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ABSTRACT

Reed–Solomon codes are a classic family of error-correcting codes

consisting of evaluations of low-degree polynomials over a �nite

�eld on some sequence of distinct �eld elements. They are widely

known for their optimal unique-decoding capabilities, but their list-

decoding capabilities are not fully understood. Given the prevalence

of Reed-Solomon codes, a fundamental question in coding theory

is determining if Reed–Solomon codes can optimally achieve list-

decoding capacity.

A recent breakthrough by Brakensiek, Gopi, and Makam, estab-

lished that Reed–Solomon codes are combinatorially list-decodable

all the way to capacity. However, their results hold for randomly-

punctured Reed–Solomon codes over an exponentially large �eld

size 2ċ (Ĥ) , where = is the block length of the code. A natural ques-

tion is whether Reed–Solomon codes can still achieve capacity over

smaller �elds. Recently, Guo and Zhang showed that Reed–Solomon

codes are list-decodable to capacity with �eld size $ (=2). We show

that Reed–Solomon codes are list-decodable to capacity with linear

�eld size $ (=), which is optimal up to the constant factor. We also

give evidence that the ratio between the alphabet size @ and code

length = cannot be bounded by an absolute constant.

Our techniques also show that random linear codes are list-

decodable up to (the alphabet-independent) capacity with optimal

list-size $ (1/Y) and near-optimal alphabet size 2ċ (1/Ć
2) , where Y

is the gap to capacity. As far as we are aware, list-decoding up

to capacity with optimal list-size $ (1/Y) was not known to be

achievable with any linear code over a constant alphabet size (even

non-constructively), and it was also not known to be achievable for

random linear codes over any alphabet size.

Our proofs are based on the ideas of Guo and Zhang, and we

additionally exploit symmetries of reduced intersection matrices.
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With our proof, which maintains a hypergraph perspective of the

list-decoding problem, we include an alternate presentation of ideas

from Brakensiek, Gopi, and Makam that more directly connects the

list-decoding problem to the GM-MDS theorem via a hypergraph

orientation theorem.
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1 INTRODUCTION

An (error-correcting) code is simply a set of strings (codewords). In

this paper, all codes are linear, meaning our code � ¢ FĤħ is a

space of vectors over a �nite �eld Fħ , for some prime power @. A

Reed–Solomon code [52] is a linear code obtained by evaluating

low-degree polynomials over Fħ . More formally, we de�ne the code

RSĤ,ġ (U1, . . . , UĤ) to be the set

{(5 (U1), . . . , 5 (UĤ)) ∈ FĤħ : 5 ∈ Fħ [- ], deg(5 ) < :}. (1)

The rate ' of a code � is '
def
= logħ |� |/=, which, for a Reed–

Solomon code, is :/=. Famously, Reed–Solomon codes are optimal

for the unique decoding problem [52]: for any rate ' Reed–Solomon

code, for every received word ~ ∈ FĤħ , there is at most one code-

word within Hamming distance ?= of ~,1 and this error parameter

? =
1−Ď
2 is optimal by the Singleton bound [58].

In this paper, we study Reed–Solomon codes in the context of list-

decoding, a generalization of unique-decoding that was introduced

by Elias and Wozencraft [15, 62]. Formally, a code � ¢ FĤħ is (?, !)-
list-decodable if, for every received word ~ ∈ FĤħ , there are at most

! codewords of � within Hamming distance ?= of ~.

It is well known that the list-decoding capacity, namely the largest

fraction of errors that can be list-decoded with small lists, is 1 − '
[33, Theorem 7.4.1]. Speci�cally, for ? = 1−'− Y, there are (in�nite
families of) rate ' codes that are (?, !) list-decodable for a list-size
! as small as $ (1/Y). On the other hand, for ? = 1 − ' + Y, if a rate
1The Hamming distance between two codewords is the number of coordinates on
which they di�er.
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' code is (?, !) list decodable, the list size ! must be exponential

in the code length =. Informally, a code that is list-decodable up

to radius ? = 1 − ' − Y with list size $Ć (1), or even list size =ċĆ (1)

where = is the code length, is said to achieve (list-decoding) capacity.

The list-decodability of Reed–Solomon codes is important for sev-

eral reasons. Reed–Solomon codes are the most fundamental alge-

braic error-correcting code. In fact, all known explicit constructions

of codes achieving list-decoding capacity are based on algebraic con-

structions that generalize Reed–Solomon codes, for example, Folded

Reed–Solomon codes [32, 45], Multiplicity codes [36, 44, 45], and

algebraic-geometric codes [14, 37–39]. Thus, it is natural to won-

der whether and when Reed–Solomon codes themselves achieve

list-decoding capacity. Additionally, all Reed–Solomon codes are

optimally unique-decodable, so (equivalently) they are optimally

list-decodable ! = 1, making them a natural candidate for codes

achieving list-decoding capacity. Further, capacity-achieving Reed–

Solomon codes would potentially o�er advantages over existing

explicit capacity-achieving codes, such as simplicity and potentially

smaller alphabet sizes (which we achieve in this work). Lastly, list-

decoding of Reed–Solomon codes has found several applications in

complexity theory and pseudorandomness [10, 48, 59].

For these reasons, the list-decodability of Reed–Solomon codes

is well-studied. As rate ' Reed–Solomon codes are uniquely decod-

able up to the optimal radius 1−Ď
2 given by the Singleton Bound,

the Johnson-bound [42] automatically implies that Reed–Solomon

codes are (?, !)-list-decodable for error parameter ? = 1 −
√
' − Y

and list size ! = $ (1/Y). Guruswami and Sudan [34] showed how

to e�ciently list-decode Reed–Solomon codes up to the Johnson ra-

dius 1−
√
'. For a long time, this remained the best list-decodability

result (even non-constructively) for Reed–Solomon codes.

Since then, several results suggested Reed–Solomon codes could

not be list-decoded up to capacity, and in fact, not much beyond the

Johnson radius 1−
√
'. Guruswami and Rudra [31] showed that, for

a generalization of list-decoding called list-recovery, Reed–Solomon

codes are not list-recoverable beyond the (list-recovery) Johnson

bound in some parameter settings. Cheng andWan [12] showed that

e�cient list-decoding of Reed–Solomon codes beyond the Johnson

radius in certain parameter settings implies fast algorithms for the

discrete logarithm problem. Ben-Sasson, Kopparty, and Radhakr-

ishnan [3] showed that full-length Reed–Solomon codes (@ = =)

are not list-decodable much beyond the Johnson bound in some

parameter settings.

Since then, an exciting line of work [9, 18, 23–25, 55, 57] has

shown the existence of Reed–Solomon codes that could in fact

be list-decoded beyond the Johnson radius. These works all con-

sider combinatorial list-decodability of randomly punctured Reed–

Solomon codes. By combinatorial list-decodability, wemean that the

code is proved to be list-decodable without providing an algorithm

to e�ciently decode the list of nearby codewords. By randomly

punctured Reed–Solomon code, we mean a code RSĤ,ġ (U1, . . . , UĤ)
where (U1, . . . , UĤ) are chosen uniformly over all =-tuples of pair-

wise distinct elements of Fħ . Several of these works [18, 23, 55]

proved more general list-decoding results about randomly punc-

turing any code with good unique-decoding properties, not just

Reed–Solomon codes.

In this line of work, a recent breakthrough of Brakensiek, Gopi,

and Makam [9] showed, using notions of “higher-order MDS codes”

[8, 54], that Reed–Solomon codes can be list-decoded up to capacity.

In fact, they show, more strongly, that Reed–Solomon codes can

be list-decoded with list size ! with radius ? =
Ĉ

Ĉ+1 (1 − '), exactly
meeting the generalized Singleton bound [57], resolving a conjec-

ture of Shangguan and Tamo [57]. However, their results require

randomly puncturing Reed–Solomon codes over an exponentially

large �eld size 2ċ (Ĥ) , where = is the block length of the code.

A natural question is how small can the �eld size be in a capacity-

achieving Reed–Solomon code. Brakensiek, Dhar, and Gopi [6,

Corollary 1.7, Theorem 1.8] showed that the exponential-in-= �eld

size in [9] is indeed necessary to exactly achieve the generalized

Singleton bound for ! = 2 — under the additional assumptions that

the code is linear and MDS. These assumptions were removed in

followup work [2], which also generalized the result to all ! — but

smaller �eld sizes remained possible if one allowed a small Y slack in

the parameters. Recently, an exciting work of Guo and Zhang [25]

showed that Reed–Solomon codes are list-decodable up to capacity,

in fact up to (but not exactly at) the generalized Singleton bound,

with alphabet size $ (=2).

1.1 Our Results

List-Decoding Reed–SolomonCodes. Building onGuo and Zhang’s

argument, we show that Reed–Solomon codes are list-decodable

up to capacity and the generalized Singleton bound with linear

alphabet size $ (=), which is evidently optimal up to the constant

factor. Our main result is the following.

Theorem 1.1. Let Y ∈ (0, 1), ! g 2 and @ be a prime power such

that @ g = + : · 210Ĉ/Ć . Then with probability at least 1 − 2−ĈĤ , a
randomly punctured Reed–Solomon code of block length = and rate

:/= over Fħ is ( Ĉ
Ĉ+1 (1 − ' − Y), !) average-radius list-decodable.

As in previous works [9, 25], Theorem 1.1 gives average-radius

list-decodability, a stronger guarantee than list-decodability: for

any distinct ! + 1 codewords 2 (1) , . . . , 2 (Ĉ+1) and any vector ~ ∈ FĤħ ,
the average Hamming distance from 2 (1) , . . . , 2 (Ĉ+1) to ~ is at least
Ĉ

Ĉ+1 (1 − ' − Y). Taking ! = $ (1/n) in Theorem 1.1, it follows

that Reed–Solomon codes achieve list-decoding capacity even over

linear-sized alphabets.

Corollary 1.2. Let Y ∈ (0, 1) and @ be a prime power such that

@ g = + : · 2ċ (1/Ć2) . Then with probability at least 1 − 2−¬ (Ĥ/Ć) , a
randomly punctured Reed–Solomon code of block length = and rate

:/= over Fħ is (1 − ' − Y,$ ( 1Ć )) average-radius list-decodable.

The alphabet size in [25] is 2ċ (Ĉ
2/Ć)=: . Our main contribution

is improving their alphabet size from quadratic to linear. As a sec-

ondary improvement, we also bring down the constant factor from

2ċ (Ĉ
2/Ć) to 2ċ (Ĉ/Ć) . We defer the proof overview of Theorem 1.1

to Section 3.1 after setting up the necessary notions in Section 2.

In our proof of Theorem 1.1, we maintain a hypergraph per-

spective of the list-decoding problem, which was introduced in

[24]. Section 2.2 elaborates on the advantages of this perspective,

which include (i) more conpact notations, de�nitions, and lemma

statements, (ii) our improved constant factor of 2ċ (Ĉ/Ć) , (iii) an
improved alphabet size in our random linear codes result below
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(Theorem 1.3), and (iv) an alternate presentation of ideas from

Brakensiek, Gopi, and Makam [9] that more directly connects the

list-decoding problem to the GM-MDS theorem [13, 47, 63] via a

hypergraph orientation theorem (see Appendix A of the full version

of our work [1]).

List-Decoding Random Linear Codes. A random linear code of

rate ' and length = over Fħ is a random subspace of FĤħ of di-

mension '=. List-decoding random linear codes is well-studied

[16, 26, 27, 29, 30, 46, 49, 51, 55, 56, 61, 64] and is an important

question for several reasons. First, �nding explicit codes approach-

ing list-decoding capacity is a major challenge, and random linear

codes provide a stepping stone towards explicit codes: a classic

result says that uniformly random codes achieve list-decoding ca-

pacity [15, 62], and showing list-decodability of random linear

codes can be viewed as a derandomization of the uniformly ran-

dom construction. Mathematically, the list-decodability of random

linear codes concerns a fundamental geometric question: to what

extent do random subspaces over Fħ behave like uniformly random

sets? In coding theory, list-decodable random linear codes are use-

ful building blocks in other coding theory constructions [28, 40].

Lastly, the algorithmic question of decoding random linear codes

is closely related to the Learning With Errors (LWE) problem in

cryptography [53] and Learning Parity with Noise (LPN) problem

in learning theory [4, 17].

The list-decodability of random linear codes is more di�cult to

analyze than uniformly random codes, because codewords do not

enjoy the same independence as in random codes. Thus the naive

argument that shows that random linear codes achieve list-decoding

capacity [64] gives an exponentially worse list size of @1/Ć than for

random codes (Y is the gap to the “@-ary capacity”, ' = 1 −�ħ (?),
where�ħ (G)

def
= G logħ (@−1)−G logħ (G)−(1−G) logħ (1−G) is the@-

ary entropy function). Several works have sought to circumvent this

di�culty [16, 26, 27, 29, 46, 55, 56, 61] improving the list-size bound

to $ħ (1/Y), matching the list-size of uniformly random codes.

However, these results are more relevant for smaller alphabet

sizes @, and approaching the alphabet-independent capacity of ? =

1 − ' is less understood. In this setting, uniformly random codes

are, with high probability, list-decodable to capacity with optimal

alphabet size 2ċ (1/Ć) 2 and optimal list size $ (1/Y).3 However, it
was not known whether random linear codes (or, in general, more

structured codes) could achieve similar parameters. In particular,

both of the following questions were open (as far as we are aware).

• Are rate ' random linear codes (1 − ' − Y,$ (1/Y))-list-
decodable with high probability? Previously, this was not

known for any alphabet size @, even alphabet size growing

with the length of the code. Previously, the best list size for

2This follows from the list-decoding capacity theorem [15, 62]. Over ħ-ary alphabets,

the list-decoding capacity is given by Ħ = Ą−1ħ (1 − Ď) , which is larger than 1 − Ď − Ć
when ħ g 2¬ (1/Ć ) .
3For codes over smaller alphabets, the list sizeċ (1/Ć) , where Ć is the gap to capacity,
is believed to be optimal, but a proof is only known for large radius [35]. However, for
approaching the alphabet independent capacity, the list sizeċ (1/Ć) is known to be
optimal by the generalized Singleton bound [57].

random linear codes list-decodable to radius ? = 1 − ' − Y
was at least 2¬ (1/Ć) [26, 56].4

• Do there exist any linear codes (even non-constructively)

over constant-sized (independent of =) alphabets that are

(1 − ' − Y,$ (1/Y))-list-decodable?
Using the same framework as the proof of Theorem 1.3, we answer

both questions a�rmatively. We show that, with high probability,

random linear codes approach the generalized Singleton bound,

and thus capacity, with alphabet size close to the optimal.

Theorem 1.3. For all ! g 1, Y ∈ (0, 1), a random linear code

over alphabet size @ g 210Ĉ/Ć and = su�ciently large is with high

probability ( Ĉ
Ĉ+1 (1 − ' − Y), !)-average-radius-list-decodable.

Taking ! = $ (1/Y), we get that random linear codes achieve

capacity with optimal list size $ (1/Y) and near-optimal alphabet

size 2ċ (1/Ć
2) .

Corollary 1.4. For all Y > 0, a random linear code over alphabet

size @ g 2ċ (1/Ć
2) and = su�ciently large is with high probability

(1 − ' − Y,$ (1/Y))-average-radius-list-decodable.
The techniques developed in this work for the proof of Theo-

rem 1.1 are important for obtaining the strong alphabet size guaran-

tees of Theorem 1.3. One could also have adapted the proof of Guo

and Zhang, but doing so in the same natural way would yield an al-

phabet size of $ (=). Further, our use of the hypergraph machinery,

which gives a secondary improvement over [25] in constant factor

in the alphabet size in Corollary 1.2, gives the primary improvement

in the alphabet size in Corollary 1.4 from 2ċ (1/Ć
3) to 2ċ (1/Ć

2) .
As the proof of Theorem 1.3 is very similar to the proof of Theo-

rem 1.1, we focus on Theorem 1.1 for brevity and clarity of presen-

tation in Section 2 and Section 3 and refer the reader to Section 4

of the full version of our work [1] for the proof of Theorem 1.3.

Alphabet Size Lower Bounds. Above, we saw that random linear

codes achieve list-decoding capacity with optimal list-size and near-

optimal alphabet size. A natural question, asked by Guo and Zhang,

is how large the alphabet size needs to be for Reed–Solomon codes

to achieve capacity. We showed that @ g = · 2ċ (1/Ć2) su�ces. By the

list-decoding capacity theorem [15, 62], having an exponential-type

dependence on 1/Y for subconstant Y < $ (1/log=) is necessary.
For approaching capacity with constant Y, Ben-Sasson, Kopparty,

and Radhakrishnan [3] showed that, for any 2 g 1, there exist

full-length Reed–Solomon codes that are not list-decodable much

beyond the Johnson bound with list-sizes $ (=ę ). Thus in order

to achieve list-decoding capacity, one needs @ > = in some cases.

However, while full-length Reed–Solomon codes could not achieve

capacity, perhaps it was possible that Reed–Solomon codes over

�eld size, say @ = 2= or even @ = (1 +W)=, could achieve capacity in

all parameter settings. We observe that, as a corollary of [3], such a

strong guarantee is not possible. We show that, for any 2 > 1, there

exist a constant rate ' = '(2) > 0 and in�nitely many �eld sizes

@ such that all Reed–Solomon codes of length = g @/2 and rate '

over Fħ are not list-decodable to capacity 1 − ' with list size =ę .

Due to space constraints, we omit the proof and refer the reader to

Appendix B of the full version of this work [1].

4[26] appears to give a list-size bound ofċ (ħċĎ (1) /Ć) , and [56] appears to give a list

size bound that is at least ħlog
2 (1/Ć ) , and we need ħ g 2¬ (1/Ć )
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Proposition 1.5. Let X = 2−Ę for some integer 1 g 3. There

exist in�nitely many @ such that any Reed–Solomon code of length

= g 4X0.99@ and rate X is not (1 − 2X, =¬ (log(1/ą)) )-list-decodable.

1.2 Follow-up Work

The techniques in our paper have already been in�uential. In follow-

up work, Brakensiek, Dhar, Gopi, and Zhang [7] used our argument

to prove that Algebraic Geometry (AG) codes achieve list-decoding

capacity over constant-sized alphbaets. They prove this by combin-

ing our techniques with a generalized GM-MDS theorem, proved

by Brakensiek, Dhar, Gopi [5].

2 PRELIMINARIES

2.1 Basic Notation

For positive integers C , let [C] denote the set {1, 2, . . . , C}. The Ham-

ming distance 3 (G,~) between two vectors G,~ ∈ FĤħ is the number

of indices 8 where Gğ ≠ ~ğ . For a �nite �eld Fħ , we follow the stan-

dard notation that Fħ [-1, . . . , -Ĥ] denotes the ring of multivariate

polynomials with variables -1, . . . , -Ĥ over Fħ , and Fħ (-1, . . . , -Ĥ)
denotes the �eld of fractions of the polynomial ring Fħ [-1, . . . , -Ĥ].
By abuse of notation, we let -fğ or - [ğ ] to denote the sequence

-1, . . . , -ğ , and we let, for example, -fğ = Ufğ to denote -1 =

U1, -2 = U2, . . . , -ğ = Uğ . Given amatrix" over the �eld of fractions

Fħ (-1, . . . , -Ĥ) and �eld elements U1, . . . , Uğ ∈ Fħ , let " (-fğ =

Ufğ ) denote the matrix over Fħ (-ğ+1, -ğ+2, . . . , -Ĥ) obtained by set-
ting -fğ = Ufğ in" .

2.2 Hypergraphs and Connectivity

In this work, we maintain a hypergraph perspective of the list-

decoding problem, which was introduced in [24]. We describe a

bad list-decoding instance with a hypergraph where the ! + 1 bad
codewords identify the vertices and the = evaluation points identify

the hyperedges (De�nition 2.1). While prior works described a bad

list-decoding instance by ! + 1 sets indicating the agreements of

the codewords with the received word, this hypergraph perspective

gives us several advantages:

(1) The constraints imposed by a bad list-decoding con�guration

yield a hypergraph that is weakly-partition-connected. This is

a natural notion of hypergraph connectivity, which is well-

studied in combinatorics [21, 22, 43] and optimization [11,

19, 20, 41], and which generalizes a well-known notion (:-

partition-connectivity) for graphs [50, 60].5 This connection

allows us to have more compact notation, de�nitions, and

lemma statements.

(2) Because we work with weakly-partition-connected hyper-

graphs, we save a factor of ! in Lemma 2.10 compared to

the analogous lemma in [25]. This allows us to improve the

constant factor in alphabet size for Reed–Solomon codes

from 2ċ (Ĉ
2/Ć) in [25] to 2ċ (Ĉ/Ć) in Theorem 1.1.

5The notion of weakly-partition-connected sits between two other well-studied no-
tions: ġ-partition-connected implies ġ-weakly-partition-connected implies ġ-edge-
connected [43]. Each of these three notions generalizes an analogous notion on graphs.
On graphs, ġ-partition-connected and ġ-weakly-partition-connected are equivalent.

(3) For similar reasons, for random linear codes, the hypergraph

perspective saves a factor of ! in the alphabet size exponent,

improving from 2ċ (Ĉ
2/Ć) to 2ċ (Ĉ/Ć) in Theorem 1.3.

(4) With the hypergraph perspective, we can give a new presen-

tation of the results in [9] and more directly connect the list-

decoding problem to the GM-MDS theorem [13, 47, 63], as

the heavy-lifting in the combinatorics is done using known

results on hypergraph orientations. This is done in Appendix

A of the full version of our work [1].

A hypergraphH = (+ , E) is given by a set of vertices+ and a set

E of (hyper)edges, which are subsets of the vertices + . In this work,

all hypergraphs have labeled edges, meaning we enumerate our

edges 4ğ by distinct indices 8 from some set, typically [=], in which

case we may also think of E as a tuple (41, . . . , 4Ĥ). Throughout this
paper, the vertex set + is typically [C] for some positive integer C .

The weight of a hyperedge 4 is wt(4) def= max(0, |4 | − 1), and the

weight of a set of hyperedges E is simply wt(E) def= ∑
ě∈E wt(4).

4Ĥ−2

4Ĥ−1

4Ĥ

5 (1)
5 (2)

5 (3)

5 (4)

5 (5)
5 (6)

5 (7)

Figure 1: Example edges from an agreement hypergraph

H = ( [7], (41, . . . , 4Ĥ)) (De�nition 2.1) arising from a bad

list-decoding con�gurationwith polynomials 5 (1) , . . . , 5 (7) ∈
Fħ [- ], received word ~ ∈ FĤħ , and evaluation points U1, . . . , UĤ .

In the �gure, 4Ĥ−2 = {1, 2, 4} means 5 (1) (UĤ−2) = 5 (2) (UĤ−2) =
5 (4) (UĤ−2) = ~Ĥ−2, 4Ĥ−1 = {5, 6} means 5 (5) (UĤ−1) =

5 (6) (UĤ−1) = ~Ĥ−1, and 4Ĥ = {7} means 5 (7) (UĤ) = ~Ĥ .

All hypergraphs that we consider in this work are agreement

hypergraphs for a bad list-decoding con�guration. See Figure 1 for

an illustration.

De�nition 2.1 (Agreement Hypergraph). Given vectors~, 2 (1) , . . . ,
2 (Ī ) ∈ FĤħ , the agreement hypergraph has a vertex set [C] and a tuple

of = hyperedges (41, . . . , 4Ĥ) where 4ğ
def
= { 9 ∈ [C] : 2 Ġğ = ~ğ }.

A key property of hypergraphs that we are concerned with is

weak-partition-connectivity.

De�nition 2.2 (Weak Partition Connectivity). A hypergraphH =

( [C], E) is :-weakly-partition-connected if, for every partition P of

the set of vertices [C],
∑

ě∈E
max{|P(4) | − 1, 0} g : ( |P| − 1) (2)
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where |P | is the number of parts of the partition, and |P(4) | is the
number of parts of the partition that edge 4 intersects.

To give some intuition for weak partition connectivity, we state

two of its combinatorial implications. First, if a graph is :-weakly-

partition-connected, then it is :-edge-connected [43], which, by the

Hypergraph Menger’s (Max-Flow-Min-Cut) theorem [43, Theorem

1.11], equivalently means that every pair of vertices has : edge-

disjoint (hyper)paths between them.6 Second, suppose we replace

every hyperedge 4 with an arbitrary spanning tree of its vertices

(which we e�ectively do in De�nition 2.5). The resulting (non-

hyper)graph is :-partition-connected,7 which, by the Nash-Williams-

Tutte Tree-Packing theorem [50, 60], equivalently means there are

: edge-disjoint spanning trees (this connection was used in [24]).

The reason we consider weak-partition-connectivity is that a bad

list-decoding con�guration yields a :-weakly-partition-connected

agreement hypergraph.

Lemma 2.3 (Bad list gives :-weakly-partition-connected

hypergraph. See also Lemma 7.4 of [24]). Suppose that vectors

~, 2 (1) , . . . , 2 (Ĉ+1) ∈ FĤħ are such that the average Hamming distance

from~ to 2 (1) , . . . , 2 (Ĉ+1) is atmost Ĉ
Ĉ+1 (=−:). That is,

∑Ĉ+1
Ġ=1 3 (~, 2 ( Ġ) )

f !(= −:). Then, for some subset � ¦ [! + 1] with |� | g 2, the agree-

ment hypergraph of (~, 2 ( Ġ) : 9 ∈ � ) is :-weakly-partition-connected.

Lemma 2.3 follows from the following result about weakly-

particion-connected hypergraphs

Lemma 2.4. Let H = (+ , E) be a hypergraph with at least two

vertices and with total edge weight
∑
ě∈E wt(4) g : · ( |+ | − 1), for

some positive integer : . Then there exists a subset + ′ ¢ + of at least

two vertices such that the hypergraphH ′ = (+ ′, {+ ′ ∩ 4 : 4 ∈ E}) is
:-weakly-partition-connected.

Proof. Let+ ′ be an inclusion-minimal subset+ ′ ¦ [! + 1] with
|+ ′ | g 2 such that

∑

ě∈E
wt(4 ∩+ ′) g (|+ ′ | − 1):. (3)

By assumption, + ′ = [! + 1] satis�es (3), so + ′ exists (note that
singleton subsets of [! + 1] satisfy (3) with equality). Let H =

(+ ′, E ′) be the hypergraph with edge set E ′ = {+ ′ ∩ 4 : 4 ∈ E}. By
minimality of + ′, for all + ′′ ª + ′, we have

∑
ě∈E′ wt(4 ∩+ ′′) f

(|+ ′′ |−1): . Now, consider a non-trivial partitionP = %1⊔· · ·⊔%Ħ of

+ ′ where %ğ ≠ + ′ for all 8 ∈ [?] (as otherwise (2) trivially follows).

We have
∑

ě∈E′
max{|P(4) | − 1, 0}

=

∑

ě∈E′,ě≠∅

(

−1 +
Ħ∑

ℓ=1

1[|4 ∩ %ℓ | > 0]
)

=

∑

ě∈E′,ě≠∅

(

( |4 | − 1) −
Ħ∑

ℓ=1

( |4 ∩ %ℓ | − 1[|4 ∩ %ℓ | > 0])
)

6In general the converse is not true.
7In (non-hyper)graphs, ġ-partition-connectivity and ġ-weak-partition-connectivity
are equivalent.

=

∑

ě∈E′,ě≠∅

(

max( |4 | − 1, 0) −
Ħ∑

ℓ=1

max( |4 ∩ %ℓ | − 1, 0)
)

=

∑

ě∈E′
wt(4) −

Ħ∑

ℓ=1

∑

ě∈E′
wt(4 ∩ %ℓ )

g (|+ ′ | − 1): −
Ħ∑

ℓ=1

( |%ℓ | − 1):

= (? − 1): = ( |P| − 1):. (4)

This holds for all partitions P of + ′, soH ′ is :-weakly-partition-
connected. □

Proof of Lemma 2.3. Consider the agreement hypergraph ( [!+
1], E) of ~, (2 (1) , . . . , 2 (Ĉ+1) ). The total edge weight is

∑

ě∈E
wt(4) g −= +

∑

ě∈E
|4 |

= −= +
Ĥ∑

ğ=1

Ĉ+1∑

Ġ=1

1[~ğ = 2
( Ġ)
ğ ]

= −= +
Ĉ+1∑

Ġ=1

(= − 3 (~, 2 ( Ġ) )) g !:. (5)

By Lemma 2.4, there exists a subset � ¢ [! + 1] of at least two
vertices such thatH ′ = (� , {� ∩ 4 : 4 ∈ E}) — which is exactly the

agreement hypergraph of (~, 2 ( Ġ) : 9 ∈ � ) — is :-weakly-partition-

connected. □

Remark 1. The condition |� | g 2 is needed later so that the reduced

intersection matrix (de�ned below) is not a 0 × 0 matrix, in which

case the matrix does not help establish list-decodability.

2.3 Reduced Intersection Matrices: De�nition
and Example

As in [25], we work with the reduced intersection matrix, though

our proof should work essentially the same with a di�erent matrix

called the (non-reduced) intersection matrix, which was considered

in [9, 24, 57].

De�nition 2.5 (Reduced intersection matrix). The reduced inter-

section matrix RIMġ,ħ,H associated with a prime power @, degree : ,

and a hypergraphH = ( [C], (41, . . . , 4Ĥ)) is a wt(E) × (C − 1): ma-

trix over the �eld of fractions Fħ (-1, . . . , -Ĥ). For each hyperedge

4ğ with vertices 91 < 92 < · · · < 9 |ěğ | , we add wt(4ğ ) = |4ğ | − 1 rows
to RIMH . For D = 2, . . . , |4ğ |, we add a row Ağ,ī = (A (1) , . . . , A (Ī−1) )
of length (C − 1): de�ned as follows:

• If 9 = 91, then A ( Ġ) = [1, -ğ , - 2
ğ , . . . , -

ġ−1
ğ ]

• If 9 = 9ī and 9ī ≠ C , then A ( Ġ) = −[1, -ğ , - 2
ğ , . . . , -

ġ−1
ğ ]

• Otherwise, A ( Ġ) = 0ġ .

We omit : and @ and write RIMH as they are typically understood.

Example 2.6. Recall the example edges of the agreement hyper-

graphH = ( [7], (41, . . . , 4Ĥ)) in Figure 1. The edges 4Ĥ−2, 4Ĥ−1, 4Ĥ
fromH contribute the following length (C −1): rows to its reduced
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intersection matrix:



+Ĥ−2 −+Ĥ−2 0 0 0 0

+Ĥ−2 0 0 −+Ĥ−2 0 0

0 0 0 0 +Ĥ−1 −+Ĥ−1


(6)

Here +ğ = [1, -ğ , - 2
ğ , . . . , -

ġ−1
ğ ] is a “Vandermonde row”, and 0

denotes the length-: vector [0, 0, . . . , 0]. Note that each edge 4

contributes |4 | − 1 rows to the agreement matrix, and in particular

4Ĥ does not contribute any rows.

Reduced intersection matrices arise by encoding all agreements

from a bad list-decoding con�guration into linear constraints on the

message symbols (the polynomial coe�cients). These constraints

are placed into one matrix that we call the reduced intersection ma-

trix. The following lemma implies that, if every reduced intersection

matrix arising from a possible bad list-decoding con�guration has

full column rank when -1 = U1, . . . , -Ĥ = UĤ , the corresponding

Reed–Solomon code is list-decodable.

Lemma 2.7 (RIM of agreement hypergraphs are not full col-

umn rank). LetH be an agreement hypergraph for (~, 2 (1) , . . . , 2 (Ī ) ),
where 2 ( Ġ) ∈ FĤħ are codewords of '(Ĥ,ġ (U1, . . . , UĤ), not all equal to
each other. Then the reduced intersection matrix RIMH (- [Ĥ] = U [Ĥ] )
does not have full column rank.

Proof. By de�nition,

RIMH (- [Ĥ] = U [Ĥ] ) ·


5 (1) − 5 (Ī )

...

5 (Ī−1) − 5 (Ī )



= 0 (7)

where 5 (1) , . . . , 5 (Ī ) ∈ Fġħ are the vectors of coe�cients of the

polynomials that generate codewords 2 (1) , . . . , 2 (Ī ) ∈ FĤħ . Since
these vectors are not all equal to each other, RIMH (- [Ĥ] = U [Ĥ] )
does not have full column rank. □

Remark 2 (Symmetries of reduced intersection matrices).

From this de�nition, it should be clear that we can divide the variables

-1, . . . , -Ĥ into at most 2Ĉ classes such that variables in the same

class are exchangeable with respect to the reduced intersection matrix

RIMH : if 4ğ and 4ğ′ are the same hyperedge, then swapping-ğ and-ğ′

yields the same reduced intersection matrix (up to row permutations).

This observation, which was alluded to in [25], turns out to be crucial

in our argument that allows us to improve the alphabet size in [25]

from quadratic to linear.

Remark 3. The pairwise distinctness requirement in the de�ni-

tion of average-radius-list-decodability (see Section 1.1) is nonetheless

crucial in the proof of Theorem 1.1, despite the weaker requirement

in Lemma 2.7. That is because we will eventually apply Lemma 2.7

on the subcollection of codewords given from Lemma 2.3, which can

potentially be arbitrary. The guarantee that this subcollection of code-

words is not all equal to each other would then follow from pairwise

distinctness of the codewords in the original list.

2.4 Reduced Intersection Matrices: Full
Column Rank

The following theorem shows that reduced intersection matrices of

:-weakly-partition-connected hypergraphs are nonsingular when

viewed as a matrix over Fħ (-1, . . . , -Ĥ). This was essentially conjec-
tured by Shangguan and Tamo [57] and essentially established by

Brakensiek, Gopi, and Makam [9], who conjectured and showed, re-

spectively, nonsingularity of the (non-reduced) intersection matrix

under similar conditions. By the same union bound argument as

in [57, Theorem 5.8], Theorem 2.8 already implies list-decodability

of Reed–Solomon codes up to the generalized Singleton bound

over exponentially large �elds sizes, which is [9, Theorem 1.5]. For

completeness, and to demonstrate how the hypergraph perspective

more directly connects the list-decoding problem to the GM-MDS

theorem, we include a proof of Theorem 2.8 in Appendix A of the

full version of this work [1].

Theorem 2.8 (Full column rank. Implicit from Theorem A.2

of [9]). Let = and : be positive integers and Fħ be a �nite �eld. Let

H be a :-weakly-partition-connected hypergraph with = hyperedges

and at least 2 vertices. Then RIMH has full column rank over the �eld

Fħ (-1, · · · , -Ĥ).
Remark 4. We note that, [9] assumes throughout their paper that

the alphabet size @ is su�ciently large, but Theorem 2.8 follows from

the weaker “@ su�ciently large” version: For any �xed �eld size @, take

& to be a su�ciently large power of@. Then, by the “@ su�ciently large”

version of Theorem 2.8, matrix RIMč,H has full column rank over the

�eld Fč (-1, . . . , -Ĥ). Hence, the determinant of some square full-rank

submatrix of RIMč,H is a nonzero polynomial in Fč [-1, . . . , -Ĥ].
The entries of RIMč,H can all be viewed as polynomials over Fħ , so

the corresponding full-rank submatrix of RIMħ,H has a determinant

that is a nonzero polynomial in Fħ [-1, . . . , -Ĥ] — symbolically, the

determinants are the same polynomials, as Fħ and Fč have the same

characteristic. Hence, the matrix RIMħ,H has full column rank over

the �eld Fħ (-1, . . . , -Ĥ).

2.5 Reduced Intersection Matrix: Row
Deletions

As in [25], we consider row deletions from the reduced intersection

matrix. The goal of this section is to establish Lemma 2.10, that the

full-column-rank-ness of reduced intersection matrices are robust

to row deletions.

De�nition 2.9 (Row deletion of reduced intersection matrix). Given

a hypergraphH = ( [C], (41, . . . , 4Ĥ)) and set � ¦ [=], de�ne RIMþ
H

to be the submatrix of RIMH obtained by deleting all rows contain-

ing a variable -ğ with 8 ∈ �.
The next lemma appears in a weaker form in [25]. It roughly

says that, given a reduced intersection matrix RIMH with some

constant factor “slack” in the combinatorial constraints, we can

omit a constant fraction of the rows without compromising the full-

column-rank-ness of the matrix. Our version of this lemma saves

roughly a factor of C ∼ ! compared to the analogous lemma [25,

Lemma 3.11]. The reason is that the :-weakly-partition-connected

condition is more robust to these row deletions (by a factor of

roughly C ) than the condition in [25]. As such, our proof is also

more direct.

Lemma 2.10 (Robustness to deletions. Similar to Lemma 3.11

of [25]). LetH = ( [C], E) be a (: + Y=)-weakly-partition-connected
hypergraph with C g 2. For all sets � ¢ [=] with |� | f Y=, we have

that RIMþ
H is nonempty and has full column rank.
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Proof. By de�nition of RIMH , the matrix with row deletions

RIMþ
H is thematrixRIMH′ , whereH ′ = ( [C], E ′) is the hypergraph

obtained fromH by deleting 4ğ for 8 ∈ �. By Theorem 2.8, it su�ces

to prove thatH ′ is :-weakly-partition connected. Indeed, consider

any partition P of [C]. We have
∑

ě∈E′
max{|P(4) | − 1, 0}

=

∑

ğ∈[Ĥ]
max{|P(4) | − 1, 0} −

∑

ğ∈þ
max{|P(4) | − 1, 0}

g (: + Y=) · ( |P | − 1) − |� | · ( |P | − 1)
= : · ( |P | − 1), (8)

as desired. The �rst inequality holds becauseH is (: + Y=)-weakly-
partition-connected, and, trivially, any edge 4ğ touches at most |P |
parts of P. □

3 PROOF OF LIST-DECODABILITY WITH
LINEAR-SIZED ALPHABETS

3.1 Overview of the Proof

By Lemma 2.7 and Lemma 2.3, every bad list-decoding con�gura-

tion admits a weakly-partition-connected agreement hypergraph

whose reduced intersection matrix does not have full column rank.

Thus, to prove Theorem 1.1, it su�ces to show that, with high prob-

ability, every such reduced intersection matrix has full column rank.

The main technical lemma for this section is the one stated below.

Our main result, Theorem 1.1, follows by applying Lemma 2.3 and

Lemma 2.7 with Lemma 3.1, and taking a union bound over all∑Ĉ+1
Ī=2 2

ĪĤ possible agreement hypergraphs.

Lemma 3.1. Let : be a positive integer and Y > 0. For any (: + Y=)-
weakly-partition-connected hypergraphH = ( [C], (41, . . . , 4Ĥ)) with
C g 2, let BH denote the event that the matrix RIMH (- [Ĥ] = U [Ĥ] )
does not have full full column rank. For A = +Y=/2,, we have

Pr
Ă1,...,ĂĤ∼Fħ distinct

[BH] f
(
=

A

)
2ĪĨ ·

(
(C − 1):
@ − =

)Ĩ
. (9)

At a high level, the proof of Lemma 3.1 follows the same outline

as [25]. For every tuple of evaluation points (U1, . . . , UĤ) ∈ FĤħ for

which RIMH does not have full column rank, we show that there

is a certi�cate (81, . . . , 8Ĩ ) ∈ [=]Ĩ of distinct indices (Lemma 3.8),

which intuitively “attests” to the failure of the matrix RIMH to be

full column rank. We then show that, for any certi�cate (81, . . . , 8Ĩ ),
the probability that (U1, . . . , UĤ) has certi�cate (81, . . . , 8Ĩ ) is expo-
nentially small. (More precisely, it will at most be ( (Ī−1)ġħ−Ĥ )Ĩ . See
Corollary 3.12). We then show that there are not too many certi�-

cates (Corollary 3.10), and then union bound over the number of

possible certi�cates to obtain the desired result (Lemma 3.1).

Our argument di�ers from [25] in how we choose our certi�-

cates. The argument of [25] allowed for up to =Ĩ certi�cates. Our

argument instead only needs
(Ĥ
Ĩ

)
2ĪĨ many certi�cates, which is

much smaller when A = ¬(=) (the parameter regime of interest

here) and overall allows us to save a factor of = in the alphabet

size. Our savings comes from leveraging that there are at most 2Ī

di�erent “types” of hyperedges (see Remark 2), and thus at most 2Ī

di�erent types of variables -ğ in the reduced intersection matrix

RIMH . This observation was alluded to in [25].8 With this observa-

tion in mind, we assume, without loss of generality, that the edges

ofH are ordered by their respective type (we can relabel the edges

ofH , which e�ectively permutes the rows of RIMH ).
Our method of generating a certi�cate (81, . . . , 8Ĩ ) for the evalua-

tion sequence (U1, . . . , UĤ) (Algorithm 2) is similar to that of [25] at

a high level—with each certi�cate 81, . . . , 8Ĩ , we associate a sequence

of (C−1):× (C−1): submatrices"1, . . . , "Ĩ of RIMH (Algorithm 1)

that are entirely speci�ed by 81, . . . , 8Ĩ as follows: since evaluating

- [Ĥ] = U [Ĥ] forces RIMH to not be full rank, then so will all of its

(C − 1): × (C − 1): submatrices. Thus if we sequentially ’reveal’

-1 = U1, -2 = U2, . . . , then at some point, "Ġ becomes singular

exactly when we set-ğ Ġ = Uğ Ġ — in fact, 8 Ġ is de�ned as such, so that

we select"1, 81, "2, 82, . . . , in that order, but we emphasize that"Ġ

can be computed from 81, . . . , 8 Ġ−1 without knowing U1, . . . , UĤ . Con-
ditioned on"Ġ being non-singular with-1 = U1, . . . , -ğ Ġ−1 = Uğ Ġ−1,
the probability that "Ġ becomes singular when setting -ğ Ġ = Uğ Ġ

is at most
(Ī−1)ġ
ħ−Ĥ : Uğ Ġ is uniformly random over at least @ − = �eld

elements, and the degree of -ğ Ġ in the determinant of"Ġ is at most

(C − 1): (and the determinant is nonzero by de�nition). Running

conditional probabilities in the correct order, we conclude that the

probability that a particular certi�cate 81, . . . , 8Ĩ is generated is at

most ( (Ī−1)ġħ−Ĥ )Ĩ , just as in [25].

Whereas [25] pick any matrix"Ġ that is obtained after remov-

ing the variables -ğ1 , . . . , -ğ Ġ−1 , we do a more deliberate choice of

matrices by leveraging the symmetries of RIMH (Remark 2). First,

we ensure that we can keep a “bank” of ¬Ī (A ) unused variables

of each of the $Ī (1) types. Then, starting with a full column rank

submatrix " of RIMH devoid of all variables in the “bank,” we

start sequentially applying the evaluations -1 = U1, -2 = U2, . . ..

Whenever " (-fğ1 = Ufğ1 ) turns singular, we �nd that the eval-

uation -ğ1 = Uğ1 is what ’caused’ it to become singular. We then

go to the “bank” to �nd a variable -ğ′1 of the same type as -ğ1 and

“re-indeterminate” " by replacing all instances of -ğ1 in " with

-ğ′1
. That way, we ensure that " is, in a sense, “reused.” Further-

more, we ensure 8 ′1 > 81, so that the matrix" (-fğ1 = Ufğ1 ) is now
nonsingular, so we can keep going. Of course, if we end up reach-

ing the end (i.e." (- [Ĥ] = U [Ĥ] ) is full column rank), then in fact,

RIMH (- [Ĥ] = U [Ĥ] ) is full column rank, and so the evaluations

(U1, . . . , UĤ) were ‘good’ after all.
Otherwise, if the evaluations (U1, . . . , UĤ) were ‘bad’, then the

submatrix " couldn’t have reached the end, and that can only

happen if some speci�c type was completely exhausted from the

bank. However, given the size of our initial bank, that must have

meant that" was “re-indeterminated” at least ¬Ī (A ) times. When

that happens, we collect the indices 81, . . . , 8ℓ that we gathered from

this round, remove them from RIMH , and repeat the process again

with a refreshed bank. Since we only need A indices, then we end

up doing at most$Ī (1) rounds. Because each round yields a strictly

increasing sequence of indices of length at least ¬Ī (A ), then we up

getting a certi�cate consisting of at most $Ī (1) strictly increasing

runs of total length A , of which there are at most
(Ĥ
Ĩ

)
·$Ī (1)Ĩ .

8Guo and Zhang [25] write “It is possible that achieving an alphabet size linear in n
would require establishing and exploiting other properties of intersection matrices or
reduced intersection matrices, such as an appropriate notion of exchangeability.” We
found this prediction to be insightful and true.
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To be more concrete, when we generate the submatrix" = "1,

we ensure that any variable appearing in"1 has the same type as

¬Ī (A ) variables that are not in"1 (but still in RIMH ). This creates a
“bank” of variables of each type. Then, if -fğ1 = Ufğ1 was the point
that made "1 singular, we can get "2 by replacing all copies of

-ğ1 with some -ğ′1 that is of the same type and in the “bank.” Since

variables 81 and 8
′
1 are of the same type, they have analogous rows

in the reduced intersection matrix RIMH , so this new matrix"2 is

still a submatrix of RIMH . Therefore, we can pick up where we left

o� with"1 but with"2 instead. That is,"2 will in fact be full rank

when we apply the evaluations -fğ1 = Ufğ1 . Thus the next index
82 on which"2 turns singular will be strictly greater than 81. We

then repeat the process in"2, replacing -ğ2 with some -ğ′2 that is

in the “bank” and of the same type, getting"3, and so on. We can

continue this process for ¬Ī (A ) steps because of the size of the bank
of each type, so we get an increasing run of length ¬Ī (A ) in our

certi�cate. After we run out of some type in our bank, we remove

the used indices 81, . . . , 8ℓ from RIMH and repeat the process again

with a refreshed bank. This continues for $Ī (1) times only, as we

only need A indices in the end.

We now �nish the proof of Theorem 1.1, assuming Lemma 3.1.

The rest of this section is devoted to proving Lemma 3.1.

Proof of Theorem 1.1, assuming Lemma 3.1. By Lemma 2.3, if

the code'(Ĥ,ġ (U1, . . . , UĤ) is not
(

Ĉ
Ĉ+1 (1 − ' − Y), !

)
average-radius

list-decodable, then there exists a vector ~ and pairwise distinct

codewords 2 (1) , . . . , 2 (Ī ) with C g 2 such that the agreement hy-

pergraph H = ( [C], E) is (' + Y)= = (: + Y=)-weakly-partition-
connected. By Lemma 2.7, the matrix RIMH (- [Ĥ] = U [Ĥ] ) is not
full column rank. That is, if we let BH denote the event that the

matrix RIMH (- [Ĥ] = U [Ĥ] ) does not have full full column rank,

then EH occurs. Now, the number of possible agreement hyper-

graphsH is at most
∑Ĉ+1
Ī=2 2

ĪĤ f 2(Ĉ+2)Ĥ . Thus by the union bound

over possible agreement hypergraphsH with Lemma 3.1, we have,

for A = + ĆĤ2 ,,

Pr
Ă [Ĥ]

[
RSĤ,ġ (U1, . . . , UĤ) not

(
!

! + 1 (1 − ' − Y), !
)
list-decodable

]

f Pr
Ă [Ĥ]
[∃ (: + Y=)-w.p.c. hypergraphH s.t. BH occurs]

f 2(Ĉ+2)Ĥ max
(ġ + ĆĤ)-w.p.c. H

Pr
Ă [Ĥ]
[BH]

f 2(Ĉ+2)Ĥ ·
(
=

A

)
2(Ĉ+1)Ĩ

(
!:

@ − =

)Ĩ

f
(
2(Ĉ+2)Ĥ/Ĩ · 4=

A
· 2Ĉ+1 !:

@ − =

)Ĩ
f 2−ĈĤ, (10)

as desired. Here, we used that @ = = + : · 210Ĉ/Ć . □

3.2 Setup for Proof of Lemma 3.1

We now devote the rest of this Section to proving Lemma 3.1.

Types. For a hypergraphH = ( [C], (41, . . . , 4Ĥ)), the type of an
index 8 (or, by abuse of notation, the type of the variable -ğ , or the

edge 4ğ ) is simply the set 4ğ ¢ [C]. There are 2Ī types, and by abuse

of notation, we identify the types by the numbers 1, 2, . . . , 2Ī in an

arbitrary �xed order with a bijection g : (subsets of [C]) → [2Ī ].

Algorithm 1: GetMatrixSequence

Input: indices 81, . . . , 8 Ġ−1 ∈ [=] for some 9 g 1.

Output:"1, . . . , " Ġ , which are (C − 1): × (C − 1): matrices

over Fħ (-1, -2, . . . , -Ĥ).
1 � ← ∅, 80 ←§, ℓ0 ←§
2 for ℓ = 1, . . . , 9 do

// "ℓ depends only on 81, . . . , 8ℓ−1
3 if ℓ > 1 then

// Fetch new index from bank �

4 g ← the type of 8ℓ−1
5 B ← number of indices among 8ℓ0 , 8ℓ0+1, . . . , 8ℓ−1 that

are type g

6 8 ′ℓ−1 ← the B-th smallest element of � that has type g

7 if 8 ′ℓ−1 is de�ned then

8 "ℓ ← the matrix obtained from"ℓ−1 by
replacing all copies of -ğℓ−1 with -ğ′ℓ−1

9 if "ℓ not yet de�ned then

// Refresh bank �

10 � ← ∅
11 for g = 1, . . . , 2Ī do

12 � ← � ∪
{top +A/2Ī , type g indices in [=] \ {81, . . . , 8ℓ−1}}
(if there are less than +A/2Ī , indices of type g ,
then � contains all such indices)

13 "ℓ ← lexicographically smallest nonsingular

(C − 1): × (C − 1): submatrix of RIM
þ∪{ğ1,...,ğℓ−1 }
H

14 ℓ0 ← ℓ // new refresh index

15

16 return"1, . . . , " Ġ

We say a hypergraph is type-ordered if the hyperedges 41, . . . , 4Ĥ
are sorted according to their type: g (41) f g (42) f · · · f g (4Ĥ).
Since permuting the labels of the edges of H preserves the rank

of RIMH (it merely permutes the rows of RIMH ), we can without

loss of generality assume in Lemma 3.1 thatH is type-ordered.

Global variables. Throughout the rest of the section, we �x a

positive integer : , parameter Y > 0, andH = ( [C], (41, . . . , 4Ĥ)), a
type-ordered (: +Y=)-weakly-partition-connected hypergraph with
C g 2. We also �x

A
def
=

⌊ Y=
2

⌋
. (11)

3.3 GetCertificate and GetMatrixSequence:
Basic Properties

As mentioned at the beginning of this section, we design an algo-

rithm, Algorithm 2, that attempts to generate a certi�cate (81, . . . , 8Ĩ )
∈ [=]Ĩ for evaluation points U1, . . . , UĤ . It uses Algorithm 1, a

helper function that generates the associated square submatrices

"1, . . . , "Ĩ of RIMH . Below, we establish some basic properties of

these algorithms.
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Algorithm 2: GetCertificate

Input: Evaluation points (U1, . . . , UĤ) ∈ FĤħ .
Output: A “certi�cate” (81, . . . , 8Ĩ ) ∈ [=]Ĩ .

1 for 9 = 1, . . . , A do

// "1, . . . , " Ġ−1 stay the same, "Ġ is now

defined

2 "1, . . . , " Ġ = GetMatrixSequence(81, . . . , 8 Ġ−1)
3 8 Ġ ← smallest index 8 such that"Ġ (-fğ = Ufğ ) is

singular

4 if 8 Ġ not de�ned then

5 return §

6 return (81, . . . , 8Ĩ )

First, we establish that the matrices outputted by the function

GetMatrixSequence are well-de�ned. After that, we show that

GetMatrixSequence is an “online” algorithm.

Lemma 3.2 (Output is well-defined). For all sequence of indices

81, . . . , 8 Ġ−1, if"1, . . . , " Ġ are the matrices outputted by the function

GetMatrixSequence(81, . . . , 8 Ġ−1), then"1, . . . , " Ġ are well-de�ned.

Proof. If ℓ is a refresh index, then we have |�∪ {81, . . . , 8ℓ−1}| <
|� | + A f 2A f Y=, so by Lemma 2.10, RIM

þ∪{ğ1,...,ğℓ−1 }
H is nonempty

and has full column rank. Thus "ℓ exists in Line 13. If ℓ is not a

refresh index,"ℓ is always well-de�ned by de�nition. □

Lemma 3.3 (Online). Furthermore, GetMatrixSequence is a de-

terministic function of 81, . . . , 8 Ġ−1, and it computes"ℓ “online”, mean-

ing "ℓ depends only on 81, . . . , 8ℓ−1 for all ℓ = 1, . . . , 9 (and "1 is

always the same matrix). In particular, GetMatrixSequence(81, . . . ,
8 Ġ−1) is a pre�x of GetMatrixSequence(81, . . . , 8 Ġ ).

Proof. By de�nition and Lemma 3.2. □

De�nition 3.4 (Refresh index). In GetMatrixSequence, in the

outer loop over ℓ , we say a refresh index is an index ℓ obtained

at Line 14 (i.e. when"ℓ is de�ned on Line 13). For example, ℓ = 1

is a refresh index.

Our �rst lemma shows that the new indices we are receiving

from GetMatrixSequence are in fact new.

Lemma 3.5 (NewVariable). In GetMatrixSequence, in the outer

loop iteration over ℓ at Line 2, if we reach Line 8 of the function

GetMatrixSequence, variable -ğ′ℓ−1
does not appear in "ℓ0 , "ℓ0+1,

. . . , "ℓ−1, where ℓ0 is the largest refresh index less than ℓ .

Proof. Let � be the set de�ned in Line 12 at iteration ℓ0. In

iterations ℓ ′ = ℓ0, ℓ0 + 1, . . . , ℓ , the set � is the same, and 8 ′ℓ−1 is in
this set � by de�nition. Thus, the variable -ğ′ℓ−1 does not appear in

"ℓ0 by de�nition. For ℓ ′ = ℓ0, ℓ0 + 1, . . . , ℓ , the (g, B) pairs generated
at Line 4 and Line 5 are pairwise distinct, so-ğ′ℓ−1 is not added to"ℓ′

for ℓ ′ = ℓ0 + 1, . . . , ℓ − 1 and thus is not in"ℓ0 , "ℓ0+1, . . . , "ℓ−1. □

To show that the probability of a particular certi�cate (81, . . . , 8Ĩ )
is small (Lemma 3.11, Corollary 3.12), we crucially need that 81, . . . , 8Ĩ
are pairwise distinct. The next lemma guarantees that.

Lemma 3.6 (Distinct indices). For any sequence of evaluation

points (U1, . . . , UĤ) ∈ FĤħ , the output of GetCertificate(U1, . . . , UĤ)
is a sequence (81, . . . , 8Ĩ ) ∈ [=]Ĩ of pairwise distinct indices.

Proof. By de�nition of 8ℓ at Line 3 of GetCertificate, variable

-ğℓ must be in"ℓ , so it su�ces to show that"ℓ never contains any

variable -ğ for 8 ∈ {81, . . . , 8ℓ−1}. We induct on ℓ . If ℓ is a refresh

index, this is true by de�nition. If not, let ℓ0 be the largest refresh

index less than ℓ . By induction, 81, . . . , 8ℓ−2 are not in"ℓ−1, so we

just need to show 8 ′ℓ−1 (the index replacing 8ℓ−1 in"ℓ at Line 8) is

not any of 81, . . . , 8ℓ−1. None of 81, . . . , 8ℓ0−1 are in � by de�nition, so

8 ′ℓ−1 cannot be any of them. 8 ′ℓ−1 is not any of 8ℓ′ for ℓ
′
= ℓ0, . . . , ℓ−1,

because -ğℓ′ is in"ℓ′ , but -ğ′ℓ−1 is not, by Lemma 3.5 . □

3.4 Bad Evaluation Points Admit Certi�cates

Here, we establish Lemma 3.8, that if some evaluation points make

RIMH not full column rank, then GetCertificate outputs a cer-

ti�cate. First, in Lemma 3.7 we justify our matrix constructions,

showing that the matrices in GetMatrixSequence are in fact sub-

matrices of RIMH . Then in Lemma 3.8, we show that any tuple of

bad evaluation points admits a certi�cate.

Lemma 3.7 (GetMatrixSequence gives submatrices of RIMH ).
For all sequence of indices 81, . . . , 8 Ġ−1, if"1, . . . , " Ġ is the output of

GetMatrixSequence(81, . . . , 8 Ġ−1), then "1, . . . , " Ġ are (C − 1): ×
(C − 1): submatrices of RIMH .

Proof. We proceed with induction on ℓ = 1, . . . , 9 . First, if ℓ is

a refresh index, then"ℓ is a submatrix of RIMH by de�nition. In

particular,"1 is a submatrix of RIMH , so the base case holds. Now

suppose ℓ is not a refresh index and"ℓ−1 is a submatrix of RIMH .
Matrix"ℓ is de�ned by replacing all copies of -ğℓ−1 with -ğ′ℓ−1

. To

check that"ℓ is a submatrix of RIMH , it su�ces to show that

(i) for each row of RIMH containing -ğℓ−1 , replacing all copies

of -ğℓ−1 with -ğ′ℓ−1
gives another row of RIMH , and

(ii) the variable -ğ′ℓ−1 does not appear in"ℓ−1.

The �rst item follows from the fact that indices 8ℓ−1 and 8 ′ℓ−1 are of
the same type, so (i) holds by de�nition of types and RIMH (see also

Remark 2). The second item is Lemma 3.5. Thus,"ℓ is a submatrix

of RIMH , completing the induction. □

Lemma 3.8 (Bad evaluations points admit certificates). If

(U1, . . . , UĤ) ∈ FĤħ are evaluation points such that RIMH (- [Ĥ] =
U [Ĥ] ) does not have full column rank, GetCertificate(U1, . . . , UĤ)
returns a certi�cate (81, . . . , 8Ĩ ) ∈ [=]Ĩ (rather than §).

Proof. Suppose for contradiction that GetCertificate returns

§ at iteration 9 in the loop. Then there is no index 8 such that

"Ġ (-fğ = Ufğ ) is singular. In particular, "Ġ (- [Ĥ] = U [Ĥ] ) is non-
singular and thus has full column rank. By Lemma 3.7,"Ġ is a sub-

matrix of RIMH , so we conclude RIMH has full column rank. □

3.5 Bounding the Number of Possible
Certi�cates

In this section, we upper bound the number of possible certi�cates.

The key step is proving the following certi�cate structural result.
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Lemma 3.9 (Certificate structure). Given a sequence of eval-

uation points (U1, . . . , UĤ) ∈ FĤħ such that RIMH (- [Ĥ] = U [Ĥ] ) is not
full column rank, the return value (81, . . . , 8Ĩ ) = GetCertificate(U1,
. . . , UĤ) satis�es 8 Ġ−1 < 8 Ġ for all but at most 2Ī values 9 = 2, . . . , A .

Proof. Let (81, . . . , 8Ĩ ) be the return of GetCertificate, and

let "1, . . . , "Ĩ be the associated matrix sequence. By Lemma 3.3,

we have "1, . . . , " Ġ = GetMatrixSequence(81, . . . , 8 Ġ−1) for 9 =

1, . . . , A . Recall an index ℓ ∈ [A ] is a refresh index if"ℓ is de�ned on

Line 13 rather than Line 8. The lemma follows from two claims:

(i) If ℓ > 1 is not a refresh index, then 8ℓ−1 < 8ℓ .

(ii) Any two refresh indices di�er by at least A/2Ī .
To see claim (i), let ℓ0 be the largest refresh index less than ℓ . By

de�nition of a refresh index, the set � stays constant between when

"ℓ0 is de�ned and when"ℓ is de�ned. From the de�nition of 8 Ġ at

Line 3 in GetCertificate, we know that

• For 8 < 8ℓ−1 the matrix"ℓ−1 (-fğ = Ufğ ) is nonsingular.
• The matrix"ℓ (-fğℓ = Ufğℓ ) is singular.

Suppose for contradiction that 8ℓ < 8ℓ−1. (Note that 8ℓ−1 ≠ 8ℓ by

Lemma 3.6.) We contradict the �rst item by showing, using the

second item, that "ℓ−1 (-fğℓ = Ufğℓ ) is also singular. By the def-

inition of GetMatrixSequence, since ℓ is not a refresh index, "ℓ

is de�ned in Line 8. By construction of � and 8 ′ℓ−1, we know that

8 ′ℓ−1 > 8ℓ−1 > 8ℓ . Thus, not only is "ℓ obtained from "ℓ−1 by re-

placing all copies of -ğℓ−1 with -ğ′ℓ−1
, but "ℓ (-fğℓ = Ufğℓ ) is also

obtained by replacing all copies of -ğℓ−1 with -ğ′ℓ−1 in"ℓ−1 (-fğℓ =
Ufğℓ ) . Moreover, the variable -ğ′ℓ−1 does not appear in "ℓ−1 by

Lemma 3.5. So we conclude that, as"ℓ (-fğℓ = Ufğℓ ) is singular, so
is"ℓ−1 (-fğℓ = Ufğℓ ).

Nowwe show claim (ii). Suppose ℓ0 and ℓ1 are consecutive refresh

indices. If a variable of type g appears in the matrix "ℓ0 , there

must be exactly +A/2Ī , indices of type g in � (if there were fewer,

then � ∪ {81, . . . , 8ℓ−1} would contain all indices of type g , and the

corresponding variables would not appear in RIM
þ∪{ğ1,...,ğℓ−1 }
H ). Let

g be the type of index 8ℓ1−1. Since ℓ1 is a refresh index, the number

of indices of type g among 8ℓ0 , 8ℓ0+1, . . . , 8ℓ1−1 must therefore be

+A/2Ī , + 1. In particular, this means ℓ1 − ℓ0 g +A/2Ī , + 1 g A/2Ī , as
desired. □

Corollary 3.10 (Certificate count). The number of possible

outputs to GetCertificate is at most
(Ĥ
Ĩ

)
2ĪĨ .

Proof. The certi�cate consists of A distinct indices of [=] by
Lemma 3.6. We can choose those in

(Ĥ
Ĩ

)
ways. These indices are

distributed between at most 2Ī increasing runs by Lemma 3.9. We

can distribute these indices between the 2Ī increasing runs in at

most (2Ī )Ĩ ways. □

3.6 Bounding the Probability of One Certi�cate

The goal of this section is to establish Corollary 3.12, which states

that the probability of obtaining a particular certi�cate is at most

( (Ī−1)ġħ−Ĥ )Ĩ . The argument is implicit in [25], but we include a proof

for completeness.

Lemma 3.11 (Implicit in [25]). Let 81, . . . , 8Ĩ ∈ [=] be pairwise
distinct indices, and "1, . . . , "Ĩ be (C − 1): × (C − 1): submatrices

of RIMH . Over randomly chosen pairwise distinct evaluation points

U1, . . . UĤ ∈ Fħ , de�ne the following events for 9 = 1, . . . , A :

• � Ġ is the event that"Ġ (-fğ = Ufğ ) is non-singular ∀8 < 8 Ġ .

• � Ġ is the event that"Ġ (-fğ Ġ = Ufğ Ġ ) is singular.

The probability that all the events hold is at most ( (Ī−1)ġħ−Ĥ )Ĩ .

Proof. Note that the set of evaluation points U1, . . . , UĤ for

which events � Ġ and � Ġ occur depends only on"Ġ and 8 Ġ . Further-

more, each of the events � Ġ and � Ġ depends only on"ğ , 8 Ġ , and the

evaluation points. Thus, by relabeling the index 9 , we may assume

without loss of generality that 81 < 82 < · · · < 8Ĩ . We emphasize

that we are not assuming that the output of GetCertificate sat-

is�es 81 < · · · < 8Ĩ (this is not true). We are instead just choosing

how we ’reveal’ our events � Ġ and � Ġ : starting with the smallest

index in 81, . . . , 8Ĩ and ending with the largest index in it.

We have

Pr
Ă [Ĥ]

[
'ĨĠ=1 (� Ġ ' � Ġ )

]
=

Ĩ∏

Ġ=1

Pr
Ă [Ĥ]

[
� Ġ ' � Ġ

�� 'Ġ−1ℓ=1 (�ℓ ' �ℓ )
]

f
Ĩ∏

Ġ=1

Pr
Ă [Ĥ]

[
� Ġ

�� 'Ġ−1ℓ=1 (�ℓ ' �ℓ ) ' � Ġ
]

(12)

Note that 'Ġ−1ℓ=1 (�ℓ ' �ℓ ) ' � Ġ depends only on U1, . . . , Uğ Ġ−1, and
� Ġ depends only on U1, . . . , Uğ Ġ . For any U1, . . . , Uğ Ġ−1 for which

'Ġ−1ℓ=1 (�ℓ ' �ℓ ) ' � Ġ holds, we have that "Ġ (-fğ Ġ−1 = Ufğ Ġ−1) is a
(C−1):×(C−1): matrix inFħ (-ğ Ġ , -ğ Ġ+1, . . . , -Ĥ)whose determinant

is a nonzero polynomial of degree at most (C − 1): in each variable

(the determinant contains at most C−1 rows including-ğ Ġ , each time

with maximum degree :−1). In particular, at most (C −1): values of

Uğ Ġ canmake the determinant zero since, viewing the determinant as

a polynomial in variables-ğ Ġ+1, . . . , -Ĥ with coe�cients in Fħ [-ğ Ġ ],
any single nonzero coe�cient becomes zero on at most (C − 1):
values of Uğ Ġ . Conditioned on U1, . . . , Uğ Ġ−1, the �eld element Uğ Ġ is

uniformly random over @ − 8 Ġ + 1 g @ − = elements. Thus, we have,

for all U1, . . . , Uğ Ġ−1 such that 'Ġ−1ℓ=1 (�ℓ ' �ℓ ) ' � Ġ ,

Pr
Ăğ Ġ

[
� Ġ |U1, . . . , Uğ Ġ−1

]
f (C − 1):

@ − = . (13)

Since �1 ' �1 ' · · · ' � Ġ−1 ' � Ġ−1 ' � Ġ depends only on Ufğ Ġ−1 and
� Ġ depends only on Ufğ Ġ , we have

Pr
Ă [Ĥ]

[
� Ġ | 'Ġ−1ℓ=1 (�ℓ ' �ℓ ) ' � Ġ

]
f (C − 1):

@ − = . (14)

Combining with (12) gives the desired result. □

The key result for this section is a corollary of Lemma 3.11.

Corollary 3.12 (Probability of one certficiate). For any

sequence 81, . . . , 8Ĩ ∈ [=], over randomly chosen pairwise distinct

evaluation points U1, . . . , UĤ , we have

Pr [GetCertificate(U1, . . . , UĤ) = (81, . . . , 8Ĩ )] f
(
(C − 1):
@ − =

)Ĩ
.

(15)

Proof. By Lemma 3.6, we only need to consider pairwise distinct

indices 81, . . . , 8Ĩ , otherwise the probability is 0. Let "1, . . . , "Ĩ =

GetMatrixSequence(81, . . . , 8Ĩ ). By Lemma 3.7, matrices"1, . . . , "Ĩ
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are all submatrices of RIMH . Thus, Lemma 3.11 applies. Let �1, . . . ,

�Ĩ , �1, . . . , �Ĩ be the events in Lemma 3.11. If GetCertificate(U1, . . .
, UĤ) = (81, . . . , 8Ĩ ), then the de�nition of 8 Ġ in Line 3 of the func-

tion GetCertificate implies that events � Ġ and � Ġ both occur.

By Lemma 3.11, the probability that all � Ġ and � Ġ hold is at most

( (Ī−1)ġħ−Ĥ )Ĩ , hence the result. □

3.7 Finishing the Proof of Lemma 3.1

Proof of Lemma 3.1. Recall (Section 3.2) that we �xedH to be

a type-ordered (: + Y=)-weakly-partition-connected hypergraph.

By Lemma 3.8, if the matrix RIMH (- [Ĥ] = U [Ĥ] ) does not have full
column rank, then GetCertificate(U1, . . . , UĤ) is some certi�cate

(81, . . . , 8Ĩ ). The probability that GetCertificate(U1, . . . , UĤ) =

(81, . . . , 8Ĩ ) is at most ( (Ī−1)ġħ−Ĥ )Ĩ by Corollary 3.12. By Corollary 3.10,
there are at most

(Ĥ
Ĩ

)
2ĪĨ certi�cates. Taking a union bound over

possible certi�cates gives the lemma. □
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