
THE MINKOWSKI EQUALITY OF BIG DIVISORS

STEVEN DALE CUTKOSKY

Abstract. We give conditions characterizing equality in the Minkowski inequality for
big divisors on a projective variety. Our results draw on the extensive history of research
on Minkowski inequalities in algebraic geometry.

1. Introduction

Suppose that X is a projective d-dimensional algebraic variety over a field k and D is
an R-Cartier divisor on X. Then the volume of D is

vol(D) = lim
n!1

dimk �(X,OX(nD))

nd/d!
.

If D is nef, then the volume of D is the self intersection number vol(D) = (Dd). For an
arbitrary R-Cartier divisor D,

vol(D) =

⇢
hD

d
i if D is pseudo e↵ective

0 otherwise.

Here hD
d
i is the positive intersection product. The positive intersection product hD

d
i

is the ordinary intersection product (Dd) if D is nef, but these products are di↵erent in
general. More generally, given pseudo e↵ective R-Cartier divisors D1, . . . , Dp on X with
p  d, there is a positive intersection product hD1 · . . . · Dpi which is a linear form on
N

1(X )d�p, where X is the limit of all birational models of X. We have that

vol(D) = hD
p
i = hDi · . . . · hDi = hDi

d
.

We denote the linear forms on N
1(X )d�p by L

d�p(X ). The intersection theory and theory
of volumes which is required for this paper is reviewed in Section

PrelSect

2.
Suppose that D1 and D2 are pseudo e↵ective R-Cartier divisors on X. We have the

Minkowski inequality

vol(D1 +D2)
1
d � vol(D1)

1
d + vol(D2)

1
d

which follows from Theorem
Ineq+

1.2 below. Further, we have the following characterization of
equality in the Minkowski inequality.

Theorem22+ Theorem 1.1. Let X be a d-dimensional projective variety over a field k. For any two
big R-Cartier divisors D1 and D2 on X,

Neweq20+Neweq20+ (1) vol(D1 +D2)
1
d � vol(D1)

1
d + vol(D2)

1
d

with equality if and only if hD1i and hD2i are proportional in L
d�1(X ).
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In the case that D1 and D2 are nef and big, this is proven in
BFJ

[4, Theorem 2.15] (over an
algebraically closed field of characteristic zero) and in

C

[9, Theorem 6.13] (over an arbitrary
field). In this case of nef divisors, the condition that hL1i and hL2i are proportional in
L
d�1(X ) is just that D1 and D2 are proportional in N

1(X).
Theorem

Theorem22+

1.1 is obtained in the case that D1 and D2 are big and movable and k is
an algebraically closed field of characteristic zero in

LX2

[26, Proposition 3.7]. In this case
the condition for equality is that D1 and D2 are proportional in N

1(X). Theorem
Theorem22+

1.1 is
established in the case that D1 and D2 are big R-Cartier divisors and X is nonsingular,
over an algebraically closed field k of characteristic zero in

LX2

[26, Theorem 1.6]. In this case,
the condition for equality is that the positive parts of the � decompositions of D1 and D2

are proportional; that is, P�(D1) and P�(D2) are proportional in N
1(X).

In Section
SecMink

5, we modify the proof sketched in
LX2

[26] of
LX2

[26, Proposition 3.7] to be valid over
an arbitrary field. Characteristic zero is required in the proof in

LX2

[26] as the existence of
resolution of singularities is assumed and an argument using the theory of multiplier ideals
is used, which requires characteristic zero as it relies on both resolution of singularities
and Kodaira vanishing.

We will write
si = hD

i
1 ·D

d�i
2 i for 0  i  d.

We have the following generalization of the Khovanskii-Teissier inequalities to positive
intersection numbers.

Theorem 1.2. (Minkowski Inequalities) Suppose that X is a projective algebraic varietyIneq+

of dimension d over a field k and D1 and D2 are pseudo e↵ective R-Cartier divisors on
X. Then

1) s
2
i � si+1si�1 for 1  i  d� 1.

2) sisd�i � s0sd for 1  i  d� 1.
3) s

d
i � s

d�i
0 s

i
d for 0  i  d.

4) vol(D1 +D2)
1
d � vol(D1)

1
d + vol(D2)

1
d .

Theorem
Ineq+

1.2 follows from
BFJ

[4, Theorem 2.15] when k has characteristic zero and from
C

[9, Theorem 6.6] in general. When D1 and D2 are nef, the inequalities of Theorem
Ineq+

1.2
are proven by Khovanskii and Teissier

T1

[33],
T2

[34],
L

[23, Example 1.6.4]. In the case that D1

and D2 are nef, we have that si = hD
i
1 ·D

d�i
2 i = (Di

1 ·D
d�i
2 ) are the ordinary intersection

products.
We have the following characterization of equality in these inequalities.

Theorem 1.3. (Minkowski equalities) Suppose that X is a projective algebraic variety ofMinkeq+

dimension d over a field k of characteristic zero, and D1 and D2 are big R-Cartier divisors
on X. Then the following are equivalent:

1) s
2
i = si+1si�1 for all 1  i  d� 1.

2) sisd�i = s0sd for all 1  i  d� 1.
3) s

d
i = s

d�i
0 s

i
d for all 0  i  d.

4) s
d
d�1 = s0s

d�1
d .

5) vol(D1 +D2)
1
d = vol(D1)

1
d + vol(D2)

1
d .

6) hD1i is proportional to hD2i in L
d�1(X ).

Theorem
Minkeq+

1.3 is valid over any field k when dimX  3, since resolution of singularities
is true in these dimensions. When D1 and D2 are nef and big, then Theorem

Minkeq+

1.3 is proven
in

BFJ

[4, Theorem 2.15] when k has characteristic zero and in
C

[9, Theorem 6.13] for arbitrary
2



k. When D1 and D2 are nef and big, the condition 6) of Theorem
Minkeq+

1.3 is just that D1 and
D2 are proportional in N

1(X).
Suppose that s0, . . . , sd are nonnegative real numbers, s0 > 0, sd > 0 and the inequalities

of 1), 2) and 3) of the statement of Theorem
Ineq+

1.2 hold. These last conditions always hold
when si = hD

i
1 · D

d�i
2 i with D1, D2 big R-Cartier divisors on a projective d-dimensional

algebraic variety. The assumption that s0, sd > 0 and inequalities 3) imply si > 0 for
0  i  d.

Suppose that the equality 4) also holds, sdd�1 = s0s
d�1
d . By the inequalities 1) we have

that

sd�1
s0

=

✓
sd�1
sd�2

◆✓
sd�2
sd�3

◆
· · ·

✓
s1

s0

◆
�

✓
sd

sd�1

◆d�1
.

Thus sdd�1 = s0s
d�1
d implies the equalities 1), s2i = si+1si�1, hold for 1  i  d� 1, and so

the equalities 2) and 3) also hold.

However, we get weaker conclusions if we only assume that s
d
j = s

d�j
0 s

j
d, for some

j < d� 1. In this case we have the equality

s
d�j
j

s
d�j
0

=

✓
sj

sj�1

◆d�j
· · ·

✓
s1

s0

◆d�j
=

✓
sd

sd�1

◆j

· · ·

✓
sj+1

sj

◆j

=
s
j
d

s
j
j

implying that s2i = si+1si�1 for 1  i  j.
The proof of Theorem

Minkeq+

1.3 relies on the following Diskant inequality for big divisors.
Suppose that X is a projective variety and D1 and D2 are big R-Cartier divisors on X.

The slope s(D1, D2) is the largest real number s such that hD1i � shD2i.

PropNew60+ Theorem 1.4. (Diskant inequality for big divisors) Suppose that X is a projective d-
dimensional variety over a field k of characteristic zero and D1, D2 are big R-Cartier
divisors on X. Then

(2) hD
d�1
1 ·D2i

d
d�1 � vol(D1)vol(D2)

1
d�1 � [hDd�1

1 ·D2i
1

d�1 � s(D1, D2)vol(D2)
1

d�1 ]d.

The Diskant inequality is proven for nef and big divisors in
BFJ

[4, Theorem G] in charac-
teristic zero and in

C

[9, Theorem 6.9] for nef and big divisors over an arbitrary field. In the
case that D1 and D2 are nef and big, the condition that hD1i � shD2i is pseudo e↵ective
in L

d�1(X ) is that D1 � sD2 is pseudo e↵ective in N
1(X). The Diskant inequality is

proven when D1 and D2 are big and movable divisors and X is a projective variety over
an algebraically closed field of characteristic zero in

LX2

[26, Proposition 3.3, Remark 3.4].
Theorem

PropNew60+

1.4 is a consequence of
DF

[13, Theorem 3.6].
Let D1 and D2 be big R-Cartier divisors on a projective variety X. Generalizing Teissier

T1

[33], we define the inradius of D1 with respect to D2 as

r(D1, D2) = s(D1, D2)

and the outradius of D1 with respect to D2 as

R(D1, D2) =
1

s(D2, D1)
.

We deduce the following consequence of the Diskant inequality.
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TheoremH+ Theorem 1.5. Suppose that X is a d-dimensional projective variety over a field k of
characteristic zero and D1, D2 are big R-Cartier divisors on X. Then
(3)

s

1
d�1

d�1 � (s
d

d�1

d�1 � s

1
d�1
0 sd)

1
d

s

1
d�1
0

 r(D1, D2) 
sd

sd�1


s1

s0
 R(D1, D2) 

s

1
d�1

d

s

1
d�1
1 � (s

d
d�1
1 � s

1
d�1

d s0)
1
d

.

This gives a solution to
T1

[33, Problem B] for big R-Cartier divisors. The inequalities
of Theorem

TheoremH+

1.5 are proven by Teissier in
T1

[33, Corollary 3.2.1] for divisors on surfaces
satisfying some conditions. In the case that D1 and D2 are nef and big on a projective
variety over a field of characteristic zero, Theorem

TheoremH+

1.5 follows from the Diskant inequality
BFJ

[4, Theorem F]. In the case that D1 and D2 are nef and big on a projective variety over
an arbitrary field, Theorem

TheoremH+

1.5 is proven in
C

[9, Theorem 6.11], as a consequence of the
Diskant inequality

C

[9, Theorem 6.9] for nef divisors.
I thank the referee for their careful reading and helpful comments.

2. Preliminaries
PrelSect

In this section we review some properties of cycles and intersection theory on projective
varieties over an arbitrary field.

2.1. Codimension 1 cycles. To establish notation we give a quick review of some ma-
terial from

Kl

[21],
F

[18, Chapter 2] and
L

[23, Chapter 1]. Although the ongoing assumption
in

L

[23] is that k = C, this assumption is not needed in the material reviewed in this
subsection.

Let X be a d-dimensional projective variety over a field k. The group of Cartier divisors
on X is denoted by Div(X). There is a natural homomorphism from Div(X) to the (d�1)-
cycles (Weil divisors) Zd�1(X) of X written as D 7! [D]. Further, there is a natural
homomorphism Div(X) ! Pic(X) given by D 7! OX(D).

Denote numerical equivalence on Div(X) by ⌘. For D a Cartier divisor, D ⌘ 0 if and
only if (C ·D)X := deg(OX(D)⌦OC) = 0 for all integral curves C on X.

The group N
1(X)Z = Div(X)/ ⌘ and N

1(X) = N1(X)Z⌦R. An element of Div(X)⌦Q
will be called a Q-Cartier divisor and an element of Div(X)⌦R will be called an R-Cartier
divisor. In an e↵ort to keep notation as simple as possible, the class in N

1(X) of an R-
Cartier divisor D will often be denoted by D.

We will also denote the numerical equivalence on Zd�1(X) defined on page 374
F

[18] by
⌘. Let Nd�1(X)Z = Zd�1(X)/ ⌘ and Nd�1(X) = Nd�1(X)Z ⌦Z R. There is a natural
homomorphism N

1(X) ! Nd�1(X) which is induced by associating to the class of a R-
Cartier divisor D the class in Nd�1(X) of its associated Weil divisor [D]

F

[18, Section 2.1].
If f : Y ! X is a morphism, the cycle map f⇤ : Zd�1(Y ) ! Zd�1(X) of

F

[18, Section 1.4]
induces a homomorphism f⇤ : Nd�1(Y ) ! Nd�1(X) (

F

[18, Example 19.1.6]).
Suppose that f : Y ! X is a dominant morphism where Y is projective variety. Then

f
⇤ : Div(X) ! Div(Y ) is defined by taking local equations of D on X as local equations

of f⇤(D) on Y . There is an induced homomorphism f
⇤ : N1(X) ! N

1(Y ) which is an
injection by

Kl

[21, Lemma 1]. By
F

[18, Proposition 2.3], we have that if D is an R-Cartier
divisor on X, then

eq41eq41 (4) f⇤[f
⇤
D] = deg(Y/X)D

where deg(Y/X) is the index of the function field of X in the function field of Y .
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In this subsection, we will use the notation for intersection numbers of
F

[18, Definition
2.4.2].

The first statement of the following lemma follows immediately from
M

[28] or
Kl2

[22, Corol-
lary XIII.7.4] if k is algebraically closed. The second statement is

F

[18, Example 19.1.5].

Lemma55 Lemma 2.1. Let X be a d-dimensional projective variety over a field k. Then:

1) The homomorphism N
1(X) ! Nd�1(X) is an injection.

2) If X is nonsingular, then the homomorphism N
1(X) ! Nd�1(X) is an isomor-

phism.

Proof. Suppose that N1(X) ! Nd�1(X) is not injective. The homomorphism N
1(X) !

Nd�1(X) is obtained by tensoring the natural map N1(X)Z ⌦Z Q ! Nd�1(X)Z ⌦Z Q with
R over Q. Thus N1(X)Z ⌦Z Q ! Nd�1(X)Z ⌦Z Q is not injective, and so there exists
a Cartier divisor D on X such that the Weil divisor [D] associated to D is numerically
equivalent to zero (its class is zero in Nd�1(X)) but the class of D is not zero in N

1(X).
Thus there exists an integral curve C on X such that

eq59eq59 (5) (C ·D)X 6= 0.

Let k be an algebraic closure of k. There exists an integral subscheme X of X ⌦k k such
thatX dominatesX. ThusX is a projective variety over k. Let  : X ! X be the induced
dominant morphism. Let U ⇢ X be an a�ne open subset such that U \ C 6= ;.  �1(U)
is a�ne since it is a closed subscheme of the a�ne scheme U ⌦k k. Let A = �(U,OX)
and B = �( �1(U),OX). The ring extension A ! B is integral. Let P = �(U, IC), a
prime ideal of A such that dimA/P = 1, and let M be a maximal ideal of A containing
P . By the going up theorem, there exists a prime ideal Q of B such that Q \A = P and
prime ideal N of B such that Q ⇢ N and N \ A = M . Now A/M ! B/N is an integral
extension from a field to a domain, so B/N is a field. Thus N is a maximal ideal of B
and since there are no prime ideals of B properly between Q and N (by

At

[3, Corollary 5.9])
we have that dimB/Q = 1. Let C be the closure of V (Q) ⇢  

�1(U) in X. Then C is
an integral curve on X which dominates C. There exists a field of definition k

0 of X and
C over k which is a subfield of k which is finite over k. That is, there exist subvarieties
C
0
⇢ X

0 of X ⌦k k
0 such that X 0 ⌦k0 k = X and C

0
⌦k0 k = C. We factor  : X ! X by

morphisms

X
↵
! X

0 '
! X

where ↵ = idX0 ⌦idk0 idk. The morphism ' is finite and surjective and ↵ is flat (although
it might not be of finite type). Let H be an ample Cartier divisor on X. Then '⇤H is an
ample Cartier divisor on X

0 (by
H

[20, Exercise III.5.7(d)]). Thus for some positive integer
m we have that global sections of OX0(m'⇤(H)) give a closed embedding of X 0 in Pn

k0 for
some n. Thus global sections of OX(m ⇤(H)) give a closed embedding of X = X

0
⌦k0 k in

Pn
k
. In particular, we have that  ⇤(H) is an ample Cartier divisor on X. We have natural

morphisms

N
1(X) ! N

1(X 0) ! N
1(X).

Here X is a k-variety and X is a k-variety. X 0 is both a k-variety and a k
0-variety. When

we are regarding X
0 as a k-variety we will write X

0
k and when we are regarding X

0 as a
k
0-variety we will write X

0
k0 .

We may use the formalism of Kleiman
Kl

[21], using the Snapper polynomials
Sn

[31] to
compute intersection products of Cartier divisors. This is consistent with the intersection
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products of Fulton
F

[18] by
F

[18, Example 18.3.6]. This intersection theory is also presented
in

AG

[10, Chapter 19].
Since D is numerically equivalent to zero as a Weil divisor, we have that

eq56eq56 (6) (D ·H
d�1)X = (D2

·H
d�2)X = 0.

We have that

( ⇤D ·  
⇤
H

d�1)X = ('⇤D · '
⇤
H

d�1)X0
k0
=

1

[k0 : k]
('⇤D · '

⇤
H

d�1)X0
k

using
F

[18, Example 18.3.6] and the fact that

H
i(X,OX( ⇤(mD) +  

⇤(nH))) = H
i(X 0k0 ,OX0('⇤(mD) + '

⇤(nH)))⌦k0 k

for all m,n since ↵ is flat. We thus have that

eq57eq57 (7) ( ⇤D ·  
⇤
H

d�1)X =
1

[k0 : k]
('⇤D · '

⇤
H

d�1)X0
k
=

deg(X 0/X)

[k0 : k]
(D ·H

d�1)X = 0

by
F

[18, Proposition 2.3] and (
eq56

6). Similarly,

eq58eq58 (8) ( ⇤D2
·  
⇤
H

d�2)X = 0.

Since k is algebraically closed and the equations (
eq57

7) and (
eq58

8) hold, we have that

( ⇤D · C)X = 0

by
M

[28] and
Kl2

[22, Corollary XIII.7.4]. Thus by
F

[18, Example 18.3.6 and Proposition 2.3],

0 = ( ⇤D · C)X = ('⇤D · C
0)X0

k0
= 1

[k0:k]('
⇤
D · C

0)X0
k

= 1
[k0:k](D · '⇤C

0)X = deg(C0/C)
[k0:k] (D · C)X ,

giving a contradiction to (
eq59

5). Thus the map N
1(X) ! Nd�1(X) is injective.

This homomorphism is always an isomorphism if X is nonsingular by
F

[18, Example
19.1.5]. ⇤

As defined and developed in
Kl

[21],
L

[23, Chapter 2], there are important cones Amp(X)
(the ample cone), Big(X) (the big cone), Nef(X) (the nef cone) and Psef(X) := E↵(X)
(the pseudo e↵ective cone) in N

1(X).
If D is a Cartier divisor on the projective variety X, then the complete linear system

|D| is defined by

eq30eq30 (9) |D| = {div(�) | � 2 �(X,OX(D))}.

Let Mov0(X) be the convex cone in N
1(X) generated by the classes of Cartier divisors D

such that |D| has no codimension 1 fixed component. Define Mov(X) to be the closure of
Mov0(X) in N

1(X). An R-Cartier divisor D is said to be movable if the class of D is in
Mov(X). Define Mov(X) to be the interior of Mov(X). As explained in

N

[30, page 85], we
have inclusions

Amp(X) ⇢ Mov(X) ⇢ Big(X)

and

Nef(X) ⇢ Mov(X) ⇢ Psef(X).

The following lemma is also proven over algebraically closed fields k in
FL2

[17, Corollary
3.17].
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Lemma7 Lemma 2.2. Suppose that X is a d-dimensional variety over a field k, D is a pseudo
e↵ective R-Cartier divisor on X, H is an ample Q-Cartier divisor on X and (Hn�1

·D)X =
0. Then D ⌘ 0.

Proof. We will establish the lemma when k is algebraically closed. The lemma will then
follow for arbitrary k by the method of the proof of Lemma

Lemma55

2.1.
We consider two operations on varieties. First suppose that Y is a projective variety of

dimension d � 2 over k, H̃ is an ample Q-Cartier divisor and D̃ is a pseudo e↵ective R-
Cartier divisor on Y and C̃ is an integral curve on Y . Let ⇡ : Y ! Y be the normalization
of Y . Then there exists an integral curve C in Y such that ⇡(C) = C̃ (as in the proof of
Lemma

Lemma55

2.1). We have that

(⇡⇤(H̃)d�1 · ⇡⇤(D̃))Y = (H̃d�1
· D̃)Y

and
(C · ⇡

⇤(D̃))Y = deg(C/C̃)(C̃ · D̃)Y .

We further have that ⇡⇤(D̃) is pseudo e↵ective.
For the second operation, suppose that Y is a normal projective variety over k. Let H̃

be an ample Q-Cartier divisor on Y and D̃ be a pseudo e↵ective R-Cartier divisor on Y .
Let C̃ be an integral curve on Y . Let ' : Z := B(C̃) ! Y be the blow up of C̃. Let E

be the e↵ective Cartier divisor on Z such that OZ(�E) = IC̃OZ . There exists a positive

integer m such that mH̃ is a Cartier divisor and '⇤(mH̃)�E is very ample on Z. Let L
be the linear system

L = {F 2 |mH| | C̃ ⇢ Supp(F )}

on Y . The base locus of L is C̃. We have an induced rational map �L : X 99K Pn where n
is the dimension of L. Let Y 0 be the image of �L. Then Y

0 ⇠= Z since '⇤(mH̃)�E is very
ample on Z. Thus dimY

0 = d and we have equality of function fields k(Y 0) = k(Y ). By
the first theorem of Bertini,

M1

[29],
Z

[35, Section I.7],
AG

[10, Theorem 22.12], a general member
W of L is integral, so that it is a variety. By construction, C̃ ⇢ W . Let ↵ : W ! Y be the
inclusion. We have that ↵⇤(H̃) is ample on W . A general member of L is not a component
of the support of D̃ so ↵⇤(D̃) is pseudo e↵ective. We have that (↵⇤(H̃)d�2 · ↵⇤(D̃))W =
(H̃d�1

· D̃)Y . Further, (C̃ · ↵
⇤(D̃))W = (C̃ · D̃)Y .

Suppose that D is not numerically equivalent to zero. We will derive a contradiction.
There then exists an integral curve C on X such that (C · D)X 6= 0. By iterating the
above two operations, we construct a morphism of k-varieties � : S ! X such that S is
a two dimensional projective variety, with an integral curve C̃ on S, an ample Q-Cartier
divisor H̃ on S and a pseudo e↵ective R-Cartier divisor on S such that (H̃ · D̃)S = 0 but
(D̃ · C̃)S 6= 0. Let � : T ! S be a resolution of singularities (which exists by

Ab

[1],
Li

[27] or
CJS

[5]). There exists an exceptional divisor E on T and a positive integer m such that mH̃ is
a Cartier divisor on S and A := �

⇤(mH̃)�E is an ample Q-Cartier divisor. There exists
an integral curve C on T such that �(C) = C̃ and �⇤(D̃) is a pseudo e↵ective R-Cartier
divisor. Since E is exceptional for �, We have that

(A · �
⇤(D̃))T = (�⇤(mH̃)� E) · �⇤(D̃))T = (�⇤(mH̃) · �⇤(D̃))T = m(H̃ · D̃)S = 0

and
(�⇤(D̃) · C) = deg(C/C̃)(C̃ · D̃)S 6= 0

by
Kl

[21, Chapter I],
AG

[10, Proposition 19.8 and Proposition 19.12]. But this is a contradiction
to

Kl

[21, Theorem 1, page 317],
L

[23, Theorem 1.4.29], since N
1(T ) = N1(T ) by Lemma

Lemma55

2.1. ⇤
7



subsecnorm

2.2. Normal varieties. In this section we review some material from
FKL

[15]. Suppose that
X is a normal projective variety over a field k. The map D ! [D] is an inclusion of
Div(X) into Zd�1(X), and thus induces an inclusion of Div(X) ⌦ R into Zd�1(X) ⌦ R.
We may thus identify a Cartier divisor D on X with its associated Weil divisor [D].

Let x be a real number. Define bxc to be the round down of x and {x} = x � bxc.
Let E be an R-Weil divisor on a normal variety X (an element of Zd�1(X)⌦R). Expand
E =

P
aiEi with ai 2 R and Ei prime divisors on X. Then we have associated divisors

bEc =
X

baicEi and {E} =
X

{ai}Ei.

There is an associated coherent sheaf OX(E) on X defined by

�(U,E) = {f 2 k(X)⇤ | div(f) + E|U � 0} for U an open subset of X.

We have that OX(D) = OX(bDc). If D and D
0 are R-Weil divisors on X, then define

D
0
⇠Z D if D0 �D = div(f) for some f 2 k(X). Define D

0
⇠Q D if there exists m 2 Z>0

such that mD
0
⇠Z mD.

For D an R-Weil divisor, the complete linear system |D| is defined as

|D| = {R-Weil divisors D0 | D0 � 0 and D
0
⇠Z D}.

If D is an integral Cartier divisor, then this is in agreement with the definition of (
eq30

9). For
D an R Weil divisor, we define

|D|Q = {R-Weil divisors D0 | D0 � 0 and D
0
⇠Q D}.

Subsecsigma

2.3. �-decomposition. In this subsection we assume that X is a nonsingular projective
variety over a field k. We will restrict our use of �-decompositions to this situation.
Nakayama defined and developed �-decompositions for nonsingular complex projective
varieties in

N

[30, Chapter III]. The theory and proofs in this chapter extend to arbitrary
fields. The �-decomposition is extended to normal projective varieties in

FKL

[15].
Since X is nonsingular, the map D ! [D] is an isomorphism from Div(X) to Zd�1(X),

and thus induces an isomorphism Div(X) ⌦ R ! Zd�1(X) ⌦ R. Thus we may identify
R-Cartier divisors and R-Weil divisors on X, which we will refer to as R-divisors. Since
X is normal, we may use the theory of Subsection

subsecnorm

2.2.
Let D be an R-divisor. We define

|D|num = {R divisors D0 on X | D
0
� 0 and D

0
⌘ D}.

Let D be a big R-divisor and � be a prime divisor on X. Then we define

��(D)Z :=

⇢
inf{mult�� | � 2 |D|} if |D| 6= 0
+1 if |D| = ;,

��(D)Q := inf{mult�� | � 2 |D|Q},

��(D) := inf{mult�� | � 2 |D|num}.

These three functions ��(D)⇤ satisfy

��(D1 +D2)⇤  ��(D1)⇤ + ��(D2)⇤.

We have that

eq37eq37 (10) ��(D)Q = ��(D)
8



by
N

[30, Lemma III.1.4]. The function �� is continuous on Big(X) by
N

[30, Lemma 1.7]. If
D is a pseudo e↵ective R-divisor and � is a prime divisor, then

��(D) := lim
t!0+

��(D + tA)

where A is any ample R-divisor on X. The limits of these sequences exist and these
sequences converge to the same number by

N

[30, Lemma 1.5]. By
N

[30, Corollary 1.11], there
are only finitely many prime divisors � on X such that ��(D) > 0. For a given pseudo
e↵ective R-divisor D, the R-divisors

N�(D) =
X

�

��(D)� and P�(D) = D �N�(D)

are defined in
N

[30, Definition 1.12]. The decomposition D = P�(D) +N�(D) is called the
�-decomposition of D.

Suppose that D is a pseudo e↵ective R-divisor, A and H are ample R-divisors and
t, " > 0. Then, since D + tA + "H, D + "H and tA are big, we have that for any prime
divisor �,

��(D + tA+ "H)  ��(D + "H) + ��(tA) = ��(D + "H).

Thus
��(D + tA) = lim

"!0+
��(D + tA+ "H)  lim

"!0+
��(D + "H) = ��(D).

In particular, if �1, . . . ,�s are the prime divisors such that N�(D) =
Ps

i=1 ai�i where
ai > 0 for all i, then for all t > 0, there is an expansion N�(D+ tA) =

Ps
i=1 ai(t)�i where

ai(t) 2 R�0. Thus limt!0+ N�(D + tA) = N�(D) and limt!0+ P�(D + tA) = P�(D).

Lemma31 Lemma 2.3. Suppose that D is a pseudo e↵ective R-divisor on a nonsingular projective
variety X. Then

1) P�(D) is pseudo e↵ective.
2) ��(P�(D)) = 0 for all prime divisors � on X, so that the class of P�(D) is in

Mov(X).
3) N�(D) = 0 if and only if the class of D is in Mov(X).

Proof. Let A be an ample R-divisor on X. For all " > 0, D+ "A is big. Thus the class of
D+ "A�

P
��(D+ "A)� is in Big(X). Thus P�(D) = lim"!0+ D+ "A�

P
��(D+ "A)�

is pseudo e↵ective. Statement 2) follows from
N

[30, Lemma III.1.8] and
N

[30, Proposition
III.1.14]. Statement 3) is

N

[30, Proposition III.1.14]. ⇤
2.4. Positive intersection products. Let X be a d-dimensional projective variety over
a field k. In

C

[9], we generalize the positive intersection product on projective varieties over
an algebraically closed field of characteristic zero defined in

BFJ

[4] to projective varieties over
an arbitrary field. We give a quick survey of this theory in this section, referring to

C

[9] for
details.

Let I(X) be the directed set of projective varieties Y which have a birational morphism
to X. If f : Y 0 ! Y is in I(X) and L 2 N

1(Y ), then f
⇤
L 2 N

1(Y 0). We may thus define
N

1(X ) = lim!N
1(Y ). If D is a Cartier R-divisor on Y , we will sometimes abuse notation

and identify D with is class in N
1(X ). In

C

[9], N1(Y ) is denoted by M
1(Y ). For p 2 N, we

define Np(Y ) to be the direct product of N1(Y ) p times and define Np(X ) = lim!N
p(Y ).

We define ↵ 2 N
1(X ) to be Q-Cartier (respectively nef, big, e↵ective, pseudoe↵ective) if

there exists a representative of ↵ in N
1(Y ) which has this property for some Y 2 I(X). We

define subsets Nefp(X ), Bigp(X ) and Psefp(X ) to be the respective subsets of Np(X ) of nef,
big and pseudoe↵ective divisors. They are all convex cones in the vector space N

p(X ).
9



If p = 1, we will often write Nef(X ), Big(X ) and Psef(X ). We have that {Nef(Y )p},
{Big(Y )p} and {Psef(Y )p} also form directed systems. As sets, we have that

Nef p(X ) = lim
!

(Nef(Y )p), Big p(X ) = lim
!

(Big(Y )p), Psef p(X ) = lim
!

(Psef(Y )p).

We give all of these sets their respective strong topologies.
The set Psef(X ) is a strict cone in the vector space N

1(X ), since Psef(Y ) are strict
cones for Y 2 I(X). Thus we have an induced partial order on N

1(X ). More generally, if
V is a vector space and C ⇢ V is a pointed (containing the origin) convex cone which is
strict (C \ (�C) = {0}), then we have a partial order on V defined by x  y if y� x 2 C.
An element ↵ 2 N

1(X ) satisfies ↵ � 0 if there exists a representative ↵0 2 N
1(Y ) of ↵ for

some Y 2 I(X) such that ↵0 � 0 in N
1(Y ) (↵0 2 Psef(Y )).

For Y 2 I(X) and 0  p  d, we let L
p(Y ) be the real vector space of p-multilinear

forms on N
1(Y ). Giving the finite dimensional real vector space L

p(Y ) the Euclidean
topology, we define

eq300eq300 (11) L
p(X ) = lim

 
L
p(Y ).

L
p(X ) is a Hausdor↵ topological real vector space. We define L

0(X ) = R. The pseudo
e↵ective cone Psef(Lp(Y )) in L

p(Y ) is the closure of the cone generated by the natural
images of the p-dimensional closed subvarieties of Y . The inverse limit of the Psef(Lp(Y ))
is then a closed convex and strict cone Psef(Lp(X )) in L

p(X ), defining a partial order �
in L

p(X ). The pseudo e↵ective cone in L
0(X ) is the set of nonnegative real numbers. For

Y 2 I(X), let ⇢Y : N1(Y ) ! N
1(X ) and ⇡Y : Lp(X ) ! L

p(Y ) be the induced continuous
linear maps. In

BFJ

[4] they consider a related but di↵erent vector space from L
p(X ).

Suppose that ↵1, . . . ,↵r 2 N
1(X ) with r  d. Let f : Y ! X 2 I(X) be such that

↵1, . . . ,↵r are represented by classes inN
1(Y ) of R-Cartier divisorsD1, . . . , Dr on Y . Then

the ordinary intersection product D1 · . . . ·Dr induces a linear map D1 · . . . ·Dr 2 L
d�r(X ).

If r = d, then this linear map is just the intersection number (D1 · . . . ·Dd)Y 2 R of
F

[18,
Definition 2.4.2].

If ↵1, . . . ,↵p 2 N
1(X ) are big (elements of Big(X )), we define the positive intersection

product (
BFJ

[4, Definition 2.5, Proposition 2.13] in characteristic zero,
C

[9, Definition 4.4,
Proposition 4.12]) to be

eq33eq33 (12)
h↵1 · . . . · ↵pi = lub {(↵1 �D1) · . . . · (↵p �Dp) 2 L

d�p(X ) | Di are e↵ective R-Cartier
divisors on some Yi 2 I(X) and ↵�Di are big}

where lub denotes the least upper bound of the set. This is well defined by
C

[9, Proposition
4.3].

Prop35 Proposition 2.4. (
BFJ

[4, Proposition 2.13],
C

[9, Proposition 4.12]) If ↵1, . . . ,↵p 2 N
1(X ) are

big, we have that h↵1 · . . . · ↵pi is the least upper bound in L
d�p(X ) of all intersection

products �1 · . . . · �p where �i is the class of a nef R-Cartier divisor such that �i  ↵i for
all i.

If ↵1, . . . ,↵p 2 N
1(X ) are pseudo e↵ective, their positive intersection product is defined

(
BFJ

[4, Definition 2.10],
C

[9, Definition 4.8, Lemma 4.9]) as

lim
"!0+

h(↵1 + "H) · . . . · (↵p + "H)i

where H is a big R-Cartier divisor on some Y 2 I(X).
10



Lemma36 Lemma 2.5. (
BFJ

[4, Proposition 2.9, Remark 2.11], [
C

[9, Lemma 4.13],
C

[9, Proposition 4.7])
The positive intersection product h↵1 · . . . · ↵pi is homogeneous and super additive on each
variable in the p-fold product (Psef(X ))p. Further, it is continuous on the p-fold product
of the big cone.

Remark50 Remark 2.6. Since a positive intersection product is always in the pseudo e↵ective cone,
if ↵1, . . . ,↵d 2 N

1(X ) are pseudo e↵ective, then h↵1 · . . . ·↵di 2 R�0. Since the intersection
product of nef and big R-Cartier divisors is positive, it follows from Proposition

Prop35

2.4 that
if ↵1, . . . ,↵d 2 N

1(X ) are big, then h↵1 · . . . · ↵di 2 R>0.

Lemma34 Lemma 2.7. Let H be an ample R-Cartier divisor on some Y 2 I(X) and let ↵ 2 N
1(X )

be pseudo e↵ective. Then
hH

d�1
· ↵i = H

d�1
· h↵i.

Proof. By Proposition
Prop35

2.4, for all " > 0,

h((1 + ")H))d�1 · (↵+ "H)i = (1 + ")d�1
⇣
H

d�1
· h↵+ "Hi

⌘
.

Taking the limit as " goes to zero, we have the conclusions of the lemma. ⇤
Theorem17 Theorem 2.8. Suppose that X is a d-dimensional projective variety, ↵ 2 N

1(X) is big
and � 2 N

1(X) is arbitrary. Then

d

dt
vol(↵+ t�) = dh(↵+ t�)d�1i · �

whenever ↵+ t� is big.

This is a restatement of
BFJ

[4, Theorem A],
C

[9, Theorem 5.6]. The proof shows that

lim
�t!0

vol(↵+ (t+�t)�)� vol(↵+ t�)

�t
= dh(↵+ t�)d�1i · �.

Suppose ↵ 2 N
1(X ) is pseudo e↵ective. Then we have for varieties over arbitrary fields,

the formula of
BFJ

[4, Corollary 3.6],

eq40eq40 (13) h↵
d
i = h↵

d�1
i · ↵.

To establish this formula, first suppose that ↵ is big. Then taking the derivative at t = 0
of h(↵ + t↵)di = (1 + t)dh↵d

i, we obtain formula (
eq40

13) from Theorem
Theorem17

2.8. If ↵ is pseudo
e↵ective, we obtain (

eq40

13) by regarding ↵ as a limit of the big divisors ↵ + tH where H is
an ample R-Cartier divisor.

The natural map N
1(X) ! L

d�1(X) is an injection, as follows from the proof of Lemma
Lemma55

2.1. Let WN
1(X) be the image of the homomorphism of Zd�1(X)⌦R to L

d�1(X) which
associates to D 2 Zd�1(X)⌦R the natural map (L1, . . . ,Ld�1) 7! (L1 · . . . ·Ld�1 ·D)X . We
have that WN

1(X) is the subspace of Ld�1(X) generated by Psef(X). We always have a
factorization N

1(X) ! Nd�1(X) ! WN
1(X). In this way we can identify the map D·

which is the image of an element of Zd�1(X)⌦ R in L
d�1(X) with its class in WN

1(X).
If X is nonsingular, then WN

1(X) = Nd�1(X) = N
1(X).

2.5. Volume of divisors. Suppose that X is a d-dimensional projective variety over a
field k and D is a Cartier divisor on X. The volume of D is (

L

[23, Definition 2.2.31])

vol(D) = lim sup
n!1

dimk(�(X,OX(nD))

nd/d!
.

This lim sup is actually a limit. When k is an algebraically closed field of characteristic
zero, this is shown in Example 11.4.7

L

[23], as a consequence of Fujita Approximation
F2

[19]
11



(c.f.
L

[23, Theorem 10.35]). The limit is established in
LM

[24] and
T

[32] when k is algebraically
closed of arbitrary characteristic. A proof over an arbitrary field is given in

C1

[7, Theorem
10.7].

Since vol is a homogeneous function, it extends naturally to a function on Q-divisors,
and it extends to a continuous function on N

1(X) (
L

[23, Corollary 2.2.45]), giving the
volume of an arbitrary R-Cartier divisor.

We have (
BFJ

[4, Theorem 3.1],
C

[9, Theorems 5.2 and 5.3]) that for a pseudo e↵ective R-
Cartier divisor D on X,

eq44eq44 (14) vol(D) = hD
d
i.

Further, we have by
FKL

[15, Theorem 3.5], that for an arbitrary R-Weil divisor D on a
normal variety X, that

vol(D) = lim
n!1

dimk(�(X,OX(nD))

nd/d!
.

An R-Weil divisor D is said to be big if vol(D) > 0.

Lemma 2.9. Suppose that L is an R-Cartier divisor on a d-dimensional projective variety
X over a field k, Y is a projective variety and ' : Y ! X is a generically finite morphism.
Then

eq43eq43 (15) vol('⇤L) = deg(Y/X) vol(L).

Proof. First assume that L is a Cartier divisor. The sheaf '⇤OY is a coherent sheaf of
OX -modules. Let R be the coordinate ring of X with respect to some closed embedding of
X in a projective space. Then R = �i�0Ri is a standard graded domain over R0, and R0 a
finite extension field of k. There exists a finitely generated graded R-module M such that
the sheafication M̃ of M is isomorphic to '⇤OY (by

H

[20, Proposition II.5.15 and Exercise
II.5.9] or

AG

[10, Theorem 11.46]). Let S be the multiplicative set of nonzero homogeneous
elements of R and ⌘ be the generic point of X. The ring R(0) is the set of homogeneous
elements of degree 0 in the localization S

�1
R and the R(0)-module M(0) is the set of

homogeneous elements of degree 0 in the localization S
�1

M . The function field of X is
k(X) = OX,⌘ = R(0) and ('⇤OY )⌘ = M(0) is a k(X)-vector space of rank r = deg(Y/X).
Let f1, . . . , fr 2 M(0) be a k(X)-basis. Write fi =

zi
si

where zi 2 M is homogeneous of some
degree di and si 2 R is homogeneous of degree di. Multiplication by zi induces a degree
0 graded R-module homomorphism R(�di) ! M giving us a degree 0 graded R-module
homomorphism �

r
i=1R(�di) ! M . Let K be the kernel of this homomorphism and F be

the cokernel. Let K̃ be the sheafification of K and F̃ be the sheafification of F . We have a
short exact sequence of coherent OX -modules 0 ! K̃ ! �

r
i=1OX(di) ! ⇡⇤OY ! F̃ ! 0.

Localizing at the generic point, we see that K̃⌘ = 0 and F̃⌘ = 0 so that the supports of K̃
and F̃ have dimension less than dimX, and thus K = 0 since it is a submodule of a torsion
free R-module. Tensoring the short exact sequence 0 ! �

r
i=1OX(di) ! ⇡⇤OY ! F̃ ! 0

with L
n, we see that

vol('⇤L) = lim
n!1

dimk �(Y,'⇤Ln)

nd/d!
= lim

n!1

dimk(�r
n=1�(X,OX(di)⌦ L

n))

nd/d!
= deg(Y/X) vol(L).

Since volume is homogeneous, (
eq43

15) is valid for Q-Cartier divisors, and since volume is
continuous on N

1(X) and N
1(Y ), (

eq43

15) is valid for R-Cartier divisors. ⇤
12



SubSecMN

2.6. Big and Movable divisors on a normal variety. Let X be a normal projective
variety over a field, and � be a prime divisor on X. Recall that an R-Weil divisor D on
X is said to be big if vol(D) > 0.

As explained in
FKL

[15], the definitions of ��(D)Z and ��(D)Q of Subsection
Subsecsigma

2.3 extend
to big R-Weil divisors D on X, leading to the definition of the �-decomposition D =
P�(D) +N�(D) as in Subsection

Subsecsigma

2.3. The inequalities

��(D1 +D2)Z  ��(D1)Z + ��(D2)Z and ��(D1 +D2)Q  ��(D1)Z + ��(D2)Q

continue to hold.
Let D be a big and movable R-Cartier divisor on X and A be an ample R-Cartier

divisor on X. Then D + tA 2 Mov(X) for all positive t, so that �(D + tA)Q = 0 for all
t > 0. Since D is big, there exists � > 0 such that D ⇠Q �A +� where � is an e↵ective
R-Cartier divisor. Then for all " > 0, (1 + ")D ⇠Q D + "�A+ "� and so

(1 + ")��(D)Q  �(D + "�A)Q + "mult�(�) = "mult�(�)

for all " > 0. Thus, with our assumption that D is a big and movable R-Cartier divisor,
we have that

eq50eq50 (16) ��(D)Q = 0 for all prime divisors � on X.

If D is a big R-Cartier divisor on a normal projective variety X, then vol(D) =
vol(P�(D)) and so if P�(D) is R-Cartier, then vol(D) = hP�(D)di.

Lemma200 Lemma 2.10. Suppose that X is a projective variety and D is a big R-Cartier divisor on
X. Let f : Y ! X 2 I(X) be such that Y is normal. Then

eq91eq91 (17) ⇡Y (hDi) = P�(f
⇤(D)).

Proof. We may assume that Y = X so that f
⇤
D = D. After replacing D with an

R-Cartier divisor numerically equivalent to D, we may assume that D =
Pr

i=1 aiGi is
an e↵ective divisor, where Gi are prime divisors and ai 2 R>0. For m 2 Z>0, write
mD = Nm+

Pr
i=1 �Gi(mD)ZGi. Then |mD| = |Nm|+

Pr
i=1 �Gi(mD)ZGi where |Nm| has

no codimension one components in its base locus.
There exists a birational morphism 'm : Xm ! X such that Xm is normal and is

a resolution of indeterminancy of the rational map determined by |Nm| on X. Thus
'
⇤
m(mD) = Mm +

Pr
i=1 �Gi(mD)ZGi + Fm where Mm and Fm are e↵ective, Fm has

exceptional support for 'm, Gi is the proper transform of Gi on Xm and |'
⇤
m(mD)| =

|Mm|+
Pr

i=1 �Gi(mD)ZGi+Fm where |Mm| is base point free. Thus Mm is a nef integral
Cartier divisor on Xm.

Set Dm =
Pr

i=1
�Gi

(mL)Z
m Gi +

Fm
m , so that Dm is an e↵ective R-Cartier divisor on Xm.

We have that 1
mMm  hDi in L

d�1(X ) so that ⇡X( 1
mMm)  ⇡XhDi in L

d�1(X). Now

⇡X( 1
mMm) = ('m)⇤(

1
mMm) = 1

m('m)⇤(('m)⇤(mD)�
Pr

i=1 �Gi(mD)ZGi � Fm)

= D �
Pr

i=1
�Gi

(mD)Z
m Gi.

Thus

P�(D) = D �

rX

i=1

�Gi(mD)Gi = lim
m!1

(D �

rX

i=1

�Gi(mD)Z
m

Gi)  ⇡X(hDi)

in L
d�1(X).
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Let Z 2 I(X) be normal, with birational map g : Z ! X and N be a nef and big R-
Cartier divisor on Z and E be an e↵ective R-Cartier divisor on Z such that N+E = g

⇤(D).
Let � be a prime divisor on Z. Then

��(g
⇤(D))  ��(N) + ord�(E) = ord�(E).

Thus N�(g⇤(D))  E and so N  P�(g⇤(D)).
Let �̃ be a prime divisor on X and let � be the proper transform of �̃ on Z. Then

��(g⇤(D)) = ��̃(D) so that ⇡X(N)  P�(D) in WN
1(X). Thus ⇡X(hDi)  P�(D) in

L
d�1(X). ⇤

Let X be a projective variety and L1, . . . , Ld�1 2 N
1(X). Suppose that D is a big and

movable R-Cartier divisor on X. Then the intersection product in L
0(X ) = R is

eq90eq90 (18)
L1 · . . . · Ld�1 · hDi = ⇢X(L1) · . . . · ⇢X(Ld�1) · hDi = L1 · . . . · Ld�1 · ⇡X(hDi)

= (L1 · . . . · Ld�1 · P�(D))X = (L1 · . . . · Ld�1 ·D)X

3. A theorem on volumes

In this section we generalize
C2

[11, Theorem 4.2]. The proof given here is a variation
of the one given in

C2

[11], using the theory of divisorial Zariski decomposition of R-Weil
divisors on normal varieties of

FKL

[15]. Let X be a d-dimensional normal projective variety
over a field k. Suppose that D is a big R-Weil divisor on X; that is, vol(D) > 0. Let E be
a codimension one prime divisor on X. In

FKL

[15, Lemma 4.1] the function �E of Subsection
Subsecsigma

2.3 is generalized to give the following definition (
FKL

[15, Lemma 4.1])

�E(D) = lim
m!1

min
1

m
{multED

0
| D
0
⇠Z mD,D

0
� 0}.

Suppose that D is a big R-Weil divisor and E1, . . . , Er are distinct prime divisors on X.
Then by

FKL

[15, Lemma 4.1], for all m 2 N,

eq70eq70 (19) �(X,OX(mD)) = �(X,OX(mD �

rX

i=1

m�Ei(D)Ei)).

We now recall the method of
LM

[24] to compute volumes of graded linear series on X, as
extended in

C2

[11] to arbitrary fields. We restrict to the situation of our immediate interest;
that is, D is a big R-Weil divisor and H is an ample Cartier divisor on X such that D  H.

Suppose that p 2 X is a nonsingular closed point and

eqGR2eqGR2 (20) X = Y0 � Y1 � · · · � Yd = {p}

is a flag; that is, the Yi are subvarieties of X of dimension d� i such that there is a regular
system of parameters b1, . . . , bd in OX,p such that b1 = · · · = bi = 0 are local equations of
Yi in X for 1  i  d.

The flag determines a valuation ⌫ on the function field k(X) of X as follows. We have
a sequence of natural surjections of regular local rings

eqGR3eqGR3 (21)

OX,p = OY0,p
�1
! OY1,p = OY0,p/(b1)

�2
! · · ·

�d�1
! OYd�1,p = OYd�2,p/(bd�1)

�d
! OX,p/mp = k(p).

Define a rank d discrete valuation ⌫ on k(X) by prescribing for s 2 OX,p,

⌫(s) = (ordY1(s), ordY2(s1), · · · , ordYd(sd�1)) 2 (Zd)lex
14



where

s1 = �1

 
s

b
ordY1 (s)
1

!
, s2 = �2

 
s1

b
ordY2 (s1)
2

!
, . . . , sd�1 = �d�1

0

@ sd�2

b
ordYd�1

(sd�2)

d�1

1

A .

Let g = 0 be a local equation of H at p. For m 2 N, define
�mD : �(X,OX(mD)) ! Nd

by �mD(f) = ⌫(fgm). The Okounkov body �(D) of D is the closure of the set

[m2N
1

m
�mD(�(X,OX(mD)))

in Rd. �(D) is a compact and convex set by
LM

[24, Lemma 1.10] or the proof of
C1

[7, Theorem
8.1].

By the proof of
C1

[7, Theorem 8.1] and of
C3

[8, Lemma 5.4] we see that

GR4GR4 (22) vol(D) = lim
m!1

dimk �(X,OX(mD))

md/d!
= d![OX,p/mp : k]vol(�(D)).

The following proposition is proven with the assumption that the ground field k is
perfect in i) implies ii) of

FKL

[15, Theorem B]. The assumption that k is perfect is required in
their proof as they use

T

[32], which proves that a Fujita approximation exists to compute
the volume of a Cartier divisor when the ground field is perfect. The theorem of

dJ

[12] is
used in

FKL

[15] to conclude that a separable alteration exists if the ground field k is perfect.

Prop1 Proposition 3.1. Suppose that X is a normal projective variety over a field k and D1, D2

are big R-Weil divisors on X such that D1  D2 and vol(D1) = vol(D2). Then

�(X,OX(nD1)) = �(X,OX(nD2))

for all n 2 N.

Proof. Write D2 = D1+
Pr

i=1 aiEi where the Ei are prime divisors on X and ai 2 R>0 for
all i. By induction on r, we may suppose that r = 1. Let H be an ample Cartier divisor
on X such that D2  H.

Choose a flag (
eqGR2

20) with Y1 = E1 and p a point such that p 2 X is a nonsingular
closed point of X and E1. Let ⇡1 : Rd

! R be the projection onto the first factor. For
f 2 �(X,OX(mDj)),

1

m
ordE1(fg

m) =
1

m
ordE1((f) +mDj) + ordE1(H �Dj).

Thus
⇡
�1
1 (�E1(Dj) + ordE1(H �Dj)) \�(Dj) 6= ;

and
⇡
�1
1 (a) \�(Dj) = ; if a < �E1(Dj) + ordE1(H �Dj).

Further, �(D1) ⇢ �(D2) and vol(D1) = vol(D2), so �(D1) = �(D2) by
C2

[11, Lemma
3.2]. Thus

�E1(D1) + ordE1(H �D1) = �E1(D2) + ordE1(H �D2).

We obtain that
D2 � �E1(D2)E1 = D1 � �E1(D1)E1.

By (
eq70

19), for all m � 0,

�(X,OX(mD1)) = �(X,OX(mD2)).
15



⇤
Lemma2 Lemma 3.2. Suppose that X is a nonsingular projective variety and D1  D2 are big

R-divisors on X. Then the following are equivalent

1) vol(D1) = vol(D2)
2) �(X,OX(nD1)) = �(X,OX(nD2)) for all n 2 N
3) P�(D1) = P�(D2).

Proof. The implication 1) implies 2) is a consequence of Proposition
Prop1

3.1. We now assume
2) holds and prove 3). Then |nD2| = |nD1|+ n(D2 �D1) for all n � 0. Thus

��(D2) = ��(D1) + ord�(D2 �D1),

and so

P�(D2) = D2 �N�(D2) = D1 + (D2 �D1)� (N�(D1) +D2 �D1)
= D1 �N�(D1) = P�(D1).

Finally, we prove 3) implies 1). Suppose that P�(D1) = P�(D2). Then

vol(D1) = vol(P�(D1)) = vol(P�(D2)) = vol(D2)

by (
eq70

19). ⇤

4. The Augmented Base Locus

Let X be a normal variety over a field. Let D be a big R-Cartier divisor on X. The
augmented base locus B+(D) is defined in

ELM

[14, Definition 1.2] and extended to R-Weil
divisors in

FKL

[15, Definition 5.1]. Bdiv
+ (D) is defined to be the divisorial part of B+(D). It is

shown in
ELM

[14, Proposition 1.4] that if D1 and D2 are big R-Cartier divisors and D1 ⌘ D2

then B+(D1) = B+(D2). In
FKL

[15, Lemma 5.3], it is shown that if A is an ample R-Cartier
divisor on X, then

eq61eq61 (23) B
div
+ (D) = Supp(N�(D � "A))

for all su�ciently small positive ".
The following Lemma is i) equivalent to ii) of

FKL

[15, Theorem B], in the case that X is
nonsingular, over an arbitrary field. We use Lemma

Lemma2

3.2 to remove the assumption in
FKL

[15,
Theorem B] that the ground field is perfect.

Lemma60 Lemma 4.1. Let X be a nonsingular projective variety over a field. Let D be a big R-
divisor on X and E be an e↵ective R-divisor. Then vol(D + E) = vol(D) if and only if
Supp(E) ⇢ B

div
+ (D).

Proof. Suppose that vol(D + E) = vol(D).
Let D

0 be an R-divisor such that D
0
⌘ D. Then vol(D0 + E) = vol(D0). Lemma

Lemma2

3.2 implies �(X,OX(nD0)) = �(X,OX(nD0 + sE)) for all n > 0 and 0  s  n. Thus
�(X,OX(nD0)) = �(X,OX(nD0 + rE)) for all n > 0 and r � 0 by

N

[30, Lemma III.1.8,
Corollary III.1.9] or

FKL

[15, Lemma 4.1]. Let A be an ample R-divisor on X and suppose that
F is an irreducible component of E and F 6⇢ Supp(N�(D � "A)) for " su�ciently small.
By

FKL

[15, Lemma 4.9], there exists m > 0 such that

mD + F = (
1

2
m"A+ F ) + (

1

2
m"A+mP�(D � "A)) +mN�(D � "A)

is numerically equivalent to an e↵ective divisor G that does not contain F in its support.
Let D0 = 1

m(G� F ) ⌘ D. Then for r su�ciently large,

dimk �(X,OX(mD
0 + rE)) � dimk �(X,OX(mD

0 + F )) > dimk �(X,OX(mD
0)),

16



giving a contradiction, and so by (
eq61

23), Supp(E) ⇢ B
div
+ (D).

Now suppose that Supp(E) ⇢ B
div
+ (D). Let A be an ample R-divisor on X. By (

eq61

23),
we have that Supp(E) ⇢ Supp(N�(D � "A)) for all su�ciently small positive ". By

FKL

[15,
Lemma 4.13], we have that vol(D+E� "A) = vol(D� "A) for all su�ciently small " > 0.
Thus vol(D + E) = vol(D) by continuity of volume of R-divisors. ⇤

5. The Minkowski equality
SecMink

In this section, we modify the proof sketched in
LX2

[26] of
LX2

[26, Proposition 3.7] to be valid
over an arbitrary field. Characteristic zero is required in the proof in

LX2

[26] as the existence of
resolution of singularities is assumed and an argument using the theory of multiplier ideals
is used, which requires characteristic zero as it relies on both resolution of singularities
and Kodaira vanishing. I thank the referee for pointing out, that in the case that k is
algebraically closed, Proposition

Prop3

5.1 also follows from
FL1

[16, Proposition 5.3].

Prop3 Proposition 5.1. Let X be a nonsingular projective d-dimensional variety over a field
k. Suppose that L is a big R-divisor on X, and P and N are R-divisors on X such that
L ⌘ P +N where vol(L) = vol(P ) and N is pseudo e↵ective. Then P�(P ) ⌘ P�(L).

Proof. Write N = P�(N) +N�(N).
Since L and P are big R-Cartier divisors, by superadditivity and positivity of intersec-

tion products,

vol(L) = hL
d
i � hL

d�1
· P i+ hL

d�1
·Ni

= h(P +N)d�1 · P i+ hL
d�1

·Ni

� hP
d
i+ hL

d�1
·Ni = vol(P ) + hL

d�1
·Ni.

Thus hLd�1
·Ni = 0. Let A be an ample Cartier divisor on X. There exists a small real

multiple A of A such that B := L�A is a big R-Cartier divisor.

0 = h(A+B)d�1·Ni � hA
d�1

·Ni = hA
d�1

·(P�(N)+N�(N))i � hA
d�1

·P�(N)i = A
d�1

·hP�(N)i

by superadditivity and Lemma
Lemma34

2.7.
By Lemma

Lemma31

2.3, P�(N) + "A is big and movable, so by (
eq90

18),

A
d�1

· hP�(N) + "Ai = A
d�1

· (P�(N) + "A),

so
A

d�1
· hP�(N)i = lim

"!0
A

d�1
· hP�(N) + "Ai = A

d�1
· P�(N).

Thus

eq6eq6 (24) (Ad�1
· P�(N))X = 0

and so P�(N) ⌘ 0 by Lemma
Lemma7

2.2. Thus N ⌘ N�(N). Thus, replacing P with the
numerically equivalent divisor P +P�(N), we may assume that N is e↵ective. By Lemma
Lemma2

3.2, we have that
P�(P ) = P�(P +N) ⌘ P�(L).

⇤
Lemma10 Lemma 5.2. Let X be a nonsingular d-dimensional projective variety over a field k. Sup-

pose that L1 and L2 are big R-divisors on X. Set s to be the largest real number s such
that L1 � sL2 is pseudo e↵ective. Then

eq11eq11 (25) s
d


vol(L1)

vol(L2)
17



and if equality holds in (
eq11

25), then P�(L1) ⌘ sP�(L2).

Proof. The pseudo e↵ective cone is closed, so s is well defined. We have L1 ⌘ sL2 + �

where � is pseudo e↵ective. Thus vol(L1) � vol(sL2) = s
dvol(L2). If this is an equality,

then sP�(L2) ⌘ P�(L1) by Proposition
Prop3

5.1. ⇤

Let X be a projective variety over a field k. An alteration ' : Y ! X is a proper and
dominant morphism such that Y is a nonsingular projective variety and [k(Y ) : k(X)] <
1. If X is normal and D is a pseudo e↵ective R-Cartier divisor on X, then by

FKL

[15, Lemma
4.12],

eqNew20eqNew20 (26) '⇤N�('
⇤
D) = deg(Y/X)N�(D).

It is proven in
dJ

[12] that for such X, an alteration always exists (although it may be that
k(Y ) is not separable over k(X) if k is not perfect).

Lemma21 Lemma 5.3. Suppose that X is a projective variety over a field k, ' : Y ! X is an
alteration and L1, L2 are pseudo e↵ective R-Cartier divisors on X. Suppose that s 2 R>0.
Then '⇤(L1)� sP�('⇤(L2)) is pseudo e↵ective if and only if P�('⇤(L1))� sP�('⇤(L2)) is
pseudo e↵ective.

Proof. Certainly if P�('⇤L1)� sP�('⇤L2) is pseudo e↵ective then '⇤(L1)� sP�('⇤L2) is
pseudo e↵ective. Suppose '⇤(L1) � sP�('⇤(L2)) is pseudo e↵ective. Then there exists a
pseudo e↵ective R-divisor � on Y such that

P�('
⇤
L1) +N�('

⇤
L1) = '

⇤
L1 ⌘ sP�('

⇤
L2) + � = (sP�('

⇤
L2) + P�(�)) +N�(�).

The e↵ective R-divisor N�(�) has the property that '⇤(L1)�N�(�) is movable by Lemma
Lemma31

2.3, so N�(�) � N�('⇤L1) by
N

[30, Proposition III.1.14]. Thus P�('⇤L1) � sP�('⇤L2) is
pseudo e↵ective. ⇤

Lemma22 Lemma 5.4. Let X be a d-dimensional projective variety over a field k. Suppose that L1

and L2 are big and movable R-Cartier divisors on X. Let s be the largest real number
such that L1 � sL2 is pseudo e↵ective. Then

eq23eq23 (27) s
d


vol(L1)

vol(L2)

and if equality holds in (
eq23

27), then L1 and L2 are proportional in N
1(X).

Proof. Let ' : Y ! X be an alteration.
Let L be a big and movable R-Cartier divisor on X. Let � ⇢ Y be a prime divisor

which is not exceptional for '. Let �̃ be the codimension one subvariety of X which is
the support of '⇤�. Since L is movable, there exist e↵ective R-Cartier divisors Di on
X such that limi!1Di = L in N

1(X) and �̃ 6⇢ Supp(Di) for all i. We thus have that
'
⇤(L) = limi!1 '

⇤(Di) in N
1(Y ) and � 6⇢ Supp('⇤(Di)) for all i, so that ��('⇤(Di)) = 0

for all i. Thus ��('⇤(L)) = 0 since �� is continuous on the big cone of Y . Thus N�('⇤L)
has exceptional support for ' and thus '⇤(P�('⇤L)) = '⇤('⇤L) = deg(Y/X)L by (

eq41

4).
Let sY be the largest real number such that P�('⇤L1)�sY P�('⇤L2) is pseudo e↵ective.

Then sY � s since '⇤L1 � s'
⇤
L2 is pseudo e↵ective and by Lemma

Lemma21

5.3, and so

s
d
 s

d
Y 

vol('⇤L1)

vol('⇤L2)
=

vol(L1)

vol(L2)

by Lemma
Lemma10

5.2 and (
eq43

15).
18



If sd = vol(L1)
vol(L2)

, then P�('⇤(L1)) = sP�('⇤(L2)) in N
1(Y ) by Lemma

Lemma10

5.2, and so

deg(Y/X)(L1 � sL2) = '⇤('
⇤(L1)� s'

⇤(L2)) = '⇤(P�('
⇤(L1))� s'⇤(P�('

⇤(L2)) = 0

in Nd�1(X), so that 0 = L1 � sL2 in N
1(X) by Lemma

Lemma55

2.1. ⇤
The following proposition is proven over an algebraically closed field of characteristic

zero in
LX2

[26, Proposition 3.3].

Prop13 Proposition 5.5. Suppose that X is a projective d-dimensional variety over a field k and
L1, L2 are big and moveable R-Cartier divisors on X. Then

hL
d�1
1 i · L2 � vol(L1)

d�1
d vol(L2)

1
d

with equality if and only if L1 and L2 are proportional in N
1(X).

Proof. Let f : X ! X be the normalization of X. Since X has no exceptional divisors
for f , f

⇤
L1 and f

⇤
L2 are movable. We have that hf

⇤
L
d�1
1 i · f

⇤
L2 = hL

d�1
1 i · L2 and

vol(f⇤Li) = vol(Li) for i = 1, 2. Further, f⇤ : N1(X) ! N
1(X) is an injection, so L1 and

L2 are proportional in N
1(X) if and only if f⇤L1 and f

⇤
L2 are proportional in N

1(X). We
may thus replace X with its normalization X, and so we can can assume for the remainder
of the proof that X is normal.

We construct birational morphisms  m : Ym ! X with numerically e↵ective R-Cartier
divisors Ai,m and e↵ective R-Cartier divisors Ei,m on Ym such that Ai,m =  

⇤
m(Li)�Ei,m

and hLii = limm!1Ai,m in L
d�1(X ) for i = 1, 2. We have that ⇡X(Ai,m) =  m,⇤(Ai,m)

comes arbitrarily closed to ⇡X(hLji) = P�(Lj) = Lj in L
d�1(X) by Lemma

Lemma200

2.10.
Let sL be the largest number such that L1 � sLL2 is pseudo e↵ective and let sm be the

largest number such that A1,m � smA2,m is pseudo e↵ective.
We will now show that given " > 0, there exists a positive integer m0 such that m > m0

implies sm < sL + ". Since Psef(X) is closed, there exists � > 0 such that the open
ball B�(L1 � (sL + ")L2) in N

1(X) of radius � centered at L1 � (sL + ")L2 is disjoint
from Psef(X). There exists m0 such that m � m0 implies  m⇤(A1,m) 2 B �

2
(L1) and

 m⇤(A2,m) 2 B �
(sL+")2

(L2). Thus  m⇤(A1,m� (sL+")A2,m) 62 Psef(X) for m � m0 so that

sm < sL + ".
By the Khovanski Teissier inequalities for nef and big divisors (

BFJ

[4, Theorem 2.15] in
characteristic zero,

C

[9, Corollary 6.3]),

eq14eq14 (28) (Ad�1
1,m ·A2,m)

d
d�1 � vol(A1,m)vol(A2,m)

1
d�1

for all m. By Proposition
Prop35

2.4, taking limits as m ! 1, we have

hL
d�1
1 · L2i � vol(L1)

d�1
d vol(L2)

1
d .

Now for each m, we have

A
d�1
1,m ·  

⇤
m(L2) = A

d�1
1,m · (A2,m + E2,m) � A

d�1
1,m ·A2,m

since E2,m is e↵ective and A1,m is nef. Taking limits as m ! 1, we have hL
d�1
1 i · L2 �

hL
d�1
1 · L2i. Thus

eq15eq15 (29) hL
d�1
1 i · L2 � hL

d�1
1 · L2i � vol(L1)

d�1
d vol(L2)

1
d .

The Diskant inequality for big and nef divisors,
C

[9, Theorem 6.9],
BFJ

[4, Theorem F] implies

(Ad�1
1,m ·A2,m)

d
d�1 � vol(A1,m)vol(A2,m)

1
d�1 � ((Ad�1

1,m ·A2,m)
1

d�1 � smvol(A2,m)
1

d�1 )d.
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We have that (Ad�1
1,m · A2,m)

1
d�1 � smvol(A2,m)

1
d�1 � 0 since s

d
m 

vol(A1,m)
vol(A2,m) by Lemma

Lemma22

5.4

and by (
eq14

28).
We have that
h
(Ad�1

1,m ·A2,m)
d

d�1 � vol(A1,m)vol(A2,m)
1

d�1

i 1
d

� (Ad�1
1,m ·A2,m)

1
d�1 � smvol(A2,m)

1
d�1

� (Ad�1
1,m ·A2,m)

1
d�1 � (sL + ")vol(A2,m)

1
d�1

for m � m0. Taking the limit as m ! 1, we have

eq16eq16 (30) hL
d�1
1 · L2i

d
d�1 � vol(L1)vol(L2)

1
d�1 � [hLd�1

1 · L2i
1

d�1 � sLvol(L2)
1

d�1 ]d.

If (hLd�1
1 i · L2)

d
d�1 = vol(L1)vol(L2)

1
d�1 then hL

d�1
1 i · L2 = hL

d�1
1 · L2i by (

eq15

29) and

(hLd�1
1 i ·L2)

1
d�1 = sLvol(L2)

1
d�1 , so that sdL = vol(L1)

vol(L2)
and thus L1 and L2 are proportional

in N
1(X) by Lemma

Lemma22

5.4.

Suppose L1 and L2 are proportional in N
1(X), so that L1 ⌘ sLL2 and s

d
L = vol(L1)

vol(L2)
.

Then

hL
d�1
1 i · L2 = s

d�1
L hL

d�1
2 i · L2 = s

d�1
L hL

d
2i =

vol(L1)
d�1
d

vol(L2)
d�1
d

vol(L2) = vol(L1)
d�1
d vol(L2)

1
d

where the second equality is by (
eq40

13). ⇤
The proof of the following theorem is deduced from Proposition

Prop13

5.5 by extracting an
argument from

LX1

[25, Theorem 4.11]. Over algebraically closed fields of characteristic zero,
it is

LX2

[26, Proposition 3.7].

Theorem18 Theorem 5.6. Let L1 and L2 be big and moveable R-Cartier divisors on a d-dimensional
projective variety X over a field k. Then

eq97eq97 (31) vol(L1 + L2)
1
d � vol(L1)

1
d + vol(L2)

1
d

with equality if and only if L1 and L2 are proportional in N
1(X).

Proof. By Theorem
Theorem17

2.8, we have that

d

dt
vol(L1 + tL2) = dh(L1 + tL2)

d�1
i · L2

for t in a neighborhood of [0, 1]. By Proposition
Prop13

5.5,

h(L1 + tL2)
d�1

i · L2 � vol(L1 + tL2)
d�1
d vol(L2)

1
d .

Thus

eq19eq19 (32)
vol(L1 + L2)

1
d � vol(L1)

1
d =

R 1
0 vol(L1 + tL2)

1�d
d h(L1 + tL2)d�1i · L2dt

�
R 1
0 vol(L1 + tL2)

1�d
d vol(L1 + tL2)

d�1
d vol(L2)

1
ddt

=
R 1
0 vol(L2)

1
ddt = vol(L2)

1
d .

Since positive intersection products are continuous on big divisors, we have equality in
(
eq19

32) if and only if

h(L1 + tL2)
d�1

i · L2 = vol(L1 + tL2)
d�1
d vol(L2)

1
d

for 0  t  1. Thus if equality holds in (
eq97

31), then L1 and L2 are proportional in N
1(X)

by Proposition
Prop13

5.5.
Since vol is homogeneous, if L1 and L2 are proportional in N

1(X), then equality holds
in (

eq97

31). ⇤
20



The following theorem is proven over algebraically closed fields of characteristic zero in
LX2

[26, Theorem 1.6].

Theorem20 Theorem 5.7. Let X be a nonsingular d-dimensional projective variety over a field k.
For any two big R-divisors L1 and L2 on X,

vol(L1 + L2)
1
d � vol(L1)

1
d + vol(L2)

1
d

with equality if and only if P�(L1) and P�(L2) are proportional in N
1(X).

Proof. We have vol(P�(Li)) = vol(Li) for i = 1, 2. Since Li = P�(Li)+N�(Li) for i = 1, 2
where P�(Li) is pseudo e↵ective and movable and N�(Li) is e↵ective, we have by super
additivity of positive intersection products of pseudo e↵ective divisors and Theorem

Theorem18

5.6
that

vol(L1+L2)
1
d � vol(P�(L1)+P�(L2))

1
d � vol(P�(L1))

1
d+vol(P�(L2))

1
d = vol(L1)

1
d+vol(L2)

1
d .

Thus if we have the equality vol(L1 + L2)
1
d = vol(L1)

1
d + vol(L2)

1
d , we have

vol(P�(L1) + P�(L2))
1
d = vol(P�(L1))

1
d + vol(P�(L2))

1
d .

Then P�(L1) and P�(L2) are proportional in N
1(X) by Theorem

Theorem18

5.6.
Now suppose that P�(L1) and P�(L2) are proportional in N

1(X). Then there exists s 2
R>0 such that P�(L2) ⌘ sP�(L1), so that Bdiv

+ (P�(L1)) = B
div
+ (P�(L2)). Since vol(Li) =

vol(P�(Li)) for i = 1, 2, we have that Supp(N�(L1)), Supp(N�(L2)) ⇢ B
div
+ (P�(L1)) by

Lemma
Lemma60

4.1. Thus Supp(N�(L1) +N�(L2)) ⇢ B
div
+ (P�(L1)), so that by Lemma

Lemma60

4.1,

vol(L1 + L2) = vol(P�(L1) + sP�(L1)) = (1 + s)dvol(P�(L1)).

Thus

vol(L1 + L2)
1
d = (1 + s)vol(P�(L1))

1
d = vol(L1)

1
d + vol(L2)

1
d .

⇤

6. Characterization of equality in the Minkowski inequality

Theorem21 Theorem 6.1. Let X be a normal d-dimensional projective variety. For any two big
R-Cartier divisors L1 and L2 on X,

vol(L1 + L2)
1
d � vol(L1)

1
d + vol(L2)

1
d .

If equality holds, then P�(L1) = sP�(L2) in Nd�1(X), where s =
⇣
vol(L1)
vol(L2)

⌘ 1
d
.

Proof. Here we use the extension of �-decomposition to R-Weil divisors on a normal pro-
jective variety of

FKL

[15]. Let ' : Y ! X be an alteration. We have that '⇤L1 and '⇤L2 are
big R-Cartier divisors. By

FKL

[15, Lemma 4.12], for i = 1, 2, '⇤N�('⇤Li) = deg(Y/X)N�(Li).
Since '⇤'⇤L = deg(Y/X)L by (

eq41

4), we have that '⇤P�('⇤Li) = deg(Y/X)P�(Li). Now
vol('⇤Li) = deg(Y/X) vol(Li) for i = 1, 2 and vol('⇤L1+'⇤L2) = deg(Y/X) vol(L1+L2)
by (

eq43

15).
Thus the inequality of the statement of the theorem holds for L1 and L2 since it holds

for '⇤L1 and '⇤L2 by Theorem
Theorem20

5.7. Suppose that equality holds in the inequality. Then
by Theorem

Theorem20

5.7, we have that there exists s 2 R>0 such that P�('⇤L1) = sP�('⇤L2)
in N

1(Y ). Thus '⇤P�('⇤L1) = s'⇤P�('⇤L2) in Nd�1(X), so that P�(L1) = sP�(L2)
21



in Nd�1(X). Since volume is homogeneous and P�('⇤L1), sP�('⇤L2) are numerically
equivalent R-Cartier divisors,

vol(L1)

vol(L2)
=

vol('⇤L1)

vol('⇤L2)
=

vol(P�('⇤L1))

vol(P�('⇤L2))
= s

d
.

⇤

Theorem22 Theorem 6.2. Let X be a d-dimensional projective variety over a field k. For any two
big R-Cartier divisors L1 and L2 on X,

Neweq20Neweq20 (33) vol(L1 + L2)
1
d � vol(L1)

1
d + vol(L2)

1
d

with equality if and only if hL1i and hL2i are proportional in L
d�1(X ). When this occurs,

we have that hL1i = shL2i in L
d�1(X ), where s =

⇣
vol(L1)
vol(L2)

⌘ 1
d
.

In the case that D1 and D2 are nef and big, this is proven in
BFJ

[4, Theorem 2.15] (over an
algebraically closed field of characteristic zero) and in

C

[9, Theorem 6.13] (over an arbitrary
field). In this case of nef divisors, the condition that hL1i and hL2i are proportional in
L
d�1(X ) is just that D1 and D2 are proportional in N

1(X).
Theorem

Theorem22

6.2 is obtained in the case that D1 and D2 are big and movable and k is
an algebraically closed field of characteristic zero in

LX2

[26, Proposition 3.7]. In this case
the condition for equality is that D1 and D2 are proportional in N

1(X). Theorem
Theorem22

6.2 is
established in the case that D1 and D2 are big R-Cartier divisors and X is nonsingular,
over an algebraically closed field k of characteristic zero in

LX2

[26, Theorem 1.6]. In this case,
the condition for equality is that the positive parts of the � decompositions of D1 and D2

are proportional; that is, P�(D1) and P�(D2) are proportional in N
1(X).

Proof. Let f : Y ! X 2 I(X) with Y normal. Then vol(f⇤(L1) + f
⇤(L2)) = vol(L1 +L2)

and vol(f⇤Lj) = vol(Lj) for j = 1, 2 so that the inequality (
Neweq20

33) holds by Theorem
Theorem21

6.1.

Suppose that equality holds in (
Neweq20

33). Let s =
⇣
vol(L2)
vol(L1)

⌘ 1
d
. Then by Theorem

Theorem21

6.1,

P�(f⇤L1) = sP�(f⇤L2) in Nd�1(Y ). Thus ⇡Y (hL1i) = s⇡Y (hL2i) by (
eq91

17). Since the
normal Y 2 I(X) are cofinal in I(X), we have that hL1i = shL2i.

Suppose that hL1i = shL2i in L
d�1(X ) for some s 2 R>0. Then equality holds in (

Neweq20

33)
by Proposition

Prop35

2.4 and the fact that the positive intersection product is homogeneous. ⇤

Defslope Definition 6.3. Suppose that X is a projective variety and ↵,� 2 N
1(X) are big. The

slope s(↵,�) is the largest real number s such that h↵i � sh�i.

Let X be a projective variety and f : Z ! X be a resolution of singularities. Suppose
that L1 and L2 are R-Cartier divisors on X. Let L1 = f

⇤(L1) and L2 = f
⇤
L2. Suppose

that ' : Y ! Z is a birational morphism of nonsingular projective varieties where Y is
nonsingular and t 2 R. We will show that

eqZ1eqZ1 (34)
P�(L1)�tP�(L2) is pseudo e↵ective if and only if P�('

⇤
L1)�tP�('

⇤
L2) is pseudo e↵ective.

The fact that P�(L1) � tP�(L2) pseudo e↵ective implies P�('⇤L1) � tP�('⇤L2) pseudo
e↵ective follows from Lemma

Lemma21

5.3. If P�('⇤L1) � tP�('⇤L2) is pseudo e↵ective, then
'⇤(P�('⇤L1)� tP�('⇤L2)) = P�(L1)� tP�(L2) is pseudo e↵ective.
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Let s = s(L1, L2). Since the Y ! Z with Y nonsingular are cofinal in I(X), we have
that

eqZ2eqZ2 (35)
s is the largest positive number such that ⇡Z(hL1i � shL2i) = P�(L1)� sP�(L2)
is pseudo e↵ective.

NewProp1 Proposition 6.4. Suppose that X is a variety over a field of characteristic zero and L1,
L2 are big R-Cartier divisors on X. Let s = s(L1, L2). Then

Neweq1Neweq1 (36) s
d


hL
d
1i

hLd
2i

and we have equality in this equation if and only if hL1i is proportional to hL2i in L
d�1(X ).

If we have equality, then hL1i = shL2i in L
d�1(X ).

Proof. Let Y 2 I(X) be nonsingular, with birational morphism f : Y ! X. Then by
Lemma

Lemma200

2.10,

P�(f
⇤
L1)� sP�(f

⇤
L2) = ⇡Y (hL1i)� shL2i) 2 Psef(Y ).

Thus by Lemma
Lemma10

5.2,

s
d


vol(P�(f⇤L1))

vol(P�(f⇤L2))
=

vol(L1)

vol(L2)
=

hL
d
1i

hLd
2i
,

and so the inequality (
Neweq1

36) holds.
Suppose we have equality in (

Neweq1

36). We have that ⇡Y (hL1i) � s⇡Y (hL2i) = P�(f⇤L1) �

sP�(f⇤L2) is pseudo e↵ective and s
d = vol(P�(f⇤L1))

vol(P�(f⇤L2)
, so we have that P�(f⇤L1) = sP�(f⇤L2)

in N
1(Y ) by (

eqZ2

35) and Lemma
Lemma10

5.2. Since the nonsingular Y are cofinal in I(X), we have
that hL1i = shL2i by Lemma

Lemma200

2.10 and (
eq300

11).
Suppose that hL1i = thL2i for some t 2 R>0. Then s = t and by Proposition

Prop35

2.4,

hL
d
1i = hL1i · . . . · hL1i = hsL2i · . . . · hsL2i = s

d
hL2i · . . . · hL2i = s

d
hL

d
2i.

⇤
PropNew60 Theorem 6.5. (Diskant inequality for big divisors) Suppose that X is a projective d-

dimensional variety over a field k of characteristic zero and L1, L2 are big R-Cartier
divisors on X. Then

eq16*eq16* (37) hL
d�1
1 · L2i

d
d�1 � vol(L1)vol(L2)

1
d�1 � [hLd�1

1 · L2i
1

d�1 � s(L1, L2)vol(L2)
1

d�1 ]d.

The Diskant inequality is proven for nef and big divisors in
BFJ

[4, Theorem G] in charac-
teristic zero and in

C

[9, Theorem 6.9] for nef and big divisors over an arbitrary field. In the
case that D1 and D2 are nef and big, the condition that hD1i � shD2i is pseudo e↵ective
in L

d�1(X ) is that D1 � sD2 is pseudo e↵ective in N
1(X). The Diskant inequality is

proven when D1 and D2 are big and movable divisors and X is a projective variety over
an algebraically closed field of characteristic zero in

LX2

[26, Proposition 3.3, Remark 3.4].
Theorem

PropNew60

6.5 is a consequence of
DF

[13, Theorem 3.6].

Proof. Let s = s(L1, L2). Let f : Z ! X be a resolution of singularities. After replacing
Li with f

⇤
Li for i = 1, 2, we may assume that X is nonsingular.

We construct birational morphisms  m : Ym ! X with numerically e↵ective R-Cartier
divisors Ai,m and e↵ective R-Cartier divisors Ei,m on Ym such that Ai,m =  

⇤
m(Li)�Ei,m

and hLii = limm!1Ai,m in L
d�1(X ) for i = 1, 2. We have that ⇡X(Ai,m) =  m,⇤(Ai,m)

comes arbitrarily closed to ⇡X(hLji) = P�(Lj) in L
d�1(X) by Lemma

Lemma200

2.10.
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By (
eqZ2

35), s is the largest number such that P�(L1) � sP�(L2) is pseudo e↵ective (in
N

1(X)). Let sm be the largest number such that A1,m � smA2,m is pseudo e↵ective (in
N

1(Ym)).
We will now show that given " > 0, there exists a positive integer m0 such that m > m0

implies sm < s + ". Since Psef(X) is closed, there exists � > 0 such that the open ball
B�(P�(L1)�(s+")P�(L2)) in N

1(X) of radius � centered at P�(L1)�(s+")P�(L2) is dis-
joint from Psef(X). There exists m0 such that m � m0 implies  m⇤(A1,m) 2 B �

2
(P�(L1))

and  m⇤(A2,m) 2 B �
(s+")2

(P�(L2)). Thus  m⇤(A1,m � (s+ ")A2,m) 62 Psef(X) for m � m0

so that sm < s+ ".
By the Khovanski Teissier inequalities for nef and big divisors (

BFJ

[4, Theorem 2.15] in
characteristic zero,

C

[9, Corollary 6.3]),

eq14*eq14* (38) (Ad�1
1,m ·A2,m)

d
d�1 � vol(A1,m)vol(A2,m)

1
d�1

for all m. By Proposition
Prop35

2.4, taking limits as m ! 1, we have

eq20*eq20* (39) hL
d�1
1 · L2i � vol(L1)

d�1
d vol(L2)

1
d .

The Diskant inequality for big and nef divisors,
C

[9, Theorem 6.9],
BFJ

[4, Theorem F] implies

(Ad�1
1,m ·A2,m)

d
d�1 � vol(A1,m)vol(A2,m)

1
d�1 � ((Ad�1

1,m ·A2,m)
1

d�1 � smvol(A2,m)
1

d�1 )d.

We have that (Ad�1
1,m · A2,m)

1
d�1 � smvol(A2,m)

1
d�1 � 0 since s

d
m 

vol(A1,m)
vol(A2,m) by Lemma

Lemma22

5.4

and by (
eq14*

38).
We have that
h
(Ad�1

1,m ·A2,m)
d

d�1 � vol(A1,m)vol(A2,m)
1

d�1

i 1
d

� (Ad�1
1,m ·A2,m)

1
d�1 � smvol(A2,m)

1
d�1

� (Ad�1
1,m ·A2,m)

1
d�1 � (s+ ")vol(A2,m)

1
d�1

for m � m0. Taking the limit as m ! 1, we have that (
eq16*

37) holds. ⇤
Prop13* Proposition 6.6. Suppose that X is a projective d-dimensional variety over a field k of

characteristic zero and L1, L2 are big R-Cartier divisors on X. Then

hL
d�1
1 · L2i � vol(L1)

d�1
d vol(L2)

1
d .

If equality holds, then hL1i = shL2i in L
d�1(X ), where s = s(L1, L2) =

⇣
vol(L2)
vol(L1)

⌘ 1
d
.

Proof. The inequality holds by (
eq20*

39). Let s = s(L1, L2). By (
eq16*

37), if hL
d�1
1 · L2i

d
d�1 =

vol(L1)vol(L2)
1

d�1 then hL
d�1
1 ·L2i

1
d�1 = svol(L2)

1
d�1 , so that sd = vol(L1)

vol(L2)
and thus hL1i =

shL2i in L
d�1(X ) by Proposition

NewProp1

6.4. ⇤
Suppose that X is a complete d-dimensional algebraic variety over a field k and D1, D2

are pseudo e↵ective R-Cartier divisors on X. We will write

si = hD
i
1 ·D

d�i
2 i for 0  i  d.

We have the following generalization of the Khovanskii-Teissier inequalities to positive
intersection numbers.

Theorem 6.7. (Minkowski Inequalities) Suppose that X is a projective algebraic varietyIneq

of dimension d over a field k and D1 and D2 are pseudo e↵ective R-Cartier divisors on
X. Then
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1) s
2
i � si+1si�1 for 1  i  d� 1.

2) sisd�i � s0sd for 1  i  d� 1.
3) s

d
i � s

d�i
0 s

i
d for 0  i  d.

4) h(D1 +D2)di
1
d � hD

d
1i

1
d + hD

d
2i

1
d .

Proof. Statements 1) - 3) follow from the inequality of
C

[9, Theorem 6.6] (
BFJ

[4, Theorem
2.15] in characteristic zero). Statement 4) follows from 3) and the super additivity of the
positive intersection product. ⇤

When D1 and D2 are nef, the inequalities of Theorem
Ineq

6.7 are proven by Khovanskii and
Teissier

T1

[33],
T2

[34],
L

[23, Example 1.6.4]. In the case that D1 and D2 are nef, we have that
si = hD

i
1 ·D

d�i
2 i = (Di

1 ·D
d�i
2 ) are the ordinary intersection products.

We have the following characterization of equality in these inequalities.

Theorem 6.8. (Minkowski equalities) Suppose that X is a projective algebraic variety ofMinkeq

dimension d over a field k of characteristic zero, and D1 and D2 are big R-Cartier divisors
on X. Then the following are equivalent:

1) s
2
i = si+1si�1 for all 1  i  d� 1.

2) sisd�i = s0sd for all 1  i  d� 1.
3) s

d
i = s

d�i
0 s

i
d for all 0  i  d.

4) s
d
d�1 = s0s

d�1
d .

5) h(D1 +D2)di
1
d = hD

d
1i

1
d + hD

d
2i

1
d .

6) hD1i is proportional to hD2i in L
d�1(X ).

When D1 and D2 are nef and big, then Theorem
Minkeq

6.8 is proven in
BFJ

[4, Theorem 2.15]
when k has characteristic zero and in

C

[9, Theorem 6.13] for arbitrary k. When D1 and D2

are nef and big, the condition 6) of Theorem
Minkeq

6.8 is just that D1 and D2 are proportional
in N

1(X).

Proof. All the numbers si are positive by Remark
Remark50

2.6. Proposition
Prop35

2.4 shows that 6)
implies 1), 2), 3), 4) and 5). Theorem

Theorem22

6.2 shows that 5) implies 6). Proposition
Prop13*

6.6 shows
that 4) implies 6). Since the condition of 3) is a subcase of the condition 4), we have that
3) implies 6).

Suppose that 2) holds. By the inequality 3) of Theorem
Ineq

6.7 and the equality 2), we
have that

s
d
i s

d
d�i � (sd�i0 s

i
d)(s

i
0s

d�i
d ) = (s0sd)

d = (sisd�i)
d
.

Thus the equalities 3) hold.
Suppose that the inequalities 1) hold. Then

sd�1
s0

=
sd�1
sd�2

sd�2
sd�3

· · ·
s1

s0
=

✓
sd

sd�1

◆d�1

so that 4) holds. ⇤
Remark 6.9. The existence of resolutions of singularities is the only place where char-
acteristic zero is used in the proof of Theorem

Minkeq

6.8. Thus the conclusions of Theorem
Minkeq

6.8
are valid over an arbitrary field for varieties of dimension d  3 by

Ab2

[2],
CP

[6].

Let D1 and D2 be big R-Cartier divisors on a projective variety X. Generalizing Teissier
T1

[33], we define the inradius of D1 with respect to D2 as

r(D1, D2) = s(D1, D2)
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where s(D1, D2) is the slope defined in Definition
Defslope

6.3 and define the outradius of D1 with
respect to D2 as

R(D1, D2) =
1

s(D2, D1)
.

TheoremG Theorem 6.10. Suppose that X is a d-dimensional projective variety over a field k of
characteristic zero and D1, D2 are big R-Cartier divisors on X. Then

eq106eq106 (40)
s

1
d�1

d�1 � (s
d

d�1

d�1 � s

1
d�1
0 sd)

1
d

s

1
d�1
0

 r(D1, D2) 
sd

sd�1
.

Proof. Let s = s(D1, D2) = r(D1, D2). Since hD1i � shD2i, we have that hD
d
1i � shD2 ·

D
d�1
1 i by Lemma

Lemma36

2.5. This gives us the upper bound. We also have that

eq110eq110 (41) hD
d�1
1 ·D2i

1
d�1 � shD

d
2i

1
d�1 � 0.

We obtain the lower bound from Theorem
PropNew60

6.5 (using the inequality s
d
d�1 � s0s

d�1
d to

ensure that the bound is a positive real number). ⇤
TheoremH Theorem 6.11. Suppose that X is a d-dimensional projective variety over a field k of

characteristic zero and D1, D2 are big R-Cartier divisors on X. Then
eq107eq107 (42)

s

1
d�1

d�1 � (s
d

d�1

d�1 � s

1
d�1
0 sd)

1
d

s

1
d�1
0

 r(D1, D2) 
sd

sd�1


s1

s0
 R(D1, D2) 

s

1
d�1

d

s

1
d�1
1 � (s

d
d�1
1 � s

1
d�1

d s0)
1
d

.

Proof. By Theorem
TheoremG

6.10, we have that

s

1
d�1
1 � (s

d
d�1
1 � s

1
d�1

d s0)
1
d

s

1
d�1

d

 s(D2, D1) 
s0

s1
.

The theorem now follows from the fact that R(D1, D2) =
1

s(D2,D1)
and Theorem

Ineq

6.7. ⇤

This gives a solution to
T1

[33, Problem B] for big R-Cartier divisors. The inequalities
of Theorem

TheoremH

6.11 are proven by Teissier in
T1

[33, Corollary 3.2.1] for divisors on surfaces
satisfying some conditions. In the case that D1 and D2 are nef and big on a projective
variety over a field of characteristic zero, Theorem

TheoremH

6.11 follows from the Diskant inequality
BFJ

[4, Theorem F]. In the case that D1 and D2 are nef and big on a projective variety over
an arbitrary field, Theorem

TheoremH

6.11 is proven in
C

[9, Theorem 6.11], as a consequence of the
Diskant inequality

C

[9, Theorem 6.9] for nef divisors.
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