

## ERRATA TO “A SIMPLER PROOF OF TOROIDALIZATION OF MORPHISMS FROM 3-FOLDS TO SURFACES”

STEVEN DALE CUTKOSKY

The page and line numbers refer to the manuscript which is posted on my webpage, [www.math.missouri.edu/~dale](http://www.math.missouri.edu/~dale). This is the published version (*Annales de L’Institut Fourier* 63 (2013), 865 - 922), but the page and line numbers are different. A case was missed in Lemma 3.7 (Case (A) and a modification of (15) in the restatement of Definition 3.3 below). The consideration of this new case does not introduce any significant change in the proof. I have written out in detail all of the changes which need to be made in the manuscript to incorporate this new case. Numbers indexing equations, theorems, definitions etc. are as in the earlier manuscript. New equations, theorems etc. are indexed by letters.

Page 10, line 6: “natural numbers  $r_2, \dots, r_{m-2}$  and a positive integer  $r_{m-1}$ ” should be “natural numbers  $r_2, \dots, r_{m-1}$ ”.

Page 10, insert after line 7: Let  $\omega'(m, r_2, \dots, r_m)$  be a function which associates a positive integer to a positive integer  $m$  and natural numbers  $r_2, \dots, r_m$ . We will give a precise form of  $\omega'$  after Theorem 4.2.

Page 10: Definition 3.3 should be modified as follows.

**Definition 3.3.** *X is 3-prepared (with respect to  $f : X \rightarrow S$ ) at a point  $p \in D$  if  $\sigma_D(p) = 0$  or if  $\sigma_D(p) > 0$ , f is 2-prepared with respect to D at p and there are permissible parameters  $x, y, z$  at p such that  $x, y, z$  are uniformizing parameters on an étale cover of an affine neighborhood of p and we have one of the following forms, with  $m = \sigma_D(p) + 1$ :*

1) *p is a 2-point, and we have an expression (2) with*

$$(13) \quad F = \tau_0 z^m + \tau_2 x^{r_2} y^{s_2} z^{m-2} + \dots + \tau_{m-1} x^{r_{m-1}} y^{s_{m-1}} z + \tau_m x^{r_m} y^{s_m}$$

*where  $\tau_0 \in \hat{\mathcal{O}}_{X,p}$  is a unit,  $\tau_i \in \hat{\mathcal{O}}_{X,p}$  are units (or zero),  $r_i + s_i > 0$  whenever  $\tau_i \neq 0$  and  $(r_m + c)b - (s_m + d)a \neq 0$ . Further,  $\tau_{m-1} \neq 0$  or  $\tau_m \neq 0$ .*

2) *p is a 1-point, and we have an expression (1) with*

$$(14) \quad F = \tau_0 z^m + \tau_2 x^{r_2} z^{m-2} + \dots + \tau_{m-1} x^{r_{m-1}} z + \tau_m x^{r_m}$$

*where  $\tau_0 \in \hat{\mathcal{O}}_{X,p}$  is a unit,  $\tau_i \in \hat{\mathcal{O}}_{X,p}$  are units (or zero) for  $2 \leq i \leq m-1$ ,  $\tau_m \in \hat{\mathcal{O}}_{X,p}$  and  $\text{ord}(\tau_m(0, y, 0)) = 1$  (or  $\tau_m = 0$ ). Further,  $r_i > 0$  if  $\tau_i \neq 0$ , and  $\tau_{m-1} \neq 0$  or  $\tau_m \neq 0$ .*

3) *p is a 1-point, and we have an expression (1) with*

$$(15) \quad F = \tau_0 z^m + \tau_2 x^{r_2} z^{m-2} + \dots + \tau_{m-1} x^{r_{m-1}} z + x^t \Omega$$

*where  $\tau_0 \in \hat{\mathcal{O}}_{X,p}$  is a unit,  $\tau_i \in \hat{\mathcal{O}}_{X,p}$  are units (or zero) for  $2 \leq i \leq m-1$ ,  $\Omega \in \hat{\mathcal{O}}_{X,p}$ ,  $\tau_i \neq 0$  for some  $i$  with  $2 \leq i \leq m-1$  and  $t > \omega(m, r_2, \dots, r_{m-1})$  (where we set  $r_i = 0$  if  $\tau_i = 0$ ). Further,  $r_i > 0$  if  $\tau_i \neq 0$ .*

4)  $p$  is a 1-point, and we have an expression (1) with

$$(A) \quad F = \tau_0 z^m + \tau_2 x^{r_2} y z^{m-2} + \cdots + \tau_{m-1} x^{r_{m-1}} y z + \tau_m x^{r_m} y + x^t \Omega$$

where  $\tau_0 \in \hat{\mathcal{O}}_{X,p}$  is a unit,  $\tau_i \in \hat{\mathcal{O}}_{X,p}$  are units (or zero) for  $2 \leq i \leq m$ ,  $\Omega \in \hat{\mathcal{O}}_{X,p}$ ,  $\tau_i \neq 0$  for some  $i$  with  $2 \leq i \leq m$  and  $t > \omega'(m, r_2, \dots, r_m)$  (where we set  $r_i = 0$  if  $\tau_i = 0$ ). Further,  $r_i > 0$  if  $\tau_i \neq 0$ .

$X$  is 3-prepared if  $X$  is 3-prepared for all  $p \in X$ .

Pages 12 - 13: Lemma 3.6 and its proof should be changed as follows.

**Lemma 3.6.** Suppose that  $X$  is 2-prepared with respect to  $f : X \rightarrow S$ . Suppose that  $p \in D$  is a 1-point with  $m = \sigma_D(p) + 1 > 1$ . Let  $u, v$  be permissible parameters for  $f(p)$  and  $x, y, z$  be permissible parameters for  $D$  at  $p$  such that a form (9) holds at  $p$ . Let  $U$  be an étale cover of an affine neighborhood of  $p$  such that  $x, y, z$  are uniformizing parameters on  $U$ . Let  $C$  be the curve in  $U$  which has local equations  $x = y = 0$  at  $p$ .

Let  $T_0 = \text{Spec}(\mathfrak{k}[x, y])$ ,  $\Lambda_0 : U \rightarrow T_0$ . Then there exists a sequence of quadratic transforms  $T_1 \rightarrow T_0$  such that if  $U_1 = U \times_{T_0} T_1$  and  $\psi_1 : U_1 \rightarrow U$  is the induced sequence of blow ups of sections over  $C$ ,  $\Lambda_1 : U_1 \rightarrow T_1$  is the projection, then  $U_1$  is 2-prepared with respect to  $f \circ \psi_1$  at all  $p_1 \in \psi_1^{-1}(p)$ . Further, for every point  $p_1 \in \psi_1^{-1}(p)$ , there exist regular parameters  $x_1, y_1$  in  $\hat{\mathcal{O}}_{T_1, \Lambda_1(p_1)}$  such that  $x_1, y_1, z$  are permissible parameters at  $p_1$ , and there exist regular parameters  $\tilde{x}_1, \tilde{y}_1$  in  $\mathcal{O}_{T_1, \Lambda_1(p_1)}$  such that if  $p_1$  is a 1-point,  $x_1 = \alpha(\tilde{x}_1, \tilde{y}_1)\tilde{x}_1$  where  $\alpha(\tilde{x}_1, \tilde{y}_1) \in \hat{\mathcal{O}}_{T_1, \Lambda_1(p_1)}$  is a unit series and  $y_1 = \beta(\tilde{x}_1, \tilde{y}_1)$  with  $\beta(\tilde{x}_1, \tilde{y}_1) \in \hat{\mathcal{O}}_{T_1, \Lambda_1(p_1)}$ , and if  $p_1$  is a 2-point, then  $x_1 = \alpha(\tilde{x}_1, \tilde{y}_1)\tilde{x}_1$  and  $y_1 = \beta(\tilde{x}_1, \tilde{y}_1)\tilde{y}_1$ , where  $\alpha(\tilde{x}_1, \tilde{y}_1), \beta(\tilde{x}_1, \tilde{y}_1) \in \hat{\mathcal{O}}_{T_1, \Lambda_1(p_1)}$  are unit series. We have one of the following forms:

1)  $p_1$  is a 2-point, and we have an expression (2) with

$$(18) \quad F = \tau z^m + \bar{a}_2(x_1, y_1) x_1^{r_2} y_1^{s_2} z^{m-2} + \cdots + \bar{a}_{m-1}(x_1, y_1) x_1^{r_{m-1}} y_1^{s_{m-1}} z + \bar{a}_m x_1^{r_m} y_1^{s_m}$$

where  $\tau \in \hat{\mathcal{O}}_{U_1, p_1}$  is a unit,  $\bar{a}_i(x_1, y_1) \in \mathfrak{k}[[x_1, y_1]]$  are units (or zero) for  $2 \leq i \leq m-1$ ,  $\bar{a}_m = 0$  or 1 and if  $\bar{a}_m = 0$ , then  $\bar{a}_{m-1} \neq 0$ . Further,  $r_i + s_i > 0$  whenever  $\bar{a}_i \neq 0$  and  $a(r_m + c)b - (s_m + d)a \neq 0$ .

2)  $p_1$  is a 1-point, and we have an expression (1) with

$$(19) \quad F = \tau z^m + \bar{a}_2(x_1, y_1) x_1^{r_2} z^{m-2} + \cdots + \bar{a}_{m-1}(x_1, y_1) x_1^{r_{m-1}} z + x_1^{r_m} y_1$$

where  $\tau \in \hat{\mathcal{O}}_{U_1, p_1}$  is a unit,  $\bar{a}_i(x_1, y_1) \in \mathfrak{k}[[x_1, y_1]]$  are units (or zero) for  $2 \leq i \leq m-1$ . Further,  $r_i > 0$  (whenever  $\bar{a}_i \neq 0$ ).

3)  $p_1$  is a 1-point, and we have an expression (1) with

$$(20) \quad F = \tau z^m + \bar{a}_2(x_1, y_1) x_1^{r_2} z^{m-2} + \cdots + \bar{a}_{m-1}(x_1, y_1) x_1^{r_{m-1}} z + x_1^t y_1 \Omega$$

where  $\tau \in \hat{\mathcal{O}}_{U_1, p_1}$  is a unit,  $\bar{a}_i(x_1, y_1) \in \mathfrak{k}[[x_1, y_1]]$  are units (or zero) for  $2 \leq i \leq m-1$  and  $r_i > 0$  whenever  $\bar{a}_i \neq 0$ . We also have  $t > \omega(m, r_2, \dots, r_{m-1})$ . Further,  $\bar{a}_i \neq 0$  for some  $2 \leq i \leq m-1$  and  $\Omega \in \hat{\mathcal{O}}_{U_1, p_1}$ .

4)  $p_1$  is a 1-point, and we have an expression (1) with

$$(B) \quad F = \tau z^m + \bar{a}_2(x_1, y_1) x_1^{r_2} y_1 z^{m-2} + \cdots + \bar{a}_m(x_1, y_1) x_1^{r_m} y_1 z + x_1^t y_1^2 \Omega$$

where  $\tau \in \hat{\mathcal{O}}_{U_1, p_1}$  is a unit,  $\bar{a}_i(x_1, y_1) \in \mathfrak{k}[[x_1, y_1]]$  are units (or zero) for  $2 \leq i \leq m$  and  $r_i > 0$  whenever  $\bar{a}_i \neq 0$ . We also have  $t > \omega'(m, r_2, \dots, r_m)$ . Further,  $\bar{a}_i \neq 0$  for some  $2 \leq i \leq m$  and  $\Omega \in \hat{\mathcal{O}}_{U_1, p_1}$ .

*Proof.* Let  $\bar{p} = \Lambda_0(p)$ . Let  $T = \{i \mid a_i(x, y) \neq 0 \text{ and } 2 \leq i < m\}$ . There exists a sequence of blow ups  $\varphi_1 : T_1 \rightarrow T_0$  of points over  $\bar{p}$  such that at all points  $q \in \psi_1^{-1}(p)$ , we have permissible parameters  $x_1, y_1, z$  such that  $x_1, y_1$  are regular parameters in  $\hat{\mathcal{O}}_{T_1, \Lambda_1(q)}$  and we have that  $ug$  is a monomial in  $x_1$  and  $y_1$  times a unit in  $\hat{\mathcal{O}}_{T_1, \Lambda_1(q)}$ , where  $g = \prod_{i \in T} a_i(x, y)$ .

Suppose that  $a_m(x, y) \neq 0$ . Let  $\bar{v} = x^b a_m(x, y)$  if (1) holds and  $\bar{v} = x^c y^d a_m(x, y)$  if (2) holds. We have  $\bar{v} \notin \mathbb{k}[[x]]$  (respectively  $\bar{v} \notin \mathbb{k}[[x^a y^b]]$ ). Then by Lemma 3.5 applied to  $u, \bar{v}$ , we have that there exists a further sequence of blow ups  $\varphi_2 : T_2 \rightarrow T_1$  of points over  $\bar{p}$  such that at all points  $q \in (\psi_1 \circ \psi_2)^{-1}(p)$ , we have permissible parameters  $x_2, y_2, z$  such that  $x_2, y_2$  are regular parameters in  $\hat{\mathcal{O}}_{T_2, \Lambda_2(q)}$  such that  $ug = 0$  is a SNC divisor and either

$$u = x_2^{\bar{a}}, \bar{v} = \bar{P}(x_2) + x_2^{\bar{b}} \bar{y}_2^{\bar{c}}$$

with  $\bar{c} > 0$  or

$$u = (x_2^{\bar{a}} y_2^{\bar{b}})^t, \bar{v} = \bar{P}(x_2^{\bar{a}} y_2^{\bar{b}}) + x_2^{\bar{c}} \bar{y}_2^{\bar{d}}$$

where  $\bar{a}\bar{d} - \bar{b}\bar{c} \neq 0$ .

At a 2-point  $p_2 \in U_2$  above  $p$  we have an expression (2) with

$$(21) \quad F = \tau z^m + \bar{a}_2(x_2, y_2) x_2^{r_2} y_2^{s_2} z^{m-2} + \cdots + \bar{a}_{m-1}(x_2, y_2) x_2^{r_{m-1}} y_2^{s_{m-1}} z + \bar{a}_m x_2^{r_m} y_2^{s_m}$$

where  $\tau$  is a unit series,  $\bar{a}_m = 0$  or 1 and  $\bar{a}_i$  are unit series (or zero) for  $2 \leq i \leq m$ .

At a 1-point  $p_2 \in U_2$  above  $p$  we have by the Weierstrass Preparation Theorem an expression (1) with

(C)

$$F = \tau z^m + \bar{a}_2(x_2, \bar{y}_2) x_2^{r_2} (\bar{y}_2 + \varphi(x_2))^{s_2} z^{m-2} + \cdots + \bar{a}_{m-1}(x_2, \bar{y}_2) x_2^{r_{m-1}} (\bar{y}_2 + \varphi(x_2))^{s_{m-1}} z + \bar{a}_m x_2^{r_m} \bar{y}_2^{s_m}$$

where  $\tau$  is a unit series,  $\bar{a}_m = 0$  or 1,  $s_m \geq 1$  and  $\bar{a}_i$  are unit series (or zero) for  $2 \leq i \leq m$ ,  $\varphi \in k[[x_2]]$  is a series with  $0 \leq r := \text{ord } \varphi \leq \infty$ , and  $x_2, \bar{y}_2, z$  are permissible parameters with  $\bar{y}_2 \in \hat{\mathcal{O}}_{T_2}$ .

We will show that after a finite number of blow ups of points  $T_3 \rightarrow_2$ , we have an expression (2) with (21) for all 2-points  $p_3 \in U_3$  above  $p$  and an expression (1) with (21) for all 1-points  $p_3 \in U_3$  above  $p$ .

Suppose that  $p_2 \in U_2$  is a 1-point. If  $r = 0$  or  $\infty$ ,  $\bar{a}_m = 0$  or  $s_m = 1$ , then after a permissible change of variables we have a form (21). Suppose that a form (21) does not hold at  $p_2$ . Then  $0 < r = \text{ord } \varphi < \infty$ ,  $\bar{a}_m = 1$  and  $s_m > 1$ . Let  $T_3 \rightarrow T_2$  be the blow up of  $\Lambda_2(p_2) \in T_2$  with induced blow up  $\psi_3 : U_3 \rightarrow U_2$ . Suppose  $p_3 \in \psi_3^{-1}(p_2)$ . We have permissible parameters  $x_3, y_3, z$  in  $\hat{\mathcal{O}}_{U_3, p_3}$  such that one of the following cases holds:

- a)  $x_2 = x_3, \bar{y}_2 = x_3(y_3 + \alpha)$  with  $0 \neq \alpha \in \mathbb{k}$ .
- b)  $x_2 = x_3, \bar{y}_2 = x_3 y_3$ .
- c)  $x_2 = x_3 y_3, \bar{y}_2 = y_3$ .

If a) holds at  $p_3$  then an expression (1) holds at  $p_3$  with a form (C) with  $s_m = 1$ , so after a change of variables we have a form (21). If b) holds at  $p_3$ , then an expression (1) holds at  $p_3$  with a form (C) with  $\text{ord } \varphi < r$ . If  $\text{ord } \varphi = 0$  we then have an expression (21) (with  $s_i = 0$  for  $2 \leq i \leq m-1$ ). If c) holds then

$$\bar{y}_2 + \varphi(x_2) = y_3 + \varphi(x_3 y_3) = y_3 \gamma(x_3, y_3)$$

where  $\gamma$  is a unit series. Thus we have an expression (2) with a form (21).

By induction on  $r$ , we must obtain an expression (1) or (2) with a form (21) at all points above  $p$ . We may assume that this already holds in  $U_2$ .

Suppose that  $p_2$  is a 1-point above  $p$ .

Let

$$J = I_2 \begin{pmatrix} \frac{\partial u}{\partial x_2} & \frac{\partial u}{\partial y_2} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x_2} & \frac{\partial v}{\partial y_2} & \frac{\partial v}{\partial z} \end{pmatrix} = x^n \left( \frac{\partial F}{\partial y_2}, \frac{\partial F}{\partial z} \right)$$

for some positive integer  $n$ . Since  $D$  contains the locus where  $f$  is not smooth, we have that the localization  $J_{\mathfrak{p}} = (\hat{\mathcal{O}}_{U_2, q})_{\mathfrak{p}}$ , where  $\mathfrak{p}$  is the prime ideal  $(y_2, z_2)$  in  $\hat{\mathcal{O}}_{U_2, q}$ .

We compute

$$\frac{\partial F}{\partial z} = \bar{a}_{m-1} x_2^{r_{m-1}} y_2^{s_{m-1}} + \Lambda_1 z$$

and

$$\frac{\partial F}{\partial y_2} = s_m \bar{a}_m y_2^{s_m-1} x_2^{r_m} + \Lambda_2 z$$

for some  $\Lambda_1, \Lambda_2 \in \hat{\mathcal{O}}_{U_2, q}$ , to see that either

$$(D) \quad \bar{a}_{m-1} \neq 0 \text{ and } s_{m-1} = 0, \text{ or } \bar{a}_m \neq 0 \text{ and } s_m = 1.$$

If  $s_i \geq 2$  for all  $i$ , we have

$$\frac{\partial F}{\partial z} = z \Lambda_1 + y_2^2 \Lambda_2, \quad \frac{\partial F}{\partial y_2} = y_2 \Lambda_3$$

for some  $\Lambda_1, \Lambda_2, \Lambda_3 \in \hat{\mathcal{O}}_{U_2, p_2}$ , a contradiction, so

$$(E) \quad \text{There exists an } i \text{ with } 2 \leq i \leq m \text{ such that } \bar{a}_i \neq 0 \text{ and } s_i \leq 1.$$

Suppose  $p_2 \in U_2$  is a 2-point above  $p$ . Deforming  $p_2$  to a 1-point, we see from (D) (and since (21) holds) that (18) holds at  $p_2$ .

Let  $p_2 \in U_2$  be a 1-point above  $p$  where the conclusions of the lemma do not hold. Let  $T_3 \rightarrow T_2$  be the blow up of  $\Lambda_2(p_2) \in T_2$  with induced blow up  $\psi_3 : U_3 \rightarrow U_2$ . Suppose  $p_3 \in \psi_3^{-1}(p_2)$ . We have that the conclusions of the lemma hold in the form (18) if  $p_3$  is the 2-point which has permissible parameters  $x_3, y_3, z$  defined by  $x_2 = x_3 y_3$  and  $y_2 = y_3$ . At a 1-point which has permissible parameters  $x_3, y_3, z$  defined by  $x_2 = x_3, y_2 = x_3(y_3 + \alpha)$  with  $\alpha \neq 0$ , we have that a form (19) holds. Thus the only case where we may possibly have not achieved the conclusions of the lemma is at the 1-point which has permissible parameters  $x_3, y_3, z$  defined by  $x_2 = x_3$  and  $y_2 = x_3 y_3$ . We continue to blow up, so that there is at most one point  $p_3$  above  $p_2$  where the conclusions of the lemma do not hold. This point is a 1-point which has permissible parameters  $x_3, y_3, z$  with  $x_2 = x_3$  and  $y_2 = x_3^n y_3$  where we can take  $n$  as large as we like. Substituting into (21), we have an expression (1) at  $p_3$  with

$$F = \tau Z^m + \bar{a}_2 x_3^{r_2+s_2 n} y_3^{s_2} z^{m-2} + \cdots + \bar{a}_{m-1} x_3^{e_{m-1}+s_{m-1} n} y_3^{s_{m-1}} z + \bar{a}_m x_3^{r_m+s_m n} y_3^{s_m}.$$

Since we must have some  $\bar{a}_i \neq 0$  with  $s_i \leq 1$  by (E) for  $n \gg 0$ , we obtain a form (20) or (B).  $\square$

Page 13 - 14: The statement of Lemma 3.7 should be changed to:

**Lemma 3.7.** *Suppose that  $X$  is 2-prepared with respect to  $f : X \rightarrow S$ . Suppose that  $p \in D$  is a 1-point with  $\sigma_D(p) > 0$ . Let  $m = \sigma_D(p) + 1$ . Let  $x, y, z$  be permissible parameters for  $D$  at  $p$  such that a form (9) holds at  $p$ .*

*Let notation be as in Lemma 3.6. For  $p_1 \in \psi_1^{-1}(p)$  let  $\bar{r}(p_1) = m + 1 + r_m$ , if a form (19) holds at  $p_1$ , and*

$$\bar{r}(p_1) = \begin{cases} \max\{m + 1 + r_m, m + 1 + s_m\} & \text{if } \bar{a}_m = 1 \\ \max\{m + 1 + r_{m-1}, m + 1 + s_{m-1}\} & \text{if } \bar{a}_m = 0 \end{cases}$$

if a form (18) holds at  $p_1$ . Let  $\bar{r}(p_1) = \omega(m, r_2, \dots, r_{m-1}) + m + 1$  if a form (20) holds at  $p_1$ ,  $\bar{r}(p_1) = \omega'(m, r_2, \dots, r_m) + m + 1$  if a form (B) holds at  $p_1$ . Let

$$(23) \quad r = \max\{\bar{r}(p_1) \mid p_1 \in \psi_1^{-1}(p)\}.$$

Suppose that  $x^* \in \mathcal{O}_{X,p}$  is such that  $x = \bar{\gamma}x^*$  for some unit  $\bar{\gamma} \in \hat{\mathcal{O}}_{X,p}$  with  $\bar{\gamma} \equiv 1 \pmod{m_p^r \hat{\mathcal{O}}_{X,p}}$ .

Let  $V$  be an affine neighborhood of  $p$  such that  $x^*, y \in \Gamma(V, \mathcal{O}_X)$ , and let  $C^*$  be the curve in  $V$  which has local equations  $x^* = y = 0$  at  $p$ .

Let  $T_0^* = \text{Spec}(\mathbb{k}[x^*, y])$ . Then there exists a sequence of blow ups of points  $T_1^* \rightarrow T_0^*$  above  $(x^*, y)$  such that if  $V_1 = V \times_{T_0^*} T_1^*$  and  $\psi_1^* : V_1 \rightarrow V$  is the induced sequence of blow ups of sections over  $C^*$ ,  $\Lambda_1^* : V_1 \rightarrow T_1^*$  is the projection, then  $V_1$  is 2-prepared at all  $p_1^* \in (\psi_1^*)^{-1}(p)$ . Further, for every point  $p_1^* \in (\psi_1^*)^{-1}(p)$ , there exist  $\hat{x}_1, \bar{y}_1 \in \hat{\mathcal{O}}_{V_1, p_1^*}$  such that  $\hat{x}_1, \bar{y}_1, z$  are permissible parameters at  $p_1^*$  and we have one of the following forms:

1)  $p_1^*$  is a 2-point, and we have an expression (2) with

$$(24) \quad F = \bar{\tau}_0 z^m + \bar{\tau}_2 \hat{x}_1^{r_2} \bar{y}_1^{s_2} z^{m-2} + \cdots + \bar{\tau}_{m-1} \hat{x}_1^{r_{m-1}} \bar{y}_1^{s_{m-1}} z + \bar{\tau}_m \hat{x}_1^{r_m} \bar{y}_1^{s_m}$$

where  $\bar{\tau}_0 \in \hat{\mathcal{O}}_{V_1, p_1^*}$  is a unit,  $\bar{\tau}_i \in \hat{\mathcal{O}}_{V_1, p_1^*}$  are units (or zero) for  $0 \leq i \leq m-1$ ,  $\bar{\tau}_m$  is zero or 1,  $\bar{\tau}_{m-1} \neq 0$  if  $\bar{\tau}_m = 0$ ,  $r_i + s_i > 0$  if  $\bar{\tau}_i \neq 0$ , and

$$(r_m + c)b - (s_m + d)a \neq 0.$$

2)  $p_1^*$  is a 1-point, and we have an expression (1) with

$$(25) \quad F = \bar{\tau}_0 z^m + \bar{\tau}_2 \hat{x}_1^{r_2} z^{m-2} + \cdots + \bar{\tau}_{m-1} \hat{x}_1^{r_{m-1}} z + \bar{\tau}_m \hat{x}_1^{r_m}$$

where  $\bar{\tau}_0 \in \hat{\mathcal{O}}_{V_1, p_1^*}$  is a unit,  $\bar{\tau}_i \in \hat{\mathcal{O}}_{V_1, p_1^*}$  are units (or zero), and  $\text{ord } \bar{\tau}_m(0, \bar{y}_1, 0) = 1$ . Further,  $r_i > 0$  if  $\bar{\tau}_i \neq 0$ .

3)  $p_1^*$  is a 1-point, and we have an expression (1) with

$$(26) \quad F = \bar{\tau}_0 z^m + \bar{\tau}_2 \hat{x}_1^{r_2} z^{m-2} + \cdots + \bar{\tau}_{m-1} \hat{x}_1^{r_{m-1}} z + \hat{x}_1^t \bar{\Omega}$$

where  $\bar{\tau}_0 \in \hat{\mathcal{O}}_{V_1, p_1^*}$  is a unit,  $\bar{\tau}_i \in \hat{\mathcal{O}}_{V_1, p_1^*}$  are units (or zero),  $\bar{\Omega} \in \hat{\mathcal{O}}_{V_1, p_1^*}$ ,  $\bar{\tau}_i \neq 0$  for some  $2 \leq i \leq m-1$  and  $t > \omega(m, r_2, \dots, r_{m-1})$ . Further,  $r_i > 0$  if  $\bar{\tau}_i \neq 0$ .

4)  $p_1^*$  is a 1-point, and we have an expression (1) with

$$(F) \quad F = \bar{\tau}_0 z^m + \bar{\tau}_2 \hat{x}_1^{r_2} \bar{y}_1 z^{m-2} + \cdots + \bar{\tau}_m \hat{x}_1^{r_m} \bar{y}_1 + \hat{x}_1^t \bar{\Omega}$$

where  $\bar{\tau}_0 \in \hat{\mathcal{O}}_{V_1, p_1^*}$  is a unit,  $\bar{\tau}_i \in \hat{\mathcal{O}}_{V_1, p_1^*}$  are units (or zero) for  $2 \leq i \leq m$ ,  $\bar{\Omega} \in \hat{\mathcal{O}}_{V_1, p_1^*}$ ,  $\bar{\tau}_i \neq 0$  for some  $2 \leq i \leq m$  and  $t > \omega'(m, r_2, \dots, r_m)$ . Further,  $r_i > 0$  if  $\bar{\tau}_i \neq 0$ .

Page 15, line -11: “ $\bar{\tau} \in \mathbb{k}[[x_1, \bar{y}_1]]$  with  $\text{ord}(\bar{\tau}_m(0, \bar{y}_1)) = 1$ ” should be “ $\bar{\tau}_m \in \mathbb{k}[[x_1, \bar{y}_1, z]]$  with  $\text{ord}(\bar{\tau}_m(0, \bar{y}_1, 0)) = 1$ ”.

Page 15, line -6: after “form (26)” insert: “and in the case when  $p_1$  has a form (B) a similar argument shows that  $p_1^*$  has a form (F).”

Page 22, line -9: At the end of this line, insert “Further, if  $I\mathcal{O}_{U',q}$  is principal, then  $\sigma_D(q) = 0$ ”.

Page 23, line 7: “ $\sigma_{D'}(q)$ ” should be “ $\sigma_D(q)$ ”.

Page 23, line 13: “ $\sigma_D(q) < m - h - 1$ ” should be “ $\sigma_D(q) \leq m - h - 1$ ”

Page 24, line 9: “ $r_m$  if  $\tau_i \neq 0$ ” should be “ $r_m$  if  $\tau_m \neq 0$ ”

Page 24, line 17: “Then  $x^{r_m}$  generates  $I\hat{\mathcal{O}}_{U',q}$ ” should be “If  $\tau_m \neq 0$ , then  $x^{r_m}$  generates  $I\hat{\mathcal{O}}_{U',q}$ ”.

Page 24, line 18: At end of line, insert: “If  $\tau_m = 0$  then  $\tau_{m-1} \neq 0$  so  $x^{r_{m-1}}z$  generates  $I\hat{\mathcal{O}}_{U',q}$ . Then  $G' = x_1^{r_{m-1}+b_1}\Lambda$  with  $\text{ord } \Lambda(0,0,z) = 1$  so  $U'$  is prepared at  $q$ .”

Page 24, line 20: Remove “and  $r_{m-1} > 0$ ”

Page 24, lines 22 and 28: “ $r_i > 0$ ” should be  $\tau_i \neq 0$ ”.

Page 24, line 27: Should be “ $z = x_1^{b_1}z_1$  for some  $b_1 \in \mathbb{Z}_+$ ”

Page 25, lines 2,4,6: “ $r_i > 0$ ” should be  $\tau_i \neq 0$ ”.

Page 25, line 3: “For” should be “for”.

Page 25, line 19 (at end of proof of Theorem 4.2) add: “The only case that may require a little attention is when  $p' \in \psi^{-1}(p)$  is defined by a substitution (41). This is analyzed as follows. Let  $h$  be the largest  $i$  such that  $\tau_i \neq 0$  in (15). Then  $x^{r_h}z^{m-h}$  is the local generator of  $I\hat{\mathcal{O}}_{U',p'}$ . Since  $2 \leq h \leq m-1$ , we have that

$$\sigma_D(p') = m - h - 1 < m - 1 = \sigma_D(p).$$

Before the statement of Theorem 4.3 on page 25, add the following:

We construct the function  $\omega'(m, r_2, \dots, r_m)$  in a similar way to the construction of  $\omega$ . Let  $I$  be the ideal in  $k[x, z]$  generated by  $z^m$  and  $x^{r_i}z^{m-i}$  for all  $i$  such that  $2 \leq i \leq m$  and  $\tau_i \neq 0$ . We define  $\omega'(m, r_2, \dots, r_m)$  as we define  $\omega$ , except we allow  $i$  to range within  $2 \leq i \leq m$ .

**Theorem G.** *Suppose that  $p \in \text{Sing}_1(X)$  is a 1-point and  $X$  is 3-prepared at  $p$ . Let  $x, y, z$  be permissible parameters at  $p$  giving a form (A) at  $p$ . Let  $U$  be an étale cover of an affine neighborhood of  $p$  in which  $x, y, z$  are uniformizing parameters. Then  $xz = 0$  gives a toroidal structure  $\overline{D}$  on  $U$ .*

*There is (after possibly replacing  $U$  with a smaller neighborhood of  $p$ ) a unique, minimal toroidal morphism  $\psi : U' \rightarrow U$  with respect to  $\overline{D}$  with the property that  $U'$  is nonsingular, 2-prepared and  $\Gamma_D(U') < \sigma_D(p)$ . This map  $\psi$  factors as a sequence of permissible blowups  $\pi_i : U_i \rightarrow U_{i-1}$  of sections  $C_i$  over the two curve  $C$  of  $\overline{D}$ .  $U_i$  is 1-prepared for  $U_i \rightarrow S$ . We have that the curve  $C_i$  blown up in  $U_{i+1} \rightarrow U_i$  is in  $\text{Sing}_{\sigma_D(p)}(U_i)$  if  $C_i$  is not a 2-curve of  $D_{U_i}$ , and that  $C_i$  is in  $\text{Sing}_1(U_i)$  if  $C_i$  is a 2-curve of  $D_{U_i}$ .*

*Proof.* The proof is similar to that of Theorem 4.2, using the fact that  $t > \omega'(m, r_2, \dots, r_m)$  as defined above. For instance, in the case when  $p' \in \psi^{-1}(p)$  is defined by a substitution (41) and  $h$  is the largest  $i$  such that  $\tau_i \neq 0$ , we have

$$\sigma_D(p') = (m - h + 1) - 1 < m - 1 = \sigma_D(p)$$

since  $2 \leq h$ . □

Page 32, lines 18 and 26: should be “(14), (15) or (A)”

Page 32, line -4: should be “Theorem 4.1, 4.2 or G”.

Page 40, lines 13 and -14: should be “Theorem 4.2 and G”

STEVEN DALE CUTKOSKY, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA,  
MO 65211, USA

*E-mail address:* `cutkoskys@missouri.edu`