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THE MINKOWSKI EQUALITY OF BIG DIVISORS

STEVEN DALE CUTKOSKY

ABSTRACT. We give conditions characterizing equality in the Minkowski inequality for
big divisors on a projective variety. Our results draw on the extensive history of research
on Minkowski inequalities in algebraic geometry.

1. INTRODUCTION

Suppose that X is a projective d-dimensional algebraic variety over a field £ and D is
an R-Cartier divisor on X. Then the volume of D is
dimy I'( X D
vol(D) = lim fny, ' - Ox(nD))

If D is nef, then the volume of D is the self intersection number vol(D) = (D?). For an
arbitrary R-Cartier divisor D,

[ (D% if D is pseudo effective
vol(D) = { 0 otherwise.

Here (D?) is the positive intersection product. The positive intersection product (D<)
is the ordinary intersection product (D?) if D is nef, but these products are different in
general. More generally, given pseudo effective R-Cartier divisors D1, ..., D, on X with
p < d, there is a positive intersection product (D -...- Dp) which is a linear form on
N1(X)4P where X is the limit of all birational models of X. We have that

vol(D) = (DP) = (D) -...- (D) = (D)%

We denote the linear forms on N1(X)4=P by L4=P(X). The interse tion theory and theory
of volumes which is required for this paper is reviewed in Section g.

Suppose that D7 and Ds are pseudo effective R-Cartier divisors on X. We have the
Minkowski inequality

vol(Dy + Dg)é > VOl(Dl)é + VOI(Dg)é

Tneq+
which follows from Theorem .2 below. Further, we have the following characterization of
equality in the Minkowski inequality.

Theorem 1.1. Let X be a d-dimensional projective variety over a field k. For any two
big R-Cartier divisors D1 and Do on X,

(1) vol(Dy + Dy)d > vol(Dy)d + vol(Dy)
with equality if and only if (D1) and (Ds) are proportional in L (X).
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In the case that D; and D are nef and big, this is proven in %Theorem 2.15] (over an
algebraically closed field of characteristic zero) and in [9, Theorem 6.13] (over an arbitrary
field). In this case of nef divisors, the condition that (L;) and (Lg) are proportional in
LX) is jpgt that,D1 and Dy are proportional in N*(X).

Theorem mained in the case that D; and g are big and movable and k is
an algebraically closed field of characteristic zero in g& Proposition 3.7]. In thisTﬁ(za;Lgreem22 N
the condition for equality is that D; and Ds are proportional in N!(X). Theorem T.T is
established in the case that D; and Ds are big R-Cartier diyisors and X is nonsingular,
over an algebraically closed field k of characteristic zero in Vé%’: Theorem 1.6]. In this case,
the condition for equality is that the positive parts of the ¢ decompositions of D; and D»
are proportiopals that is, F,;(D1) and F,(D2) ag propgtional in N Lx).

In Section %, we modify the proof sketched inaLF%'] of 26, Proposiﬁ%;g 3.7] to be valid over
an arbitrary field. Characteristic zero is required in the proof in [26] as the existence of
resolution of singularities is assumed and an argument using the theory of multiplier ideals
is used, which requires characteristic zero as it relies on both resolution of singularities
and Kodaira vanishing.

We will write

= (D% - DI for 0 < i < d.
We have the following generalization of the Khovanskii-Teissier inequalities to positive
intersection numbers.

Theorem 1.2. (Minkowski Inequalities) Suppose that X is a projective algebraic variety
of dimension d over a field k and D1 and Do are pseudo effective R-Cartier divisors on
X. Then
1) s? > si118i-1 for 1 <i<d—1.
2) 8iSq—; > S08q for 1 <i<d—1.
3) s¢ > slis f0r0<z<d
4) vol(Dy + Dg)d > vol(D1)d + vol(Dy)d.

Theorem Mollows from %Theorem 2.15] when k has characteristic zero and from

, Theorem 6.6] in general. When D d;.[%é)g re nef, the inequalities of Theorem
are proven by Khovanskii and Telssuar 3, Example 1.6.4]. In the case that D1
and Dy are nef, we have that s; = (D} - Dd " = (D} - DY™") are the ordinary intersection
products.

We have the following characterization of equality in these inequalities.

Theorem 1.3. (Minkowski equalities) Suppose that X is a projective algebraic variety of

dimension d over a field k of characteristic zero, and D1 and Dy are big R-Cartier divisors
on X. Then the following are equivalent:

1) 51 = 8;418i-1 forall1 <i<d-—1.

2) 8i8q—; = S08q for all1 <i<d-—1.

) sf sg ‘st for all 0 <i < d.
) sq-
5)

w

4

VOl(Dl + DQ) d = VOI(Dl) d + VOI(DQ)
6) (D1) is proportzonal to (Do) in L9~ 1(/1’).
Minke
Theorem 1.3 18 Vahd over any field £ when dim X < 3, since resolution of Fingt ul rities
is in these dimensions. When D and D5 are nef and , then Theorem 1S proven
in [4, Theorem 2.15] when k has characteristic zero and in [9, Theorem 6.13] for arbitrary
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k. When Dy and Dj are nef and big, the condition 6) of Theorem .mklg J+ust that D7 and
D5 are proportional in N*(X).

Suppose that sg, ..., sq are nonnegative real P&qbers, sg > 0, sq > 0 and the inequalities
of 1), 2) and 3) of the statement of Theorem hgﬁold. These last conditions always hold
when s; = (D} - Dg_i> with D1, Dy big R-Cartier divisors on a projective d-dimensional
algebraic variety. The assumption that sg,sq > 0 and inequalities 3) imply s; > 0 for
0<i<d.

Suppose that the equality 4) also holds, 33—1 = sosg_l. By the inequalities 1) we have
that

d—1
Sd—1 (Sd—l) (Sd—2> <81> > < Sd )
S0 Sd—2 Sd—3 S0 Sd—1

Uimplies the equalities 1), s2 = s;118i_1, hold for 1 <i < d—1, and so

D=

Thus sg_l = sosd_

the equalities 2) and 3) also hold.
However, we get weaker conclusions if we only assume that s;l = sg_] 5317 for some
j < d— 1. In this case we have the equality

d—j d—j d—j J j j
5 :(Sa‘) <51> :<Sd>...<8j+1) _ 5
sg_J Sj—1 S0 Sd—1 Sj s’

J

implying that 812 = Si+1S; }nﬁ%r 1<i<yg.
The proof of Theorem %es on the following Diskant inequality for big divisors.
Suppose that X is a projective variety and D; and Dy are big R-Cartier divisors on X.
The slope s(D1, D3) is the largest real number s such that (D7) > s(Da).

Theorem 1.4. (Diskant inequality for big divisors) Suppose that X is a projective d-
dimensional variety over a field k of characteristic zero and D1, Dy are big R-Cartier
divisors on X. Then

1

(2) (DY Do) —vol(Dy)vol(Dy)T7 = (D~ Da) ™1 — s(Dy, Da)vol(Dy) 7%

The Diskant inequality is proven for nef and big divisors in hBYgTheorem G] in charac-
teristic zero and in [9, Theorem 6.9] for nef and big divisors over an arbitrary field. In the
case that D; and Dy are nef and big, the condition that (D;) — s(D3) is pseudo effective
in L¥1(X) is that Dy — sDy is pseudo effective in N'(X). The Diskant inequality is
proven when D and Dy are big and movable divisors and X is a projective variety over

b o)
an algebrgically closed field of characteristic zero in %26, Proposition 3.3, Remark 3.4].
Theorem i.ZE is a consequence of [I13, Theorem 3.6].

, Let Dy and Dy be big R-Cartier divisors on a projective variety X. Generalizing Teissier
%33], we define the inradius of D; with respect to Dy as

r(D1, Dy) = s(D1, D3)

and the outradius of D; with respect to D5 as

1

R(Dy, D) = S5 55

We deduce the following consequence of the Diskant inequality.

3



Theorem 1.5. Suppose that X is a d-dimensional projective variety over a field k of

characteristic zero and D1, Dy are big R-Cartier divisors on X. Then

(BL _d_ 1 1

=

d
34

a—1 a1, \% -1
=G 25 )T p py< B <% < p(Dy Dy <
86171 Sd—1 S0 Sld—l _ (Sfl_l _ 85_180)%
1
This givesT%e%(gle%Eipn to %‘33, Problem B] {or big R-Cartier divisors. The inequalities
of Theorem [I.5 are proven by Teissier in ES’?), Corollary 3.2.1] for divisors on surfaces
satisfying some conditions. In the case that D; a geggmﬁm nef and big on a projective
ariety over a field of characteristic zero, Theorem i.5 follows from the Diskant inequality
, Theorem F]. In the case 1‘#9%% Dand Dy are nef and big on a projective variety over
an arbitrary field, Theorem [[.5 is proven in [[9, Theorem 6.11], as a consequence of the
Diskant inequality %, Theorem 6.9] for nef divisors.
I thank the referee for their careful reading and helpful comments.

2. PRELIMINARIES

In this section we review some properties of cycles and intersection theory on projective
varieties over an arbitrary field.

2.1. Codimension 1 cycles. To establish notation we give a quick review of some ma-

terjal from [21], [18, Chapter 2] and [23, Chapter 1]. Although the ongoing assumption
3] is that £ = C, this assumption is not needed in the material reviewed in this
subsection.

Let X be a d-dimensional projective variety over a field k. The group of Cartier divisors
on X is denoted by Div(X). There is a natural homomorphism from Div(X) to the (d—1)-
cycles (Weil divisors) Zg_1(X) of X written as D — [D]. Further, there is a natural
homomorphism Div(X) — Pic(X) given by D — Ox(D).

Denote numerical equivalence on Div(X) by =. For D a Cartier divisor, D = 0 if and
only if (C- D)x := deg(Ox (D) ® O¢) = 0 for all integral curves C' on X.

The group N*(X)z = Div(X)/ = and N'(X) = N1(X)z®R. An element of Div(X)®Q
will be called a Q-Cartier divisor and an element of Div(X)®R will be called an R-Cartier
divisor. In an effort to keep notation as simple as possible, the class in N!'(X) of an R-
Cartier divisor D will often be denoted by D.

We will also denote the numerical equivalence on Z;_1(X) defined on page 374 Hzl8] by
=. Let Ng_1(X)z = Z4-1(X)/ = and Ny_1(X) = Nyg_1(X)z ®z R. There is a natural
homomorphism N1(X) — Ny_1(X) which is induced by associating to the class of a R-
Cartier divisor D the class in Ng_1(X) of its associated Weil divisor [D] %8, Section 2.1].
If f:Y — X is a morphism, the cycle map f, : Z4_1(Y) — Z;_1(X) of [18, Section 1.4]
induces a homomorphism f, : Ng—1(Y) = Ng—1(X) ([18, Example 19.1.6]).

Suppose that f:Y — X is a dominant morphism where Y is projective variety. Then
f* : Div(X) — Div(Y) is defined by taking local equations of D on X as local equations
of f*(D) on Y. There is an indpced homomorphism f* : N'(X) — N!(Y) which is an
injection by %’l, Lemma 1]. By [18, Proposition 2.3], we have that if D is an R-Cartier
divisor on X, then

() .47 D] = deg(¥/X)D

where deg(Y/X) is the index of the function field of X in the function field of Y.
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In this subsection, we will use the notation for intersection numbers of Hil& Definition
2.4.2]. 12
The first statement of the following lemma follows immediately from %28] or HEZZ, Corol-
lary XIII1.7.4] if k is algebraically closed. The second statement is [18, Example 19.1.5].

Lemma 2.1. Let X be a d-dimensional projective variety over a field k. Then:

1) The homomorphism N'(X) — Ng_1(X) is an injection.
2) If X is nonsingular, then the homomorphism N'(X) — Nyz_1(X) is an isomor-
phism.

Proof. Suppose that N'(X) — Ny_1(X) is not injective. The homomorphism N*(X) —
Ng4—1(X) is obtained by tensoring the natural map Ni(X)z ®z Q — Ny_1(X)z ®z Q with
R over Q. Thus N1(X)z ®z Q — Ng_1(X)z ®z Q is not injective, and so there exists
a Cartier divisor D on X such that the Weil divisor [D] associated to D is numerically
equivalent to zero (its class is zero in Ny_1(X)) but the class of D is not zero in N(X).
Thus there exists an integral curve C' on X such that

(5) (C-D)x #0.

Let k be an algebraic closure of k. There exists an integral subscheme X of X ®;, k such
that X dominates X. Thus X is a projective variety over k. Let ¢ : X — X be the induced
dominant morphism. Let U C X be an affine open subset such that U N C # (). =1 (U)
is affine since it is a closed subscheme of the affine scheme U ®; k. Let A = T'(U, Ox)
and B = I'(¢"1(U),Ox). The ring extension A — B is integral. Let P = I'(U,I¢), a
prime ideal of A such that dim A/P = 1, and let M be a maximal ideal of A containing
P. By the going up theorem, there exists a prime ideal ) of B such that Q N A = P and
prime ideal N of B such that @ C N and NN A= M. Now A/M — B/N is an integral
extension from a field to a domain, so B/N is a field. Thus N is a mgximal ideal of B
and since there are no prime ideals of B properly between @) and N (by [3, Corollary 5.9])
we have that dim B/Q = 1. Let C be the closure of V(Q) C ¥~ }(U) in X. Then C is
an integral curve on X which dominates C. There exists a field of definition k&’ of X and
C over k which is a subfield of k which is finite over k. That is, there exist subvarieties
C' C X' of X ®;, k' such that X’ ® k = X and C' @ k = C. We factor ¢ : X — X by
morphisms
X3Xx 45X
where o = idx+ ®iq,, idz;. The morphism ¢ is finite and surjective and « is flat (although
it might not be of finite type). Let H be an ample Cartier divisor on X. Then ¢*H is an
ample Cartier divisor on X’ (by [20, Exercise I11.5.7(d)]). Thus for some positive integer
m we have that global sections of Ox+(me*(H)) give a closed embedding of X’ in P}, for
some n. Thus global sections of Ox(my*(H)) give a closed embedding of X = X' @y k in
PZ. In particular, we have that ¢ (H) is an ample Cartier divisor on X. We have natural
morphisms
NY(X) = NY(X') - N'(X).

Here X is a k-variety and X is a k-variety. X' is both a k-variety and a k’-variety. When
we are regarding X’ as a k-variety we will write X and when we are regarding X' as a
K'-variety we will write X7,. 1 o

We may use the formalism of Kleiman %(21}, using the Snapper polynomials FBl] to

compute intersection products of Cartier divisors. This is consistent with the intersection
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products of Fulton HELS] by H‘:l& Example 18.3.6]. This intersection theory is also presented
in [10, Chapter 19].
Since D is numerically equivalent to zero as a Weil divisor, we have that

(6) (D-H Yy =(D* H )x =0.

We have that

* * — * * — 1 * * —
(WD -9 H ) = ("D ¢ H )y, = (07D H )y

using ES, Example 18.3.6] and the fact that
H'(X, Ox(4*(mD) + ¢*(nH))) = H' (X}, Ox:(p*(mD) + ¢*(nH))) @1 k

for all m,n since « is flat. We thus have that

(7) (¢*D : @Z’*Hd_l)fz [kll k‘] (SD*D : QO*Hd_l)X,; = deig/)(/]i])()

56
by ES, Proposition 2.3] and (Ei Similarly,
(8) (" D? - " H %)% = 0.
— 57 58
Since k is algebraically closed and the equations (’%’Txnd (%ei hold, we have that
(W'D -C)x =0
12
by %{28] and HSZZ, Corollary XIII.7.4]. Thus by Hil& Example 18.3.6 and Proposition 2.3],
0 = (WD-O)x = (9D Cx, = gy (9D )y

[lc’il:k](D 0O x = 7deg[,(€/c:ch) (D-CO)x,

(D-H™Hx =0

.. _ 959 C e
giving a contradiction to (% > Thus the map N'(X) — Ng_1(X) is injective
This homomorphism is always an isomorphism if X is nonsingular by FFIS, Example
19.1.5]. O

1
As defined and developed in %21], %23, Chapter 2|, there are important cones Amp(X)
(the ample cone), Big(X) (the big cone), Nef(X) (the nef cone) and Psef(X) := Eff(X)
(the pseudo effective cone) in N1(X).

If D is a Cartier divisor on the projective variety X, then the complete linear system
|D| is defined by

(9) [D| = {div(0) | o € T'(X, Ox(D))}.

Let Mov/(X) be the convex cone in N*(X) generated by the classes of Cartier divisors D
such that | D| has no codimension 1 fixed component. Define Mov(X) to be the closure of
Mov’(X) in N1(X). An R-Cartier divisor D is said to be movable if the class of D is in
Mov(X). Define Mov(X) to be the interior of Mov(X). As explained in [30, page 85], we
have inclusions

Amp(X) C Mov(X) C Big(X)
and

Nef(X) € Mov(X) C Psef(X).

L2
The following lemma is also proven over algebraically closed fields k in %7, Corollary
3.17].
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Lemm

a7

Lemma 2.2. Suppose that X is a d-dimensional variety over a field k, D is a pseudo
effective R-Cartier divisor on X, H is an ample Q-Cartier divisor on X and (H"™1.D)x =
0. Then D =0.

Proof. We will establish the lemma when k is algebraically leon§me§55 The lemma will then
follow for arbitrary k by the method of the proof of Lemma

We consider two operations on varieties. First suppose that Y is a projective variety of
dimension d > 2 over k, H is an ample Q-Cartier divisor and D is a pseudo effective R-
Cartier divisor on Y and C is an integral curve on Y. Let 7 : ¥ — Y be the normalization
of Y. TE%n there exists an integral curve C in Y such that 7(C) = C (as in the proof of
Lemma e have that

(r*(H)" - 7*(D))y = (H" - D)y
and ) o

(C - (D)) = deg(C/C)(C - D)y.
We further have that 7*(D) is pseudo effective.

For the second operation, suppose that Y is a normal projective variety over k. Let H
be an ample Q-Cartier divisor on Y and D be a pseudo effective R-Cartier divisor on Y.
Let C' be an integral curve on Y. Let ¢ : Z := B(C) — Y be the blow up of C. Let E
be the effective Cartier divisor on Z such that Oz(—FE) = Z50z. There exists a positive
integer m such that mH is a Cartier divisor and ¢*(mH) — E is very ample on Z. Let L
be the linear system

L={F e |mH||C C Supp(F)}

on Y. The base locus of L is C. We have an induced rational map ®, : X --» P* where n
is the dimension of L. Let Y’ be the image of ®;. Then Y’ 2 Z since ¢*(mH) — E is very
ample on Z. Thus dimY’ = allé we have equalify of function fields k(Y') = k(Y). By
the first theorem of Bertini, [29], [[35, Section 1.7], [T0, Theorem 22.12], a general member
W of L is integral, so that it is a variety. By construction, C' C W. Let v : W — Y be the
inclusion. We have that o*(H) is ample on W. A general member of L is not a component
of the support of D so o*(D) is pseudo effective. We have that (« *(H)4=2 . o*(D))w =
(H*'. D)y. Further, (C-a*(D))w = (C - D)y.

Suppose that D is not numerically equivalent to zero. We will derive a contradiction.
There then exists an integral curve C' on X such that (C' - D)x # 0. By iterating the
above two operations, we construct a morphism of k-varieties g : § — X such that S is
a two dimensional projective variety, with an integral curve C on S, an ample Q-Cartier
divisor H on S and a pseudo effective R-Cartier divisor on S such that H D 0 but

.- C)s # 0. Let v : T — S be a resolution of singularities (which exists by H:Z? or
%. There exists an exceptional divisor F on T and a positive integer m such that mH is
a Cartier divisor on S and A := v*(mH) — E is an ample Q-Cartier divisor. There exists
an integral curve C on T such that v(C) = C and v*(D) is a pseudo effective R-Cartier
divisor. Since F is exceptional for v, We have that

(A-v*(D))r = (v"(mH) = E)-v*(D))r = (v"(mH) - ¥*(D))r = m(H - D)s = 0
and ~
(v"(D) - C) = deg(C/C)(C - D)s # 0
bymEi Chapter I] %0 Propositipn 19.8 and Proposition 19.12]. But this is a contradiction
Theorem 1, page 317], [23, Theorem 1.4.29], since N*(T) = Ny(T) by Lemma

Wg - O
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2.2. Normal varieties. In this section we review some material from H%] Suppose that
X is a normal projective variety over a field k. The map D — [D] is an inclusion of
Div(X) into Z;_1(X), and thus induces an inclusion of Div(X) ® R into Z; 1(X) ® R.
We may thus identify a Cartier divisor D on X with its associated Weil divisor [D].

Let = be a real number. Define |x| to be the round down of z and {z} = =z — [z].
Let E be an R-Weil divisor on a normal variety X (an element of Z;_1(X)®R). Expand
E =5 a;E; with a; € R and E; prime divisors on X. Then we have associated divisors

|E] = |a;]E; and {E} =) {a;}E;.
There is an associated coherent sheaf Ox(E) on X defined by
I(U,E) ={f € k(X)" | div(f) + E|y > 0} for U an open subset of X.

We have that Ox (D) = Ox(|D]). If D and D’ are R-Weil divisors on X, then define
D' ~z D if D' — D = div(f) for some f € k(X). Define D’ ~q D if there exists m € Zxg
such that mD’ ~7z mD.

For D an R-Weil divisor, the complete linear system |D| is defined as

|D| = {R-Weil divisors D' | D’ > 0 and D’ ~z D}.

eq30
If D is an integral Cartier divisor, then this is in agreement with the definition of (b ) For
D an R Weil divisor, we define

|D]g = {R-Weil divisors D' | D' > 0 and D' ~¢ D}.

2.3. o-decomposition. In this subsection we assume that X is a nonsingular projective
variety over a field k. We will restrict our use of o-decompositions to this situation.
Nakayama defined and developed o-decompositions for nonsingular complex projective
varieties in ?go, Chapter III]. The theory and proofs in this chapter ext to arbitrary
fields. The o-decomposition is extended to normal projective varieties injﬁ%

Since X is nonsingular, the map D — [D] is an isomorphism from Div(X) to Zz_1(X),
and thus induces an isomorphism Div(X) @ R — Z;_1(X) ® R. Thus we may identify
R-Cartier divisors and R-Weil divisors on X, whicgsugvsee cvg(i)lllmrefer to as R-divisors. Since
X is normal, we may use the theory of Subsection 2.2.

Let D be an R-divisor. We define

|D|pum = {R divisors D" on X | D’ > 0 and D’ = D}.

Let D be a big R-divisor and I" be a prime divisor on X. Then we define

| inf{multrA | A € |D|} if |D|#0
or(D)z = { oo it |D| = 0,

or(D)g = inf{multprA | A € |D|g},
or(D) := inf{multrA | A € |D|pum }-
These three functions op (D), satisfy
or(D1 + D3)s < or(D1)s + or(Da2)s.
We have that

(10) or(D)g = or(D)
8



by %!30, Lemma III.1.4]. The function or is continuous on Big(X) by %O, Lemma 1.7]. If
D is a pseudo effective R-divisor and I' is a prime divisor, then

or(D) := tl_i}r(% or(D +tA)

where A is any ample R-divisor on X. e limits of these sgquences exist and these
sequences converge to the same number byitééj(), Lemma 1.5]. By [30, Corollary 1.11], there
are only finitely many prime divisors I' on X such that op(D) > 0. For a given pseudo
effective R-divisor D, the R-divisors

Ny(D) =Y or(D)I and Py(D) = D — Ny(D)
r

are defined in H!S)O, Definition 1.12]. The decomposition D = P,(D) + N, (D) is called the
o-decomposition of D.

Suppose that D is a pseudo effective R-divisor, A and H are ample R-divisors and
t,e > 0. Then, since D +tA+cH, D + ¢H and tA are big, we have that for any prime
divisor T,

or(D+tA+eH)<or(D+eH)+or(tA) =or(D +cH).
Thus
or(D+tA) = lim or(D+tA+¢cH) < lim op(D +¢eH) = or(D).

e—07t e—0t
In particular, if T'y,...,T's are the prime divisors such that No(D) = >°7 | a;I"; where
a; > 0 for all 4, then for all ¢ > 0, there is an expansion N, (D +tA) = >"7 | a;(t)I’; where
a;(t) € R>p. Thus lim; ,o+ No(D +tA) = Ny(D) and lim, ,o+ Py(D + tA) = Py(D).

Lemma 2.3. Suppose that D is a pseudo effective R-divisor on a nonsingular projective
variety X. Then
1) Py(D) is pseudo effective.
2) or(Py(D)) = 0 for all prime divisors T' on X, so that the class of P,(D) is in
Mov(X).
3) N,(D) =0 if and only if the class of D is in Mov(X).

Proof. Let A be an ample R-divisor on X. For all ¢ > 0, D + €A is big. Thus the class of
D+ecA—> op(D+¢eA)T is in Big(X). Thus Pr(D) = lim__,qg+ D+cA—> opr(D+cA)T
is pseudo effective. Statemnent 2) follows from [30, Lemma III.1.8] and [30, Proposition
I11.1.14]. Statement 3) is [30, Proposition II1.1.14]. O

2.4. Positive intersection products. Let X be a d-dimensional projective variety over
a field k. In E)], we generalize the positive intersection produ;%ﬁon projective varieties over
an algebraically closed field of characteristic zero defined in [4] to projective varietieg over
an arbitrary field. We give a quick survey of this theory in this section, referring toeh%] for
details.

Let I(X) be the directed set of projective varieties Y which have a birational morphism
toX. If f:Y' = Y isin I(X) and £ € NY(Y), then f*£ € N1(Y’). We may thus define
NY(X) =lim_, NY(Y). If D is a Cartier R-divisor on Y, we will sometimes abuse notation
and identify D with is class in N'(X). In hgg], N1(Y) is denoted by M*(Y). For p € N, we
define NP(Y) to be the direct product of N'(Y') p times and define N?(X) = lim_, NP(Y).

We define a € N1(X) to be Q-Cartier (respectively nef, big, effective, pseudoeffective) if
there exists a representative of a in N1(Y") which has this property for some Y € I(X). We
define subsets Nef? (X), Big?(X') and Psef’(X) to be the respective subsets of N?(X) of nef,
big and pseudoeffective divisors. They are all convex cones in the vector space NP(X).

9



If p = 1, we will often write Nef(Xx'), Big(X) and Psef(X). We have that {Nef(Y)?},
{Big(Y)?} and {Psef(Y)P} also form directed systems. As sets, we have that

Nef 7() = lim(Nef(Y)?), Big ”(X) = lim(Big(Y)?), Psef ?(X) = lim(Psef(Y)?).

We give all of these sets their respective strong topologies.

The set Psef(X) is a strict cone in the vector space N'(X), since Psef(Y) are strict
cones for Y € I(X). Thus we have an induced partial order on N!(X). More generally, if
V is a vector space and C' C V is a pointed (containing the origin) convex cone which is
strict (C'N(—C) ={0}), then we have a partial order on V' defined by z <y ify—z € C.
An element o € N1(X) satisfies a > 0 if there exists a representative o/ € N1(Y) of a for
some Y € I(X) such that o/ > 0 in NY(Y) (o’ € Psef(Y)).

For Y € I(X) and 0 < p < d, we let LP(Y) be the real vector space of p-multilinear
forms on N'(Y). Giving the finite dimensional real vector space LP(Y) the Euclidean
topology, we define

eq300| (11) LP(X) =lim LP(Y).
i

LP(X) is a Hausdorff topological real vector space. We define L°(X) = R. The pseudo
effective cone Psef(LP(Y')) in LP(Y) is the closure of the cone generated by the natural
images of the p-dimensional closed subvarieties of Y. The inverse limit of the Psef(LP(Y"))
is then a closed convex and strict cone Psef(LP(X)) in LP(X), defining a partial order >
in LP(X). The pseudo effective cone in L?(X) is the set of nonnegative real numbers. For
Y elI(X),let p F'JNl(Y) — NY(X) and 7y : LP(X) — LP(Y) be the induced continuous
linear maps. In [4] they consider a related but different vector space from LP(X).

Suppose that aq,...,a, € NY(X) with » < d. Let f:Y — X € I(X) be such that
ai,...,a, are represented by classes in N1 (Y') of R-Cartier divisors D1, ..., D, onY. Then
the ordinary intersection product Dy -...- D, induces a linear map Dy -...- D, € Ld_r( ).
If » = d, then this linear map is just the intersection number (D; -...- D)y € R ofﬁ
Definition 2.4.2].

If ay,. » € NY(X) are big (elements of Big(X)), we define the pgsitive intersection
product ( %Deﬁmtlon 2.5, Proposition 2.13] in characteristic zero, [9, Definition 4.4,
Proposition 4.12]) to be

()
(ag-...-ap) = lub {(a1 —D1)-...-(ap — Dp) € L¥P(X) | D; are effective R-Cartier
divisors on some Y; € I(X) and a — D; are big}

where lub denotes the least upper bound of the set. This is well defined by %9, Proposition
4.3].

FJ C
Proposition 2.4. ({%F?Proposition 2.13], @, Proposition 4.12]) If oy, ..., o, € NY(X) are
big, we have that (aq - ... ap) is the least upper bound in LY"P(X) of all intersection
products 1 - ... - B, where B; is the class of a nef R-Cartier divisor such that 8; < a; for
all i.

al,...,op €N L(Xx) are pseudo effective, their positive intersection product is defined
(14, Definition 2.10], [9, Definition 4.8, Lemma 4.9]) as

Eli%i«o‘l +eH)- ... (ap+eH))

where H is a big R-Cartier divisor on some Y € I(X).
10
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BFJ
Lemma 2.5. A@TPI‘OPOSitiOH 2.9, Remark 2.11], AfQ, Lemma 4.13], fQ, Proposition 4.7])
The positive intersection product (aq - ...- o) is homogeneous and super additive on each
variable in the p-fold product (Psef(X))P. Further, it is continuous on the p-fold product
of the big cone.

Remark 2.6. Since a positive intersection product is always in the pseudo effective cone,
ifai,...,aq € NYX) are pseudo effective, then (a1-...-aq) € R>qo. Since the int rseckion
product of nef and big R-Cartier divisors is positive, it follows from Propositionel?z%ﬁat
if a1,y ..., aq € NYX) are big, then {ay - ... ag) € Rsg.

Lemma 2.7. Let H be an ample R-Cartier divisor on some Y € I(X) and let o € N'(X)
be pseudo effective. Then
(HY . a) = H7L . (a).

Proof. By Proposition E%Bf%r all e > 0,

(1)) (ot eH) = (L&)t (HT - (a+2H))
Taking the limit as € goes to zero, we have the conclusions of the lemma. O
Theorem 2.8. Suppose that X is a d-dimensional projective variety, « € NY(X) is big
and v € NY(X) is arbitrary. Then

d
Zvol(a+1ty) = d{(a+19)") -y

whenever o + ty is big.

FJ
This is a restatement of &Theorem A], 9, Theorem 5.6]. The proof shows that

. vol(a+ (t + At)y) — vol(a + t)
lim
At—0 At

= d{(ar+ )"} -,

Suppose a € Jl(X ) is pseudo effective. Then we have for varieties over arbitrary fields,
the formula of [4, Corollary 3.6],

(13) (o) = (1) - a
To establish this formula first suppose that « is bg. 4E!Then taking the ﬁ%%%%tf-ye att =20
of ((a+ta)?) = (1 +££)%a?), we obtain formula (I%i from Theorem b 8. If a is pseudo

effective, we obtaln %ﬁby regarding « as a limit of the big divisors o + tH where H is
an ample R-Cartier divisor.

erb g natural map N 1(X) — L971(X) is an injection, as follows from the proof of Lemma
bﬁt WN'(X) be the image of the homomorphism of Z;_1(X) ® R to L1(X) which
associates to D € Z;_1(X)®R the natural map (Ly,...,Lg-1) = (L1-...-Lg—1-D)x. We
have that WN'(X) is the subspace of L¥~1(X) generated by Psef(X). We always have a
factorization N'(X) — Ny 1(X) — WN!(X). In this way we can identify the map D-
which is the image of an element of Z;_;(X) ® R in L 1(X) with its class in WN!(X).
If X is nonsingular, then WN(X) = Ng_1(X) = N}(X).

2.5. Volume of divisors. Suppose that X is a d-dimensional projective variety over a
field k and D is a Cartier divisor on X. The volume of D is ([23, Definition 2.2.31])

dimg (T'(X D
vol(D) = lirrgsolip i (nd’/gx(n )
This lim sup is actually a limit. When £ is an algebraically closed field of characteriﬁ%c
]

zero, this is shown in Example 11.4.7 [23], as a consequence of Fujita Approximation
11




(c.f. %23, Theorem 10.35]). The limit is established in %4] and %32] when £ is glgebraically
closed of arbitrary characteristic. A proof over an arbitrary field is given in [[7, Theorem
10.7).

Since vol is a homogeneous function, it extends naturally to a function on Q-divisors,
and it extends to a continuous function on N'(X) ([23, Corollary 2.2.45]), giving the
volume of an_arbitrary R-Cartier divisor.

We have ([4, Theorem 3.1}, [9, Theorems 5.2 and 5.3]) that for a pseudo effective R-
Cartier divisor D on X,

(14) vol(D) = (D%).

KL
Further, we have by %3, Theorem 3.5], that for an arbitrary R-Weil divisor D on a
normal variety X, that

vol(D) = nlgrolo dlmk(r%’/zX(”D))

An R-Weil divisor D is said to be big if vol(D) > 0.

Lemma 2.9. Suppose that L is an R-Cartier divisor on a d-dimensional projective variety
X over a field k, Y is a projective variety and ¢ : Y — X is a generically finite morphism.
Then

(15) vol(¢*L) = deg(Y/X) vol(L).

Proof. First assume that L is a Cartier divisor. The sheaf ¢,Oy is a coherent sheaf of
Ox-modules. Let R be the coordinate ring of X with respect to some closed embedding of
X in a projective space. Then R = @®;>0R; is a standard graded domain over Ry, and Ry a
finite extension field of k. There exists a finitely generated graded R-module M such that
the sheafigation M of M is isomorphic to ¢,Oy (by [20, Proposition I1.5.15 and Exercise
I1.5.9] or [10, Theorem 11.46]). Let S be the multiplicative set of nonzero homogeneous
elements of R and 7 be the generic point of X. The ring R(g) is the set of homogeneous
elements of degree 0 in the localization S™'R and the R(p)-module M) is the set of
homogeneous elements of degree 0 in the localization S~'M. The function field of X is
k(X) = Oxy = Ry and (p«Oy ), = Mg is a k(X)-vector space of rank r = deg(Y/X).
Let fi,..., fr € M(g) be a k(X)-basis. Write f; = 2 where z; € M is homogeneous of some
degree d; and s; € R is homogeneous of degree d;. Multiplication by z; induces a degree
0 graded R-module homomorphism R(—d;) — M giving us a degree 0 graded R-module
homomorphism @]_; R(—d;) — M. Let K be the kernel of this homomorphism and F be
the cokernel. Let K be the sheafification of K and F be the sheafification of F. We have a
short exact sequence of coherent Ox-modules 0 — K — EBZ 10x(d;) = .0y — F —o0.
Locahzlng at the generic point, we see that K77 =0 and Fn = 0 so that the supports of K
and F have dimension less than dim X , and thus K = 0 since it is a submodule of a torsion
free R-module. Tensoring the short exact sequence 0 — @/_,O0x(d;) — 1.0y — F =0
with L™, we see that

ey dimp DY, L™ dimg(@)_ T(X, Ox(d;) ® L™))
vollg™L) = Jim = A ni/d

= deg(Y/X) vol(L).

Since volume is homogeneous I%i valid for Q-Cartier divisors, and since volume is
continuous on N!(X) and N( I%‘% is vahd for R-Cartier d1v1sors O



2.6. Big and Movable divisors on a normal variety. Let X be a normal projective
variety over a field, and I’ be a prime divisor on X. Recall that an R-Weil divisor D on
X is said to be big if vol(D S )
. . . ubsecsigma
As explained in the deﬁnmons of or(D)z and or(D)g of Subsection 2.3 exten
to big R-Weil divisors D on X, ée%dlngi to the definition of the o-decomposition D =
P,(D) 4+ N,(D) as in Subsection EHSS “The 1;equalities

or(D1+ D2)z < or(D1)z + or(D2)z and or(D1 + D2)g < or(D1)z + or(D2)g

continue to hold.

Let D be a big and movable R-Cartier divisor on X and A be an ample R-Cartier
divisor on X. Then D + tA € Mov(X) for all positive ¢, so that (D + tA)g = 0 for all
t > 0. Since D is big, there exists § > 0 such that D ~g 64 + A where A is an effective
R-Cartier divisor. Then for all ¢ > 0, (1 +¢)D ~g D +edA + €A and so

(I4+¢e)or(D)g < o(D +ebA)g + emultr(A) = emultp(A)

for all ¢ > 0. Thus, with our assumption that D is a big and movable R-Cartier divisor,
we have that

(16) or(D)g = 0 for all prime divisors I' on X.

If D is a big R-Cartier divisor on a normal projective variety X, then vol(D) =
vol(P,(D)) and so if P,(D) is R-Cartier, then vol(D) = (P,(D)%).

Lemma 2.10. Suppose that X is a projective variety and D is a big R-Cartier divisor on
X. Let f:Y — X € I(X) be such that' Y is normal. Then

(17) Ty ((D)) = Po(f*(D)).

Proof. We may assume that ¥ = X so that f*D = D. After replacing D with an
R-Cartier divisor numerically equivalent to D, we may assume that D = Y., a;G; is
an effective divisor, where G; are prime divisors and a; € Rsg. For m € Z-q, write
mD = Ny, + >0, 0g,(mD)zG;. Then |mD| = |Np,|+>._, 0g,(mD)zG; where |N,,| has
no codimension one components in its base locus.

There exists a birational morphism ¢,, : X;;, — X such that X,, is normal and is
a resolution of indeterminancy of the rational map determined by |N,,| on X. Thus
ok (mD) = My, + Y.i_, 0¢,(mD)zG; + F,, where M, and F,, are effective, F), has
exceptional support for ¢,,, G; is the proper transform of G; on X,, and |¢f,(mD)| =
| M|+ Y0, 0¢,(mD)zG; + F,, where |M,,| is base point free. Thus M,, is a nef integral
Cartier divisor on X,,.

Set Dy, = Z o6, (mbe, + Lm0 that D, is an effective R-Cartier divisor on X,,.

m i=1 m i m m m

We have that LM, < (D) in Ld_l(/\,’) so that 7x (L M,,) < nx (D) in L 1(X). Now

Tx (o Mm) = (wm) (lM ) ) ((m)*(mD) = 371y 06,(mD)zGi — Fn)

Thus

=1
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Let Z € I(X) be normal, with birational map g : Z — X and N be a nef and big R-
Cartier divisor on Z and E be an effective R-Cartier divisor on Z such that N+E = ¢*(D).
Let T" be a prime divisor on Z. Then

or(¢g*(D)) < op(N) + ordr(E) = ordp(E).

Thus Ny (g*(D)) < E and so N < Py(g*(D)). )

Let I' be a prime divisor on X and let I" be the proper transform of I on Z. Then
or(g*(D)) = op(D) so that mx(N) < P,(D) in WN'(X). Thus nx((D)) < Py(D) in
LAY X). O

Let X be a projective variety and L1, ..., Ls_1 € N'(X). Suppose that D is a big and
movable R-Cartier divisor on X. Then the intersection product in LY(X) = R is

Ly-...-Lyg_1-(D) = Ly)-...- Ly 1) (Dy=1Ly-...-Lg 1 -7x((D
(18) ' - < ) = (pz(l(..l.)..Ld110).(;00({1)1));:>(L1.1_._.Ldf.lp)XX<< >)

3. A THEOREM ON VOLUMES

In this section we,generalize Ff‘lzl, Theorem 4.2]. The proof given here is a variation
of the one given in [T1], using the theory of divisorial Zariski decomposition of R-Weil
divisors on normal varieties of . Let X be a d-dimensional normal projective variety
over a field k. Suppose that D is a big R-Weil divisor on X that is, vol(D) > 0. Let E be

codimension one prime divisor on X. In 15, Lemna 4.1] the function o of Subsection

Bub2Sdtt ; . ) o
E.S is generalized to give the following definition ([I5, Lemma 4.1])

1
og(D) = lim min E{multED' | D' ~z mD, D" > 0}.

m—o0

Suppose at D is a big R-Weil divisor and Ej, ..., E; are distinct prime divisors on X.
Then by [15, Lemma 4.1], for all m € N,

-
eq70 x(mD)) = x(mD —» mog, i)
(19) L(X, Ox(mD)) = T(X, Ox(mD — 3" mo,(D)Ey))
i=1
M
We now r (iall the method of H’Zél] to compute volumes of graded linear series on X, as
extended in Fﬂ] to arbitrary fields. We restrict to the situation of our immediate interest;
that is, D is a big R-Weil divisor and H is an ample Cartier divisor on X such that D < H.
Suppose that p € X is a nonsingular closed point and

(20) X=%2Yi22Ya={p}

is a flag; that is, the Y; are subvarieties of X of dimension d — ¢ such that there is a regular
system of parameters b1, ...,bq in Ox p such that by = --- = b; = 0 are local equations of
Y,in X for 1 <4 <d.
The flag determines a valuation v on the function field k(X) of X as follows. We have
a sequence of natural surjections of regular local rings
21

OX,p = OYMD = Oth - OYo,p/(bl) 3. Ud__>1 OYd_l,p - OYd—va/(bdfl) X OXJD/mp - k(p)

Define a rank d discrete valuation v on k(X) by prescribing for s € Ox ,,

v(s) = (ordy, (s),ordy, (s1),- -+ ,ordy,(s4—1)) € (Zd/)leX
14
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where

si—o | — ) o= [ 5L S =0 _ Sd-2
P90\ Cordy, (s) ) 772 7 92\ Jordyy(s1) |00 odml T Od=l ordy, ,(sda-2)
by by by

Let ¢ = 0 be a local equation of H at p. For m € N, define
®,p : [(X,0x(mD)) — N¢
by ®,,p(f) = v(fg™). The Okounkov body A(D) of D is the closure of the set

Une—-®np((X, Ox (mD)))

M 1
in R%. A(D) is a compact and convex set by %24, Lemma 1.10] or the proof of %7, Theorem
8.1]. . 3
By the proof of %, Theorem 8.1] and of h%, Lemma 5.4] we see that

(22) vol(D) = lim dimy, I'(X, Ox (mD))

m—00 md/d!

= dOx p/my : k]vol(A(D)).

The following proposi ion is proven with the assumption that the ground field k is
perfect in i) implies ii) , Theorem B]. The assumption that k is perfect is required in
their proof as they usectéQ], which proves that a Fujita approximation exists to compute
the vol of a Cartier divisor when the ground field is perfect. The theorem of [12] is
used inuﬁg] to conclude that a separable alteration exists if the ground field k is perfect.

Proposition 3.1. Suppose that X is a normal projective variety over a field k and D1, Do

are big R-Weil divisors on X such that D1 < Dy and vol(D;) = vol(Dz). Then
I'(X,0x(nDy)) =T(X,Ox(nD2))

for all n € N.

Proof. Write Dy = D1+ Z:Zl a; F; where the E; are prime divisors on X and a; € Ry for
all 7. By induction on r, we may suppose that r = 1. Let H be an ample Cartier divisor

on X such that D?E%£ .

Choose a flag ( with Y7 = E; and p a point such that p € X is a nonsingular
closed point of X and E;. Let m; : R? — R be the projection onto the first factor. For
f eI(X,0x(mDjy)),

%ordEl (fg™) = %ordEl ((f) + mD;) + ord, (H — D;).

Thus
w1 H(om, (D;) + ordp, (H — Dj)) N A(D;) # 0
and
1 (a) NA(D)) =0 if a < og, (D) + ordg, (H — D;).
Further, A(D;) C A(D2) and vol(D;) = vol(Dz2), so A(D1) = A(D2) by %1, Lemma
3.2]. Thus
OR, (Dl) + OI'dE1 (H - Dl) =0F, (Dg) + Ol“dE1 (H - DQ).
We obtain that
D2 — O0F, (DQ)El = D1 — O0F, (Dl)El
eq70
By (&%Zﬁ for all m > 0,

(X, Ox(mD1)) = (X, Ox(mDy)).
15
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Lemma 3.2. Suppose that X is a nonsingular projective variety and Dy < Dy are big
R-divisors on X. Then the following are equivalent

1) vol(Dy) = vol(D3)

2) I'(X,0x(nDy)) =T(X,0x(nDy)) for alln € N

3) P,(Dy) = Py(D3).

Propl
Proof. The implication 1) implies 2) is a consequence of Proposition &3. [."We now assume
2) holds and prove 3). Then [nDs| = |[nD1| + n(D2 — Dy) for all n > 0. Thus

OT(DQ) = O'F(Dl) + Ordp(DQ — Dl),
and so
Py(D3) = Dy — Ny(Ds)=Dj+ (Ds—Dy) — (Ny(D1) + Dy — Dy)
= Dy~ N,y(Dy) = Py(D1).
Finally, we prove 3) implies 1). Suppose that P,(D;) = P,(D2). Then
vol(D1) = vol(P,(D1)) = vol(P,(D2)) = vol(D2)

by (%Zf(-) 0

4. THE AUGMENTED BASE Locus

Let X be a normal variety over a field. ty D be a big R-Cartier divisor on X. The
augmented_base locus B (D) is defined in [14, Definition 1.2] and extended to R-Weil
divisors i , Definition 5.1]. BYY(D) is defined to be the divisorial part of B4 (D). It is
shown in [T4, Proposition 1.%{%hat if D1 and D5 are big R-Cartier divisors and D = Dy
then By (D;) = B4 (D3). In [15, Lemma 5.3], it is shown that if A is an ample R-Cartier
divisor on X, then

(23) BY(D) = Supp(N,(D — eA))

for all sufficiently small positive €.

The following Lemma is i) equivalent to i) of %@omm BJ, in the case that %%s
nonsingular, over an arbitrary field. We use Lemma [3.2 to remove the assumption in
Theorem B] that the ground field is perfect.

Lemma 4.1. Let X be a nonsingular projective variety over a field. Let D be a big R-
divisor on X and E be an effective R-divisor. Then vol(D + E) = vol(D) if and only if
Supp(E) C B{(D).

Proof. Suppose that vol(D + E) = vol(D).

Lenieh D' be an R-divisor such that D’ = D. Then vol(D' + E) = vol(D’). Lemma

mplles I'X,0x(nD")) = T'(X,0x(nD" 4+ sE)) for all n > 0 and 0 < s < n. Thus
I(X,0x(nD")) = I(X, Ox(nD’ + rE)) for all n > 0 and r > 0 by [30, Lemma IIL.1.8,

Corollary I11.1.9] or [[T5, Lemma 4.1]. Let A be an ample R-divisor on X and suppose that

F ig.an irreducible component of E and F' ¢ Supp(Ny(D — eA)) for e sufficiently small.

By [15, Lemma 4.9], there exists m > 0 such that

1 1
mD + F = (§m5A +F)+ (imeA +mP,(D —cA)) +mNy(D —cA)

is numerically equivalent to an effective divisor G that does not contain F' in its support.
Let D' = %(G — F) = D. Then for r sufficiently large,

dimy, T'(X, Ox (mD' + rE)) > dim; I'(X, Ox (mD' + F)) > dim; I'(X, Ox(mD’)),
16
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giving a contradiction, and so by (Ei’% Supp(E) C B{Y(D). a6
Now suppose that Supp(E) C B‘}riv(D). Let A be an ample R-divisor on X. By ("ﬁ?
we have that Supp(F) C Supp(N,(D — €A)) for all sufficiently small positive . By
Lemma 4.13], we have that vol(D + E —eA) = vol(D —eA) for all sufficiently small € > 0.
Thus vol(D + E) = vol(D) by continuity of volume of R-divisors. O

5. THE MINKOWSKI EQUALITY

X2 X2
In this section, we modify the proof sketched in %26] of %26, Propgsjjion 3. 7] to be valid
over an arbitrary field. Characteristic zero is required in the proof m?fﬂ? | as the existence of
resolution of singularities is assumed and an argument using the theory of multiplier ideals
is used, which requires characteristic zero as it relies on both resolution of singularities
and Kodaira vanishing. I thank the referee for pointj g out, that in the case that k is
algebraically closed, Proposition %ILalso follows from [16, Proposition 5.3].

Proposition 5.1. Let X be a nonsingular projective d-dimensional variety over a field
k. Suppose that L is a big R-divisor on X, and P and N are R-divisors on X such that
L = P+ N where vol(L) = vol(P) and N is pseudo effective. Then P,(P) = P,(L).

Proof. Write N = P,(N) + N,(N).
Since L and P are big R-Cartier divisors, by superadditivity and positivity of intersec-
tion products,
vol(L) = (L% > (L% '.P)+ (L1 .N)
(P+ N)¥=t. P)+(L41. N)
(PYy 4+ (L9=1. N) = vol(P) + (L4~! . N).

Thus (L‘tl -N) = 0. Let A be an ample Cartier divisor on X. There exists a small real
multiple A of A such that B := L — A is a big R-Cartier divisor.

AV

0= ((A+B)*1.N) > (A7 N) = (A (P (N)+ N, (N))) = (AT Py (N)) = AT
by superadditivit m?é %?d Lemma Lemma34 O

By Lemma )+eAis blg and movable, so by (Hg%

Ty < F1 (0.8
) o —d—1
Z_-<PU( )>—11H(1)A < ( )+€A> A_.PG(N)‘
e—

Thus

(24) (Adfl . PO'(N))X _ 0

mma7

and so P,(N) = 0 by Lemma L(.e hus N = N,(N). Thus, replacing P with the
umeflcally equivalent divisor P + P,(N), we may assume that N is effective. By Lemma
we have that
P,(P)=P,(P+ N)=PF,(L).
O

Lemma 5.2. Let X be a nonsingular d-dimensional projective variety over a field k. Sup-
pose that L1 and Lo are big R-divisors on X. Set s to be the largest real number s such
that Ly — sLsy is pseudo effective. Then

vol(Ly)

vol(Lz)
17
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eqll
and if equality holds in (2?5?, then Py(L1) = sPy(Ls).

Proof. The pseudo effective cone is closed, so s is well defined. We have L1 = sLs + 7y
where ~ is pseudo effective. Thus Vol(lg ?0> vol(sLy) = s%vol(Ly). If this is an equality,
then sP,(Ly) = P,(L1) by Proposition O

Let X be a projective variety over a field k. An alteration ¢ : Y — X is a proper and
dominant morphism such that Y is a nonsingular projective variety and [k(Y).: k(X)] <
oo. If X is normal and D is a pseudo effective R-Cartier divisor on X, then by [15, Lemma
4.12],

(26> SO*Ncr(QO*D) - deg(Y/X)Na(D)'

J
It is proven in %2] that for such X, an alteration always exists (although it may be that
k(Y) is not separable over k(X) if k is not perfect).

Lemma 5.3. Suppose that X is a projective variety over a field k, ¢ : Y — X is an
alteration and Ly, Lo are pseudo effective R-Cartier divisors on X. Suppose that s € Rxg.
Then ©*(L1) — sP,(¢*(L2)) is pseudo effective if and only if Py(¢*(L1)) — sPy(¢*(L2)) is
pseudo effective.

Proof. Certainly if P,(¢*L1) — sPy(¢*L2) is pseudo effective then ¢*(L1) — sPy(¢*L2) is
pseudo effective. Suppose ¢*(L1) — sP,(¢*(L2)) is pseudo effective. Then there exists a
pseudo effective R-divisor v on Y such that

Py(¢*L1) + No(¢*L1) = ¢* L1 = 8P, (9" La) +v = (sPs (9" L2) + P (7)) + No(7)-

The effective R-divisor N, () has the property that ¢*(L1) — No(7) is movable by Lemma
b.B, 80 Ny(v) > Ny(¢*L1) by [30, Proposition III.1.14]. Thus P,(¢*L1) — sPy(¢*La) is
pseudo effective. O

Lemma 5.4. Let X be a d-dimensional projective variety over a field k. Suppose that Ly
and Lo are big and movable R-Cartier divisors on X. Let s be the largest real number
such that L1 — sLo is pseudo effective. Then

vol(Lq)
(27) S < (L)

eg23
and if equality holds in (2&), then Ly and L are proportional in N1(X).

Proof. Let ¢ : Y — X be an alteration.

Let L be a big and movable R-Cartier divisor on X. Let I' C Y be a prime divisor
which is not exceptional for ¢. Let T' be the codimension one subvariety of X which is
the support of ¢.I'. Since L is movable, there exist effective R-Cartier divisors D; on
X such that lim; ,oo D; = L in N'(X) and T' ¢ Supp(D;) for all i. We thus have that
©*(L) = lim; 00 ¢*(D;) in NY(Y) and T' ¢ Supp(p*(D;)) for all 4, so that or(¢* (D
for all i. Thus op(¢*(L)) = 0 since oy is continuous on the big cone of Y. Thus N 1L
has exceptional support for ¢ and thus . (P,(¢*L)) = @.(¢* ) deg (Y/X)L by ( h%

Let sy be the largest real number such that P, (¢ Ll) —sy Py ( Llsalﬁeudo effective.
Then sy > s since p* L1 — s@* Lo is pseudo effective and by Lemma , and so
o < sgl/ < vol(p*Ly) B vol(Ly)

= vol(¢*La)  vol(Ls)

L 10 3
by Lemma %?ZMQHH (el 5 %

18
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If s4 = YD) hen P, (p*(L1)) = sPy(¢*(L2)) in N1(Y) by Lemma %?ZmTZHd S0

vol(L2)
deg(Y/X)(L1 = sL) = @u(p"(L1) — 59" (L2)) = @«(Fo (" (L1)) — 504 (Po (" (L2)) = 0
Lemmab55
in Ng_1(X), so that 0 = Ly — sLy in N'(X) by Lemma pefrace O

The fgllowing proposition is proven over an algebraically closed field of characteristic
zero in [26, Proposition 3.3].

Proposition 5.5. Suppose that X is a projective d-dimensional variety over a field k and
L1, Ly are big and moveable R-Cartier divisors on X. Then

(LYY . Ly > vol(Ly) T vol(Ls)d
with equality if and only if L1 and Ls are proportional in N1(X).

Proof. Let f : X — X be the normalization of X. Since X has no exceptional divisors
for f, f*L1 and f*Ls are movable. We have that <f*L§l_1> - ffLy = (Lf_1> - Loy and
vol(f*L;) = vol(L;) for i = 1,2. Further, f*: N'(X) — N'(X) is an injection, so L and
Ly are proportional in N'(X) if and only if f*L; and f*Ls are proportional in N1(X). We
may thus replace X with its normalization X, and so we can can assume for the remainder
of the proof that X is normal.

We construct birational morphisms ), : Y, — X with numerically effective R-Cartier
divisors A; ,,, and effective R-Cartier divisors E; ,, on Y, such that A;,,, = % (L;) — Eim
and (L;) = limy, 00 Aim in LX) for i = 1,2. We have that 7x(A;m) fem%@’zbgAi’m)
comes arbitrarily closed to mx((L;)) = P,(L;) = L; in LY"(X) by Lemma W

Let sz, be the largest number such that L1 — sy Lo is pseudo effective and let s, be the
largest number such that Aj ., — s, Az, is pseudo effective.

We will now show that given ¢ > 0, there exists a positive integer mg such that m > mg
implies s, < sz + e. Since Psef(X) is closed, there exists § > 0 such that the open
ball Bs(L1 — (sp + €)L2) in NY(X) of radius 6 centered at Li — (sg, + ¢)Ly is disjoint
from Psef(X). There exists mg such that m > mg implies V(A1) € B% (L1) and

Ymx(A2m) € B__ s (L2). Thus ¢« (A1m — (sp+¢)Azm) & Psef(X) for m > mg so that

(sr,+e)2
Sm < S, + €.

FJ
By the Khovanskj Teissier inequalities for nef and big divisors (hBTF, Theorem 2.15] in
characteristic zero, [9, Corollary 6.3]),

(28) (AL L Az )T 2 VOl(At )Vl (Agm) T
for all m. By Proposition 2.4, taking limits as m — oo, we have
(LI1. Ly) > vol(Ly) T vol(Ls)d.
Now for each m, we have
AT (L) = AT (Agm + Eam) > AT Ao
since Es p, is effective and A, is nef. Taking limits as m — oo, we have <L‘11_1> - Lo >
(L$7' - Ly). Thus
(29) (LYY Ly > (L4 Ly) > vol(L1) T vol(Ls)d.
FJ
The Diskant inequality for big and nef divisors, hQQ, Theorem 6.9], &Theorem F] implies

d—1 r= =1 d—1 & 21\d
(Al,m Ap )3T — vol(Aq ) vol(Ag ) a1 > ((Al,m Ao )3T — sy vol(Ag 1) @-1)%
19
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1 Lemma22
We have that (A‘f;r} - Ag )3T — syvol(Ag ) @1 > 0 since sd < XOI(A“") by Lemma %.ZI

4 Ol(A27m)
and by (E%%
We have that

ulm

d

d—1 1 _ s d-1 A .
(ALm A )3T — vol(Aq ) vol(Ag ) T (Al’m Ao )T T — Sy VOl(Ag 1) &1

1 1

>
> (AT} Agm) T — (s + &)vol(Ag ) 7T

for m > mg. Taking the limit as m — oo, we have
(30) (LN Lo) @1 — vol(Ly)vol(Ly) a1 > (L4 - Lo) a1 — spvol(La) a1

5
If ((L91) - L)75T = vol(Ly)vol(La)@T then (L) - Ly = (L% - Ly) by (39 and
_ 1 _1 vol(L
(<Lcli 1> . L2)d71 = SL‘;_‘Oeln(Hfé%édil’ so that 3% = VZléL;;
in N'(X) by Lemma 5.4.
Suppose L; and Lg are proportional in N(X), so that L; = s;Ls and s¢ = XE}EE;
Then

and thus L; and Ls are proportional

d—1
1(L _

Yol ¢ ( l)d: vol(Lg) = Vol(Ll)ddlvol(Lg)

VOI(LQ) d

0
where the second equality is by (el %% O

. . " E%El:sz .
The proof of t%]le following theorem is deduced from Proposition 5.5 by extracting an
argu t from [25, Theorem 4.11]. Over algebraically closed fields of characteristic zero,
it is [26, Proposition 3.7].

=

(L{Y Loy =s§ LY - Lo = s§(Lg) =

Theorem 5.6. Let Ly and Lo be big and moveable R-Cartier divisors on a d-dimensional
projective variety X over a field k. Then

(31) vol(Ly + L)@ > vol(L1)@ + vol(Ls)a

with equality if and only if Ly and Lo are proportional in N'(X).
Th 17

Proof. By Theorem b.Se?l;;g have that

%VOI(Ll + tLQ) = d<(L1 + tLQ)d_1> - Lo

P. 13
for t in a neighborhood of [0,1]. By Proposition %%50,
((Ly + tLo)*™ Yy - Ly > vol(Ly + tLs) @ vol(Lg)d.

=

Thus
vol(Ly + Lo)d —vol(Ly)i = [lvol(Ly + tLa) @ (L1 4 tLo)*Y) - Ldt
2 1 1-d da—1 1
(32) > fo vol(Ly + tLy) @ vol(Ly + tLg) @ vol(Lg)ddt
= [ vol(La)ddt = vol(Ly)d.
. ince positive intersection products are continuous on big divisors, we have equality in
(B2)if and only if

=

((Ly + tLo)4 Yy - Ly = vol(Ly + tLg) @ vol(Ls)d
for 0 <t < 1. Thus if equality holds in (Eﬁ% then L; and Ly are proportional in N!(X)
by Proposition 5.5.
S%I%gf vol is homogeneous, if L; and Ly are proportional in N!(X), then equality holds
in (B1). O
20



he following theorem is proven over algebraically closed fields of characteristic zero in
, Theorem 1.6].

Theorem 5.7. Let X be a nonsingular d-dimensional projective variety over a field k.
For any two big R-divisors L1 and Ly on X,

vol(Ly + Lg)% > Vol(Ll)é + V01(L2)é
with equality if and only if P,(L1) and P,(Ls) are proportional in N'(X).

Proof. We have vol(P,(L;)) = vol(L;) for i = 1,2. Since L; = P,(L;) 4+ Ny(L;) fori =1,2
where P;(L;) is pseudo effective and movable and Ny (L;) is effective, we have by super .o
additivity of positive intersection products of pseudo effective divisors and Theorem % 6

that

vol(L1+La)d > vol(Py(L1)+Py(Ls))

-

> vol(Py(L1))a+vol(Py(Ls))d = vol(L;)d+vol(Ls)a.
Thus if we have the equality vol(L; + LQ)é = vol(Ll)é + VO](LQ)é, we have

VOl(Py(L1) + Py(La))d = vol(Py(L1))d + vol(Py(Ly))d.
Th 18
Then P,(L1) and P,(Ls) are proportional in N'(X) by Theorem %.Ge.orem

Now suppose that P,(L;) and P,(Ls) are proportional in N'(X). Then there exists s €
R~ such that P,(Ls) = sP,(L1), so that BEV(P,(Ly)) = BIV(P,(Ls)). Since vol(L;) =
vol(Pa(%iglzmg r i = 1,2, we have that Supp(N,(L1)), Supp(Ny(Ls2)) C BEV(P, Q%mla?goby
Lemma h [ ] hus Supp( »(L1) + Ny(Ls)) C BYV(P,(L1)), so that by Lemma % L,

vol(Ly + Ly) = vol(P,(L1) 4 sP,(L1)) = (1 + s)%vol(P,(Ly)).

Thus
vol(Ly + La)d = (1 + s)vol(Py(L1))d = vol(L1 )4 + vol(Ls)d.

6. CHARACTERIZATION OF EQUALITY IN THE MINKOWSKI INEQUALITY

Theorem 6.1. Let X be a normal d-dimensional projective variety. For any two big
R-Cartier divisors Ly and Lo on X,

vol(Ly + La) > vol(Ly)4 + vol(Lz)d.

1
If equality holds, then P,(L1) = sPy(La) in Ng_1(X), where s = (Xgigé;;) !

Proof. Here we usg,the extension of o-decomposition to R-Weil divisors on a normal pro-
jective variety of - Let o Y — X be an alteration. We have that ¢*L; and ¢*Lo are
big R-Cartier d1V1sors By Lee ma 4.12], for i = 1,2, . Ny (¢"L;) = deg(Y/X) No(L;).
Since @.p*L = deg(Y/X) L by (1), we have that ap*Pg(cp*Li) = deg(Y/X) P5(L;). Now
vol(ﬁéé) = deg(Y/X) vol(L;) for i = 1,2 and vol(¢*L; + ¢*La) = deg(Y/X) vol(L1 + Lo)

by (
Thus the inequality of the sta menté%f the theorem holds for L; and Lo since it holds
for ¢*L; and f’ﬁ*Lx?e% Theorem uppose that equality holds in the inequality. Then

by Theorem %.7 we have that there exists s € Rsg such that P,(¢*L1) = sP,(¢*La)
in NY(Y). Thus ¢.Py(p*L1) = sp.Py(p*La) in Ny_1(X), so that P,(L1) = sP,(Lo)
21



in Ng_1(X). Since volume is homogeneous and P,(¢*Li), sP,(¢*L2) are numerically
equivalent R-Cartier divisors,

vol(Ly) _ vol(¢*Ly) _ vol(P,(¢*Ly)) _

vol(La)  vol(p*La)  vol(P,(p*Ls)) '

g

Theorem 6.2. Let X be a d-dimensional projective variety over a field k. For any two
big R-Cartier divisors L1 and Ly on X,

(33) vol(Ly + L)@ > vol(L1)4 + vol(Ls)a

with equality if and only if (L1) and (Ls) are proportional in L4~ (X). When this occurs,
1
we have that (L1) = s(Ls) in LYL(X), where s = <vol(L1)> d

vol(Lz2)

In the case that D; and D; are nef and big, this is proven in %Theorem 2.15] (over an
algebraically closed field of characteristic zero) and in [9, Theorem 6.13] (over an arbitrary
field). In this case of nef divisors, the condition that (L;) and (Lg) are proportional in
LA~1(X) is nst that D1 and D are proportional in N Lx).

Theorem 6.271s obtained in the case that D, and L)y are big and movable and k is
an algebraically closed field of characteristic zero in [26, Proposition 3.7]. In this case ..
the condition for equality is that D1 and Dy are proportional in N'(X). Theorem 6.2 1s
established in the case that Dy and Ds are big R-Cartier diyisors and X is nonsingular,
over an algebraically closed field k of characteristic zero in Vgg, Theorem 1.6]. In this case,
the condition for equality is that the positive parts of the o decompositions of D1 and Do
are proportional; that is, P,(D1) and P,(Ds) are proportional in N*(X).

Proof. Let f:Y — X € I(X) with Y normal. Then vol(f*(fu) 44" (L2)) = vol(List La)
and vol(f*L;) = vol(L;) for j = 1,2 so that the inequality ( olds by Theorem 6.1.
)

Neweq20 Th 21
Suppose that equality holds in (beS S Tet s = (VOI(L2 ) Then by Theorem %.el ,0 e

vol(L1) a1
P,(f*L1) = sPy(f*Ls) in Ny\(Y). Thus my((L1)) = smy((Ls)) by (T7. Since the
normal Y € I(X) are cofinal in I(X), we have that (L) = s(Lo).

Neweq20
Suppose that, (L) = s(L2) in L3=1(X) for some s € Rwg. Then equality holds in (beB )
by Proposition 2.4 and the fact that the positive intersection product is homogeneous. [J

Definition 6.3. Suppose that X is a projective variety and o, 3 € N'(X) are big. The
slope s(a, ) is the largest real number s such that () > s(f).

Let X be a projective variety and f : Z — X be a resolution of singularities. Suppose
that Ly and Lo are R-Cartier divisors on X. Let Ly = f*(L;) and Ly = f*Lo. Suppose
that ¢ : Y — Z is a birational morphism of nonsingular projective varieties where Y is
nonsingular and ¢t € R. We will show that

3

P,(L1)—tP,(Ls) is pseudo effective if and only if P,(¢*L;1)—tP,(¢*Ls) is pseudo effective.

The fact that P,(Li) — tP,(L ) psepido effective implies Py (¢ *L1) — tP,(p*Ly) pseudo
effective follows from Lemma Py(p*L1) — tPy(p*Ls) is pseudo effective, then
0x(Py(9*L1) — tPy(¢*Lo)) = Pa(fl) — tP,(Ls) is pseudo effective.
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eqz2

NewPropl

Neweql

Let s = s(L1, La). Since the Y — Z with Y nonsingular are cofinal in I(X), we have
that

(35) s is the largest positive number such that 7z((L1) — s(Ls)) = P,(L1) — sP,(L3)

is pseudo effective.
Proposition 6.4. Suppose that X is a variety over a field of characteristic zero and L1,
Lo are big R-Cartier divisors on X. Let s = s(L1, La). Then
(L%
(L3)
and we have equality in this equation if and only if (L1) is proportional to {Ls) in L4~1(X).
If we have equality, then (L1) = s(Lo) in L¥1(X).

(36) st <

Proof. Let ¥ e 1 (X) be nonsingular, with birational morphism f : ¥ — X. Then by
Lemma 2.70,

Py(f*L1) — sPy(f"La) = wy ((L1)) — s(La)) € Psef(Y).
Thus by Lemma %%@

a o VOUPs(f*Ly)) _ vol(Ly) _ (Lf)
= Vol(Po(f7L2) ~ vol(Lz)  (L9)’
N
and so the inequality ()366' ;eaolds. Noweql
Suppose we have equality in (}36;. We have that 7wy ((L1)) — smy ((L2)) = Py(f*L1) —
sP,(f*La)is pseeuglo effective anﬁieiza?o %, so we have that P,(f*L1) = sP,(f*La)
in NY(Y) by (%3%) and Lemm e% 2. 500CE a6 nonsingular Y are cofinal in I(X), we have
that (L) = s(L2) by Lemma and . Pron3s
Suppose that (L) = t(Lo) for some t € Ryo. Then s = ¢ and by Proposition b.ZI,

(LYY = (Ly) - ... (Ly) = (sLy) - ... (sLo) = s%(La) - ... - (Ly) = s}(L9).

g

Theorem 6.5. (Diskant inequality for big divisors) Suppose that X is a projective d-
dimensional variety over a field k of characteristic zero and Li,Ls are big R-Cartier
divisors on X. Then

=1 poyast — T d=1. [ya1 — a1
(37)  (L{™' L) —vol(Ly)vol(Lp) 7T > [(L{™' - Lo)@T — s(Lx, Ly)vol(Lg)71]%.

The Diskant inequality is proven for nef and big divisors in %Theorem G] in charac-
teristic zero and in [9, Theorem 6.9] for nef and big divisors over an arbitrary field. In the
case that Dy and D are nef and big, the condition that (Dq) — s(Ds) is pseudo effective
in L971(X) is that Dy — sDs is pseudo effective in N'(X). The Diskant inequality is
proven when Dy and Dy are big and movable divisors gygd X is a projective variety over
an algebrgically closed field of characteristic zero in %26, Proposition 3.3, Remark 3.4].
Theorem 6.5 1s a consequence of [13, Theorem 3.6].

Proof. Let s = s(Ly, Ly). Let f: Z — X be a resolution of singularities. After replacing
L; with f*L; for i = 1,2, we may assume that X is nonsingular.

We construct birational morphisms 1y, : Y, — X with numerically effective R-Cartier
divisors A; ,,, and effective R-Cartier divisors E; ,, on Y, such that A;,,, = ¥ (L ) El m
and (L;) = limy, 00 Ajm in LA~1(X) for i = 1,2. We have that 7y ’L{e%? 50
comes arbitrarily closed to mx ((L;)) = P,(L;) in L4~1(X) by Lemma W
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By (E%% s is the largest number such that P,(L;) — sP,(Ls) is pseudo effective (in
N'(X)). Let s,, be the largest number such that A1m — SmAzm is pseudo effective (in
N (V).

We will now show that given € > 0, there exists a positive integer mg such that m > myg
implies s,, < s + €. Since Psef(X) is closed, there exists § > 0 such that the open ball
Bs(Py(L1) — (s+¢)Py(L2)) in N'(X) of radius d centered at P,(L;) — (s+¢)P,(L2) is dis-
joint from Psef(X'). There exists mg such that m > mg implies Yy (A1,m) € Bg (Py(Ly))
and Y« (Aam) € Bﬁ (Py(L2)). Thus ¥pms(A1m — (s +€)Azm) & Psef(X) for m > myg

so that s, < s+ <. 3
By the Khovanskj Teissier inequalities for nef and big divisors (hBTF, Theorem 2.15] in

characteristic zero, [9, Corollary 6.3]),
(38) (ALL Ag )71 > vOl(Ay ) vOl(Az ) 1
Prop3

5
for all m. By Proposition b.ZI, taking limits as m — 0o, we have

(39) (L1 Ly) > vol(Ly) T vol(Ls)d.

FJ
The Diskant inequality for big and nef divisors, Ff‘Q, Theorem 6.9], %Theorem F] implies
(ALL Ao ) TT = VOl(At VOl Ag,) 7T > ((AL) - Apy) 7T = vl Az )71 ).

Lemma22
< Yol(ALm) by Lemma %.Zl

- d
m — VOl(AQym)

We have thzzag (Aclljnl . Ag,m)d%l — SmVvol(Ag )3T > 0 since s
e K
and by (B¥).
We have that

1
[(ALSL - Ag )T = vOl(Agn)vol(Ag,) 7| = (ALLL- A )T = ol (Ag,) 7T
> (AL Ag ) TT — (5 + £)vol (Ag ) T

. N egql16*
for m > mgy. Taking the limit as m — oo, we have that (b%i holds. O
Proposition 6.6. Suppose that X is a projective d-dimensional variety over a field k of

characteristic zero and Ly, Lo are big R-Cartier divisors on X. Then

(LI1 . Ly) > vol(Ly) T vol(Ls)d.

1
If equality holds, then (L1) = s(Ls) in LX), where s = s(L1, L) = (Zg}gi?;) ‘.
0 6
Proof. The inequality holds by (E%%.* Let s = s(Li1,L2). By (E}i,*if (=" L2>d%1 =
vol(Ll)Vol(Lg)ﬁ then (L9471 -Lz>ﬁ = svol(Lg)ﬁ, so that s? = YLD and thus (Ly) =
NewPropl vol(L2)

s{Ls) in LY1(X) by Proposition %.ZL O

Suppose that X is a complete d-dimensional algebraic variety over a field k and Dy, Do
are pseudo effective R-Cartier divisors on X. We will write

si = (Di- D& for 0 <i < d.

We have the following generalization of the Khovanskii-Teissier inequalities to positive
intersection numbers.

Theorem 6.7. (Minkowski Inequalities) Suppose that X is a projective algebraic variety
of dimension d over a field k and D1 and Do are pseudo effective R-Cartier divisors on
X. Then
24



) 512 > Si118i-1 for 1 <i<d—1.
) SiSd—i > SoSq for 1 <i<d-—1.
) sfzsg Zsﬁlforogigd.
4) {(D1+ Do)hya > (Df)a + (Dg) .
FJ
Proof. Statements 1) - 3) follow from the inequality of Ff‘Q, Theorem 6.6] (% Theorem

2.15] in characteristic zero). Statement 4) follows from 3) and the super additivity of the
positive intersection product. O

W N =

Whe o are nef, the inequalities of Theorem H&re proven by Khovanskii and
Teissier“%g 3%4 3, Example 1.6.4]. In the case that Dy and Ds are nef, we have that
= (D} - Dd " = (D% - D7) are the ordinary intersection products.

We have the followmg characterlzatlon of equality in these inequalities.

Theorem 6.8. (Minkowski equalities) Suppose that X is a projective algebraic variety of
dimension d over a field k of characteristic zero, and D1 and Do are big R-Cartier divisors
on X. Then the following are equivalent:

= $i4+18i—1 forall1 <i<d—1.

1) 57

2) 8i8q—; = S08q for all1 <i<d-—1.
3) s¢ = glzforallo<z<d

4) sd 1—8083 L

5)

(D1 + Do)yt = (Df)a + (D).
6) (D1) is proportional to (Ds) in L 1(X).

. Minke . FJ
When D; and Ds are nef and big.,then Theorem %.8 iS proven in %Theorem 2.15]
when k has characteristic zero and in [9, The ﬁ%%eG.l?)] for arbitrary k. When Dy and Dy
are nef and big, the condition 6) of Theorem 6.8 18 just that Dy and Dy are proportional
in N1(X).

Remark50 Prop35

Proof. All the numbers s; are positive, by Remark bﬂi.—ﬁoposition bﬂp@ﬁowgrghﬁ}* 6)
implies 1), 2), 3), 4) and 5). Theorem %m that 5) implies 6). Proposition %ﬁlﬁws
that 4) implies 6). Since the condition of 3) is a subcase of the condition 4), we have that
3) implies 6). Ine

Suppose that 2) holds. By the inequality 3) of Theorem k@f?gand the equality 2), we
have that

sty > (s4s0)(shs5 ") = (s08a)" = (sisa—i)".

Thus the equalities 3) hold.

Suppose that the inequalities 1) hold. Then

d—1
Sd—1 _ Sd-15d-2  S1 _ < Sd )

S0 Sd—2 Sd—3 S0
so that 4) holds. O

Remark 6.9. The existence of resolutions of tngularities is the only place where ¢
acteristic zero is used in the proof of Theorem hus the conclugig x0f Theorem
are valid over an arbitrary field for varieties of dzmenswn d<3byl2 ﬂ%

, Let D1 and Dy be big R-Cartier divisors on a projective variety X. Generalizing Teissier
%5’3], we define the inradius of D; with respect to Dy as

T’(Dl, Dg) = S(Dl, Dg)
25



TheoremG

eql06

eql10

TheoremH

eql07

Ab
b2

t

[ss] =
5] 5] [7]

FJ

CJS

sl
where s(Dj, D) is the slope defined in Definition %%saﬁ%edeﬁne the outradius of Dy with

respect to Dy as
1

s(Dg, D)’

Theorem 6.10. Suppose that X is a d-dimensional projective variety over a field k of
characteristic zero and D1, Dy are big R-Cartier divisors on X. Then

R(Dy,Ds) =

§IT _ (8T _ g T )7
(40) d—1 (d—ll 0 d) gr(Dl,Dg) < Sd .
a-1 Sd—1

_ _ : d .
on_olf. Let s = s(lgéﬁmlggg = 7’.(D1,D2). Since (D1) > s(Da2), we have that (D{) > s(Ds
D{™") by Lemma b.5. ['his gives us the upper bound. We also have that

d—1 1 d\ -
(41) (DY - Dg)a1 — s(Dg)a1 > 0.
. PropNew60 . . d d—1
We obtain the lower bound from Theorem 6.5 {using the inequality sj_; > sgs; to
ensure that the bound is a positive real number). O

Theorem 6.11. Suppose that X is a d-dimensional projective variety over a field k of

characteristic zero and D1, Dy are big R-Cartier divisors on X. Then

(42)
1

d 1 1
a-1 a-1 a-1, \% -1
sg_1 — (891 — 85 'sa)d Sd S1 S
" <r(Dy,Dy) < == < = < R(Dy,Da) € — e
a1 d—1 0 a1 a1 =1 \L
S0 sp = (s1 " —sg 's0)d
TheoremG
Proof. By Theorem 6.10, we have that
T e S
-1 -1 -1 =
s — (s — 85 'sg)d S0
Lol s %), py<
sy S1
Sd

I
The theorem now follows from the fact that R(D;, D2) = T and Theorem %Ifl%g O

1
D2,Dy)

This givesT%eg%%ion to %313, Problem B] E£3%1r big R-Cartier divisors. The inequalities
of Theorem %.TlTre proven by Teissier in , Corollary 3.2.1] for divisors on surfaces
satisfying some conditions. In the case that D; %orDe?ﬂHewe nef and big on a projective

ariety over a field of characteristic zero, Theorem % [T follows from the Diskant inequality

, Theorem F]. In the case E}ﬁé‘gré?nh and D> are nef and big on a projective variety over
an arbitrary field, Theorem 6.11 is proven in [9, Theorem 6.11], as a consequence of the
Diskant inequality %, Theorem 6.9] for nef divisors.
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