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ABSTRACT

Reed-Solomon codes are a classic family of error-correcting codes
consisting of evaluations of low-degree polynomials over a finite
field on some sequence of distinct field elements. They are widely
known for their optimal unique-decoding capabilities, but their list-
decoding capabilities are not fully understood. Given the prevalence
of Reed-Solomon codes, a fundamental question in coding theory
is determining if Reed-Solomon codes can optimally achieve list-
decoding capacity.

A recent breakthrough by Brakensiek, Gopi, and Makam, estab-
lished that Reed-Solomon codes are combinatorially list-decodable
all the way to capacity. However, their results hold for randomly-
punctured Reed-Solomon codes over an exponentially large field
size 200" where n is the block length of the code. A natural ques-
tion is whether Reed—Solomon codes can still achieve capacity over
smaller fields. Recently, Guo and Zhang showed that Reed-Solomon
codes are list-decodable to capacity with field size O(n?). We show
that Reed—Solomon codes are list-decodable to capacity with linear
field size O(n), which is optimal up to the constant factor. We also
give evidence that the ratio between the alphabet size g and code
length n cannot be bounded by an absolute constant.

Our techniques also show that random linear codes are list-
decodable up to (the alphabet-independent) capacity with optimal
list-size O(1/¢) and near-optimal alphabet size 2001/ 52), where ¢
is the gap to capacity. As far as we are aware, list-decoding up
to capacity with optimal list-size O(1/¢) was not known to be
achievable with any linear code over a constant alphabet size (even
non-constructively), and it was also not known to be achievable for
random linear codes over any alphabet size.

Our proofs are based on the ideas of Guo and Zhang, and we
additionally exploit symmetries of reduced intersection matrices.

*A full version of this work appears at [1].
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With our proof, which maintains a hypergraph perspective of the
list-decoding problem, we include an alternate presentation of ideas
from Brakensiek, Gopi, and Makam that more directly connects the
list-decoding problem to the GM-MDS theorem via a hypergraph
orientation theorem.
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1 INTRODUCTION

An (error-correcting) code is simply a set of strings (codewords). In
this paper, all codes are linear, meaning our code C C Fy is a
space of vectors over a finite field Fy, for some prime power q. A
Reed—Solomon code [52] is a linear code obtained by evaluating
low-degree polynomials over Fy. More formally, we define the code
RS, k(a1,...,ay) to be the set

{(f(e1),.... f(an)) € Fy : f € Fq[X]. deg(f) <k} (1)

The rate R of a code C is R def logq |C|/n, which, for a Reed-
Solomon code, is k/n. Famously, Reed—Solomon codes are optimal
for the unique decoding problem [52]: for any rate R Reed-Solomon
code, for every received word y € FZ, there is at most one code-
word within Hamming distance pn of y,! and this error parameter
p= % is optimal by the Singleton bound [58].

In this paper, we study Reed-Solomon codes in the context of list-
decoding, a generalization of unique-decoding that was introduced
by Elias and Wozencraft [15, 62]. Formally, a code C C FZ is (p,L)-
list-decodable if, for every received word y € Fg, there are at most
L codewords of C within Hamming distance pn of y.

It is well known that the list-decoding capacity, namely the largest
fraction of errors that can be list-decoded with small lists, is 1 — R
[33, Theorem 7.4.1]. Specifically, for p = 1 —R — ¢, there are (infinite
families of) rate R codes that are (p, L) list-decodable for a list-size
L as small as O(1/¢). On the other hand, for p =1 — R +¢, if a rate

!The Hamming distance between two codewords is the number of coordinates on
which they differ.
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R code is (p, L) list decodable, the list size L must be exponential
in the code length n. Informally, a code that is list-decodable up
to radius p = 1 — R — ¢ with list size O;(1), or even list size nQ: (1)
where n is the code length, is said to achieve (list-decoding) capacity.

The list-decodability of Reed-Solomon codes is important for sev-
eral reasons. Reed—Solomon codes are the most fundamental alge-
braic error-correcting code. In fact, all known explicit constructions
of codes achieving list-decoding capacity are based on algebraic con-
structions that generalize Reed—Solomon codes, for example, Folded
Reed-Solomon codes [32, 45], Multiplicity codes [36, 44, 45], and
algebraic-geometric codes [14, 37-39]. Thus, it is natural to won-
der whether and when Reed-Solomon codes themselves achieve
list-decoding capacity. Additionally, all Reed—Solomon codes are
optimally unique-decodable, so (equivalently) they are optimally
list-decodable L = 1, making them a natural candidate for codes
achieving list-decoding capacity. Further, capacity-achieving Reed—
Solomon codes would potentially offer advantages over existing
explicit capacity-achieving codes, such as simplicity and potentially
smaller alphabet sizes (which we achieve in this work). Lastly, list-
decoding of Reed-Solomon codes has found several applications in
complexity theory and pseudorandomness [10, 48, 59].

For these reasons, the list-decodability of Reed—-Solomon codes
is well-studied. As rate R Reed-Solomon codes are uniquely decod-
able up to the optimal radius %R given by the Singleton Bound,
the Johnson-bound [42] automatically implies that Reed—Solomon
codes are (p, L)-list-decodable for error parameter p =1 — VR — ¢
and list size L = O(1/¢). Guruswami and Sudan [34] showed how
to efficiently list-decode Reed—Solomon codes up to the Johnson ra-
dius 1 - VR. For a long time, this remained the best list-decodability
result (even non-constructively) for Reed—Solomon codes.

Since then, several results suggested Reed-Solomon codes could
not be list-decoded up to capacity, and in fact, not much beyond the
Johnson radius 1 — VR. Guruswami and Rudra [31] showed that, for
a generalization of list-decoding called list-recovery, Reed—Solomon
codes are not list-recoverable beyond the (list-recovery) Johnson
bound in some parameter settings. Cheng and Wan [12] showed that
efficient list-decoding of Reed-Solomon codes beyond the Johnson
radius in certain parameter settings implies fast algorithms for the
discrete logarithm problem. Ben-Sasson, Kopparty, and Radhakr-
ishnan [3] showed that full-length Reed-Solomon codes (g = n)
are not list-decodable much beyond the Johnson bound in some
parameter settings.

Since then, an exciting line of work [9, 18, 23-25, 55, 57] has
shown the existence of Reed-Solomon codes that could in fact
be list-decoded beyond the Johnson radius. These works all con-
sider combinatorial list-decodability of randomly punctured Reed-
Solomon codes. By combinatorial list-decodability, we mean that the
code is proved to be list-decodable without providing an algorithm
to efficiently decode the list of nearby codewords. By randomly
punctured Reed-Solomon code, we mean a code RSn,k(al, .o Qn)
where (a1, ..., an) are chosen uniformly over all n-tuples of pair-
wise distinct elements of Fy. Several of these works [18, 23, 55]
proved more general list-decoding results about randomly punc-
turing any code with good unique-decoding properties, not just
Reed-Solomon codes.
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In this line of work, a recent breakthrough of Brakensiek, Gopi,
and Makam [9] showed, using notions of “higher-order MDS codes”
[8, 54], that Reed-Solomon codes can be list-decoded up to capacity.
In fact, they show, more strongly, that Reed—Solomon codes can
be list-decoded with list size L with radius p = % (1 - R), exactly
meeting the generalized Singleton bound [57], resolving a conjec-
ture of Shangguan and Tamo [57]. However, their results require
randomly puncturing Reed-Solomon codes over an exponentially
large field size 20(" where n is the block length of the code.

A natural question is how small can the field size be in a capacity-
achieving Reed-Solomon code. Brakensiek, Dhar, and Gopi [6,
Corollary 1.7, Theorem 1.8] showed that the exponential-in-n field
size in [9] is indeed necessary to exactly achieve the generalized
Singleton bound for L = 2 — under the additional assumptions that
the code is linear and MDS. These assumptions were removed in
followup work [2], which also generalized the result to all L — but
smaller field sizes remained possible if one allowed a small ¢ slack in
the parameters. Recently, an exciting work of Guo and Zhang [25]
showed that Reed-Solomon codes are list-decodable up to capacity,
in fact up to (but not exactly at) the generalized Singleton bound,
with alphabet size O(n?).

1.1 Our Results

List-Decoding Reed—Solomon Codes. Building on Guo and Zhang’s
argument, we show that Reed—Solomon codes are list-decodable
up to capacity and the generalized Singleton bound with linear
alphabet size O(n), which is evidently optimal up to the constant
factor. Our main result is the following.

THEOREM 1.1. Lete € (0,1), L > 2 and q be a prime power such
thatq > n+k - 21°L/¢ Then with probability at least 1 — 271" q
randomly punctured Reed—Solomon code of block length n and rate
k/n overEq is (%(1 — R —¢), L) average-radius list-decodable.

As in previous works [9, 25], Theorem 1.1 gives average-radius
list-decodability, a stronger guarantee than list-decodability: for

. c(L+1)

any distinct L + 1 codewords ¢V, .. and any vector y € Fg,

the average Hamming distance from c(l), el D) o y is at least
%(1 — R — ¢). Taking L = O(1/e¢) in Theorem 1.1, it follows
that Reed—-Solomon codes achieve list-decoding capacity even over
linear-sized alphabets.

CoOROLLARY 1.2. Let¢ € (0,1) and q be a prime power such that
q=>n+k- 200/€") Then with probability at least 1 — 2-2(n/¢) 4
randomly punctured Reed—Solomon code of block length n and rate
k/n overFqis(1-R—¢, O(%)) average-radius list-decodable.

The alphabet size in [25] is 20(L*/€) k. Our main contribution
is improving their alphabet size from quadratic to linear. As a sec-
ondary improvement, we also bring down the constant factor from
20(L%/e) t5 20(L/€) We defer the proof overview of Theorem 1.1
to Section 3.1 after setting up the necessary notions in Section 2.

In our proof of Theorem 1.1, we maintain a hypergraph per-
spective of the list-decoding problem, which was introduced in
[24]. Section 2.2 elaborates on the advantages of this perspective,
which include (i) more conpact notations, definitions, and lemma
statements, (ii) our improved constant factor of 20(L/#) _(iii) an
improved alphabet size in our random linear codes result below
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(Theorem 1.3), and (iv) an alternate presentation of ideas from
Brakensiek, Gopi, and Makam [9] that more directly connects the
list-decoding problem to the GM-MDS theorem [13, 47, 63] via a
hypergraph orientation theorem (see Appendix A of the full version
of our work [1]).

List-Decoding Random Linear Codes. A random linear code of
rate R and length n over Fy is a random subspace of Ff of di-
mension Rn. List-decoding random linear codes is well-studied
[16, 26, 27, 29, 30, 46, 49, 51, 55, 56, 61, 64] and is an important
question for several reasons. First, finding explicit codes approach-
ing list-decoding capacity is a major challenge, and random linear
codes provide a stepping stone towards explicit codes: a classic
result says that uniformly random codes achieve list-decoding ca-
pacity [15, 62], and showing list-decodability of random linear
codes can be viewed as a derandomization of the uniformly ran-
dom construction. Mathematically, the list-decodability of random
linear codes concerns a fundamental geometric question: to what
extent do random subspaces over Fy behave like uniformly random
sets? In coding theory, list-decodable random linear codes are use-
ful building blocks in other coding theory constructions [28, 40].
Lastly, the algorithmic question of decoding random linear codes
is closely related to the Learning With Errors (LWE) problem in
cryptography [53] and Learning Parity with Noise (LPN) problem
in learning theory [4, 17].

The list-decodability of random linear codes is more difficult to
analyze than uniformly random codes, because codewords do not
enjoy the same independence as in random codes. Thus the naive
argument that shows that random linear codes achieve list-decoding
capacity [64] gives an exponentially worse list size of g'/# than for
random codes (¢ is the gap to the “g-ary capacity”, R = 1 — Hy(p),

where Hg(x) def x logq (g-1)—x logq (x)-(1-x) logq( 1-x) is the g-
ary entropy function). Several works have sought to circumvent this
difficulty [16, 26, 27, 29, 46, 55, 56, 61] improving the list-size bound
to O4(1/¢), matching the list-size of uniformly random codes.
However, these results are more relevant for smaller alphabet
sizes g, and approaching the alphabet-independent capacity of p =
1 — R is less understood. In this setting, uniformly random codes
are, with high probability, list-decodable to capacity with optimal
alphabet size 20(1/¢) 2 3nd optimal list size O(1/¢).> However, it
was not known whether random linear codes (or, in general, more
structured codes) could achieve similar parameters. In particular,
both of the following questions were open (as far as we are aware).

e Are rate R random linear codes (1 — R — ¢ O(1/¢))-list-
decodable with high probability? Previously, this was not
known for any alphabet size g, even alphabet size growing
with the length of the code. Previously, the best list size for

2This follows from the list-decoding capacity theorem [15, 62]. Over g-ary alphabets,
the list-decoding capacity is given by p = H; (1 - R), which is larger than1 — R — ¢
when g > 22(1/9)

3For codes over smaller alphabets, the list size O(1/¢), where ¢ is the gap to capacity,
is believed to be optimal, but a proof is only known for large radius [35]. However, for
approaching the alphabet independent capacity, the list size O(1/¢) is known to be
optimal by the generalized Singleton bound [57].
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random linear codes list-decodable to radius p =1 —-R —¢
was at least 22(1/9) [26, 56].4
e Do there exist any linear codes (even non-constructively)
over constant-sized (independent of n) alphabets that are
(1 -=R-¢0(1/¢))-list-decodable?
Using the same framework as the proof of Theorem 1.3, we answer
both questions affirmatively. We show that, with high probability,
random linear codes approach the generalized Singleton bound,
and thus capacity, with alphabet size close to the optimal.

THEOREM 1.3. ForallL > 1,¢ € (0,1), a random linear code
over alphabet size q > 210L/e gnd n sufficiently large is with high
probability (%(1 — R — ¢), L)-average-radius-list-decodable.

Taking L = O(1/¢), we get that random linear codes achieve
capacity with optimal list size O(1/¢) and near-optimal alphabet
size 20(1/¢%)

COROLLARY 1.4. For all ¢ > 0, a random linear code over alphabet
sizeq > 200/¢") gnd n sufficiently large is with high probability
(1 — R —¢,0(1/¢))-average-radius-list-decodable.

The techniques developed in this work for the proof of Theo-
rem 1.1 are important for obtaining the strong alphabet size guaran-
tees of Theorem 1.3. One could also have adapted the proof of Guo
and Zhang, but doing so in the same natural way would yield an al-
phabet size of O(n). Further, our use of the hypergraph machinery,
which gives a secondary improvement over [25] in constant factor
in the alphabet size in Corollary 1.2, gives the primary improvement
in the alphabet size in Corollary 1.4 from 20(1/) 4 20(1/€%)

As the proof of Theorem 1.3 is very similar to the proof of Theo-
rem 1.1, we focus on Theorem 1.1 for brevity and clarity of presen-
tation in Section 2 and Section 3 and refer the reader to Section 4
of the full version of our work [1] for the proof of Theorem 1.3.

Alphabet Size Lower Bounds. Above, we saw that random linear
codes achieve list-decoding capacity with optimal list-size and near-
optimal alphabet size. A natural question, asked by Guo and Zhang,
is how large the alphabet size needs to be for Reed-Solomon codes
to achieve capacity. We showed thatq > n- 2001/€") suffices. By the
list-decoding capacity theorem [15, 62], having an exponential-type
dependence on 1/¢ for subconstant ¢ < O(1/log n) is necessary.

For approaching capacity with constant ¢, Ben-Sasson, Kopparty,
and Radhakrishnan [3] showed that, for any ¢ > 1, there exist
full-length Reed—Solomon codes that are not list-decodable much
beyond the Johnson bound with list-sizes O(n¢). Thus in order
to achieve list-decoding capacity, one needs g > n in some cases.
However, while full-length Reed—Solomon codes could not achieve
capacity, perhaps it was possible that Reed—Solomon codes over
field size, say q¢ = 2n or even q = (1 +y)n, could achieve capacity in
all parameter settings. We observe that, as a corollary of [3], such a
strong guarantee is not possible. We show that, for any ¢ > 1, there
exist a constant rate R = R(c) > 0 and infinitely many field sizes
q such that all Reed-Solomon codes of length n > g/c and rate R
over Fy are not list-decodable to capacity 1 — R with list size n°.
Due to space constraints, we omit the proof and refer the reader to
Appendix B of the full version of this work [1].

4[26] appears to give a list-size bound of O(q®R!) /¢), and [56] appears to give a list
size bound that is at least q°¢° (/%) and we need q = 220/9)
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PROPOSITION 1.5. Let § = 270 for some integer b > 3. There
exist infinitely many q such that any Reed—Solomon code of length
n > 46%%°q and rate § is not (1 — 26, n@0g(1/9))y _ist-decodable.

1.2 Follow-up Work

The techniques in our paper have already been influential. In follow-
up work, Brakensiek, Dhar, Gopi, and Zhang [7] used our argument
to prove that Algebraic Geometry (AG) codes achieve list-decoding
capacity over constant-sized alphbaets. They prove this by combin-
ing our techniques with a generalized GM-MDS theorem, proved
by Brakensiek, Dhar, Gopi [5].

2 PRELIMINARIES

2.1 Basic Notation

For positive integers t, let [¢] denote the set {1, 2,...,t}. The Ham-
ming distance d(x, y) between two vectors x,y € Fg is the number
of indices i where x; # y;. For a finite field Fy, we follow the stan-
dard notation that Fy[X1, ..., X,] denotes the ring of multivariate
polynomials with variables X, ..., Xy over Fg, and Fg(Xi, ..., Xn)
denotes the field of fractions of the polynomial ring Fg[X1, ..., Xx].
By abuse of notation, we let X<; or X|;) to denote the sequence
X1,...,Xi, and we let, for example, X<; = a<; to denote X
., X; = aj. Given a matrix M over the field of fractions
L ap € Fg, let M(X<; =
., Xn) obtained by set-

0(1,X2 =a,..
IFq(Xl, ...,Xp) and field elements ay, ..
a<;) denote the matrix over Fg (Xj+1, Xi+2, . -
ting X<; = a<; in M.

2.2 Hypergraphs and Connectivity

In this work, we maintain a hypergraph perspective of the list-
decoding problem, which was introduced in [24]. We describe a
bad list-decoding instance with a hypergraph where the L + 1 bad
codewords identify the vertices and the n evaluation points identify
the hyperedges (Definition 2.1). While prior works described a bad
list-decoding instance by L + 1 sets indicating the agreements of
the codewords with the received word, this hypergraph perspective
gives us several advantages:

(1) The constraints imposed by a bad list-decoding configuration
yield a hypergraph that is weakly-partition-connected. This is
a natural notion of hypergraph connectivity, which is well-
studied in combinatorics [21, 22, 43] and optimization [11,
19, 20, 41], and which generalizes a well-known notion (k-
partition-connectivity) for graphs [50, 60].> This connection
allows us to have more compact notation, definitions, and
lemma statements.

(2) Because we work with weakly-partition-connected hyper-
graphs, we save a factor of L in Lemma 2.10 compared to
the analogous lemma in [25]. This allows us to improve the
constant factor in alphabet size for Reed—Solomon codes
from 20(L*/¢) in [25] to 20(L/€) in Theorem 1.1.

The notion of weakly-partition-connected sits between two other well-studied no-
tions: k-partition-connected implies k-weakly-partition-connected implies k-edge-
connected [43]. Each of these three notions generalizes an analogous notion on graphs.
On graphs, k-partition-connected and k-weakly-partition-connected are equivalent.
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(3) For similar reasons, for random linear codes, the hypergraph
perspective saves a factor of L in the alphabet size exponent,
improving from 20(L*/e) to 20(L/€) jn Theorem 1.3.

(4) With the hypergraph perspective, we can give a new presen-
tation of the results in [9] and more directly connect the list-
decoding problem to the GM-MDS theorem [13, 47, 63], as
the heavy-lifting in the combinatorics is done using known
results on hypergraph orientations. This is done in Appendix
A of the full version of our work [1].

A hypergraph H = (V, &) is given by a set of vertices V and a set

& of (hyper)edges, which are subsets of the vertices V. In this work,
all hypergraphs have labeled edges, meaning we enumerate our
edges e; by distinct indices i from some set, typically [n], in which
case we may also think of & as a tuple (ey, .. ., ep). Throughout this
paper, the vertex set V is typically [¢] for some positive integer ¢.

The weight of a hyperedge e is wt(e) def max(0, |e] — 1), and the
weight of a set of hyperedges & is simply wt(E) def Decs Wt(e).

Figure 1: Example edges from an agreement hypergraph
H = ([7],(e1,...,en)) (Definition 2.1) arising from a bad
list-decoding configuration with polynomials £, ..., f(7) ¢
Fq[X], received word y € FZ, and evaluation points a3, .. ., ap.
In the figure, e, = {1,2,4} means () (a,_5) = f? (ap_p) =
f(4) (an-2) = yn-2, en-1 = {56} means f(s) (an-1) =
f(6) (@n-1) = yn-1, and e, = {7} means f(7)(an) = yYn.

All hypergraphs that we consider in this work are agreement
hypergraphs for a bad list-decoding configuration. See Figure 1 for
an illustration.

Definition 2.1 (Agreement Hypergraph). Given vectors y, c® .
c® e g, the agreement hypergraph has a vertex set [t] and a tuple

of n hyperedges (ey, ..., en) where e; def {jelt]: c{ =y}

A key property of hypergraphs that we are concerned with is
weak-partition-connectivity.

Definition 2.2 (Weak Partition Connectivity). A hypergraph H =
([t], &) is k-weakly-partition-connected if, for every partition # of
the set of vertices [¢],

Z max{|P(e)| - 1,0} > k(|P| - 1)

ecE

()
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where |P| is the number of parts of the partition, and | (e)| is the
number of parts of the partition that edge e intersects.

To give some intuition for weak partition connectivity, we state
two of its combinatorial implications. First, if a graph is k-weakly-
partition-connected, then it is k-edge-connected [43], which, by the
Hypergraph Menger’s (Max-Flow-Min-Cut) theorem [43, Theorem
1.11], equivalently means that every pair of vertices has k edge-
disjoint (hyper)paths between them.® Second, suppose we replace
every hyperedge e with an arbitrary spanning tree of its vertices
(which we effectively do in Definition 2.5). The resulting (non-
hyper)graph is k-partition-connected,” which, by the Nash-Williams-
Tutte Tree-Packing theorem [50, 60], equivalently means there are
k edge-disjoint spanning trees (this connection was used in [24]).

The reason we consider weak-partition-connectivity is that a bad
list-decoding configuration yields a k-weakly-partition-connected
agreement hypergraph.

LEMMA 2.3 (BAD LIST GIVES k-WEAKLY-PARTITION-CONNECTED
HYPERGRAPH. SEE ALSO LEMMA 7.4 OF [24]). Suppose that vectors
Y, c(l), ., ¢ € B" are such that the average Hamming distance
fromy to D T s ar most ﬁ (n—k). That s, Zf:ll d(y, ¢y
< L(n—k). Then, for some subset ] C [L+1] with|]J| > 2, the agree-
ment hypergraph of (y, cD:je))is k-weakly-partition-connected.

Lemma 2.3 follows from the following result about weakly-
particion-connected hypergraphs

LeEmmA 2.4. Let H = (V,E) be a hypergraph with at least two
vertices and with total edge weight Y ,cg wt(e) > k- (|V| - 1), for
some positive integer k. Then there exists a subset V' C V of at least
two vertices such that the hypergraph H' = (V/,{V' Ne:ec &E}) is
k-weakly-partition-connected.

PROOF. Let V’ be an inclusion-minimal subset V/ C [L+1] with
|V’ = 2 such that

Z wt(enV’) > (V'] - k.

ecE

®)

By assumption, V’ = [L + 1] satisfies (3), so V' exists (note that
singleton subsets of [L + 1] satisfy (3) with equality). Let H =
(V’, &) be the hypergraph with edge set &’ = {V' Ne:e € E}. By
minimality of V’, for all V'’ € V', we have Y, ,cg wt(e N V’’) <
(IV””|-1)k.Now, consider a non-trivial partition # = PyLi- - -LIPp of
V'’ where P; # V' for all i € [p] (as otherwise (2) trivially follows).
We have

> max{|P(e)| - 1,0}

ec&’
P
= Z (—1+Zl[|emP[|>0])
ec& e+0 =1
P
= > (<|e|—1)—Z<|enpz|—1[|empf|>01>)
ec& e+ =1

®In general the converse is not true.
"In (non-hyper)graphs, k-partition-connectivity and k-weak-partition-connectivity
are equivalent.
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2

)4
max(le| — 1,0) — Zmax(|e N Pyl —1,0)
=1

ecE e+D
P
= Z wt(e) — Z Z wt(e N Py)
ec&’ t=1ec&’

v

p
(V' =Dk =" (IPel = Dk
=1

=(p—-Dk=(P|-Dk. 4)

This holds for all partitions $ of V’, so H’ is k-weakly-partition-
connected. O

Proor oF LEMMA 2.3. Consider the agreement hypergraph ([L+
1],&) of y, (c(l), e c(L+l)). The total edge weight is

Z wt(e) > —n+ Z le]

ec& ecE

L+1

-n+ Z (n- d(y,c(j))) > Lk.
j=1

(©)

By Lemma 2.4, there exists a subset ] C [L + 1] of at least two
vertices such that H’ = (J,{J Ne : e € E}) — which is exactly the
agreement hypergraph of (y,¢/) : j € J) — is k-weakly-partition-
connected. O

REMARK 1. The condition |]J| > 2 is needed later so that the reduced
intersection matrix (defined below) is not a 0 X 0 matrix, in which
case the matrix does not help establish list-decodability.

2.3 Reduced Intersection Matrices: Definition
and Example

As in [25], we work with the reduced intersection matrix, though

our proof should work essentially the same with a different matrix

called the (non-reduced) intersection matrix, which was considered
in [9, 24, 57].

Definition 2.5 (Reduced intersection matrix). The reduced inter-
section matrix RIMy o 41 associated with a prime power g, degree k,
and a hypergraph H = ([t], (e1, ..., en)) is a wt(E) X (¢t — 1)k ma-
trix over the field of fractions Fq (Xi,...,Xn). For each hyperedge
e; with vertices j1 < jz < -+ < ji¢,|, we add wt(e;) = |ej| — 1 rows
to RIMgy. Foru =2,...,|e;|, we add arow r;, = (r(l), . ..,r(t_l))
of length (t — 1)k defined as follows:

e If j = ji, then r() = [1,X,-,Xl.2,...,Xl.k_1]
o If j = j, and j, # ¢, then r() = —[I,X,-,Xliz,...,Xik_l]
e Otherwise, r() = ok,

We omit k and g and write RIM¢y as they are typically understood.
Example 2.6. Recall the example edges of the agreement hyper-

graph H = ([7], (eq, ..., en)) in Figure 1. The edges ep—2, en—1, €n
from H contribute the following length (¢ — 1)k rows to its reduced
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intersection matrix:

Vo =Vp—a 0O 0 0 0
Va2 0 0 —Vyo 0 0 6)
0 0 0 0 Vet —Vn—

Here V; = [l,Xi,XiZ, . ..,Xik’l] is a “Vandermonde row”, and 0
denotes the length-k vector [0,0,...,0]. Note that each edge e
contributes |e| — 1 rows to the agreement matrix, and in particular
en does not contribute any rows.

Reduced intersection matrices arise by encoding all agreements
from a bad list-decoding configuration into linear constraints on the
message symbols (the polynomial coefficients). These constraints
are placed into one matrix that we call the reduced intersection ma-
trix. The following lemma implies that, if every reduced intersection
matrix arising from a possible bad list-decoding configuration has
full column rank when X; = ay,...,X, = ap, the corresponding
Reed-Solomon code is list-decodable.

LEMMA 2.7 (RIM OF AGREEMENT HYPERGRAPHS ARE NOT FULL COL-
UMN RANK). LetH be an agreement hypergraph for (y, ¢, ey,
where (/) € F" are codewords of RS i (a1, ..., an), not all equal to
each other. Then the reduced intersection matrix RIMa((X[n] = @[5])
does not have full column rank.

Proor. By definition,

f(l) _f(t)

RIMg((X[n) = a[n]) - ()

(=1 _ ¢

where f(l), .. .,f(t) € Fg are the vectors of coefficients of the

polynomials that generate codewords W, e e Fg. Since
these vectors are not all equal to each other, RIM/ (X[} = @[p])
does not have full column rank. |

REMARK 2 (SYMMETRIES OF REDUCED INTERSECTION MATRICES).
From this definition, it should be clear that we can divide the variables
X1, ..., Xy into at most 2F classes such that variables in the same
class are exchangeable with respect to the reduced intersection matrix
RIMqy: ife; and ey are the same hyperedge, then swapping X; and Xy
yields the same reduced intersection matrix (up to row permutations).
This observation, which was alluded to in [25], turns out to be crucial
in our argument that allows us to improve the alphabet size in [25]
from quadratic to linear.

REMARK 3. The pairwise distinctness requirement in the defini-
tion of average-radius-list-decodability (see Section 1.1) is nonetheless
crucial in the proof of Theorem 1.1, despite the weaker requirement
in Lemma 2.7. That is because we will eventually apply Lemma 2.7
on the subcollection of codewords given from Lemma 2.3, which can
potentially be arbitrary. The guarantee that this subcollection of code-
words is not all equal to each other would then follow from pairwise
distinctness of the codewords in the original list.

2.4 Reduced Intersection Matrices: Full
Column Rank

The following theorem shows that reduced intersection matrices of
k-weakly-partition-connected hypergraphs are nonsingular when
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viewed as a matrix over Fq (X1, ..., Xn). This was essentially conjec-
tured by Shangguan and Tamo [57] and essentially established by
Brakensiek, Gopi, and Makam [9], who conjectured and showed, re-
spectively, nonsingularity of the (non-reduced) intersection matrix
under similar conditions. By the same union bound argument as
in [57, Theorem 5.8], Theorem 2.8 already implies list-decodability
of Reed-Solomon codes up to the generalized Singleton bound
over exponentially large fields sizes, which is [9, Theorem 1.5]. For
completeness, and to demonstrate how the hypergraph perspective
more directly connects the list-decoding problem to the GM-MDS
theorem, we include a proof of Theorem 2.8 in Appendix A of the
full version of this work [1].

THEOREM 2.8 (FULL COLUMN RANK. IMPLICIT FROM THEOREM A.2
OF [9]). Letn and k be positive integers and Fy be a finite field. Let
H be a k-weakly-partition-connected hypergraph with n hyperedges
and at least 2 vertices. Then RIMqy has full column rank over the field
Fg(X1, - Xn).

REMARK 4. We note that, [9] assumes throughout their paper that
the alphabet size q is sufficiently large, but Theorem 2.8 follows from
the weaker “q sufficiently large” version: For any fixed field size q, take
Q to be a sufficiently large power of q. Then, by the “q sufficiently large”
version of Theorem 2.8, matrix RIMg ¢4 has full column rank over the
fieldFo (X1, ..., Xy,). Hence, the determinant of some square full-rank
submatrix of RIMg ¢y is a nonzero polynomial in Fo[Xi, ..., Xn].
The entries of RIMg ¢ can all be viewed as polynomials over Fq, so
the corresponding full-rank submatrix of RIMy ¢ has a determinant
that is a nonzero polynomial in Fg[X, ..., Xn] — symbolically, the
determinants are the same polynomials, as Fq and Fo have the same
characteristic. Hence, the matrix RIMq’(H has full column rank over
the field Fq(X1, ..., Xn).

2.5 Reduced Intersection Matrix: Row
Deletions

As in [25], we consider row deletions from the reduced intersection
matrix. The goal of this section is to establish Lemma 2.10, that the
full-column-rank-ness of reduced intersection matrices are robust
to row deletions.

Definition 2.9 (Row deletion of reduced intersection matrix). Given
a hypergraph H = ([t], (e1,...,en)) and set B C [n], define RIM],‘Z
to be the submatrix of RIM¢, obtained by deleting all rows contain-
ing a variable X; with i € B.

The next lemma appears in a weaker form in [25]. It roughly
says that, given a reduced intersection matrix RIM¢y with some
constant factor “slack” in the combinatorial constraints, we can
omit a constant fraction of the rows without compromising the full-
column-rank-ness of the matrix. Our version of this lemma saves
roughly a factor of t ~ L compared to the analogous lemma [25,
Lemma 3.11]. The reason is that the k-weakly-partition-connected
condition is more robust to these row deletions (by a factor of
roughly t) than the condition in [25]. As such, our proof is also
more direct.

LEMMA 2.10 (ROBUSTNESS TO DELETIONS. SIMILAR TO LEMMA 3.11
oF [25]). Let H = ([t],E) be a (k + en)-weakly-partition-connected
hypergraph with t > 2. For all sets B C [n] with |B| < en, we have
that RIM% is nonempty and has full column rank.
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Proor. By definition of RIM¢y, the matrix with row deletions
RIMI;{ is the matrix RIMy, where H’ = ([t], &’) is the hypergraph
obtained from H by deleting e; for i € B. By Theorem 2.8, it suffices
to prove that H’ is k-weakly-partition connected. Indeed, consider
any partition P of [t]. We have

> max{|P(e)| - 1,0}

ec&’
= > max{|P(e)| - 1,0} - ) max{|P(e)| - 1,0}
ie[n] i€eB
2 (k+en)- (1P =1) = [B] - (1P| - 1)
=k-(IPl-1), ®)

as desired. The first inequality holds because H is (k + en)-weakly-
partition-connected, and, trivially, any edge e; touches at most |P|
parts of . O

3 PROOF OF LIST-DECODABILITY WITH
LINEAR-SIZED ALPHABETS

3.1 Overview of the Proof

By Lemma 2.7 and Lemma 2.3, every bad list-decoding configura-
tion admits a weakly-partition-connected agreement hypergraph
whose reduced intersection matrix does not have full column rank.
Thus, to prove Theorem 1.1, it suffices to show that, with high prob-
ability, every such reduced intersection matrix has full column rank.
The main technical lemma for this section is the one stated below.
Our main result, Theorem 1.1, follows by applying Lemma 2.3 and
Lemma 2.7 with Lemma 3.1, and taking a union bound over all
ZI;:ZI 2" possible agreement hypergraphs.

LEmMMA 3.1. Let k be a positive integer and € > 0. For any (k +en)-
weakly-partition-connected hypergraph H = ([t], (e1,...,en)) with
t > 2, let Bqy denote the event that the matrix RIMg(X[p] = a[5])
does not have full full column rank. Forr = | en/2], we have

By < ( )ztr : (M)r ,

q-n
At a high level, the proof of Lemma 3.1 follows the same outline
as [25]. For every tuple of evaluation points (a1, ...,an) € FZ for
which RIMg does not have full column rank, we show that there
is a certificate (i1, ...,ir) € [n]" of distinct indices (Lemma 3.8),
which intuitively “attests” to the failure of the matrix RIM¢y to be
full column rank. We then show that, for any certificate (iy, ..., ir),
the probability that (1, ..., a,) has certificate (iy, ..., i) is expo-
nentially small. (More precisely, it will at most be ((tq__—ln)k)’ . See
Corollary 3.12). We then show that there are not too many certifi-
cates (Corollary 3.10), and then union bound over the number of
possible certificates to obtain the desired result (Lemma 3.1).

Our argument differs from [25] in how we choose our certifi-
cates. The argument of [25] allowed for up to n" certificates. Our
argument instead only needs ('rl)Zt " many certificates, which is
much smaller when r = Q(n) (the parameter regime of interest
here) and overall allows us to save a factor of n in the alphabet
size. Our savings comes from leveraging that there are at most 2¢
different “types” of hyperedges (see Remark 2), and thus at most 2¢
different types of variables X; in the reduced intersection matrix

Pr "

ay,....an~Fq distinct

©

r
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RIM¢y. This observation was alluded to in [25].8 With this observa-
tion in mind, we assume, without loss of generality, that the edges
of H are ordered by their respective type (we can relabel the edges
of H, which effectively permutes the rows of RIM¢y).

Our method of generating a certificate (iy, ..., i) for the evalua-
tion sequence (a1, . .., an) (Algorithm 2) is similar to that of [25] at
a high level—with each certificate iy, . . ., i, we associate a sequence
of (t—1)kx (t—1)k submatrices My, . .., My of RIM¢y (Algorithm 1)
that are entirely specified by iy, ..., i, as follows: since evaluating
X[n] = @[n] forces RIMgy to not be full rank, then so will all of its
(t — 1)k x (¢t — 1)k submatrices. Thus if we sequentially ’reveal’
X1 = a1,X2 = az,..., then at some point, M; becomes singular
exactly when we set X; ;= g — in fact, i; is defined as such, so that
we select My, i1, My, io, . . ., in that order, but we emphasize that M;
can be computed from iy, . . ., ij—; without knowing a1, ..., an. Con-
ditioned on M; being non-singular with X1 = ay, .. S Xi-1 = aij-1,
the probability that M; becomes singular when setting X;; = a;;
is at most %: ai; is uniformly random over at least g — n field
elements, and the degree of X; ; in the determinant of M; is at most
(t — 1)k (and the determinant is nonzero by definition). Running
conditional probabilities in the correct order, we conclude that the
probability that a particular certificate iy, ..., i, is generated is at
(tq_fln)k)r,just as in [25].

Whereas [25] pick any matrix M; that is obtained after remov-
ing the variables Xj,, .. 5 Xi; oy, we do a more deliberate choice of
matrices by leveraging the symmetries of RIM¢/ (Remark 2). First,
we ensure that we can keep a “bank” of Q;(r) unused variables
of each of the O;(1) types. Then, starting with a full column rank
submatrix M of RIM¢, devoid of all variables in the “bank,” we
start sequentially applying the evaluations X; = a1, X2 = az,.. ..
Whenever M(X<;, = a<;,) turns singular, we find that the eval-
uation X;, = ¢;, is what ’caused’ it to become singular. We then
go to the “bank” to find a variable Xy of the same type as X;, and

most (

“re-indeterminate” M by replacing all instances of X;, in M with
Xl-;. That way, we ensure that M is, in a sense, “reused.” Further-
1 > i1, so that the matrix M(X<;, = a<;,) is now
nonsingular, so we can keep going. Of course, if we end up reach-
ing the end (i.e. M(X|,] = @[p]) is full column rank), then in fact,
RIM3((X[n] = @[n)) is full column rank, and so the evaluations
(a1, ...,an) were ‘good’ after all.

Otherwise, if the evaluations (a1, ..., an) were ‘bad’, then the
submatrix M couldn’t have reached the end, and that can only
happen if some specific type was completely exhausted from the
bank. However, given the size of our initial bank, that must have
meant that M was “re-indeterminated” at least Q;(r) times. When
that happens, we collect the indices iy, . . ., ip that we gathered from
this round, remove them from RIM¢y, and repeat the process again
with a refreshed bank. Since we only need r indices, then we end
up doing at most O; (1) rounds. Because each round yields a strictly
increasing sequence of indices of length at least Q;(r), then we up
getting a certificate consisting of at most O;(1) strictly increasing
runs of total length r, of which there are at most ('rl) -O¢(D)".

more, we ensure i

8Guo and Zhang [25] write “It is possible that achieving an alphabet size linear in n
would require establishing and exploiting other properties of intersection matrices or
reduced intersection matrices, such as an appropriate notion of exchangeability” We
found this prediction to be insightful and true.
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To be more concrete, when we generate the submatrix M = Mj,
we ensure that any variable appearing in M; has the same type as
Q;(r) variables that are not in M; (but still in RIM¢y). This creates a
“bank” of variables of each type. Then, if X<;, = a<;, was the point
that made M; singular, we can get M by replacing all copies of
Xi, with some X/ that is of the same type and in the “bank.” Since
variables i1 and i] are of the same type, they have analogous rows
in the reduced intersection matrix RIM¢y, so this new matrix M is
still a submatrix of RIM¢y. Therefore, we can pick up where we left
off with M; but with M, instead. That is, M, will in fact be full rank
when we apply the evaluations X<;, = a<;,. Thus the next index
iz on which Mj turns singular will be strictly greater than i;. We
then repeat the process in My, replacing X;, with some Xi that is
in the “bank” and of the same type, getting M3, and so on. We can
continue this process for Q;(r) steps because of the size of the bank
of each type, so we get an increasing run of length Q;(r) in our
certificate. After we run out of some type in our bank, we remove
the used indices iy, . . ., iy from RIM¢; and repeat the process again
with a refreshed bank. This continues for O;(1) times only, as we
only need r indices in the end.

We now finish the proof of Theorem 1.1, assuming Lemma 3.1.
The rest of this section is devoted to proving Lemma 3.1.

PROOF OF THEOREM 1.1, ASSUMING LEMMA 3.1. By Lemma 2.3, if
the code RS, (a1, ..., an) isnot (# (1-R-¢), L) average-radius
list-decodable, then there exists a vector y and pairwise distinct
codewords ¢V, ..., ¢ with t > 2 such that the agreement hy-
pergraph H = ([t],8) is (R + €)n = (k + en)-weakly-partition-
connected. By Lemma 2.7, the matrix RIM¢/(X[,] = @[p]) is not
full column rank. That is, if we let B¢, denote the event that the
matrix RIMgy(X[n] = @[,]) does not have full full column rank,
then &gy occurs. Now, the number of possible agreement hyper-
graphs H is at most Zf:zl 2tn < 2(L+2)n Thys by the union bound
over possible agreement hypergraphs H with Lemma 3.1, we have,
forr =],

L .
af[’:] [RSn!k(al, ...,Qn) not (m(l -R- 5),L) hst—decodable]

< Pr [3 (k + en)-w.p.c. hypergraph H s.t. B¢y occurs]
[n]

< 2(L+2)" max Pr [B
(k+en)-wpe. H  An] 5]
< oL (”)2(L+1>r (i)r
r q—n
< [oW+2n/r | en ,2L+1i ' < o7Ln (10)
- r q —_ n - ’
as desired. Here, we used thatg=n +k - 210L/e, o

3.2 Setup for Proof of Lemma 3.1

We now devote the rest of this Section to proving Lemma 3.1.

Types. For a hypergraph H = ([t], (e1,...,en)), the type of an
index i (or, by abuse of notation, the type of the variable Xj, or the
edge e;) is simply the set e; C [t]. There are 2 types, and by abuse
of notation, we identify the types by the numbers 1,2, ..., 2% in an
arbitrary fixed order with a bijection 7 : (subsets of [¢]) — [2f].
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Algorithm 1: GetMatrixSequence

Input: indices iy,...,ij-1 € [n] for some j > 1.

Output: My, ..., Mj, which are (t — 1)k X (t — 1)k matrices
over Fq(Xl,Xg,...,Xn).
1 B—0,iy «—1,£f «—L
2 fort=1,...,jdo
// Mp depends only on iy,...,ip—1
3 if £ > 1 then

// Fetch new index from bank B
7 « the type of ip_;

5 s « number of indices among iz, igy+1, . - ., ie—1 that
are type
6 i;_, « the s-th smallest element of B that has type r

if i;_, is defined then
Mp « the matrix obtained from M,_; by
replacing all copies of X;,_, with Xi/[_l
if M not yet defined then

// Refresh bank B
B0
forr=1,...,2¢ do
B«— BU
{top |r/2!| type r indices in [n] \ {i1,...,ip-1}}
(if there are less than | /2! | indices of type z,
then B contains all such indices)

10
11
12

13 Mp < lexicographically smallest nonsingular

(t — 1)k x (t — 1)k submatrix of RlMg_;J{il""’iH}

14 o <t // new refresh index

15

16 return M, ..., M;

We say a hypergraph is type-ordered if the hyperedges ey, ..., e,
are sorted according to their type: 7(e1) < 7(e2) < --- < 7(ep).
Since permuting the labels of the edges of H preserves the rank
of RIM¢y (it merely permutes the rows of RIM¢y), we can without
loss of generality assume in Lemma 3.1 that H is type-ordered.

Global variables. Throughout the rest of the section, we fix a
positive integer k, parameter ¢ > 0, and H = ([¢t], (e1,...,en)), a
type-ordered (k +¢en)-weakly-partition-connected hypergraph with
t > 2. We also fix

3.3 GetCertificate and GetMatrixSequence:
Basic Properties

&n

5 (11)

def \‘
r =

As mentioned at the beginning of this section, we design an algo-
rithm, Algorithm 2, that attempts to generate a certificate (iy, . .., i)
€ [n]” for evaluation points aj,...,a,. It uses Algorithm 1, a
helper function that generates the associated square submatrices
M, ..., My of RIMgy. Below, we establish some basic properties of
these algorithms.
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Algorithm 2: GetCertificate

Input: Evaluation points (ay, ..., an) € Ff]‘
Output: A “certificate” (iy,...,ir) € [n]".
1 forj=1,...,rdo
// My,...,Mj_1 stay the same, M; is now
defined
My, ..., Mj = GetMatrixSequence(iy,...,ij-1)
ij « smallest index i such that M;(X<; = a<;) is
singular
if ij not defined then
L return L

i)

o

return (iy, ..

First, we establish that the matrices outputted by the function
GetMatrixSequence are well-defined. After that, we show that
GetMatrixSequence is an “online” algorithm.

LEMMA 3.2 (OUTPUT IS WELL-DEFINED). For all sequence of indices
it,...,ij-1, if My, ..., Mj are the matrices outputted by the function
GetMatrixSequence(iy,...,ij-1), then My, ..., Mj are well-defined.

Proor. If £ is a refresh index, then we have |BU {iy, ..., ip—1}| <
|Bl +r < 2r < en, so by Lemma 2.10, RIMBY et} 4 nonempty
and has full column rank. Thus M, exists in Line 13. If £ is not a
refresh index, M, is always well-defined by definition. O

LEmMA 3.3 (ONLINE). Furthermore, GetMatrixSequence is a de-
terministic function of i1, . . ., ij_1, and it computes My “online’, mean-
ing My depends only on iy, ...,ip—1 forallt = 1,...,j (and M; is
always the same matrix). In particular, GetMatrixSequence(iy, ...,
ij_1) is a prefix of GetMatrixSequence(iy, . . ., i;).

ProoF. By definition and Lemma 3.2. O

Definition 3.4 (Refresh index). In GetMatrixSequence, in the
outer loop over ¢, we say a refresh index is an index ¢ obtained
at Line 14 (i.e. when M is defined on Line 13). For example, £ =1
is a refresh index.

Our first lemma shows that the new indices we are receiving
from GetMatrixSequence are in fact new.

LEmMA 3.5 (NEW VARIABLE). InGetMatrixSequence, in the outer
loop iteration over ¢ at Line 2, if we reach Line 8 of the function
GetMatrixSequence, variable X,v{_1 does not appear in My,, Mg 11,
...s M¢—1, where € is the largest refresh index less than {.

ProoF. Let B be the set defined in Line 12 at iteration £. In
iterations ¢’ = £y, £y + 1,..., ¢, the set B is the same, and it',_1 is in
this set B by definition. Thus, the variable X, ~does not appear in
M;, by definition. For ¢" = £, &+ 1,..., ¢, the (z, s) pairs generated
at Line 4 and Line 5 are pairwise distinct, so X,-/[ _, isnot added to My

for¢’ =6 +1,...,£—1and thus is not in Mg, Mg41,...,Mp—1. O
To show that the probability of a particular certificate (iy, ..., ir)
is small (Lemma 3.11, Corollary 3.12), we crucially need that iy, . . ., iy

are pairwise distinct. The next lemma guarantees that.
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LEMMA 3.6 (DISTINCT INDICES). For any sequence of evaluation
points (a1, ..., an) € FZ, the output of GetCertificate(ay, ..., an)
is a sequence (i1, ..., i) € [n]" of pairwise distinct indices.

Proor. By definition of iy at Line 3 of GetCertificate, variable
X;, must be in My, so it suffices to show that M, never contains any
variable X; for i € {iy,...,ip—1}. We induct on £. If £ is a refresh
index, this is true by definition. If not, let £ be the largest refresh
index less than ¢. By induction, iy, . .., i;—2 are not in Mp_1, so we
just need to show i;_l (the index replacing i1 in M, at Line 8) is
not any of iy, ..., ig—1. None of iy, . . ., ig—1 are in B by definition, so
i{’,_1 cannot be any of them. i{’,_1 isnotany of i for ¢’ = y,...,£—1,
because X;,, is in My, but Xl-/[_1 is not, by Lemma 3.5 . O

3.4 Bad Evaluation Points Admit Certificates

Here, we establish Lemma 3.8, that if some evaluation points make
RIMgy not full column rank, then GetCertificate outputs a cer-
tificate. First, in Lemma 3.7 we justify our matrix constructions,
showing that the matrices in GetMatrixSequence are in fact sub-
matrices of RIM¢y. Then in Lemma 3.8, we show that any tuple of
bad evaluation points admits a certificate.

LEMMA 3.7 (GetMatrixSequence GIVES SUBMATRICES OF RIMq¢y).
For all sequence of indices iy, .. .,ij-1, if My, ..., M; is the output of
GetMatrixSequence(iy,...,ij-1), then My, ..., M; are (t — 1)k x
(t — 1)k submatrices of RIMgy.

Proor. We proceed with inductionon ¢ = 1,..., j. First, if £ is
a refresh index, then M; is a submatrix of RIM¢; by definition. In
particular, M is a submatrix of RIMgy, so the base case holds. Now
suppose { is not a refresh index and M,_; is a submatrix of RIM¢y.
Matrix M, is defined by replacing all copies of X;,_, with Xy, - To
check that M, is a submatrix of RIM4y, it suffices to show that

(i) for each row of RIM¢y containing Xj, |, replacing all copies
of Xj,_, with Xi},l gives another row of RIM¢y, and
(ii) the variable Xi | does not appear in My_;.

The first item follows from the fact that indices ip—1 and it’,_1 are of
the same type, so (i) holds by definition of types and RIM ¢ (see also
Remark 2). The second item is Lemma 3.5. Thus, My is a submatrix
of RIMgy, completing the induction. O

LEMMA 3.8 (BAD EVALUATIONS POINTS ADMIT CERTIFICATES). If
(a1,...,an) € FZ are evaluation points such that RIMq;(X|p
a[pn]) does not have full column rank, GetCertificate(as,..., an)
returns a certificate (i1, ...,iy) € [n]" (rather than L).

PRroOF. Suppose for contradiction that GetCertificate returns
L at iteration j in the loop. Then there is no index i such that
M;j(X<i = ag;) is singular. In particular, M;(X[,] = @[p]) is non-
singular and thus has full column rank. By Lemma 3.7, M; is a sub-
matrix of RIM¢y, so we conclude RIM¢y has full column rank. O

3.5 Bounding the Number of Possible
Certificates

In this section, we upper bound the number of possible certificates.
The key step is proving the following certificate structural result.
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LEmMMA 3.9 (CERTIFICATE STRUCTURE). Given a sequence of eval-
uation points (ai, ..., 0n) € ]FZ such that RIMg((X[,] = a[)) is not
full column rank, the return value (i1, . .., i) = GetCertificate(a,
..., ay) satisfies ij—1 < ij for all but at most 2t values j=2,...,r.

Proor. Let (iy,...,Ir) be the return of GetCertificate, and
let My, ..., M, be the associated matrix sequence. By Lemma 3.3,
we have My,...,M; = GetMatrixSequence(iy,...,ij-1) for j =
1,...,r.Recall an index ¢ € [r] is a refresh index if My is defined on
Line 13 rather than Line 8. The lemma follows from two claims:

(1) If £ > 1is not a refresh index, then ip—; < ip.
(ii) Any two refresh indices differ by at least /2’

To see claim (i), let £ be the largest refresh index less than ¢. By
definition of a refresh index, the set B stays constant between when
Mg, is defined and when M, is defined. From the definition of i; at
Line 3 in GetCertificate, we know that

e For i < ip_1 the matrix Mp_1(X<; = @<;) is nonsingular.
e The matrix My (X<;, = a<;,) is singular.

Suppose for contradiction that iy < ip—;. (Note that ip—y # ir by
Lemma 3.6.) We contradict the first item by showing, using the
second item, that M;_1(X<;, = @<;,) is also singular. By the def-
inition of GetMatrixSequence, since f is not a refresh index, M,
is defined in Line 8. By construction of B and i;_,,
ii’,_1 > ip—1 > ip. Thus, not only is M, obtained from M,_; by re-
placing all copies of Xj, , with Xy, but M¢(X<;, = a<;,) is also

we know that

obtained by replacing all copies of X;,_, with Xy, inMp—y (X<i, =
@<i,) . Moreover, the variable X does not appear in M;—q by
Lemma 3.5. So we conclude that, as My (X<;, = a<;,) is singular, so
is Mp—1(X<i, = a<i,)-

Now we show claim (ii). Suppose £ and #; are consecutive refresh
indices. If a variable of type r appears in the matrix My, there
must be exactly |r/2?] indices of type 7 in B (if there were fewer,
then BU {iy, ..., ip—1} would contain all indices of type 7, and the
corresponding variables would not appear in RIMBY {its-te-s }). Let
7 be the type of index iy, 1. Since ¢ is a refresh index, the number
of indices of type T among ig), ig+1,...,iq—1 must therefore be
Lr/2t] + 1. In particular, this means ¢; — £ > |r/2f| +1 > r/2, as
desired. O

COROLLARY 3.10 (CERTIFICATE COUNT). The number of possible
outputs to GetCertificate is at most (})2'".

Proor. The certificate consists of r distinct indices of [n] by
Lemma 3.6. We can choose those in (1) ways. These indices are
distributed between at most 2 increasing runs by Lemma 3.9. We
can distribute these indices between the 2! increasing runs in at
most (2!)" ways. O

3.6 Bounding the Probability of One Certificate

The goal of this section is to establish Corollary 3.12, which states
that the probability of obtaining a particular certificate is at most
((tq__—lr)lk)r . The argument is implicit in [25], but we include a proof
for completeness.

LEMMA 3.11 (ImpLICIT IN [25]). Letiy,...,ir € [n] be pairwise
distinct indices, and My, ..., M, be (t — 1)k X (t — 1)k submatrices
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of RIMgy. Over randomly chosen pairwise distinct evaluation points
ai, ... on € By, define the following events for j = 1,...,r:
e Ej is the event that Mj(X<; = a<;) is non-singularVi < i;.
o Fj is the event that Mj(X<i; = axi;) is singular.

The probability that all the events hold is at most ((tq__—ln)k)r.

Proor. Note that the set of evaluation points ay,...,a, for
which events E; and F; occur depends only on M; and i;. Further-
more, each of the events E; and F; depends only on M;, i}, and the
evaluation points. Thus, by relabeling the index j, we may assume
without loss of generality that iy < i < -+ < i,. We emphasize
that we are not assuming that the output of GetCertificate sat-
isfies i1 < --- < i, (this is not true). We are instead just choosing
how we ’reveal’ our events E; and F;: starting with the smallest

index in iy, . . ., iy and ending with the largest index in it.
We have
_ . | AJ-1
Br [ (B A =11 2 |Ej A Bj| N2 (Ben P

.
J=1
I
J=1
Note that /\i_l(Eg A Fp) A Ej depends only on ay, ... ., &1, and

Fj depends only on ay, ..., i For any ay,..., ;-1 for which
/\é;l1 (E¢ A Fp) A Ej holds, we have that M;(X<i;-1 = a<j;—1) isa
(t=1)kx(t—1)k matrix in Fg(Xj;, Xj;+1, - . ., Xn) whose determinant
is a nonzero polynomial of degree at most (¢ — 1)k in each variable
(the determinant contains at most ¢ —1 rows including X;, , each time
with maximum degree k —1). In particular, at most (¢ — 1)k values of
a@j; can make the determinant zero since, viewing the determinant as
a polynomial in variables Xij+1, > Xn with coefficients in Fy [Xij ],
any single nonzero coefficient becomes zero on at most (¢t — 1)k
values of - Conditioned on aj, . . ., aj;—1, the field element aj; is
uniformly random over g — i; + 1 > g — n elements. Thus, we have,

for all ay, ..., @;;—1 such that Ai;ll (Ee A Fe) A Ej,

(t-1Dk
Pr |Fjla,...,ai-1| £ ——.
a;[ jla, . aip-1] -
Since Ey AF{ A--- ANEj—1 AFj—1 A Ej depends only on a<i;—1 and
F; depends only on a<;;, we have

<[]pr [F,-|A§jll (E[/\F()/\Ej] (12)
X[n] -

(13)

L -Dk
q—n

Pr [Fj| N (Ee AFe) A Ej] (14)
@[n] -

Combining with (12) gives the desired result. O
The key result for this section is a corollary of Lemma 3.11.

COROLLARY 3.12 (PROBABILITY OF ONE CERTFICIATE). For any
sequence iy, ...,i, € [n], over randomly chosen pairwise distinct
evaluation points a, . . ., an, we have

)r

(15)

Proor. By Lemma 3.6, we only need to consider pairwise distinct
indices iy, .. ., i, otherwise the probability is 0. Let My, ..., M, =
GetMatrixSequence(iy,. .., ir). By Lemma 3.7, matrices My, ..., M,

(t- 1)k

Pr[GetCertificate(ay,...,an) = (it,...,ir)] < (
g—n
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are all submatrices of RIM¢,. Thus, Lemma 3.11 applies. Let Ej, . . .,
E, Fy, ..
,0n) = (i1,...,ir), then the definition of ij in Line 3 of the func-
tion GetCertificate implies that events E; and F; both occur.
By Lemma 3.11, the probability that all E; and F; hold is at most

((tq__—lr)lk)r , hence the result. O

3.7 Finishing the Proof of Lemma 3.1

ProoF oF LEMMA 3.1. Recall (Section 3.2) that we fixed H to be
a type-ordered (k + en)-weakly-partition-connected hypergraph.
By Lemma 3.8, if the matrix RIM¢;(X[,;] = @[p]) does not have full
column rank, then GetCertificate(ay,...,ay) is some certificate
(i1,...,ir). The probability that GetCertificate(ay,...,an) =
(i1,...,1r) is at most ((tq__—ln)k)r by Corollary 3.12. By Corollary 3.10,
there are at most ()2
possible certificates gives the lemma.

certificates. Taking a union bound over
]
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