

1 **Flexural rigidity of hawkmoth antennae depends on the bending direction**

2 Adam Puchalski¹, Zoë McCarthy¹, Alexandre Varaschin Palaoro¹, Arthur A. Salamatini¹, Agnes
3 Nagy-Mehesz², Guzeliya Korneva², Charles E. Beard³, Jeffery Owens⁴, Peter H. Adler³ and
4 Konstantin G. Kornev¹

5 ¹Department of Materials Science and Engineering, Clemson University, Clemson, South
6 Carolina, USA, 29634. E-mail: kkornev@clemson.edu

7 ²Department of Bioengineering, Clemson University, Clemson, South Carolina USA, 29634

8 ³Department of Plant and Environmental Sciences, Clemson University, Clemson, South
9 Carolina USA, 29634

10 ⁴Air Force Civil Engineer Center, Tyndall Air Force Base, Florida

11 **Abstract**

12 To probe its environment, the flying insect controllably flexes, twists, and maneuvers its antennae
13 by coupling mechanical deformations with the sensory output. We question how the materials
14 properties of insect antennae could influence their performance. A comparative study was
15 conducted on four hawkmoth species: *Manduca sexta*, *Ceratomia catalpae*, *Manduca*
16 *quinquemaculata*, and *Xylophanes tersa*. The morphology of the antennae of three hawkmoths that
17 hover while feeding and one putatively non-nectar-feeding hawkmoth (*Ceratomia catalpa*) do not
18 fundamentally differ, and all the antennae are comb-like (i.e., pectinate), markedly in males but
19 weakly in females. Applying different weights to the free end of extracted cantilevered antennae,
20 we discovered anisotropy in flexural rigidity when the antenna is forced to bend dorsally versus
21 ventrally. The flexural rigidity of male antennae was less than that of females. Compared with the
22 hawkmoths that hover while feeding, *Ceratomia catalpae* has almost two orders of magnitude
23 lower flexural rigidity. Tensile tests showed that the stiffness of male and female antennae is
24 almost the same. Therefore, the differences in flexural rigidity are explained by the distinct shapes
25 of the antennal pectination. Like bristles in a comb, the pectinations provide extra rigidity to the
26 antenna. We discuss the biological implications of these discoveries in relation to the flight habits
27 of hawkmoths. Flexural anisotropy of antennae is expected in other groups of insects, but the
28 targeted outcome may differ. Our work offers promising new applications of shaped fibers as
29 mechanical sensors.

31 **1. Introduction**

32 Over millions of years of evolutionary history[1], insects developed unique fiber-based
33 devices—antennae—with built-in sensing, actuation, and analytical neural circuitry[2, 3] allowing
34 them to distinguish and decipher scents when searching for food or mates[2, 4-10], avoid obstacles
35 [11], detect air movements, and control flight[12-17]. Although olfactory behavior and
36 mechanisms of interactions of chemicals with the antennal sensilla and neural circuits have been
37 intensively studied [2, 4-8, 18-21], the effect of antennal positioning and active odor sampling has
38 only recently been recognized as an important behavioral feature [8, 22, 23].

39 The focus of previous studies has been mostly on the neuromechanics of olfaction where
40 different types of sensilla are the most important mediators coupling air flow and neural
41 circuitry[24, 25]. Flying insects, however, engage the entire antenna for mechanical sensing of the
42 environment. Experiments on antennal removal have become popular since the classic studies by
43 Johnson [26] in which bean aphid antennae, or parts of them, were amputated and replaced with
44 artificial antennae. Without antennae, the insect could not maintain flight or prevent crashing with
45 an obstacle. This conclusion was confirmed for locusts, cockroaches, hawkmoths, dragonflies, and
46 true flies[12, 13, 17, 26, 27], suggesting the importance of the antennal beam for insect survival.

47 Despite the importance of antennal flexibility [11-13, 24, 25, 28-30], the difference
48 between antennal behavior as a rigid rod or as a flexible beam is not fully appreciated in flight
49 neuromechanics[15, 25]. The rigid-rod model carries information about antennal direction with
50 respect to body direction [8, 15, 22, 23]. Within this model, the flying insect is assumed to sense
51 the torque exerted by the wind on the two basal segments of the antenna, the pedicel—scape pair.
52 For insects with short, stiff antennae much smaller than the insect body and forewing length, this
53 model could be sufficient to serve as the mechanical input for neuromechanical models of
54 environment sensing. The rigid-rod model, however, falls short when the antennae are long and
55 flexible, like those in hawkmoths. For these insects, the rigid-rod model may oversimplify sensory
56 cues because the torque on the pedicel—scape pair significantly depends on the entire antennal
57 profile. The insect probably analyzes prior information on the profiles of the bent and twisted
58 antennae under the wind load and rapidly relates it to the antennal profile at a given moment in
59 time. Only by integrating this information would the insect be able to evaluate the strength and

60 direction of the wind and make decisions on how and where to maneuver to maintain stable flight
61 [13, 17].

62 We investigate whether hawkmoths (family Sphingidae) could use specific morphological
63 properties of their antennae to probe the wind direction, not at the level of a single sensillum but
64 at the scale of the entire organism. At this scale, the antenna works as a mechanical beam and
65 hence its inherent bending properties become critical [31]. We conducted a comparative analysis
66 of the antennae of four hawkmoths (*Manduca sexta*, *Ceratomia catalpae*, *Manduca*
67 *quinquemaculata*, and *Xylophanes tersa*) and related the morphology to flexural properties. The
68 morphology of hawkmoth antennae is unique and differs between males and females[32-35].
69 *Ceratomia catalpae* can fly but has a short proboscis and putatively does not feed on floral nectar
70 as adults. The three other hawkmoths have long proboscises and vigorously hover during feeding.

71 2. Materials and Methods

72 2.1 Studied species and measurements

73 We studied four hawkmoth species: *Manduca sexta* (n = 13), *Ceratomia catalpae* (n = 4), *Manduca*
74 *quinquemaculata* (n = 3), and *Xylophanes tersa* (n = 3). *Manduca sexta* and *C. catalpae* were
75 reared in the laboratory, following our standard procedures[36]. We captured the two other
76 hawkmoths, *M. quinquemaculata* and *X. tersa*, using an aerial hand net in the South Carolina
77 Botanical Garden (Clemson University) from August to October 2022.

78 To measure the length and width of the antennae along with forewing length (a proxy for
79 the size of the moth), we photographed dried, spread individuals in the Clemson University
80 Arthropod Collection (CUAC). We imaged individual antennae, using a Canon EOS 7D camera
81 with a Canon MP-E 65-mm lens and Helicon Remote version 3.9.7W. The length of the antenna
82 was measured from the base of the scape to the tip of the terminal flagellomere. We used the
83 ‘segmented line’ in Fiji-ImageJ to measure antennae because it allowed us to evaluate not only
84 straight, but also curved structures (e.g., Fig. 2 f-m). We also divided the antenna into 5 sections:
85 “base”, “base-mid”, “mid”, “mid-tip”, and “tip” to represent five distances along the length. In
86 each of these sections, we measured the width of the dorsal side. These measurements allowed us
87 to infer the shape of the antenna along its entire length. We also measured forewing length as the
88 distance from the base of the forewing to its tip. We photographed at least 5 individuals of each

89 sex, except for *C. catalpae* females (n = 2) (total N = 37 individuals). We performed all
90 measurements in Fiji-ImageJ.

91

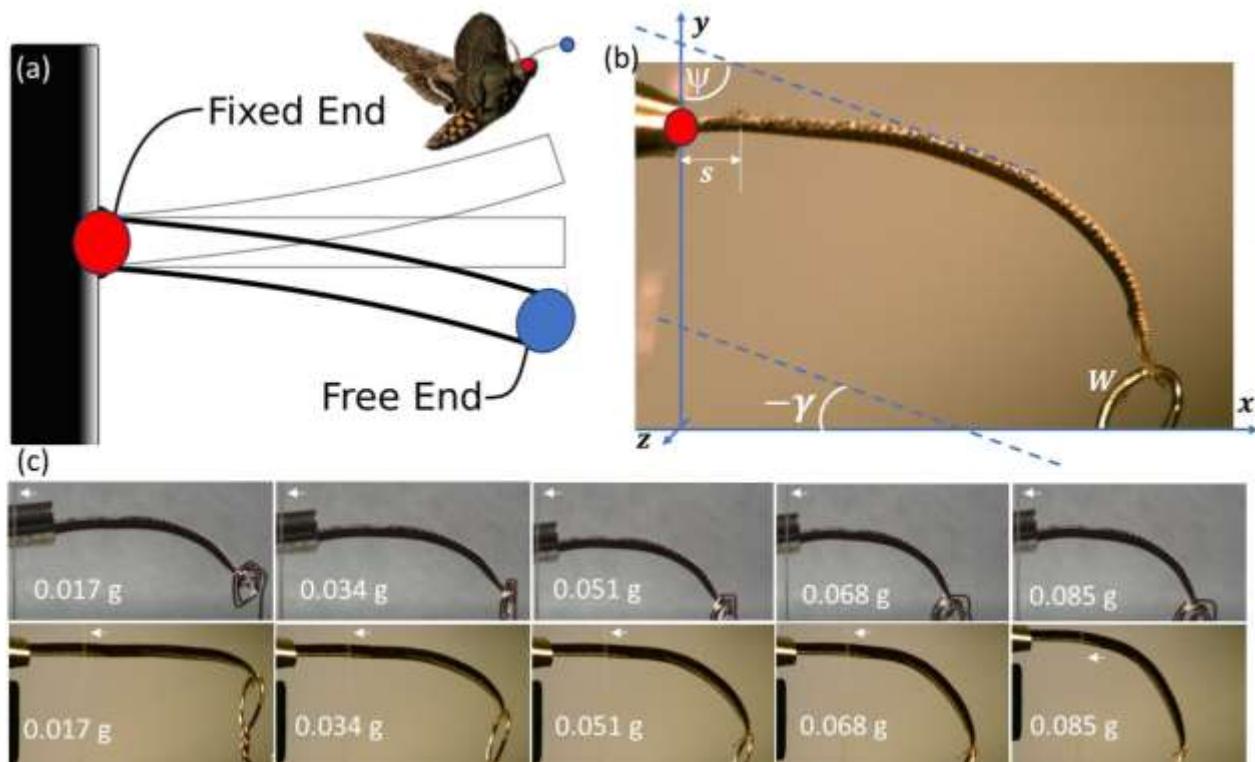
92 *2.2 Scanning Electron Microscopy (SEM)*

93 After experiments, the antennae were prepared for SEM. They were placed in a centrifuge tube
94 (VWR) with a damp piece of toweling to maintain moisture. On the day of imaging, samples were
95 placed in liquid nitrogen and then cut into cross sections. The cross sections were mounted on an
96 SEM stub with carbon-graphite adhesive tape. A Hitachi SU5000 VP-SEM was used, with the
97 BSE detector at an accelerating voltage of 15 kV or 20 kV in low-vacuum mode at 50 Pa.

98

99 *2.3. Histology*

100 After taking the live insect from the refrigerator, antennae were cut with scissors and fixed in 10%
101 neutral buffered formalin at room temperature for 3 days and prepared in a tissue processor for
102 paraffin embedding. Sections 5–7 μm thick were cut with a Leica RM2255 microtome and
103 mounted on slides. The sections were deparaffinized, rehydrated, and stained with H&E
104 (hematoxylin and eosin), according to the manufacturer's (Newcomers Supply, WI) instructions.
105 Images were captured using a Keyence BZ-X810 All-in-one inverted microscope.


106

107 *2.4. Bending Test*

108 We used microscissors to cut the antennae of live individuals between the pedicel and scape and
109 immediately proceeded to the bending test experiments (Table S1). To perform a bending test,
110 each antenna was placed in Dia-Stron brass crimps (Dia-Stron, UK) with its proximal end in the
111 crimp; the distal end of the antenna was free to move. The brass crimp was placed on the corner
112 of an elevated surface, with double-sided tape underneath to constrain the tube. The antenna was
113 parallel to the ground, taking on the appearance of a cantilever beam (Figure 1a). A string with a
114 weight at the end was hung next to the antenna as a reference for the direction of gravity. A portion
115 of the brass tube of known diameter that was not crimped was visible for reference of the tube end
116 position to ensure that all measurements followed the same boundary conditions (Figure 1b).

117 A set of 6–8 short copper wires of measured mass was prepared. A drop of adhesive
118 (Gorilla Glue) was placed on the most distal end of the antenna. The copper wires were placed on
119 the end of each antenna one by one while the process was recorded with a Point grey camera (FL3-

120 U3-13S2C-CS) and Grasshopper Camera (GS3-U3-23S6C-C) and FlyCapture® software. The
 121 relative weight of the copper wires was adjusted for each sample. For example, the larger *Manduca*
 122 *sexta* required an average weight of the copper wires of ~0.017 g, whereas the smaller *Xylophanes*
 123 *tersa* required a weight of ~0.006 g. Humidity in the testing room was 20–73% and temperature
 124 was 22°C–26°C (Table 1 in Supplementary material). For *M. sexta*, 10 antennae were probed by
 125 bending them toward the dorsal and ventral sides. Three additional specimens were bent toward
 126 the dorsal side only and 3 more were bent toward the ventral side only. Five male antennae totaling
 127 14 measurements and nine female antennae totaling 21 measurements were tested by bending the
 128 antennae perpendicular to the dorsoventral axis tested. *Ceratomia catalpae* had 4 trials toward the
 129 ventral side and 4 toward the dorsal side, whereas *M. quinquemaculata* and *X. teresa* had 3 trials
 130 each toward the ventral and dorsal directions. In all cases, antennae remained in the plane of
 131 bending. No spontaneous twisting of antennae was observed (Fig. 1c).

132
 133 *Figure 1. a) Cantilevered beam as an antenna model. In free flight, one end of the beam (blue dot)*
 134 *is free to move, and the other end (red dot) is fixed at the insect head. b) To study bending*
 135 *properties, the extracted antenna was fixed in a brass tube of known diameter (red dot) and a*
 136 *known weight W was attached to the other end of the antenna. In a Cartesian system of*

137 coordinates, the antenna is bent in the (xy)-plane about the z-axis. The position along the antenna
 138 is measured by the arclength s , starting from the fixed end where $s = 0$. In the Euler elastica
 139 equation (1), an auxiliary angle ψ was introduced. This angle $\psi(s)$ is defined as the angle that
 140 the tangent line to the outermost dorsal side of the antenna at point s makes with the y-axis. The
 141 angle $\gamma(s)$ is defined as the angle that the tangent line to the outermost dorsal side of the antenna
 142 at point s makes with the x-axis. It is defined as positive when the antenna bends toward the dorsal
 143 side and negative when it bends toward the ventral side. c) Example images of antennal loading
 144 for male *Manduca sexta* towards the ventral side (upper row) and the dorsal side (lower row). The
 145 arrow points to a string indicating the direction of gravity. The wire diameter at the antenna end
 146 is 0.33 mm. One frame from the video of dorsal bending was shifted up to illustrate the full antennal
 147 bow in the last image in the lower row. The images confirm that the antenna remains in plane and
 148 does not twist during loading.

149

150 *2.5. Contour extraction*

151 Once the videos were obtained, screenshots of each antenna with its weight were obtained using
 152 Microsoft's snipping tool. Each of these images was individually analyzed in LabVIEW (NI 2020),
 153 with the contour being traced and exported into a .txt file. Due to a lack of available histology data,
 154 the second moment of inertia (SMI), I^\pm , for bending about the z-axis perpendicular to the antenna
 155 axis was taken as constant. The SMI was marked plus, I^+ , when bending was toward the dorsal
 156 side of the antenna and minus, I^- , when it was toward the ventral side. Because no spontaneous
 157 twisting of antennae occurred (Fig. 1c), we used the beam equations for 2D bending. Therefore,
 158 the antenna bending equation was reduced to the Euler elastica equation written for each direction
 159 of bending as [29, 37]:

160
$$EI^+ \frac{d}{ds} \left(\frac{d\psi}{ds} \right) - W \sin \psi = 0, \quad EI^- \frac{d}{ds} \left(\frac{d\psi}{ds} \right) - W \sin \psi = 0. \quad (1)$$

161 where W is the applied weight, E is Young's modulus of the antenna obtained from the tensile
 162 test, s is the arclength measured from the point of antennal attachment, and ψ is the angle defined
 163 in Fig. 1. These equations were used in MATLAB to fit and estimate the flexural rigidities $f^+ =$
 164 EI^+ and $f^- = EI^-$. For each guessed value f^\pm , we numerically solved the Euler elastica equations
 165 (1) by the shooting method[38] with two initial conditions $\psi(0) = \frac{\pi}{2}$; $\frac{d\psi}{ds}(0) = u$. The parameter

166 u was changed until the condition at the antenna tip, $s = L$, $\frac{d\psi}{ds}(L) = 0$, where L is the length of
167 the antenna, was satisfied. We then compared the theoretical solution with the experimental
168 contour. If the theoretical contour did not fit the experimental one with the required accuracy, we
169 searched for a new flexural rigidity f^\pm . These iterations continued until the accuracy criteria had
170 been satisfied. The details can be found in the Supplementary material.

171

172 *2.6. Second moment of inertia*

173 To measure the second moment of inertia (SMI), the in-house MATLAB programs were developed
174 to extract the contour and calculate the SMI. Using the MATLAB built-in edge detection algorithm
175 in the Image Processing Toolbox, we developed the code to calculate the SMI. Once the contour
176 was obtained, the code created a triangular mesh and provided the coordinates of the vertices. The
177 coordinates were then processed to obtain the center of mass, area, and tensor of the second
178 moments of inertia. The contours can be adjusted, and additional contours of interior elements
179 could be added for exclusion in the SMI calculation.

180

181 *2.7. Tensile testing*

182 Tensile testing was done on a Micro Tensile Tester 2000 (Rheometric Scientific, US). The
183 antennae were cut and placed on a C-shaped piece of paper with the middle of the antenna in the
184 gap of the paper, and the ends were glued on the paper. The glue was applied so that it did not
185 enter the antenna through the cut. The specimen was then placed in tensile clamps with thin pieces
186 of cardboard to secure it. The portion of the C-shaped paper that bridged the two ends was cut so
187 that the antenna was the only bridge between the clamps. While one end of the antenna remained
188 fixed in a clamp, the other end was clamped to a moving stage that pulled the antenna, with tension,
189 at a rate of 2 mm/min until the antenna broke. Tensile testing was recorded with Minimat software
190 and saved to an Excel file for plotting. All antennae were tested at 22°C and 65% humidity to
191 obtain the strain $\epsilon_{ss} = (L - L_0)/L_0$, where L is the length of antennal piece at the given load, L_0
192 is the initial length of the antennal bridge between the clamps.

193 Measurements of the flagellomere cross-sectional area A were obtained after an antenna
194 was fractured in the tensile test; the thickness was evaluated at the crack, using a Huvitz light
195 microscope (Model HR3-TRF-P). Five measurements were taken on *M. sexta* and were compared

196 with previous results to confirm that the measurements fell within the standard deviation[39].
197 Antennae of the other three hawkmoths were processed similarly. The stress was calculated as

198
$$\sigma_{ss} = \frac{F}{A}, \quad (2)$$

199 where F is the force and A is the area of the cuticular shell.

200 To find the elastic modulus E, we grouped all data points for male antennae, and similarly
201 but separately for female antennae, to find an average stress σ_{ss}^{break} and strain ε_{ss}^{break} at the point
202 of antenna break. Then the stress and strains were normalized by the stress and strains at the point
203 of the antenna break and the normalized stress-strain relations were generated. The normalized
204 data were fitted with third-order polynomials. Visualization of antennal behavior during testing
205 showed that at very small strains, the antennae straightened at almost zero stress. We found that
206 the actual loading starts when the normalized strain in our dataset becomes greater than $\widehat{\varepsilon}_{ss} = 0.15$.
207 Therefore, the obtained polynomials were used to calculate the elastic modules by taking
208 derivative $\widehat{d\sigma_{ss}}/d \widehat{\varepsilon}_{ss}$ at $\widehat{\varepsilon}_{ss} = 0.15$ as

209

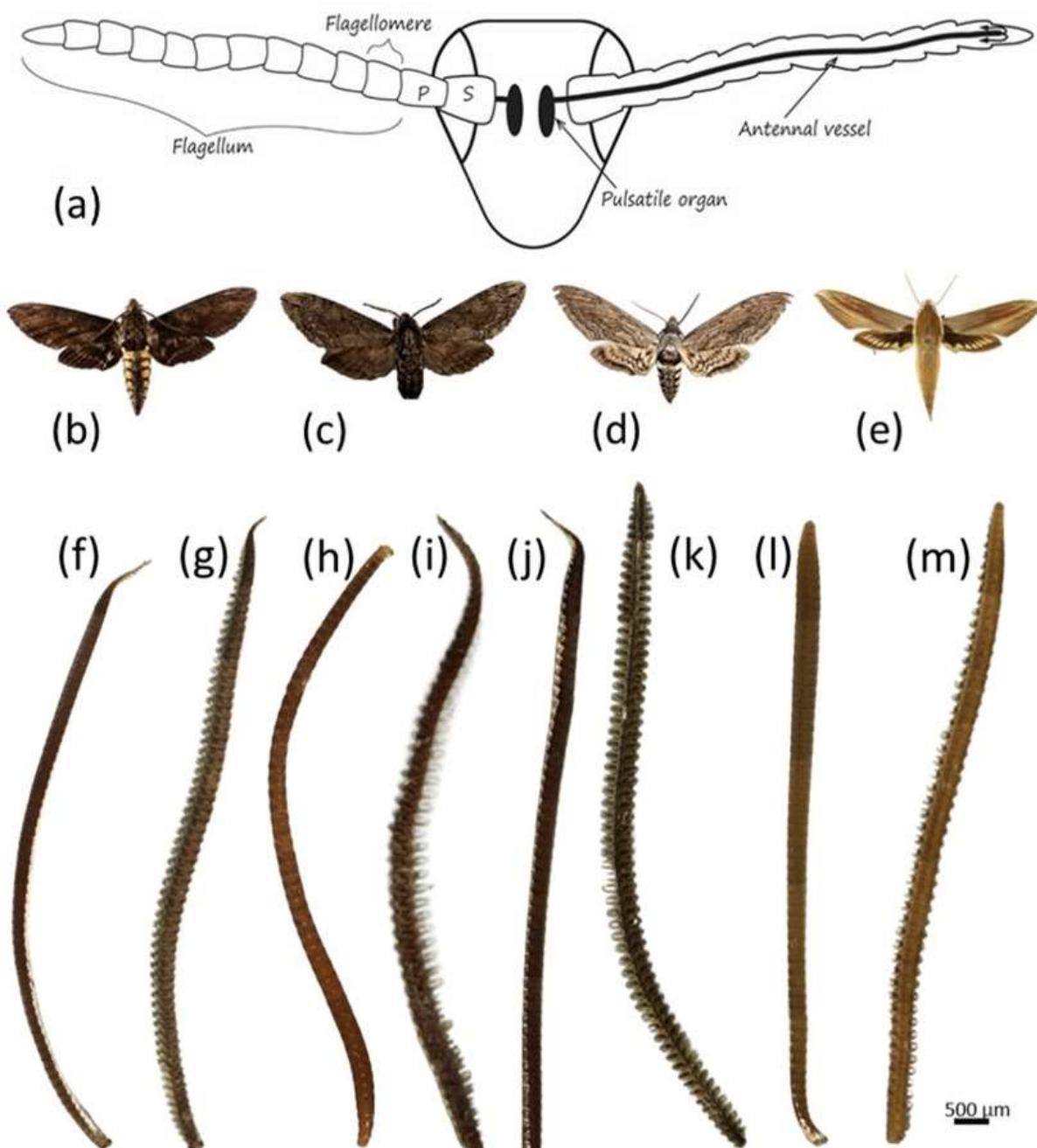
210
$$E = (\sigma_{ss}^{break}/\varepsilon_{ss}^{break}) \cdot (\widehat{d\sigma_{ss}}/d \widehat{\varepsilon}_{ss}) \text{ at } \widehat{\varepsilon}_{ss} = 0.15. \quad (3)$$

211 3. Results

212 3.1. Shapes of male and female antennae differ

213 The antennae of hawkmoths conform to the insectan ground plan, with a scape, pedicel, and
214 flagellum [40] (Fig. 2). In addition, they are pectinate or comb-like; thus, they are not axisymmetric
215 but instead are more strongly expressed toward the ventral side as pectinations, markedly so in
216 males. The approximately 14,600 species of hawkmoths[41, 42] have a wide diversity of shapes
217 and forms. Within the same species, male and female antennae differ in shape and length, with
218 male antennae typically shorter and more comb-like than those of females [33-35, 43] (Fig. 2).

219 In all studied species, male antennae were widest at mid-length (Fig. 2f–m). The shape of
220 female antennae, however, varied across species. Two species had clublike antennae that increased
221 in width toward the tip (Fig. 2h, l); two other species had a shape similar to that of males (Fig. 2f,
222 j). Thus, sexual dimorphism in overall antennal shape is expressed only in some species.

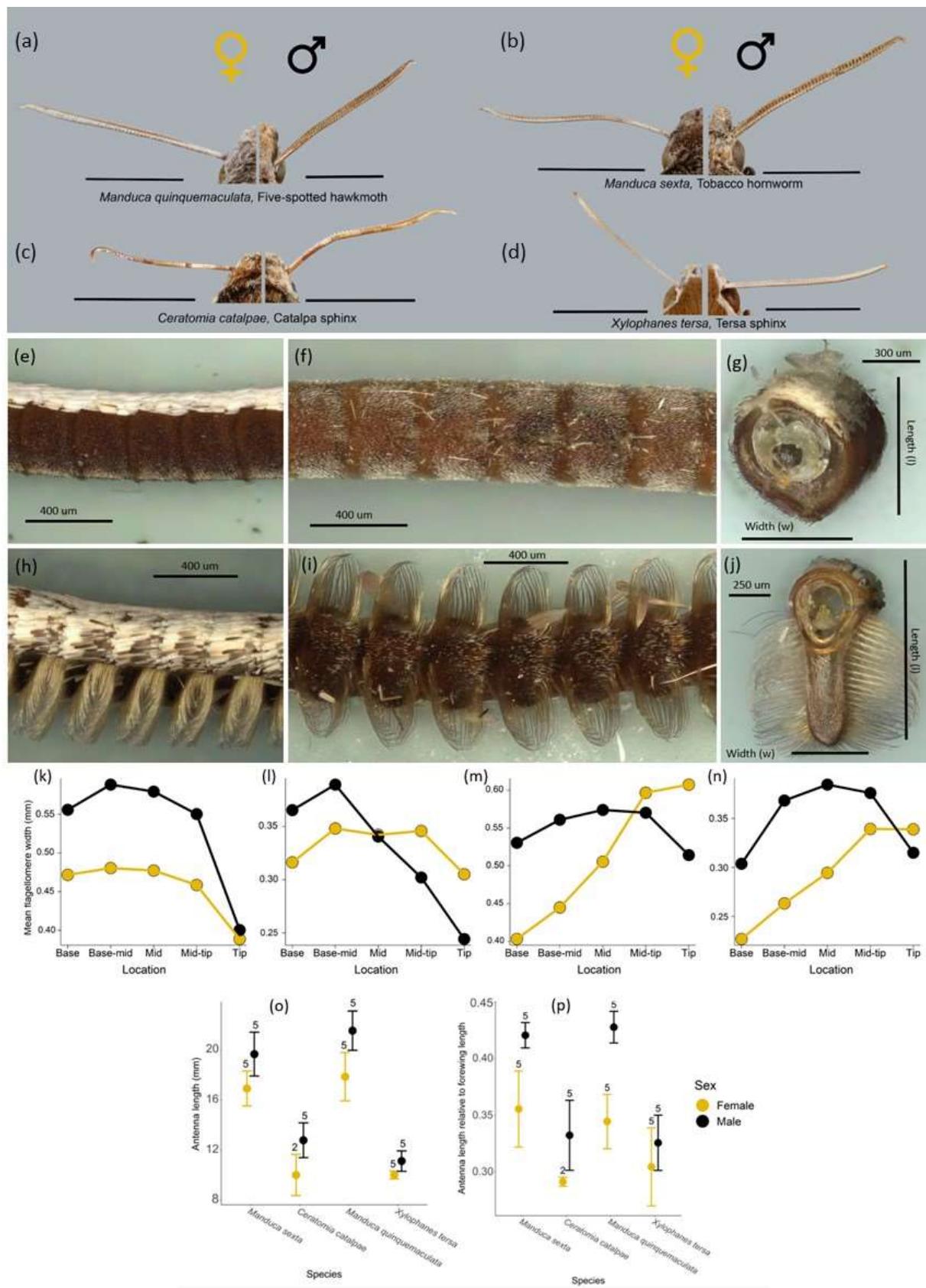

223 Male antennae are longer than those of females in our studied species, both with respect to
224 overall body size and forewing length (Fig. 3 o, p). The shape and size differences between male
225 and female antennae were not the same across species: males and females of the two *Manduca*

226 species had a much larger difference compared with *C. catalpae* and *X. tersa*, but all were sexually
227 dimorphic.

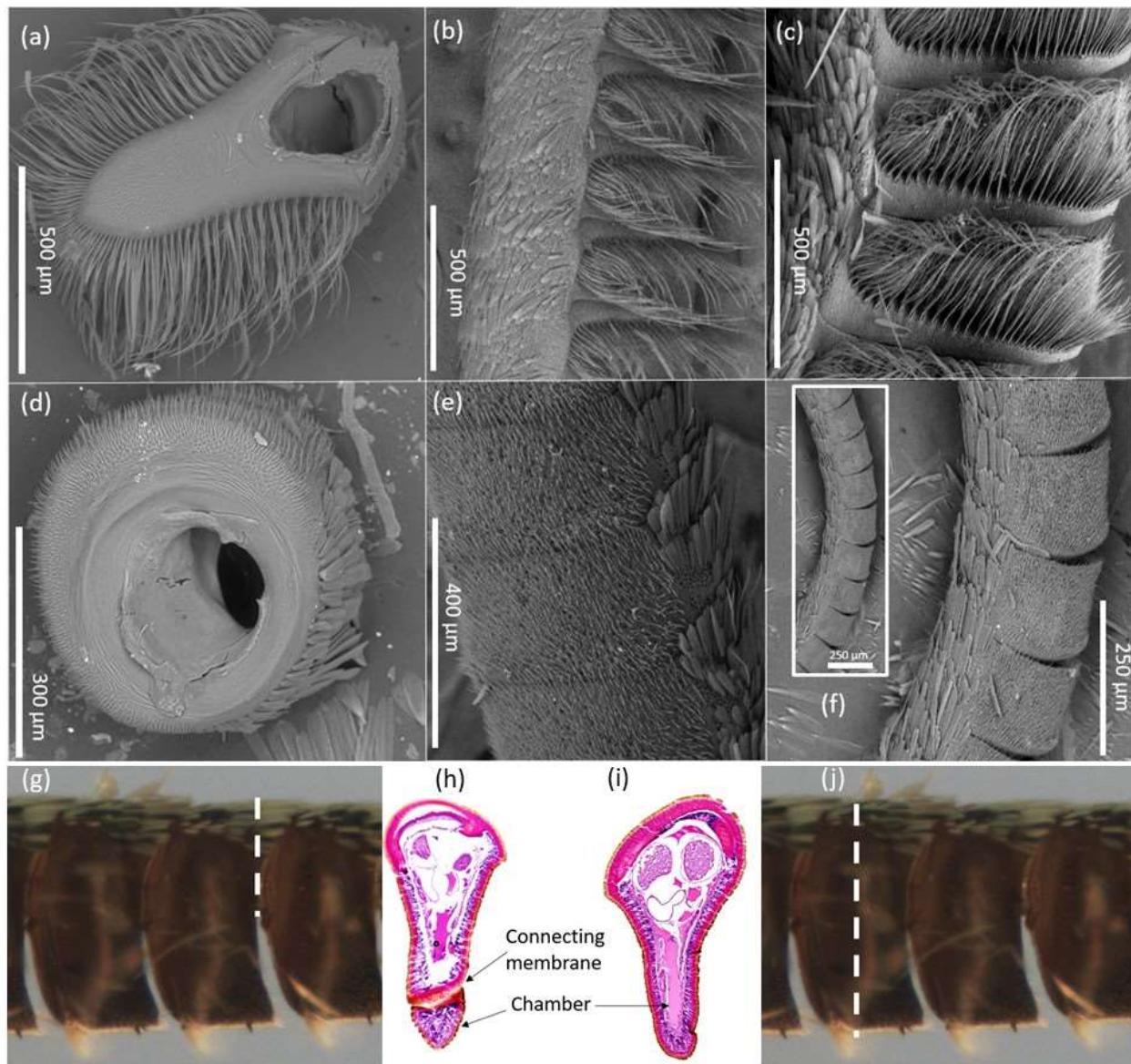
228

229

230


231 *Figure 2. a)* Schematic of the antennal ground plan of a generalized insect. Only the first two
232 segments of the antenna, the scape (S) and pedicel (P), have muscles. The rest of the antenna, the

233 flagellum, is muscle free. The flagellum consists of a series of flagellomeres. Internal pulsatile
234 organs pump blood (hemolymph) into the antenna through the antennal vessel, which terminates
235 near the tip where hemolymph flows back to the head and moves through the lumen (hemocoel).
236 b) Manduca sexta. c) Ceratomia catalpae. d) Manduca quinquemaculata. e) Xylophanes tersa. f)
237 Female and g) male antennae of Manduca sexta. h) Female and i) male antennae of Ceratomia
238 catalpae. j) Female and k) male antennae of Manduca quinquemaculata. l) Female and m) male
239 antennae of Xylophanes tersa.


240

241 **3.2. The shapes of flagellomere cross sections of male and female antennae differ**

242 The shape of flagellomeres significantly affects the mechanical properties of antennae. The
243 greatest difference between the sexes is in the antenna cross sections. The two sides of the antennae
244 also differ [21, 39]; the dorsal side is covered with scales that can be easily removed. The
245 flagellomeres of females are almost circular in cross section, whereas those of males have an
246 expansion of the ventral cuticle in the shape of a keyhole (Figs. 3 g,j; 4). This expansion of multiple
247 flagellomeres constitutes the pectination, which is well developed in males but less so in females.
248 Hairs (fasciculate setae) on the ventral side of the flagellomeres of male hawkmoths are sense
249 organs that serve various functions [33-35, 43]. In contrast, on the ventral side of female antennae
250 the hair-like sense organs are much shorter.

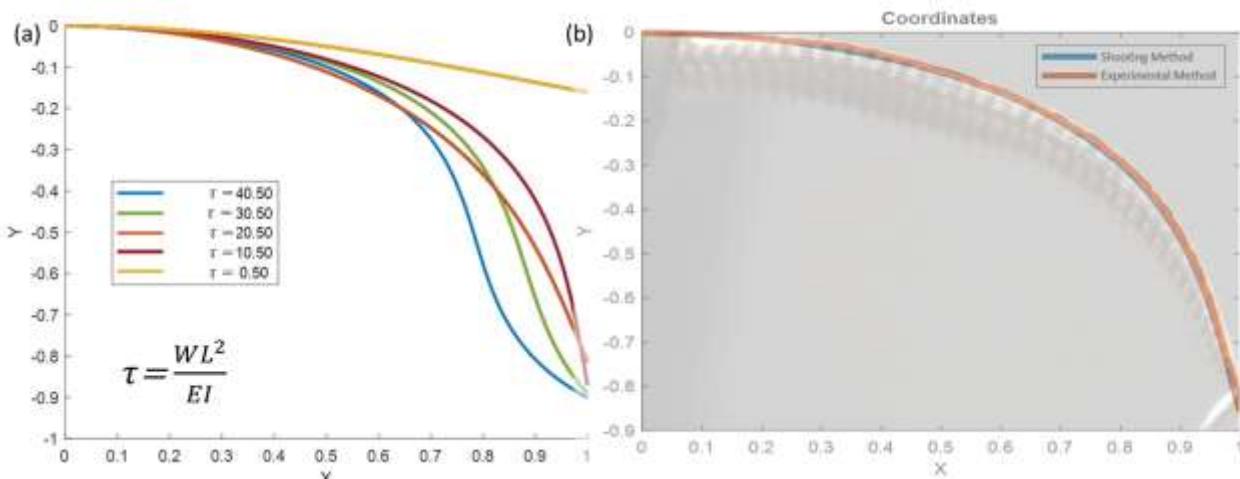
252 *Figure 3. Quantitative metrics of sexual dimorphism in hawkmoth antennae. (a–d)* Antennae of studied
 253 hawkmoths. *(e–j)* Antennal features of the antennae of *Manduca sexta* (*e–g* female, *h–j* male). *(e, h)* Lateral
 254 view. *(f, i)* Dorsal side view. *(g, j)* Flagellomere cross-sections and definitions of the width and length of
 255 pectinations used in the analysis. Measurements were taken for at least three flagellomeres per sex per
 256 species. *k*) *Manduca quinquemaculata*, *l*) *Manduca sexta*, *m*) *Ceratomia catalpae*, and *n*) *Xylophanes tersa*.
 257 Mean width (*w*) of flagellomeres in each section of the antennae. *o*) Average length (*l*) of antennae across
 258 species. *p*) Antenna length divided by forewing length across four species of hawkmoths. Dots represent
 259 the mean, bars the standard deviation, and numbers above bars the number of individuals measured.

260
 261 *Figure 4. Sexual dimorphism in hawkmoth antennae. (a–f)* Scanning electron micrographs. *(a–c)* Antenna
 262 of *Manduca sexta* male. *(d–f)* Antenna of *M. sexta* female. *(a, d)* Antennae were cut through the membrane

263 separating adjacent flagellomeres as shown in (g, h). The cuticular wall of the chamber remained intact;
264 (a, d) the antennal lumen housed the antennal vessel, tracheae, and nerves, which collapsed on the cuticular
265 wall after drying. (a) Long fasciculate setae are attached to the elongated chamber. (b, e) Lateral view of
266 a straight section of antenna. (c, f) Lateral view of a bent section of antenna; inset in (f) shows the antennal
267 arc. Flagellomeres spread apart on the outer curve when the antenna is bent from the ventral side toward
268 the dorsal side. (h) Histological section of the male antenna of *M. sexta* through the connecting membrane,
269 as shown in (g). The cuticle of the connecting membrane encloses a smaller area of the hemocoel. (i)
270 Histological section of the male antenna of *M. sexta* through the entire flagellomere, as shown in (j). The
271 flagellomere cuticle encloses a larger area of the hemocoel; tissue is visible in the chamber.

272

273 **3.3. Flexural rigidity**


274 The flexural rigidity $f^{-\pm} = EI^{\pm}$ in eq (1) characterizes the bending properties of the beam-
275 like structures [31-33]. In this product f , the elastic modulus E reflects the materials properties of
276 the cuticle, which may be anisotropic and dependent on the orientation of chitin crystals in the
277 cuticle [34-37]. In tensile tests, this anisotropy cannot be revealed; therefore, we take E as a
278 constant. The second moments of inertia I^{\pm} reflect the structural organization of the antenna and
279 can also be anisotropic [31].

280 As follows from the Euler elastica model, the antenna profile is controlled by a single
281 dimensionless parameter $\tau = WL^2/f = WL^2/(EI)$. The greater the parameter τ , the more bent is
282 the antenna (Fig. 5a). For a fixed weight W and antenna length L , the antennal flexibility is judged
283 only by its flexural rigidity $f = EI$: the smaller the EI , the more flexible is the antenna (Fig. 5a).

284 The experimental profile of each antenna was fitted with the theoretical profile, using the
285 Euler-elastica model (Fig. 5b). Afterwards, we averaged the f values obtained for each individual
286 and, for *M. sexta*, we tested if the sex of the individual and the bending direction influenced f
287 values. To do so, we used an ANOVA, with f as our dependent variable and sex (two levels, male
288 and female), bending direction (two levels, dorsal and ventral), and their interaction as our
289 independent variables. To understand where the significant differences resided, we used a Tukey
290 HSD test as a *post-hoc* test.

291

292

293 *Figure 5 a) Theoretical profiles of antennae for different τ . b) Illustration of the best fit of the antenna*
 294 *profile with the Euler elastica model. The antenna of *Manduca sexta* is shown on the background, and its*
 295 *dorsal side is contoured by the orange line. The blue curve is the Euler elastica fit. The flexural rigidity*
 296 *was $f = 1.04 \text{ nN} \cdot \text{m}^2$.*

297 *Table 1. Flexural rigidity of *Ceratomia catalpae*, *Xylophanes tersa*, *Manduca quinquemaculata*, and*
 298 **Manduca sexta*.*

	<i>Ceratomia catalpae</i>	<i>Manduca quinquemaculata</i>	<i>Xylophanes tersa</i>	<i>Manduca sexta</i> (Male)	<i>Manduca sexta</i> (Female)
$f^+(nN \cdot m^2)$, antenna is bent toward the dorsal side	0.02 ± 0.014	1.58 ± 1.68	0.08 ± 0.03	1.05 ± 0.47	1.89 ± 0.34
$f^-(nN \cdot m^2)$, antenna is bent toward the ventral side	0.03 ± 0.02	2.07 ± 1.95	0.67 ± 0.53	1.45 ± 0.31	2.81 ± 0.86

299

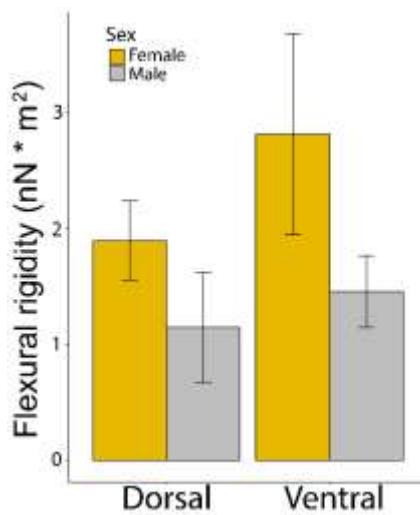


Figure 6. Average flexural rigidities of the antennae of *Manduca sexta*. The flexural rigidity depends on the direction of bending and sex of the hawkmoth.

We found significant sexual dimorphism in EI, showing that sex is an important factor in how antennae bend in hawkmoths ANOVA; $F_{3,10} = 4.709$, $p = 0.027$, $R^2 = 0.4612$; Fig. 6). The post-hoc test indicated that female antennae are stiffer than male antennae (Tukey HSD; $p = 0.008$). Specifically, female antennae were stiffer when bending to the ventral side (Tukey HSD; $p = 0.02$). All antennae resisted bending toward the ventral side where the pectinations are located. For example, when the antennae of males

of *Manduca sexta* were bent toward the ventral side, the average flexural rigidity was $f = 1.45 \text{ nN} \cdot \text{m}^2$, whereas toward the dorsal side it was $f = 1.05 \text{ nN} \cdot \text{m}^2$. The flexural rigidities for bending toward the ventral side in *M. quinquemaculata*, *M. sexta*, and *X. tersa* were of the same order of magnitude $f \propto 10^{-9} \text{ N} \cdot \text{m}^2$. Resistance for bending toward the dorsal side changed among species. Among the 4 species, *C. catalpae* had the most flexible antennae, with flexular rigidity about two orders of magnitude lower than that of the others, $f \propto 10^{-2} \text{ nN} \cdot \text{m}^2$. Modeling the closing or opening of the V-angle of the antennal pair, we placed the antennae to face the camera either dorsally or ventrally. Bending the antennae of *M. sexta* perpendicular to the dorsoventral axis showed no statistically significant difference between males and females. Males had an average of $f = 1.47 \text{ nN} \cdot \text{m}^2$, whereas females had an average of $f = 1.60 \text{ nN} \cdot \text{m}^2$. ANOVA: for the males $p=0.929$, for the females, $p=0.439$, between all of the males and females, there was also no difference, $p = 0.569$. Thus, the flexural rigidity of antennae in the V-plane was lower, suggesting that antennae should be more reactive to wind gusting in the V-plane.

324

325 3.4. Tensile properties of antennae of *Manduca sexta*

326 To distinguish the contributions of materials properties of the antenna to flexural rigidity, we
 327 studied the tensile properties of the entire antenna. The test does not allow evaluation of the
 328 anisotropic properties of a single flagellomere but gives information on the mechanical reaction of
 329 the entire antenna to stretching. In a previous study[39], male and female antennae were analyzed

330 together, without attention to their structural differences. We detail the differences to evaluate how
 331 the tensile properties change between males and females.

332 Stress-strain relationships confirm that antennae of males and females do not indicate plasticity
 333 (Fig. 7). At small deformations, the antennae of males and females behave as a Hookean material.
 334 The average elastic modulus of male antennae is greater than that of females (Table 2).

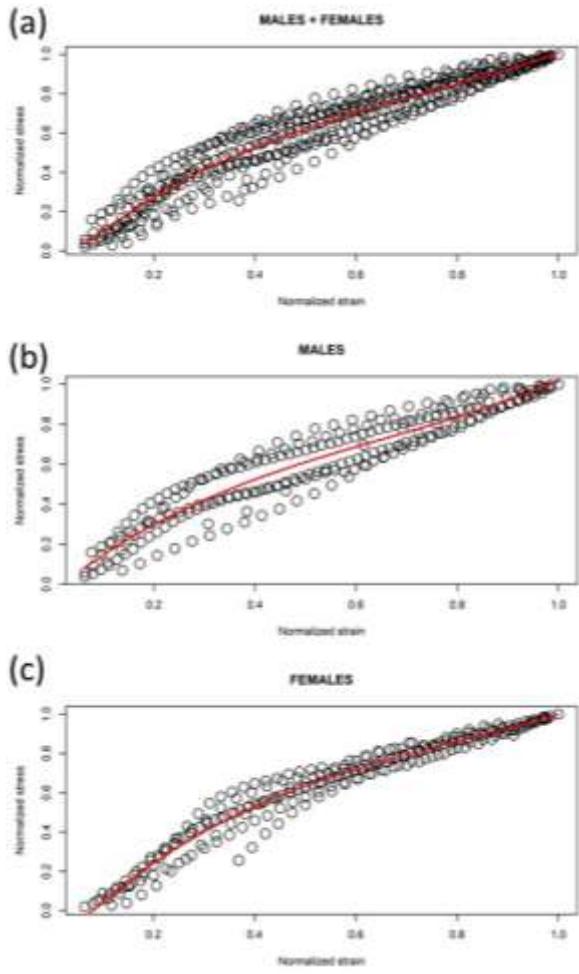


Figure 7. Characterization of the stress-strain relationship for antennae of *Manduca sexta*. Along the vertical axis is dimensionless stress, $\hat{\sigma}_{ss}$, defined as the ratio of stress normalized by the stress at the point of antenna break. Along the horizontal axis is the strain $\hat{\epsilon}_{ss}$ normalized by the strain at the point of antenna break. The average trend lines are shown as solid curves. a) Males and females grouped together; the trendline is represented as $\hat{\sigma}_{ss} = 0.3260 * \hat{\epsilon}_{ss}^3 - 0.8098 * \hat{\epsilon}_{ss}^2 + 5.6656 * \hat{\epsilon}_{ss} + 0.6313$; b) Males, the trendline is represented as $\hat{\sigma}_{ss} = 0.2522 * \hat{\epsilon}_{ss}^3 - 0.3811 * \hat{\epsilon}_{ss}^2 + 3.9195 * \hat{\epsilon}_{ss} + 0.6234$; c) Females; the trendline is represented as $\hat{\sigma}_{ss} = 0.2455 * \hat{\epsilon}_{ss}^3 - 0.7884 * \hat{\epsilon}_{ss}^2 + 4.0934 * \hat{\epsilon}_{ss} + 0.6393$.

Table 2. Average Young's modulus for antennae

358 of *Manduca sexta*.

	Young's modulus measured with hemolymph inside (GPa)
Average, E (Male)	0.10 ± 0.03
Range (Male)	$0.05 < E < 0.17$
Average, E (Female)	0.08 ± 0.02
Range (Female)	$0.05 < E < 0.12$

359

360

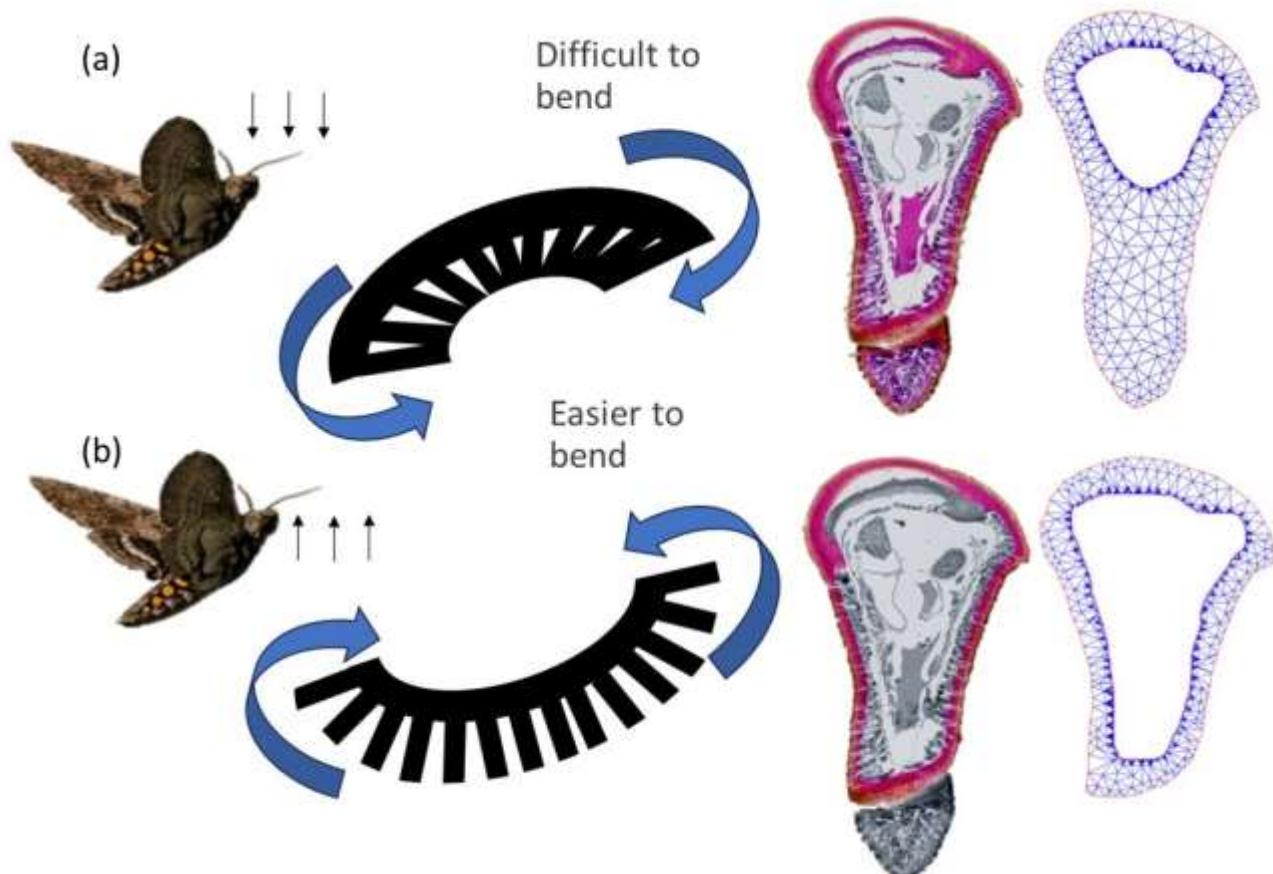
Table 3. Average stress and strain at break for antennae of *Manduca sexta*.

	Male	Female
Average stress (MPa)	8.33 ± 4.06	6.61 ± 2.72
Average strain (%)	14.61 ± 4.84	13.46 ± 3.98

361

362

363


364 **3.5. Connecting flexural rigidity with histology**

365 The structural contribution to flexural rigidity comes from the second moment of inertia of the
 366 flagellomeres and connecting membranes. The cuticular walls of the flagellomeres and connecting
 367 membranes taking up the load are distinctly shaped (Fig. 4g–j). When the antenna is bent toward
 368 the ventral side, the pectinations come together and press against one another. The antenna in this
 369 case reacts to bending as a continuous beam without pectinations, but its shape follows that of the
 370 individual flagellomeres. In contrast, when the antenna is bent toward the dorsal side, the
 371 pectinations spread apart and the main load is taken up by the connecting membranes (Fig. 8).

372 We validated the experimentally measured flexural rigidities by calculating flexural rigidity,
 373 using the experimental Young's modulus and analyzing the second moments of inertia for
 374 pectinations and connecting membranes from histology. The main problem with calculation of the
 375 second moment of inertia is the difficulties in obtaining images of the antennal cross-section that
 376 contain the connecting membrane and pectination. Also, the flagellomere cross-section changes
 377 along antennae; therefore, with a few images per antenna, we can only provide an order of
 378 magnitude estimate of the average second moment of inertia. The histology of antennae requires
 379 special attention, particularly achieving a cross-section at the connecting membrane between
 380 flagellomeres (Fig. 4g) and will be discussed elsewhere.

381 The explanations of the numeric algorithm for calculation of the second moments of inertia are
 382 given in the Supplementary material. While the match between theoretical and experimental
 383 flexural rigidities is not ideal, the trend is confirmed (Table 4).

384

385 *Figure 8. Schematic of antennal reaction to wind load. The direction of the wind is shown by the arrows,*
 386 *and the pectinate antennae of hawkmoths is modeled by a comb. a) When the wind bends antennae from*
 387 *the dorsal to the ventral side, the flagellomeres (like the comb bristles) come together to resist the load.*
 388 *The stress is distributed over the entire flagellomere cuticle. Thus, the triangulation area for calculation of*
 389 *the moment of inertia embraces the entire cuticular wall of the flagellomere highlighted in pink in the*
 390 *histological section and reflected in the schematic on the far right. b) When the wind bends antennae from*
 391 *the ventral to the dorsal side, the flagellomeres spread apart and the load is distributed mostly on the*
 392 *connecting membranes. Thus, the triangulation area for calculation of the moment of inertia embraces only*
 393 *the cuticular wall of the connecting membrane highlighted in pink in the histological section and reflected*
 394 *in the schematic on the far right.*

395

396

397 Table 4. Comparison of calculated theoretical and experimental flexural rigidities. The average second
 398 moment of inertia, I^\pm , is calculated from histology images. The standard deviations (STDEV) from the
 399 averaged I^\pm are shown in a separate column. The average Young's modulus E taken from Table 2 were
 400 used to calculate theoretical flexural rigidities $f^\pm = EI^\pm$ for bending antennae about the z axis toward the
 401 dorsal (plus) and ventral (minus) directions. The experimental values are shown for comparison.

Number of images	Sex and direction of bending	Average I^\pm , from histology (mm^4)	STDEV (mm^4)	Average experimental E (GPa)	Average theoretical f^\pm ($nN \cdot m^2$)	Average experimental f^\pm ($nN \cdot m^2$)
5	Male, bending toward ventral side	0.0139	0.002	0.10	1.39	1.45
	Male, bending toward dorsal side	0.0082			0.82	1.05
2	Female, bending toward ventral side	0.034		0.08	2.70	2.81
	Female, bending toward dorsal side	0.016			1.28	1.89

4. Discussion

406 The neuromechanical response of hawkmoth antennae to environmental perturbations suggests
 407 that the flagellum reacts to the wind as a rigid rod pivoting at the antennal base where the first
 408 segment (i.e., scape) articulates with the head capsule, and the torque exerted by the wind on the
 409 flagellum is detected by sensing organs at the flagellum–pedicel–scape joints [3, 14, 15, 17, 22,
 410 23, 40, 44, 45]. Hawkmoth antennae have been suggested to work as gyroscopes without which
 411 stable flight and hovering would not be possible [17]. These conclusions were based on a 2D
 412 analysis of the V-angle dynamics of antennae. *Manduca sexta* with amputated antennae can take
 413 off and fly [46], raising questions about the gyroscopic nature of antennae and the critical role of
 414 antennae in flight control. The rigid-rod model, while attractive for its simplicity, does not fully
 415 appreciate the diversity of antennal morphology and associated movement dynamics. The lack of
 416 mechanical analysis of the 3D movement of antennae prevents interpretation of our results in the
 417 context of the role of antennae in flight stabilization.

418 We suggest that hawkmoths take advantage of their pectinate antennae to sense the strength
 419 and direction of the wind and wind-borne olfactory cues (e.g., pheromones). As we have shown
 420 for all tested species, flexural rigidity is greater when the antenna is bent toward its ventral side.
 421 Thus, the antennae could easily be flexed toward the dorsal side, exposing sensory organs there to
 422 wind gusts. In forward flight when upwind disturbance from flapping wings decreases, the wind
 423 direction can be probed by the wind-facing sensilla[16], allowing male hawkmoths to track odor
 424 plumes. Our results allow us to evaluate this idea by estimating antennal deflections, using a model
 425 of a cantilevered beam[47], after first determining when the antenna can be modeled as a rigid rod.

426

427 The antenna as a rigid rod. For the rigid-rod model, we assume that the antennal tip does not
 428 deflect appreciably with respect to the pedicel-scape pair at the base. The tip deflection of the
 429 initially straight antenna on a load w , distributed uniformly over its length L , is [47]:

430

431
$$\delta = wL^4/(8f). \quad (4)$$

432

433 We first consider the antenna deflection by its own weight, assuming the antennal cross section is
 434 constant; for this case, $w = g(\rho_{wall}A_{wall} + \rho_{hemolymph}A_{hemocoel})$, where g is the acceleration
 435 due to gravity, ρ is the density, A is the cross section, and the indices specify the objects. For an
 436 order of magnitude estimate, we set $\rho_{wall} \approx \rho_{hemolymph} \approx \rho_{water} = 10^3 \text{ kg/m}^3$, then $A_{wall} +$
 437 $A_{hemocoel} = A$, the area of the antennal cross section including the cuticular wall and hemocoel.
 438 For an upper order of magnitude estimate, one can use the width W and height H of the largest
 439 flagellomeres to get $A < W \cdot H$. For example, the tip deflection of the antenna of males of *M. sexta*,
 440 with $A \approx 2.4 \cdot 10^{-8} \text{ m}^2$, is estimated as $\delta < g \cdot \rho_{water} \cdot A \cdot L^4/(8f) \approx 1.6 \cdot 10^{-3} \text{ m}$. Thus, under
 441 its own weight, the antennal tip deflects less than $\sim 10\%$ of its length. In this scenario, the rigid-rod
 442 model can be used for the description of antennae in still air.

443

444 Estimation of antennal deflection by aerodynamic forces. To apply eq. (4) to the estimation of
 445 antennal deflection, we need to specify the regime of the air flow around antennae, whether it is
 446 controlled by inertial or viscous forces. For an upper estimate of the dynamic load, we consider
 447 the most vigorous forward flight where antennae are subject to a strong wind with velocity U that
 448 could be as high as $U \sim 1 - 4 \text{ m/s}$ for *M. sexta* [16, 46]. In the inertia-controlled regime of air
 449 flow, air viscosity η_{air} plays no role; in contrast, for viscosity-controlled air flow, the air density
 450 ρ_{air} plays no role[48]. Accordingly, the drag on the antenna in the inertia-controlled regime is
 451 proportional to the velocity squared, whereas in the viscosity-controlled regime it is linearly
 452 proportional to velocity[24, 48].

453 To evaluate the flow regime, we calculated the Reynolds number for flow associated with
 454 rotation of antennae about the z-axis. Thus, one needs to classify the regime of quasi-two-
 455 dimensional flow past each flagellomere. If U is the magnitude of the air velocity in the direction
 456 of forward flight, and the antenna is tilted by angle γ with respect to the flight direction, the

457 magnitude of velocity perpendicular to the antenna considered as a rigid rod is $U_{\perp} = U \cdot \sin \gamma$.
 458 Thus, the smaller the tilt angle γ , the smaller the velocity $U_{\perp} \approx U\gamma$. The Reynolds number is
 459 defined as $Re = \rho_{air} \cdot U \cdot \tan \gamma \cdot H / \eta_{air}$, where H is the largest flagellomere dorsoventral length
 460 as defined in Fig. 3g, j. For males of *M. sexta*, the largest flagellomere length including fasciculate
 461 setae is $H \sim 1 \text{ mm}$; using $\eta_{air} / \rho_{air} \approx 1.5 \cdot 10^{-5} \text{ m}^2/\text{s}$ for the air at 15°C , and taking $U = 4 \text{ m/s}$,
 462 we estimate the Reynolds number as $Re = 0.66 \cdot 10^5 \cdot 4 \cdot 10^{-3} \cdot \sin \gamma = 2.6 \cdot 10^2 \cdot \sin \gamma$. Thus,
 463 for the small tilt angles $\gamma < 0.01$ (or $\gamma < 1^{\circ}$), the air flow is mostly controlled by air viscosity. For
 464 larger angles, it is controlled by air inertia.

465 We were not able to find data on dorsoventral deflection of antennae in flying hawkmoths. The
 466 focus of research so far has been on analysis of sidewise deflection of antennae changing the V-
 467 angle of the antenna pair[15, 17]. During forward flight, the sidewise drag on antennae is
 468 significant, as the antennae are appreciably angled with respect to the flight direction. The
 469 Gewecke-Heinzel theory[28], allowing evaluation of the torque on the pivot of a rigid-rod, has
 470 been used so far as an input for a neuromechanic model of antenna flight control[15].

471 In contrast to the V-positioning, the dorsoventral posture of antennae could be in the plane of
 472 the upwind flow. This posture may not be stable, as small fluctuations of the antenna profile could
 473 be amplified by the aerodynamic force. At small deflections from the straight antennal
 474 configuration, the velocity component normal to the antenna direction is proportional to $\sin \gamma$, or
 475 to $\sin \gamma \sim \gamma$. While the antennal deflection could be small, eq.(4) cannot be directly applied to find
 476 it because the drag w depends on the local deflection $\gamma(s)$ that has to be determined.

477 For a steady forward flight, we need to use the force balance like that in eq.(1), but modify it
 478 to include the aerodynamic force [49] as shown in the Appendix. The results of these calculations
 479 showed that the straight antenna is not stable and is subject to bending when the upwind velocity
 480 becomes greater than the critical value

481

482
$$U^{\pm} = \sqrt{2EI^{\pm}} / \sqrt{\frac{dc}{dy} \cdot \rho_{air} \cdot AL^2}, \quad (5)$$

483

484 where $C(\gamma)$ is a drag coefficient of the antenna, limiting the lift force as a function of the angle of
 485 attack γ , A is the cross-sectional area, and L is the length of the antenna. For an order of magnitude
 486 estimate of the critical velocity, when this instability would first show up, we assume that $\frac{dc}{dy} \sim 1$,

487 $A \sim 10^{-7} \text{ m}^2$ and $L \sim 0.1 \text{ m}$. This gives $U^\pm \sim 1 \text{ m/s}$. Thus, at the velocities typically observed in
488 forward flight of hawkmoths[16, 46], one expects the antennae to deflect from their straight
489 configuration. For the deflection towards the dorsal side, the velocity barrier is lower than that for
490 the deflection towards its ventral side, $\frac{U^+}{U^-} = \sqrt{I^+}/\sqrt{I^-}$. For *M. sexta* males, this ratio is about 0.9
491 and for females it is 0.8.

492

493 *Biological implications of antennal properties.* Hawkmoths can sense and control the antennal V-
494 angle [15, 17]; our estimates of the difference in the conditions for dorsoventral deflection in *M.*
495 *sexta*, while small, seem to be detectable by the same sensing organs at the pedicel–scape pair.
496 Therefore, flexural anisotropy of antennae could be useful for evaluation of the upwind strength
497 and fluctuations of the wind direction.

498 Nearly the same stiffness of male and female antennae points to the importance of antennal
499 morphology in setting up the sensitivity barriers for detecting upwind velocities. Flagellomeres in
500 female antennae are separated by narrow $\sim 20 \mu\text{m}$ gaps (Fig. 4e), whereas these gaps in male
501 antennae are much larger, $\sim 50 \mu\text{m}$ (Fig. 4b). These antennae were imaged in their resting, straight
502 configurations. Thus, when bent towards the ventral side, the adjacent flagellomeres of females
503 come in contact almost immediately, making the antennal bow shallow, and offering a high
504 flexural resistance. In contrast, the adjacent flagellomeres with well-developed pectinations of
505 males have room to move freely until they contact one another. As a result, the male antennae
506 appear more flexible.

507 More flexible antennae could more easily differentiate small changes in the wind strength and
508 its direction. Electrical engineers named the “whip antenna”[50], probably drawing from insect
509 antennae that can move as a whip when perturbed. Like a flapping banner that reacts to a minute
510 change in the wind, the male antenna could respond to small changes in wind gusts when its speed
511 reaches the critical speed for instability development. To distinguish the same wind features, the
512 less flexible antennae of females would require greater differences in equation (5) for the dorsal
513 versus ventral deflection.

514 Despite simplicity of the idealized model, equation (5) provides an important relation between
515 the antennal materials properties and morphological characteristics. The model ignores antennal
516 deflection in the plane of the air stream changing the V-angle. Moreover, hawkmoth antennae are
517 not axisymmetric, and are prone to twist. The asymmetry of the antennal cross section implies that

518 the aerodynamic loading cannot be reduced only to external forces: one cannot ignore the
519 aerodynamic torque acting to twist the antennae[49]. Future 3D visualization of antennal
520 movement during flight is necessary to examine whether antennae experience twisting, and, if so,
521 how the insect deals with it.

522 Dimorphism in insects manifests in various characters including size, ornamentation,
523 coloration, and weaponry[40]. The structural differences of antennae between male and female
524 hawkmoths have long been known[33-35, 51]. The distinct flexural rigidities bring together the
525 morphological features and biomechanics associated with feeding and mating. Males and females
526 of most hawkmoth species feed on floral nectar and share many of the same nectar sources, but
527 their foraging behavior differs, with males typically flying longer distances than females [52]. The
528 forewing shape of male hawkmoths suggests adaptation for faster flight, such as during mate
529 searching, whereas wing shape of females suggests adaptation for slower flight, perhaps during
530 host-plant searching for oviposition sites[53]. This dimorphism in behavior and wing structure
531 would be expected to have sex-differential consequences for antennae, given the different wind
532 speeds encountered and the executed maneuvers. The sensory system of male antennae should be
533 more robust, serving not only for searching for flowers but also for mates. Having more flexible
534 antennae allows male hawkmoths to swipe a larger air volume to detect a pheromone plume during
535 flight[51, 54]. Non-feeding hawkmoths, *Ceratomia catalpa* in our example, have the most flexible
536 antennae. Their antennae are not designed to withstand severe wind loads and are needed to screen
537 the air only for pheromones and perhaps host-plant cues for oviposition.

538 Insect antennae vary dramatically in structure but can generally be categorized as one of 10
539 forms, pectinate among them[55]. Although the functional value of some antennal forms, such as
540 plumose antennae for enhanced capture of air-borne chemicals, is well documented, that of other
541 forms lacks experimental evaluation. Pectinate antennae have evolved multiple times in
542 taxonomically diverse taxa, such as beetles and moths. We recognize that this antennal form might
543 serve different functions in insects, such as in flying versus nonflying insects, but we also expect
544 that the effects of bending toward the pectinations would be similar.

545 We emphasize that antennae and flight are strongly associated; wind currents produced by the
546 wings have consequences for the antennae and their ability to provide optimal sensory function,
547 including feedback to control flight. Rapid shifts not only in the direction of flight, but also from
548 forward flight to swing-hovering flight in hawkmoths cause antennal deformations. The pectinate,

549 yet robust, antennae of these moths represent an evolutionary compromise between the conflicting
550 demands of rapid flight (up to 5.3 m/sec [56]) and sensing of food, mates, and host plants. Thus,
551 we suggest that wing shape and antennal form represent an example of correlated evolution, with
552 hawkmoth antennae the result of an evolutionary compromise between selection and
553 counterselection. Speed and maneuverability have evolved in the context of maintaining a highly
554 sensitive yet stable sensory system. Increased antennal surface area translates to more sensilla,
555 such as fasciculate setae in male hawkmoths, but carries the risk of increased drag and wild
556 oscillations of the antennae. When these pressures are relaxed, antennal plumosity for greater
557 sensing capability reaches the zenith of development in the giant silk moths (family Saturniidae).
558 Giant silk moths are the sister clade of hawkmoths but have large wing to body ratios that translate
559 to an entirely different flight strategy based on slow, high-amplitude wing strokes [57]. These
560 flight characteristics would create less antennal drag and perturbation during flight, minimizing
561 the need for air-flow control during typical flight conditions. Hawkmoths routinely deal with
562 changes in air flow created by wing flapping, wind gusts, and the wake of flowers produced during
563 hovering[58] Additional environmental factors, such as rain, compound the risk of antennal
564 perturbation. We have, for example, observed hawkmoths flying and foraging during light to heavy
565 rains. Accordingly, robust antennae with pectinations that offer anisotropy to damp deformations
566 would be expected to broaden the environmental conditions under which hawkmoths can fly.

567 An examination of insects in diverse groups would be profitable in revealing the extent of non-
568 axisymmetric antennae, anisotropy, and the adaptive significance of antennal form in the context
569 of behavior. Longhorn beetles (family Cerambycidae), for example, offer a model taxon for
570 exploring the biomechanics of antennae. These beetles exhibit a range of antennal forms in which
571 anisotropy would be expected, particularly in those with exaggerated pectination such as some
572 species of the genus *Prionus*. We predict that antennal anisotropy, manifesting context-dependent
573 advantages, will be widespread among insects.

574 From engineering standpoint, our work offers promising new applications of shaped fibers[59] as
575 mechanical sensors.

576 **Conclusion**

577 Our comparative analysis of mechanical properties of hawkmoth antennae revealed a new feature:
578 resistance to bending toward the dorsal side is less than that toward the ventral side. The pectinate
579 antennae of hawkmoths behave as a comb in which the bristles resist bending when they come
580 together. The bending properties of antennae in males and females differ, broadening the range of
581 sexual dimorphism in Lepidoptera. Although the lack of 3D visualization of antennal behavior
582 during flight prevents predictive modelling of the neuromechanics, we established a reference for
583 future studies that would bring together the mechanical response of antennae to aerodynamic
584 loading and the neural response to controlling flight.

585 **5. Acknowledgements**

586 This work was partially supported by the NSF grant IOS 2014664, by the Clemson University
587 Creative Inquiry project to KK, and by the SC BioCRAFT facilities supported by the National
588 Institute of General Medical Sciences (NIGMS) of the National Institutes of Health under award
589 number P30GM131959 through the voucher program to KK, and by an appointment to the
590 Department of Defense (DOD) Research Participation Program administered by the Oak Ridge
591 Institute for Science and Education (ORISE) through an interagency agreement between the U.S.
592 Department of Energy (DOE) and the DOD. ORISE is managed by ORAU under DOE contract
593 number DE-SC0014664. All opinions expressed in this paper are those of the authors and do not
594 necessarily reflect the policies and views of DOD, DOE, or ORAU/ORISE. We thank M. L. Ferro,
595 Collection Manager of the Clemson University Arthropod Collection, for allowing us to use
596 hawkmoths in the collection. We thank L. Marsh for helping with the antenna bending
597 experiments. The work of P.H.A. was partially supported by NIFA/USDA under project number
598 SC-1700596 and is Technical Contribution No. 7289 of the Clemson University Experiment
599 Station.

600 **Appendix**

601 Consider an idealized case of a velocity field \mathbf{U} parallel to the antenna axis, the x-axis in Fig.1.
602 In an unperturbed state, the antenna is straight. As the insect moves its head, the antenna is
603 allowed to deflect from the original configuration and we question at which velocity antenna
604 flapping is expected. In a steady state flight, the antenna profile is described by the following
605 equation[49]

606
$$f^\pm \frac{d}{ds} \left(\frac{d\gamma^\pm}{ds} \right) + \alpha^2 \gamma^\pm = 0. \quad \alpha^2 = \left(\frac{dc}{dy} \right) \rho_{air} U^2 \cdot A / 2, \quad (A1)$$

607 where in eq.(1) we expressed ψ as $\psi(s) = \frac{\pi}{2} \pm \gamma^\pm(s)$ and replaced the weight on the antenna
 608 end with the aerodynamic force; C is the lift coefficient which is a function of the angle of attack
 609 γ defined in Fig. 1, A is the cross-sectional area of a flagellomere. The solution of eq.(A1) is

610
$$\gamma^\pm = A^\pm \cos(\beta^\pm s) + B^\pm \sin(\beta^\pm s), \text{ where } \beta^\pm = \alpha / \sqrt{EI^\pm}. \quad (A2)$$

611 Assuming that the flagellum is fixed at the angle $\psi(0) = \frac{\pi}{2}$ and no bending is acting on the
 612 antenna free end, we set up the following boundary conditions for eq.(A2)

613
$$\gamma^\pm(0) = 0, \quad \frac{d\gamma^\pm}{ds}(L) = 0. \quad (A3)$$

614 Substituting eq.(A2) in eqs.(A3), we find

615

616
$$A^\pm = 0, \cos(\beta^\pm L) = 0, \Rightarrow \beta^\pm L = \frac{\pi}{2} + \pi n, n = 0, 1, 2, 3, \dots \quad (A4)$$

617 Thus, the first nontrivial solution will appear at $n=0$, corresponding to the velocity

618
$$U^\pm = \sqrt{EI^\pm} / \sqrt{\frac{dc}{dy} \cdot \rho_{air} \cdot A / 2}. \quad (A5)$$

619 The small deflections $u^\pm(x)$ are determined from equation $\gamma^\pm(s) \approx \gamma^\pm(x) \approx du^\pm/dx$ and
 620 condition $u^\pm(0) = 0$ as

621
$$u^\pm(x) = \pm(B^\pm / \beta^\pm)(1 - \cos(\beta^\pm x)), \quad (A6)$$

622 where B^\pm needs to be found from the second order approximation. Equation (A6) shows that the
 623 perturbed antenna is prone to form a profile corresponding to a quarter period of a cosine function.

624 **References**

625

626 1. Misof, B., Liu, S.L., Meusemann, K., Peters, R.S., Donath, A., Mayer, C., Frandsen, P.B., Ware, J.,
627 Flouri, T., Beutel, R.G., et al. (2014). Phylogenomics resolves the timing and pattern of insect
628 evolution. *Science* *346*, 763-767.

629 2. Schneider, D. (1964). Insect antennae. *Annual Review of Entomology* *9*, 103-&.

630 3. Krishnan, A., and Sane, S.P. (2015). Antennal mechanosensors and their evolutionary
631 antecedents. In *Advances in Insect Physiology*, Vol 49, Volume 49, R. Jurenka, ed. (London:
632 Academic Press Ltd-Elsevier Science Ltd), pp. 59-99.

633 4. Boeckh, J., Kaissling, K.E., and Schneider, D. (1965). Insect olfactory receptors. *Cold Spring
634 Harbor Symp. Quant. Biol.* *30*, 263-+.

635 5. Kaissling, K.E. (1998). Flux detectors versus concentration detectors: Two types of
636 chemoreceptors. *Chem. Senses* *23*, 99-111.

637 6. Kanaujia, S., and Kaissling, K.E. (1985). Interactions of pheromone with moth antennae -
638 adsorption, desorption and transport. *Journal of Insect Physiology* *31*, 71-81.

639 7. Koehl, M.A.R. (1996). Small-scale fluid dynamics of olfactory antennae. *Marine and Freshwater
640 Behaviour and Physiology* *27*, 127-141.

641 8. Daly, K.C., Kalwar, F., Hatfield, M., Staudacher, E., and Bradley, S.P. (2013). Odor detection in
642 *Manduca sexta* is optimized when odor stimuli are pulsed at a frequency matching the wing
643 beat during flight. *Plos One* *8*.

644 9. Kadakia, N., Demir, M., Michaelis, B.T., DeAngelis, B.D., Reidenbach, M.A., Clark, D.A., and
645 Emonet, T. (2022). Odour motion sensing enhances navigation of complex plumes. *Nature* *611*,
646 754-+.

647 10. Mafraneto, A., and Carde, R.T. (1994). Fine-scale structure of pheromone plumes modulates
648 upwind orientation of flying moths. *Nature* *369*, 142-144.

649 11. Staudacher, E.M., Gebhardt, M., and Durr, V. (2005). Antennal movements and
650 mechanoreception: Neurobiology of active tactile sensors. In *Advances in Insect Physiology*, Vol
651 32, Volume 32, S.J. Simpson, ed., pp. 49-205.

652 12. Gewecke, M. (1970). Antennae - another wind-sensetive receptor in Locusts *Nature* *225*, 1263-
653 &.

654 13. Gewecke, M. (1974). The antennae of insects as air-current sense organs and their relationship
655 to the control of flight. In *Experimental analysis of insect behaviour*, L.B. Browne, ed. (Springer),
656 pp. 100-113.

657 14. Krishnan, A., Prabhakar, S., Sudarsan, S., and Sane, S.P. (2012). The neural mechanisms of
658 antennal positioning in flying moths. *Journal of Experimental Biology* *215*, 3096-3105.

659 15. Natesan, D., Saxena, N., Ekeberg, O., and Sane, S.P. (2019). Tuneable reflexes control antennal
660 positioning in flying hawkmoths. *Nature Communications* *10*.

661 16. Sane, S.P., and Jacobson, N.P. (2006). Induced airflow in flying insects - II. Measurement of
662 induced flow. *Journal of Experimental Biology* *209*, 43-56.

663 17. Sane, S.P., Dieudonne, A., Willis, M.A., and Daniel, T.L. (2007). Antennal mechanosensors
664 mediate flight control in moths. *Science* *315*, 863-866.

665 18. Steinbrecht, R.A. (1997). Pore structures in insect olfactory sensilla: A review of data and
666 concepts. *International Journal of Insect Morphology & Embryology* *26*, 229-245.

667 19. Nishino, H., Iwasaki, M., Paoli, M., Kamimura, I., Yoritsune, A., and Mizunami, M. (2018). Spatial
668 Receptive Fields for Odor Localization. *Current Biology* *28*, 600-+.

669 20. Wicher, D. (2015). Olfactory Signaling in Insects. In *Molecular Basis of Olfaction*, Volume 130, R.
670 Glatz, ed. (San Diego: Elsevier Academic Press Inc), pp. 37-54.

671 21. Stockl, A.L., and Kelber, A. (2019). Fuelling on the wing: sensory ecology of hawkmoth foraging.
672 *Journal of Comparative Physiology a-Neuroethology Sensory Neural and Behavioral Physiology*
673 *205*, 399-413.

674 22. Suver, M.P., Medina, A.M., and Nagel, K.I. (2023). Active antennal movements in *Drosophila* can
675 tune wind encoding. *Current Biology* 33, 780-+.

676 23. Claverie, N., Buvat, P., and Casas, J. (2023). Active sensing in bees through antennal movements
677 is independent of odor molecule. *Integrative and Comparative Biology*.

678 24. Humphrey, J.A.C., and Barth, F.G. (2007). Medium flow-sensing hairs: Biomechanics and models.
679 In *Advances in Insect Physiology: Insect Mechanics and Control*, Volume 34, J. Casas, ed. (San
680 Diego: Elsevier Academic Press Inc), pp. 1-80.

681 25. Taylor, G.K., and Krapp, H.G. (2007). Sensory systems and flight stability: What do insects
682 measure and why? In *Advances in Insect Physiology: Insect Mechanics and Control*, Volume 34,
683 J. Casas, ed., pp. 231-316.

684 26. Johnson, B. (1956). Function of the antennae of aphids during flight. *Australian Journal of
685 Science* 18, 199-200.

686 27. Yagodin, S.V., and Kovbasa, S.I. (1984). The flight maintenance in the cockroach *Periplaneta
687 americana* L. *Journal of Comparative Physiology* 155, 697-712.

688 28. Gewecke, M., and Heinzel, H.G. (1980). Aerodynamic and mechanical properties of the antennae
689 as air-current sense organs in *Locusta Migratoria*. 1. Static characteristics. *Journal of
690 Comparative Physiology* 139, 357-366.

691 29. Mongeau, J.M., Demir, A., Dallmann, C.J., Jayaram, K., Cowan, N.J., and Full, R.J. (2014).
692 Mechanical processing via passive dynamic properties of the cockroach antenna can facilitate
693 control during rapid running. *Journal of Experimental Biology* 217, 3333-3345.

694 30. Mongeau, J.M., Sponberg, S.N., Miller, J.P., and Full, R.J. (2015). Sensory processing within
695 cockroach antenna enables rapid implementation of feedback control for high-speed running
696 maneuvers. *Journal of Experimental Biology* 218, 2344-2354.

697 31. Wainwright, S.A., Biggs, W.D., Currey, J.D., and Gosline, J.M. (1982). *Mechanical Design in
698 Organisms* (Princeton University Press).

699 32. Keil, T.A. (2012). Sensory cilia in arthropods. *Arthropod Structure & Development* 41, 515-534.

700 33. Sanes, J.R., and Hildebrand, J.G. (1976). Structure and development of antennae in a moth,
701 *Manduca sexta*. *Developmental Biology* 51, 282-299.

702 34. Shields, V.D.C., and Hildebrand, J.G. (1999). Fine structure of antennal sensilla of the female
703 sphinx moth, *Manduca sexta* (Lepidoptera: Sphingidae). I.: Trichoid and basiconic sensilla.
704 Canadian Journal of Zoology-*Revue Canadienne De Zoologie* 77, 290-301.

705 35. Shields, V.D.C., and Hildebrand, J.G. (1999). Fine structure of antennal sensilla of the female
706 sphinx moth, *Manduca sexta* (Lepidoptera: Sphingidae). II.: Auriculate, coeloconic, and styliform
707 complex sensilla. Canadian Journal of Zoology 77, 302-313.

708 36. Palaoro, A.V., Gole, A.R., Sun, Y.M., Puchalski, A., Beard, C.E., Adler, P.H., and Kornev, K.G.
709 (2023). Wettability and morphology of proboscis interweave with hawkmoth evolutionary
710 history. *Journal of Experimental Biology* 226.

711 37. Landau, L.D., and Lifshitz, E.M. (1986). *Theory of Elasticity*, Volume 7, 3 Edition, (Reed
712 Educational and Professional Publishing Ltd.).

713 38. Kiusalaas, J. (2015). *Numerical methods in engineering with Matlab*, 3rd edition Edition,
714 (Cambridge University Press).

715 39. Donley, G., Sun, Y.M., Pass, G., Adler, P.H., Beard, C.E., Owens, J., and Kornev, K.G. (2022). Insect
716 antennae: Coupling blood pressure with cuticle deformation to control movement. *Acta
717 Biomater.* 147, 102-119.

718 40. Chapman, R.F. (2013). *The Insects: Structure and Function*.

719 41. Goldstein, P.Z. (2017). Diversity and significance of Lepidoptera: a phylogenetic perspective. In
720 *Insect Biodiversity: Science and Society*, Volume I, 2nd edition Edition, R.G. Foottit and P.H.
721 Adler, eds. (Chichester, UK: Wiley-Blackwell), pp. 463-495.

722 42. Lees, D.C., and Zilli, A. (2019). Moths. A complete guide to biology and behavior, (Washington
723 DC: Smithsonian books).

724 43. Hildebrand, J.G. (1996). Olfactory control of behavior in moths: Central processing of odor
725 information and the functional significance of olfactory glomeruli. *Journal of Comparative
726 Physiology a-Neuroethology Sensory Neural and Behavioral Physiology* 178, 5-19.

727 44. Sane, S.P. (2016). Neurobiology and biomechanics of flight in miniature insects. *Current Opinion
728 in Neurobiology* 41, 158-166.

729 45. Sant, H.H., and Sane, S.P. (2018). The mechanosensory-motor apparatus of antennae in the
730 Oleander hawk moth (*Daphnis nerii*, Lepidoptera). *Journal of Comparative Neurology* 526, 2215-
731 2230.

732 46. Taha, H.E., Kiani, M., Hedrick, T.L., and Greeter, J.S.M. (2020). Vibrational control: A hidden
733 stabilization mechanism in insect flight. *Science Robotics* 5.

734 47. Hearn, E.J. (1997). Mechanics of materials, Volume 1, 3rd Edition, (Boston: Butterworth
735 Heinemann).

736 48. Vogel, S. (1996). Life in Moving Fluids: The Physical Biology of Flow, (Princeton, NJ: Princeton
737 University Press).

738 49. Fung, Y.C. (2008). An Introduction to the Theory of Aeroelasticity, (New York: Dover
739 Publications).

740 50. Kraus, J.D. (1988). Antennas, 2nd Edition, (New York: McGraw-Hill College; Subsequent edition).

741 51. Johnson, T.L., Elgar, M.A., and Symonds, M.R.E. (2022). Movement and olfactory signals:
742 Sexually dimorphic antennae and female flightlessness in moths. *Front. Ecol. Evol.* 10.

743 52. Smith, G.P., Davidowitz, G., Alarcón, R., Papaj, D.R., and Bronstein, J.L. (2022). Sex differences in
744 the foraging behavior of a generalist hawkmoth. *Insect Science* 29, 304-314.

745 53. de Camargo, W.R.F., de Camargo, N.F., Correa, D.D.V., de Camargo, A.J.A., and Diniz, I.R. (2015).
746 Sexual Dimorphism and Allometric Effects Associated With the Wing Shape of Seven Moth
747 Species of Sphingidae (Lepidoptera: Bombycoidea). *Journal of Insect Science* 15.

748 54. Elgar, M.A., Johnson, T.L., and Symonds, M.R.E. (2019). Sexual selection and organs of sense:
749 Darwin's neglected insight. *Animal Biology* 69, 63-82.

750 55. Richards, O.W., and Davies, R.G. (1977). Imms' general textbook of entomology, Volume Vol. 1:
751 Structure, physiology and development., 10th Edition, (New York: Halsted Press).

752 56. Stevenson, R.D., Corbo, K., Baca, L.B., and Le, Q.D. (1995). Cage size and flight speed of the
753 Tobacco hawkmoth *Manduca sexta*. *Journal of Experimental Biology* 198, 1665-1672.

754 57. Aiello, B.R., Bin Sikandar, U., Minoguchi, H., Bhinderwala, B., Hamilton, C.A., Kawahara, A.Y., and
755 Sponberg, S. (2021). The evolution of two distinct strategies of moth flight. *Journal of the Royal
756 Society Interface* 18.

757 58. Matthews, M., and Sponberg, S. (2018). Hawkmoth flight in the unsteady wakes of flowers.
758 *Journal of Experimental Biology* 221.

759 59. Hongu, T., Phillips, G.O., and Takigami, M. (2005). New millennium fibers, (Cambridge, England:
760 Woodhead Publishing Ltd).

761

762

763

764 **Flexural rigidity of hawkmoth antennae depends on the bending direction**

765

766 Adam Puchalski¹, Zoë McCarthy¹, Alexandre Varaschin Palaoro¹, Arthur A. Salamatini¹, Agnes
767 Nagy-Mehesz², Guzeliya Korneva², Charles E. Beard³, Jeffery Owens⁴, Peter H. Adler³ and
768 Konstantin G. Kornev¹

769 ¹Department of Materials Science and Engineering, Clemson University, Clemson, South
770 Carolina, USA, 29634. E-mail: kkornev@clemson.edu

771 ²Department of Plant and Environmental Sciences, Clemson University, Clemson, South
772 Carolina USA, 29634

773 ³Air Force Civil Engineer Center, Tyndall Air Force Base, Florida

774 **Supplementary Material.**

775 **Table S1.** Summary of experimental conditions during which MicroTensile Testing was conducted on
776 hawkmoth antennae.

Sample #	Experiment Date	Temp (C)	Humidity (%)	Sex	Capture Date	Emergence Date
<i>Manduca sexta</i>						
33	9/14/2022	26	56	M	n/a	9/5/22
10						
22	8/12/2022	22	70	M	n/a	n/a
21	8/12/2022	22	70	M	n/a	n/a
34	10/12/2022	24	54	F	10/10/2022	n/a
35	10/14/2022	23	38	M	10/7/2022	n/a
36	10/14/2022	23	38	M	10/7/2022	n/a
37	10/19/2022	23	20	F	10/7/2022	n/a
38	10/21/2022	23	25	F	10/10/2022	n/a
39	10/21/2022	23	25	F	10/10/2022	n/a
40	10/21/2022	23	25	F	n/a	10/7/2022

42	11/30/2022	23	51	F	n/a	11/22/2022
43	11/30/2022	23	51	F	n/a	11/22/2022
<i>Ceratomia catalpae</i>						
22	7/29/2022	22	73	M	7/24/2022	n/a
20	8/1/2022	22	72	M	7/24/2022	n/a
21	8/1/2022	23	68	F	7/28/2022	n/a
24	8/2/2022	22	70	M	7/28/2022	n/a
<i>Xylophanes tersa</i>						
1	9/7/2022	23	66	M	9/1/2022	n/a
2	9/7/2022	23	66	M	9/1/2022	n/a
3	9/7/2022	23	66	M	9/1/2022	n/a
<i>Manduca quinquemaculata</i>						
1	9/7/2022	23	56	M	9/14/2022	n/a
2	9/7/2022	23	56	M	9/14/2022	n/a
3	9/7/2022	23	58	M	9/14/2022	n/a

777

778

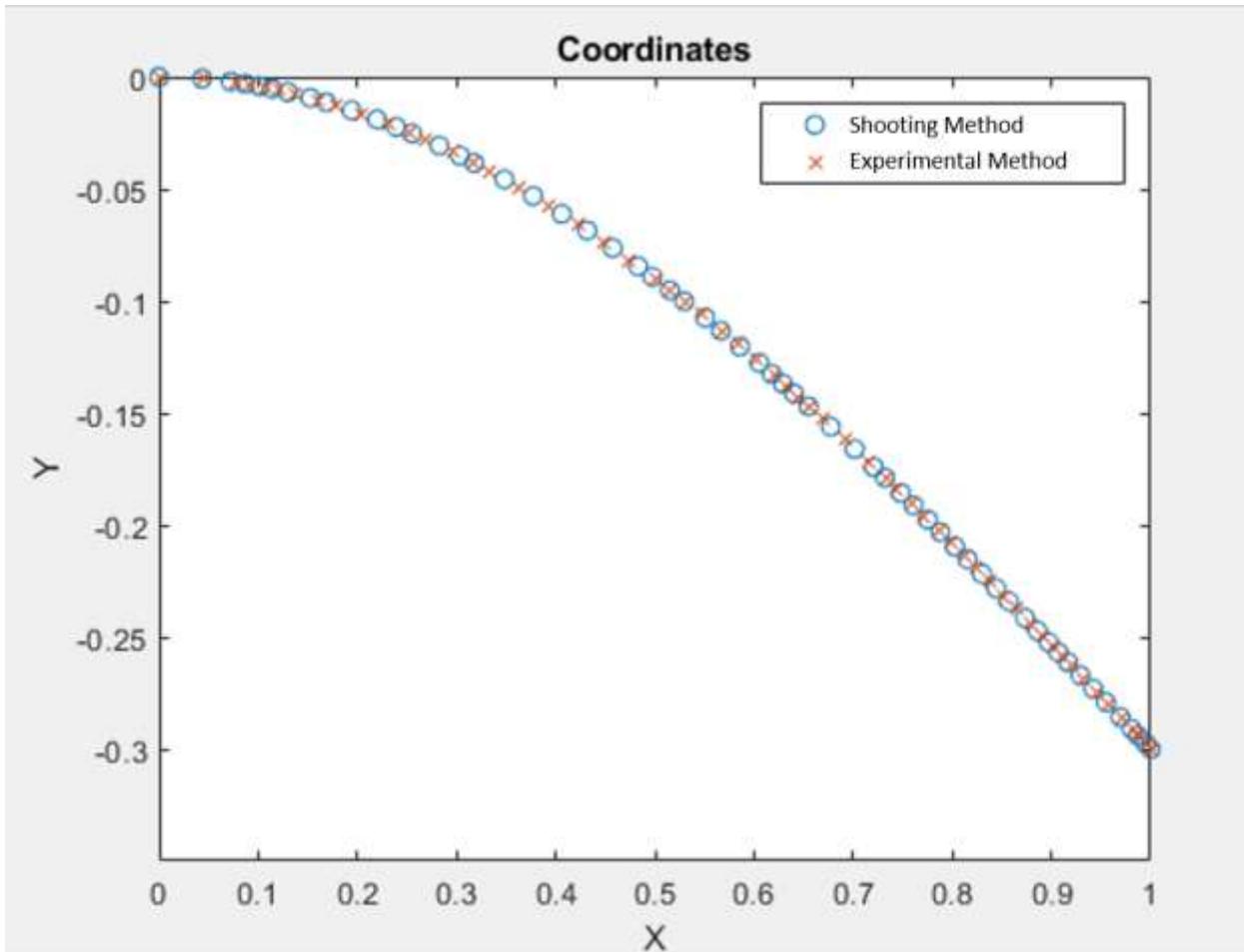
779 **Shooting method.**

780 The Euler elastica equations are:

$$781 \quad f \frac{d}{ds} \left(\frac{d\psi}{ds} \right) - W \sin \psi = 0, \quad dx/ds = \sin \psi, \quad dy/ds = \cos \psi \quad (S1)$$

782 We rewrite eqs.(S1) as a system of four dimensionless 1st order differential equations by

783 introducing $s = LS, x = LX, y = LY, \tau = WL^2/f$:


784 $\left(\frac{d\psi}{ds}\right) = v, \quad \frac{dv}{ds} = \tau \sin \psi, \quad dX/dS = \sin \psi, \quad dY/dS = \cos \psi. \quad (S2)$

785 With the four equations, three initial conditions are known.

786 $\psi(0) = \frac{\pi}{2}, X(0) = 0, Y(0) = 0 \quad (S3)$

787 And one condition is unknown; we set $\frac{d\psi}{ds}(0) = u$ where u is an arbitrary parameter which must
 788 be obtained by integrating (S2)-(S3) until the condition $\frac{d\psi}{ds}(1) = 0$ is satisfied. The equations are
 789 solved using the ODE45 function provided in MATLAB, and this is run through every iteration
 790 of the loop until the last value $\frac{d\psi}{ds}(1) = 10^{-5}$ for the curvature is reached.

791 To ensure that the experimental X-values line up with the values from the shooting method,
 792 the numerical data were interpolated to provide a continuous function. Linear interpolation
 793 involves estimating intermediate values between the two known data points using a straight line.
 794 This allowed for smoother transitions, more accurate representation of data, and a more accurate
 795 method of comparing the two data sets. As seen in Figure S1, the interpolated data have the same
 796 trend to the original data from the shooting method.

797

798 **Figure S1:** A plot of the shooting method coordinates before and after interpolation.

799

800 **Calibration with the Polynomial Solution**

801 To verify that the shooting method is working correctly, a polynomial solution is derived and
 802 compared to the results of the shooting method. Introducing the inclination angle δ as $\psi = \frac{\pi}{2} - \delta$
 803 and considering small deflections, $\delta \ll 1$, we have

$$804 \quad \sin \psi = \sin \left(\frac{\pi}{2} - \delta \right) = \cos \delta \approx 1 \quad \cos \psi = \cos \left(\frac{\pi}{2} - \delta \right) = \sin \delta \approx \delta, \quad (S4)$$

805 Substituting eqs.(S4) in eqs.(S2), we have $dY/dS \approx dY/dX \approx \delta$. Therefore,

$$806 \quad \frac{d^3Y}{dX^3} + \tau = 0 \quad (S5)$$

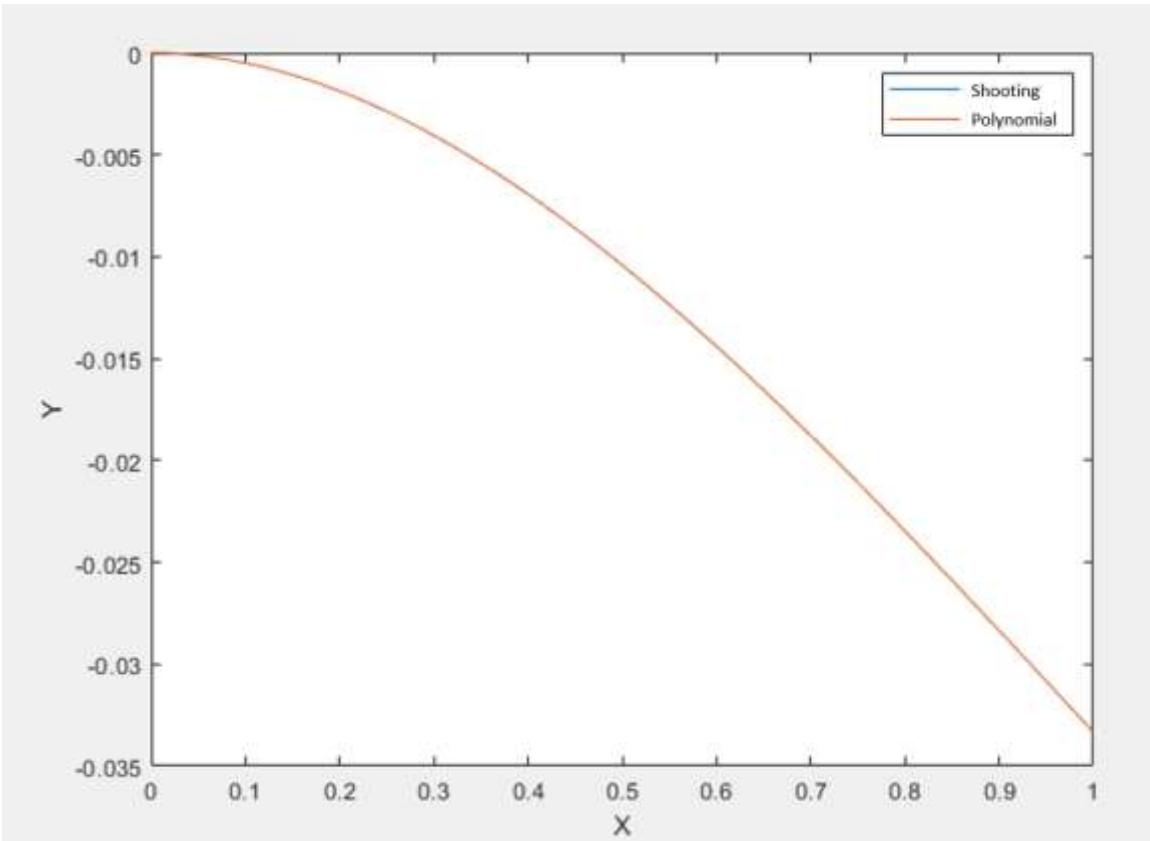
807 Equation (S5) was integrated three times:

808 $\int \left[\frac{d^3Y}{dx^3} + \tau = 0 \right] \Rightarrow -\tau X + a,$

809 $\int [-\tau X + a] dX \Rightarrow -\tau \frac{X^2}{2} + aX + b,$

810 $\int \left[\tau \frac{X^2}{2} + aX + b \right] dX \Rightarrow Y = -\tau \frac{X^3}{6} + a \frac{X^2}{2} + bX + c.$

811 (S6)


812 Using the boundary condition $Y(0) = 0 \Rightarrow c = 0$ and the second boundary condition

813 $dY/dX(0) = 0 \Rightarrow b = 0$ Finally, the remaining boundary condition $\frac{d^2Y}{dX^2}(1) = 0$ gives $a = \tau$.

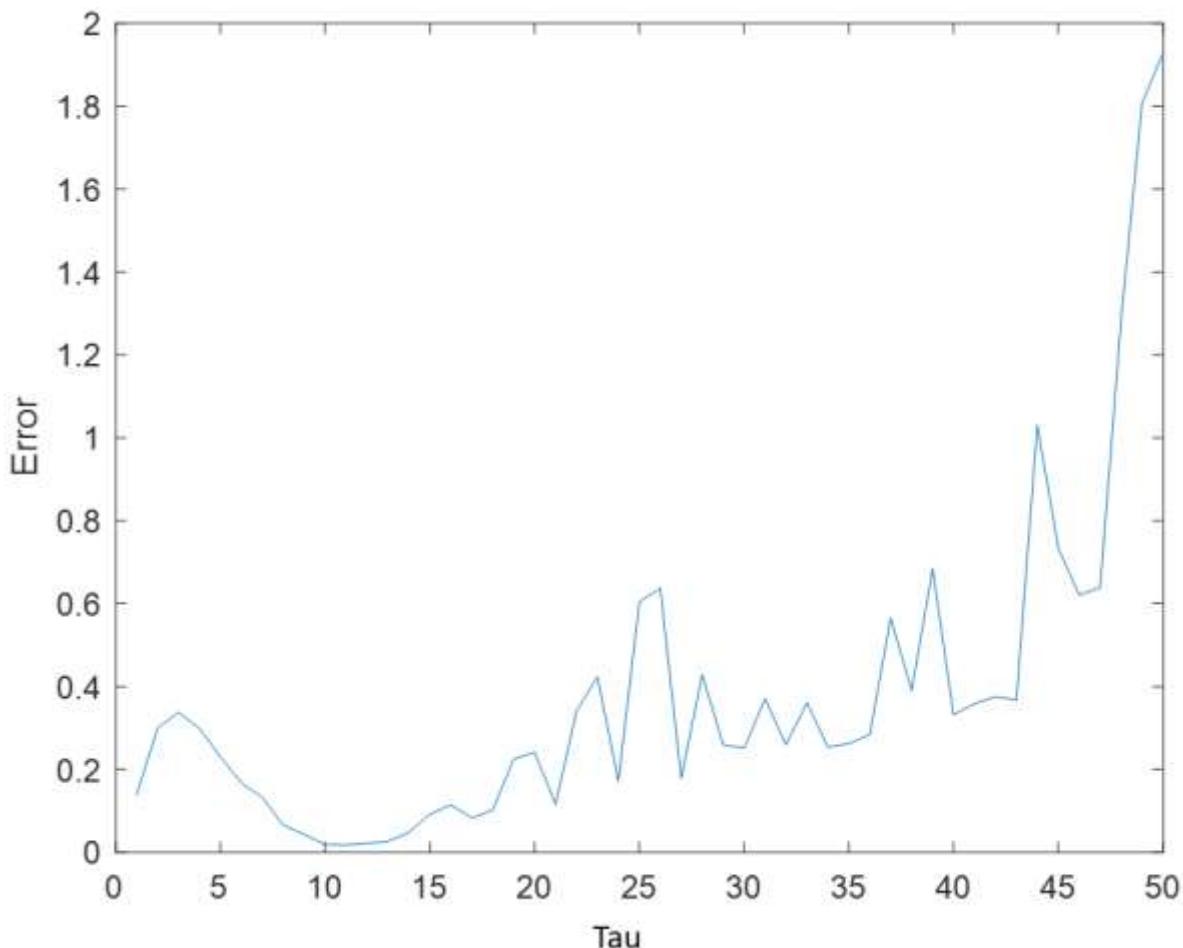
814 Thus, we have

815
$$Y = -\tau \frac{X^3}{6} + \tau \frac{X^2}{2} \quad (S7)$$

816 Figure S2 shows the results of numerical solution and eq.(S7) for $\tau = 0.1$.

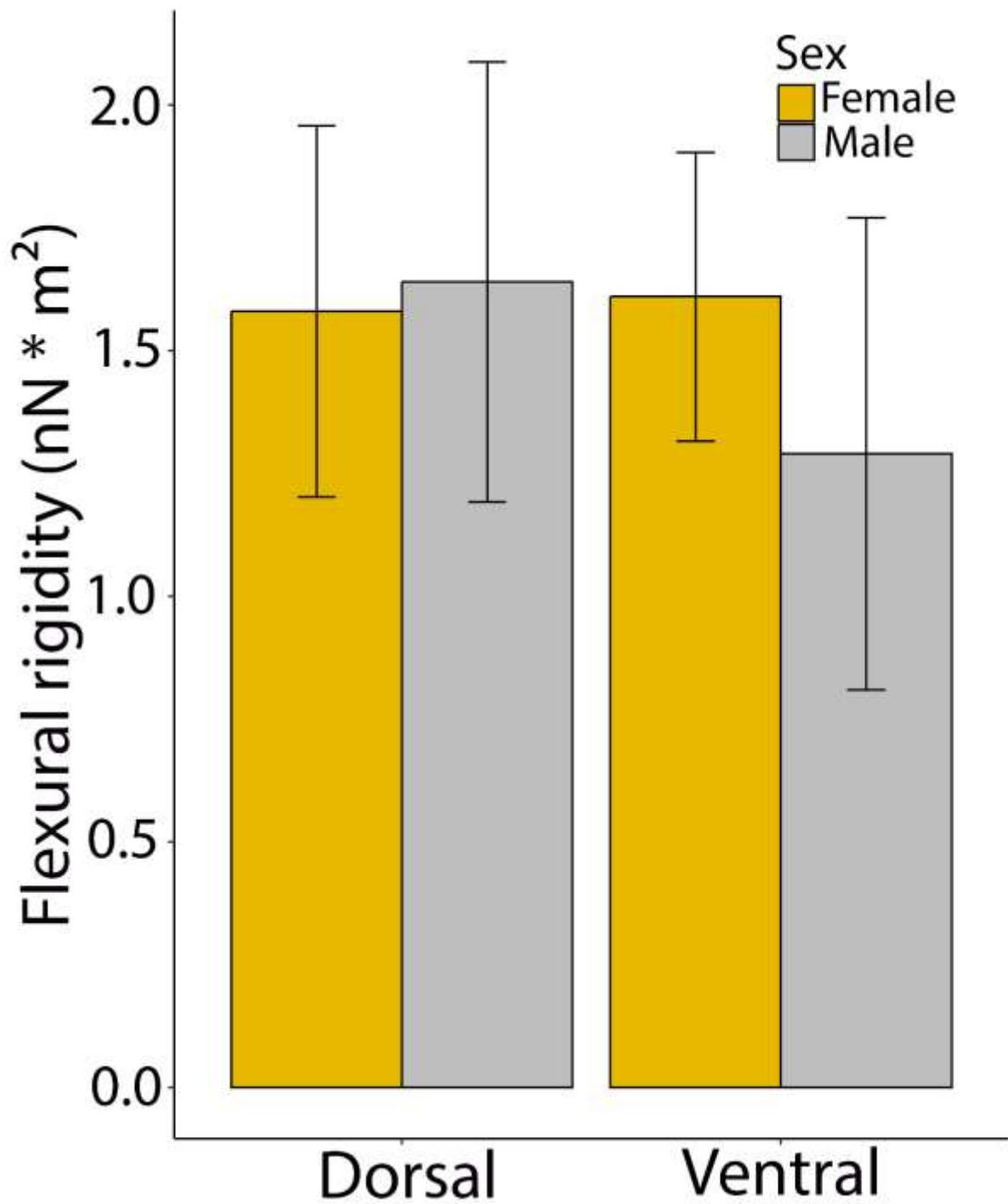
817 **Figure S2:** A plot Y as a function of X obtained by the shooting method and by the polynomial
818 solution (S6)

819 The two functions are so similar that they overlap. This confirms that the shooting method does
820 an adequate job of solving the Euler elastica.


821

822 The goodness of fit

823 The goodness of fit was measured by the following equation:


824
$$f = \sum_{i=1}^n [(X(s) - \hat{X}(s))^2 - (Y(s) - \hat{Y}(s))^2] \quad (S8)$$

825 where X and Y are the values of the actual data, and \hat{X} and \hat{Y} are the values from the shooting
826 method for each node i . For each tau-value in the Euler elastica, we have a single f -value,
827 eq.(38), representing the error of the given fit. This error in this case, f , for each tau value was
828 plotted in Figure S3. The Tau output with the lowest error value was chosen as the ‘best fit’ and
829 then was further analyzed in a tighter numerical region to obtain higher accuracy.

830

831 **Figure S3:** A plot of the fitting error, function f , as a function of τ obtained by the shooting
832 method for various τ values, where error is measured by (S7).

833

834 **Figure S4:** *Data on the sidewise bending of the antennae of *M. sexta*. The “dorsal” bars specify*
835 *experiments with the camera facing the dorsal side of the antennae, and the “ventral” bars*
836 *specify experiments with the camera facing the ventral side.*

837