(n'~2/7) [45], which is a much higher lower bound than the
bound kosg(é n) > exp(Qs((loglogn)?)) for r > 3 obtained
from known constructions of binary linear r-LDCs [32], [34].

Now, for the remainder of this section, we will prove the
following proposition.

Proposntlon IV.3. For any evenr > 4 and 6 € (0, 1), we have
ET(5,n) < O(6~nt=2/" log? n).

rainbow

Note that by combining Proposition IV.3 and Theorem IV.2,
we immediately deduce Theorem 1.3. Thus it suffices for us
to prove Proposition IV.3.

Proof of Proposition 1V.3. We proceed by applying the direct
sum transformation of [27] to produce an edge-colored graph
from the r-uniform matchings. Then using a deletion process
similar to what was done in [30], [46], [47], we will delete a
sub-constant fraction of the edges from the graph to produce
a properly edge-colored graph. We then apply Theorem II.1 to
obtain a rainbow cycle and thus recover a rainbow even cover
from it. The formal details follow.

Let ¢y be the absolute constant from Theorem II.1. We
will show that for every ch01ce of r-uniform matchmgs
Hy,..., Hy, over [n] with k > 27" F1¢o6~1n1=2/" log? n and
|| > on for all ¢ € [k], there is a nonempty subset

8See ?? for a formal definition of a linear (r, §)-LDC.

9We say that an edge coloring of a hypergraph # is proper if for any
distinct hyperedges e1,e2 € H satisfying e1 Ne2 # &, e1 and ea are
assigned different colors.

of hyperedges £ C UF
|ENH;| <1 for all ¢ € [k]. This will imply k'r(:l?lbow
2 o6 1nt =2/ log? n = O(6~1n'~2/" log® n).

Define £ := 47"n!=2/" and N = (ZL) Consider an edge-
colored (not necessarily simple) graph G over ([ ]) where two
vertices A, B € ([ é]) share an edge of color ¢ € [k] if and only
if A® B € H;. Fix any index ¢ € [k] and hyperedge F €
‘H;. Observe that the number of sets A, B € ([’g}) satisfying
A B=FEis

" H; satisfying ®pegl = & and
(6,n) <

<r;2> (én:r;2> =N (i)rm =N 2; - @

Now, let us upper bound the number of edges {4, B} in G
of color ¢ satisfying A @ B = FE such that one of A or B
is incident to another edge in G of color i. Consider a set
A e ([”) different from B such that {A, A’} is an edge in
G of color i. Define E' := A @ A’ € H,;. Because |A| =

|B| = |A’| = ¢, then we deduce that |[ANE| = |BNE| =
|[ANE'| = |A'N E'| = r/2. Furthermore, because A" # B
and H; is a matching, we have F # F’ and hence ENE' = &.
Thus we find that |[AN (E U E’)| = r. Now, since H,; is an
r-uniform matching, then |H;| < n/r. Thus there are at most
n/r choices for E’ and hence at most n/r choices for EUE".
For each such choice, there are at most (*")("~2") choices
for A’. By repeating the same argument for B, we therefore
deduce that the number of such edges {A, B} is at most

() e () ()

<N 3)

Now, let G’ be the edge-colored subgraph of G consisting of
all edges in GG that are not incident to any other edge of the
same color. By definition, it follows that G’ is properly edge-
colored. Furthermore, by combining (2) and (3), we find that
the number of edges in G’ is at least

277“2 2 272 421 d
(N- — - )Zm

2
9-r -1
>N- -k-on
n
=N-27" 15k
>N- 27'7“2716(2r2+157100n172/'r 10g2 TL)
=coN -n'"?"logn - logn

> coN -log N -loglog N .

Thus by Theorem IL.1, we can find a rainbow cycle in G'.
That is, there exists m € N and distinct indices i1, ...,%, €
[k] and sets Ay, Aa, ..., Am, Ams1 = A1 € ([;}]) such that
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As ® A1 € H,, for all s € [m]. Now, define E; .= A; @
Asi1 € H;, for each s € [m]. Then we find that

.-
s=1

Thus if we define the set £ = {E1,...

@ (As 2] As+1

s=1

) =P A oA =2.
s=1 s=1

,En}, then we see

that peceF = @ and |ENH,;| < 1 for all ¢ € [k], which is

what we wanted to show.

O
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