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ABSTRACT. We extend the asymptotic Samuel function of an ideal to a filtration and
show that many of the good properties of this function for an ideal are true for filtrations.
There are, however, interesting differences, which we explore. We study the notion of
projective equivalence of filtrations and the relation between the asymptotic Samuel
function and the multiplicity of a filtration. We further consider the case of discrete
valued filtrations and show that they have particularly nice properties.

1. INTRODUCTION

In this paper, we extend the asymptotic Samuel function of an ideal to any arbitrary
filtration of a Noetherian ring R. The asymptotic Samuel function of an ideal was first
defined by Samuel in [16]. Its basic properties and some beautiful theorems about it are
proven in the articles [16], [12], [14], [15], [9], [10] and [11] and are surveyed in the book
[17]. A recent paper studying the asymptotic Samuel function in the context of resolution
of singularities is [1].

Let R be a Noetherian ring. For a filtration Z = {I,,}en of ideals in R, define the
order of Z by vz(f) ==sup{m | f € I,,}. We define the asymptotic Samuel function of Z
as the function 7z : R — R>¢ U {oo} given by

I/I(ib‘n)

vr(z) = lim
n—o0 n

for x € R. The existence of this limit is shown in Theorem 3.4. If Z = {I™},en is

the adic-filtration of powers of an ideal I then the asymptotic Samuel function 7z of the

filtration Z is equal to the classical asymptotic Samuel function 7; of the ideal I.

The Rees algebra of a filtration Z = {I,;, };men is the graded R-algebra

R[] =) It™ C RIt],
meN

where R[t] is the polynomial ring in the variable ¢ over R, which is viewed as a graded
R-algebra where t has degree 1. Let R[Z] = Y It™ be the integral closure of R[Z] in

meN
RJt].
If T = {I"}nen is the adic-filtration of powers of an ideal I, then R[Z] = € I™t™ is
meN

the usual Rees algebra of I, and R[Z] = @ I"™t™ = R[I], where I" is the integral closure

meN
of the ideal I™.
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For a general filtration Z = {I,,}men of a Noetherian ring R, the integral closure of

the Rees algebra R[Z] is larger than the ring @ I,,t™. In fact (Lemma 4.3), the integral
meN
closure of R[Z] is

RZ] = Jnt™
meN
where J,, = {f € R| f" € I, for some r > 0} and ZC(Z) = {Jm}men is a filtration of
R.
Given a filtration Z = {I,,};men of R and « € R+, define the twist of Z by « to be the
filtration

I = {Ir()?)}mGN = {I[am'\ }men-
In Theorem 3.10 it is shown that if 7 is a filtration and « € R+, then,

This is in contrast to the case of an ideal I in R, where the set T of positive numbers «
for which there exists an ideal J of R such that 77 = a7 is a discrete subset of R ([11],
Exercise 10.27 [17]).

Ideals I and J of a Noetherian ring R are said to be projectively equivalent if there
exists @ € Ryg such that 7y = a ;. Corollary 11.9 (ii) [10] or Exercise 10.26 of [17]
provides a characterization of projectively equivalent ideals in terms of integral closures,
which we state in Proposition 1.1 below.

Proposition 1.1. Let I and J be ideals in a Noetherian ring R and o € Rsg. Then the
following are equivalent
1) I and J are projectively equivalent with vy = avy.
2) There exists m,n € Z~q such that « =2 and I"™ = J".
3) There exists m,n € Z~q such that o = 7% and we have equality of integral closures
of Rees algebras

3

R[I"™] = R[J"].

It follows that if I and J are projectively equivalent with Ty = a7 , then o € Q.

The definition of projective equivalence for ideals extends naturally to filtrations. Fil-
trations Z and J in a Noetherian ring R are said to be projectively equivalent if there
exists a € Ry such that vz = avy.

Suppose that I and J are ideals in a Noetherian ring R and Z = {I" },,en, J = {J" }nen
are their associated adic-filtrations. We have that 7y = vz and 7; = U7, so the ideals [
and J are projectively equivalent if and only if the associated adic-filtrations Z and J are
projectively equivalent.

Theorem 3.10 shows that given any o € R~, and a filtration Z = {I,, }men of R, the
twist of Z by « is projectively equivalent to Z since 77 = aVz(). Thus, the conclusion of
the rationality of «, as shown in Proposition 1.1 for projective equivalence of ideals, does
not extend to filtrations.

We provide the following necessary and sufficient condition for projective equivalence
of filtrations.

Theorem 1.2. (Theorem 5.2) Let T = {I;n}men and J = {Jm}men be filtrations in a
Noetherian ring R. Then Z and J are projectively equivalent if and only if 3 o, 5 € Rsg
such that TC(T(®)) = ZC(JP)), or equivalently, R[T(®)] = R[T®)].
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We give an example in Example 5.4 of filtrations Z and J which are projectively equiv-
alent with 77 = 77 but for no a or 8 € Q do we have that R[Z(®)] = R[J(¥)].

In the case that Z and J are adic-filtrations of powers of ideals, we have by Proposition
1.1 that Z and J are projectively equivalent if and only if R[Z(™)] = R[J ()] for m,n € Z~q
with 77 = 2 U7 In this case, R[Z(™)] = R[I"™] and R[J™] = R[J"].

If I and J are ideals such that 7y = vy, then R[I] = R[J] by Corollary 6.9.1 [17] (Stated
in Lemma 3.6 of this paper). Thus Proj(R[I]) = Proj(R[J]) as R-schemes. However, this
property fails for general filtrations as we now show.

Let k be a field and R = k[[z]], with maximal ideal mpr = (x). Let Z = {I,,}men and
J = {Jm}men where I, = (z™*1) and J,,, = (z™) V. m > 0 and Iy = Jo = R. In Example
5.4, it is shown that 7z = 7. We have that both R[Z] and R[J] are integrally closed.
However, Proj(R[Z]) is not isomorphic to Proj(R[J]). To show this we use the theory of
analytic spread of filtrations [7]. The analytic spread of a filtration F = {F};, };men of a
Noetherian local ring R is defined (in equation (6) of [7]) to be

¢(R) = dim R[F]/mprR|F].

The analytic spread has the geometric interpretation that ¢(F) = dim 77}1 (mp)+ 1 where
7r : Proj(R[F]) — Spec(R) is the natural projection.

By Lemma 3.8 [7], we have that ¢(F) = 0 if and only if for all n > 0 and f € F,, there
exists m > 0 such that f™ € mgF,,,. We verify that this condition holds for Z. Suppose
that f € I,. Then ord(f) > n+1. For m > 2, ord(f™) > nm+m > (nm+1) 4+ 1 and so
f™ € mplyy,. Thus ¢(Z) = 0 and so Wfl(mR) = (). Since 7 is a filtration of mp-primary
ideals, we then have that Proj(R[Z]) = Spec(R) \ {mgr}. In contrast, R[J] is the Rees
algebra of a principal ideal in a domain, so Proj(R[J]) = Spec(R).

From Proposition 1.1 we obtain the geometric interpretation of the condition that ideals
I and J are projectively equivalent; we have that Proj(R[I™]) = Proj(R[J"]) for some
positive integers m and n. The algebras R[I™] and R[J"] are suitable Veronese algebras
of R[I] and R[J], which are the Rees algebras of twists of the corresponding adic-filtrations
by the integers m and n. From Theorem 1.2, we obtain the statement that if Z and J
are filtrations which are projectively equivalent, then by taking suitable twists by real
numbers « and 3, we have that Proj(R[Z(®)]) = Proj(R[J ®)]).

We prove the following theorem, which shows that given a filtration Z, there is a unique
largest filtration /C(Z) such that Z and IC(Z) have the same asymptotic Samuel function.

Theorem 1.3. (Theorem 5.5) For a filtration T = {1, }men of ideals in R, define
K(I)m ={fe€R|vz(f) >m} VmeN.

Then K(Z) == {K(Z)m}men is a filtration of ideals in R and T C K(Z). Moreover,
vz = V() and K(I) is the unique, largest filtration J such that vz =V 7.

If T = {I™}en is the adic-filtration of powers of an ideal, then K(Z) = {I"™},en, the
filtration of integral closures of powers of I (by Lemma 3.6).

In contrast, for a general filtration, it is possible for IC(Z) to be larger than the filtration
ZC(Z), the integral closure of Z. Such an example is given in Example 5.6. By Lemma 5.8,
the Rees algebra R[K(Z)] is integrally closed. Thus for a filtration Z, we have inclusions
of Rees algebras

(1) RIT) C RIZC(I)] = RIZ] C RIK(T)] = RIK(T)]
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where the two inclusions can be proper. In Theorem 5.7 we give another characterization
of projective equivalence.

Theorem 1.4. (Theorem 5.7) Suppose T and J are filtrations of a Noetherian ring R.
Then T is projectively equivalent to J with Tz = aTy if and only if K(Z(®) = K(J).

In Section 6, we consider discrete valued filtrations (defined at the beginning of Section
6). We generalize some of the theory of Rees valuations of ideals ([14], [15], Section 10
[17]) to these filtrations.

If 7 = {I"}en is the adic-filtration of powers of an ideal I, and vy, ..., vs are the Rees
valuations of I, then for f € R,

_ . v1(f) vs(f) }
2 v = min ey .
This result is proven in [14] and after Lemma 10.1.5 in [17].
We prove the following Lemma, which generalizes this result to discrete valued fil-

trations. The Rees algebras of discrete valued filtrations are generally non Noetherian
R-algebras. Formula (2) generalizes to these filtrations.

Lemma 1.5. (Lemma 6.2) Let T = {I,,} where L, = [(V1)may N -+ N I(Vs)ma, be a
discrete valued filtration of a Noetherian ring R. For f € R\ {0},

yz(f):min“”l;m,--. : V(f)J} and VI(f):min{vl(f),--- ,”Sm}.

Qg ay s
In Theorem 6.5, we generalize to discrete valued filtrations the proof of uniqueness of
Rees valuations for ideals given in Theorem 10.1.6 [17]. We obtain the following Corollary.

Corollary 1.6. (Corollary 6.7) Let T = {Im}mGN and J = {Jm}mGN be discrete valued
filtrations of a Noetherian ring R, where I, ﬂ I(vi)a;m and Jp, ﬂ I(v)) a/m ¥V m €N

are irredundant representations. If vz =V 7, then r = s and after remdemmg, a; = a and
v; = V).

S S
If T = {1, }men where I, = () 1(vi)q;m, then 7ol is the filtration I,[ﬁd = N I(vi)ama,-
=1

(2
This filtration is well defined (independent of representation of Z as a discrete valued
filtration).

Proposition 1.7. (Proposition 6.8) Suppose that T is a discrete valued filtration of a
Noetherian ring R and o € Rsg. Then K(Z(®)) = Tl = (T19).

In particular, the chain of inclusions of (1) are all equalities for discrete valued filtrations.

Theorem 1.8. (Theorem 6.9) Let T = {I}men and J = {Jm}men be discrete valued
filtrations of a Noetherian ring R and o € Rsg. Then 7 = a Ty if and only if J = T,

In the final section, we compare the asymptotic Samuel function of a filtration with its
multiplicity. The multiplicity of an mpg-primary filtration is defined, and exists as a limit
in an analytically unramified (Noetherian) local ring, but does not exist in general if the
ring is not generically analytically unramified. This follows from Theorem 1.1 [5].

In an analytically irreducible local ring (R,mp), for any filtration Z of mp-primary
ideals, there is a unique largest filtration Z containing Z such that Z and Z have the same
multlphclty. This is shown in Theorem 1.4 [2].
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For an ideal I, we have that the integral closure I is the largest ideal which has the same
asymptotic Samuel function as I (Lemma 3.6) and this is the largest ideal containing I
which has the same multiplicity as I by a theorem of Rees ([13] and Theorem 11.3.1 [17]).

For general mp-filtrations Z, we have that Z and K(Z) have the same multiplicity
(Theorem 7.1) but we give an example in Example 7.2 showing that Z can be much larger
than K(Z). In the case that Z is a discrete valued filtrations we have that Z = K(Z) = Z.

2. NOTATION

We will denote the nonnegative integers by N and the positive integers by Z~q, the set
of rational numbers by Q, the set of nonnegative rational numbers by Q¢ and the positive
rational numbers by Q. We will denote the set of nonnegative real numbers by R>q and
the positive real numbers by R<.

The round down |z | of a real number x is the largest integer which is less that or equal
to . The round up [z] of a real number z is the smallest integer which is greater than
or equal to x.

The maximal ideal of a local ring R will be denoted by mp. The integral closure of an
ideal I in a Noetherian ring R will be denoted by I. The multiplicative group of units in
a ring R will be denoted by R*.

3. THE ASYMPTOTIC SAMUEL FUNCTION OF A FILTRATION

Let R be a Noetherian ring. We extend the asymptotic Samuel function of an ideal
to an arbitrary filtration of R. Let Z = {I,,}men be a filtration of ideals in R, that is,
Iy=R, I,isanideal in R, I,, O I,y and I, - I,, C I,)4sp, VM, n € N.

We say that a filtration Z = {I,,, }men is a subset of a filtration J = {J,, }men and write
ICcJgifl, CJ,VmeN.

The following filtration will be important in this paper.

Definition 3.1. Given a filtration T = {I}men of R and o € Rsg, define a filtration
T@ = {15 men by I8 = Iram). We will call T the twist of T by a.

Definition 3.2. For a filtration Z = {I,}men of R, define a function vz : R — N U {oo}
by vz(f) =sup {m | f € I,}. We call this the order of T.

Remark 3.3. For z,y € R, vz(zy) > vz(x) + vz(y) and vr(x + y) > min{vz(z),vz(y)}.
Observe that vz(f) = oo if and only if f € () In.
meN

Theorem 3.4. Let T = {Ip, }men be a filtration of ideals in a Noetherian ring R. For any

z € R, the limit lim vr(z")

exists as an element of R>o U {oo}.
n—oo n =

n
Proof. Let x € R and u := limsup vz(z") (which could possibly be 00).
n—00 n
n n
If w = 0, then the limit exists since 0 < lim inf vr(z") < lim sup vr(z") =0.
n—o00 n N—300 n

Assume u > 0. Let N € Ry be such that NV < u. We can choose ng € Z~( such that

vz (x™
M > N. Let n be any arbitrary positive integer. We have n = gng + r for some

no
q,7 € N such that 0 < r < ng.



Using Remark 3.3 it follows that

vr(z™)  wg(z?0tT) < v (x7) n vr(z") S vr(x™) N vr(x") N vr(x"0)

n qgno+r — qno+r  qno+r — Tqno+r  qno+r  Tqno+r’
n no
This implies vr(a") > qno  vz(a™) > 4no N > ano _ 1
n qno+1r Ny qng +r qno + ng q+1
n
Taking lim inf on both sides, we get lim inf vz(@") > liminf 7 .
n—r00 n n—oo q + 1
Lo q . q n—r n—ng .
Clearly, liminf < 1. Since r < ny, = > imply-
YRS g+1 = O g+1 n+mng—r P
N C.q : . evz(a”)
ing liminf > 1. Thus liminf = 1. This shows that liminf > N
n—oo ¢+ n—00 1 n—00 n

for any positive real number strictly smaller than w. Since N was arbitrarily chosen,
vr(ax™ vr(x”

lim inf L > limsup L

n—00 n n—00 n

, proving that the limit exists. O

Definition 3.5. For a filtration T = {IL,}men of ideals in R, we define the function

vz R— RyoU{oo} by vz(z) = nlg]go VI(: ) forx € R.

The asymptotic Samuel function of an ideal I in a Noetherian ring R is defined to be

ordy(z™)

vr(z) = lim where ordj(z) = sup{m | z € I"™} for x € R. Then for any

n— oo
x € R, v7(x) = vz(x), where Z is the adic-filtration Z = {I™},,en. This follows since
ordr(z) = vz(z) for any = € R.

Thus, vz extends the concept of the asymptotic Samuel function of an ideal to an
arbitrary filtration of a Noetherian ring. We call 77 the asymptotic Samuel function
of the filtration 7.

An important property of the asymptotic Samuel function of an ideal is the following
Lemma, which is proven in Corollary 6.9.1 [17].

Lemma 3.6. Let R be a Noetherian ring, I an ideal in R and ¢ € N. Then
{x € R|vi(x) >c}=1c.
Remark 3.7. Let T C J be filtrations. Then vz <vy.
Proof. For z € R, we have that vz(2') < vz(z') Vi € N so that vz(z) < U7 (z). O

Example 3.8. In a Noetherian local ring (R,mp), consider the filtration Z = {I,,}men
given by In = R and I, = mp ¥V m > 0. In this case, 7z(a) = o0 if a € mp and vz(a) =0
if a ¢ mpg.

Remark 3.9. The range of vz may not be contained in Q>og U {oo}. This follows from
Theorem 3.10 below. Observe that this is different from the case when T = {I™},en for

an ideal I of R, in which case we do have vz = Uy and then the range of Uz is contained
in Q>0 U {oo} (as shown after Lemma 10.1.5 [17]).

Theorem 3.10. Let T = {I;;,}men be a filtration in R and o € Rsg. Then, 7 = a V),
where T(*) = {Ir(r?)}meN = {I]'ozm] }mEN'



Proof. For r € R and i € N, 2° € Iy, (o) @)]s SO vz(z) > [avz (2%)] which gives

_ . VI(.SUi) [ VI@ ($2)—|

vz(z) = lim > lim . Since avz@) (z') < [avze (2%)] < avgw (@)+1,
1—00 (3 1—»00 1
im auz@ (z%) < lim (ayz@ (2%)] < lim QU (a) (:cz) +1
1—00 1 1—>00 1 1—>00 3
i
This implies lim M = Uz (). Thus, 7z(z) > aUpw ().
1—>00 1
Note that if z € I, for some k € N, then z € IHEJQ]‘ It follows that vi(a)(z) >
. Vz( ')J , [VI(SH’)J
1
{VI(JT)J. Thus, Vi € Z~o, VI(Q),( ) > Q which 1mphes lim M > lim —a -
« (3 ) —+00 2 12— 00 1
4 . Vz(ﬂ J ) .
1 1 - 77
Since LVI(w )J > vz(z') —1, lim > lim = 7z(z)
(0% (6] 1—>00 T =00 1
. _ vr(x) .
This shows Uz (z) > , thus proving the result. O
a

Proposition 3.11. Let Z be a filtration of R. For f,g € R,

(1) v7(f") =nvz(f) ¥V n € Zso.
(2) vz(f + g) > min{vz(f),vz(9)}-

Proof. Since the limit defining 77 exists, any subsequence also converges to the same limit.
Thus,

vz(f) = lim vilf™) _ gy 2T Ly ()
m—00 m m—o00 nm n m—oo m

1
= E pl’(fn), V n e Z>0.

This proves (1).
To prove (2), let f,g € R be such that vz(f) > vz(g).

m m
For ¢ > 0, 3 mg € Zsg such that V m > my, vz(f™) > v7(g) — e and vilg™) >
m m

v7(g) —e. For all m, k € Z~q, vz((f+9)™F) > min k{yz(figj)}, using Remark 3.3. Since
1+j=m
J

i+ 7 =mk, mk;>m\‘ J—km{
m m

J > mk — 2m. Thus by Remark 3.3,
(') 2 vel§) 4 valal) 2 va(F) 4 a2 | oy | vt

For m > o, vr(£'6%) > |+ m(@sle) =€)+ | £ m(zatg) ~ ) > (mh — 2m)72() - o)
Thus, for k£ >> 0,

Al ™) mklorlo) =) =2 =) ) 2 o)

Taking limits as k — oo, we get vz (f +¢g) > vz(g) — €. Since ¢ is arbitrary, vz(f +g) >
v7(g) = min{vz(f),7z(g)}. This completes the proof. O
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4. INTEGRAL CLOSURE
Lemma 4.1. For an ideal I in a Noetherian ring R, U1 = Uz where T = {I™};,en and
I ={I"}men-
Proof. For x € Rand i € N, 2 € I”f(xi) which gives vz(z?) > I/T(I‘Z), by Lemma 3.6. By
Proposition 3.11(a), vz(x) > Vf(xl) Vi € Zs¢. This implies vz(z) > lim M = Uz(x).
Since Z C 7, by Remark 3.7, vz = Z2 e ]

The integral closure of the Rees ring R[I] of an ideal [ is R[I] = Y. I"t" (Proposition
neN
5.2.1 [17]). We can extend this concept of integral closure to arbitrary filtrations of a

Noetherian ring.

Definition 4.2. The Rees algebra of a filtration T = {I,,,} men is the graded R-algebra
R[ZI] = > Int"™ C R[t], where R[t] is the polynomial ring in the variable t over R, which
meN

is viewed as a graded R-algebra where t has degree 1. Let R[Z] = > L,t™ be the integral
meN
closure of R[Z] in R[t].

In [6] Lemma 5.6, there is a characterization of R[Z] when (R, mp) is a (Noetherian)
local ring and Z is an mp-filtration (I,,, is an mp-primary ideal for m > 0). The proof
extends to the case where 7 is an arbitrary filtration of a Noetherian ring R.

Lemma 4.3. Let T = {In}men be a filtration in R. Then R[Z] = > Jnt™ where
meN

I ={f € R| f" € Ly for some r >0} and ZC(Z) := {Jpm }men is a filtration in R.

Definition 4.4. We call the filtration ZC(Z) defined in Lemma 4.3 the integral closure
of the filtration 7.

If Z = {I"™}hen is the adic-filtration of an ideal I of R, then ZC(Z) = {I™}en. In
this particular case, we have already shown in Lemma 4.1 that vz = z¢(7). In fact, this
is true for any arbitrary filtration as well.

Theorem 4.5. Let T = {In}men be a filtration of R. Then Uz = Uz¢(z)-

Proof. Let ZC(Z) = {Jm}men (as in Lemma 4.3). Since T C IC(Z), vz < Vg¢(z), by
Remark 3.7.

Suppose z € J,, for some m € N, that is, " € I, for some r > 0. The ideal I,,, is
a reduction of I, by Corollary 1.2.5 [17]. By Remark 1.2.3 [17], 3 n € Z~q such that V
k>n, a™ € (Im)® C IF"" C I, (k—pt1)- This shows that vz(z™) > rm(k —n + 1),

rk
- 1
which implies lim 28 ) > fyy TEZn+D)
For ¢ € N, since 2* € Juzcm(m),?I(:cl) > VIC(I)(Q;@), By Proposition 3.11, vz(z) >
- i

vrer) (')

=m. Thus, if x € Jp,, Uz(x) > m.

v x
Vi € Zso. Thus, vz(z) > lim %()

1—00 1

- = Uze(z)(z). This proves vz(x) =
ﬁzc(z) (x) VY x € R. O

Corollary 4.6. Let T = {I,,} men be a filtration in R and Z = {I,,}men. Then vz = iZ2

Proof. This follows from Theorem 4.5 and Remark 3.7 since I,, C I,, C J,, V. m € N,
where ZC(Z) = {Jm }men is the integral closure of the filtration Z. O
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5. PROJECTIVE EQUIVALENCE

Definition 5.1. We define filtrations T and J in a Noetherian ring R to be projectively
equivalent if there exists a € Ry such that vz = av .

This generalizes the classical definition of projective equivalence of ideals. Ideals I and
J are projectively equivalent if there exists o € Ry such that 77 = av;. Proposition
1.1 in the introduction gives the beautiful classical theorem characterizing projectively
equivalent ideals. Proposition 1.1 is generalized to filtrations in Theorem 5.2.

Suppose that I and J are ideals in a Noetherian ring R and Z = {I"},eny and J =
{J"™}men are their associated adic-filtrations. We have that 7y = 77 and 7y = U7, so the
ideals I and J are projectively equivalent if and only if the associated adic-filtrations Z
and J are projectively equivalent.

Theorem 3.10 shows that given any a € Rsg, there are projectively equivalent filtra-
tions Z and J in a ring with 77 = avy. Thus, the conclusion of the rationality of «
(for projectively equivalent ideals commented after Proposition 1.1) does not extend to
filtrations.

We provide the following necessary and sufficient condition for projective equivalence
of filtrations.

Theorem 5.2. Let T = {L,}men and T = {Jm}men be filtrations in a Noetherian ring
R. Then T and J are projectively equivalent if and only if 3 a, B € Rsg such that

TC(I™) = ZC(TP), or equivalently, R[Z(®)] = R[T®)].
Proof. Suppose 3 a, 8 € Rsg such that ZC(Z(®) = 2¢(J®). By Theorems 3.10 and 4.5,

14 .
UL = QVza) = QVrp(zta)) = V1o 78)) = AV 78 = afj. This shows that Z and J are

projectively equivalent.
Assume Z and J are projectively equivalent, that is, 3 v € Ry such that vz = y7v 7.

Choose «, 5 € R-¢\ Q such that % =, or, & = . We show that ZC(Z¥")) = ¢ (F®)).
Using Lemma 4.3, ZC(Z*)) = {K,, }men where

Kp={f€R| fTEL%Y) = I{gyrm) for some r > 0}
and ZC(JW)) = { Ly }men where
Lp={feR|[f 6@2 Jtm) for some t > 0}.

Recall the filtrations Z = {I,,}men and J = {Jp }men defined in Corollary 4.6. ‘
Let © € Ky, that is, 2" € Ig,y) for some r > 0. Then Vi € N, 2™ € (Ifgyrpm))" C

T4 .
I18yrm1i» which implies vz(2"") > [Byrm]i. This gives lim w > lim M,
1—00 T 1—00 T,
V(a2
that is, Tz(x) > M By the assumption, () > M, that is, lim L >
r Ty 1—00 1
[Byrm]
ry

vz(a') _ [Byrm]

Suppose lim - . Then, given € > 0, 3 ng = no(e) € Zs( such that
1—>00 1 Ty

%(xl) — [Byrm] < eVi>mng Fore= 7m7rm]

/) Ty Yy
9
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[Byrm] _ vg(@®)  [Byrm]
, . Ty o Ty
implying v(z*) > Bmio, or that, v(2*) > [Bigm]|. This shows that 2 € Jig,1, that
is, x € Ly,. ' .
v=(* v=(x7°
If lim —Z @) 18 Y] 34 € Zog such that 22 @) [Byrm]

iboo 1 7y Jo 7y
jo[Byrm]| _ joByrm . : : S

= > o= implying that v=(2/°) > [joBm], so, 2%° € Jpj gm1, or

that, € L,,. Thus, we have shown that K,, C L,, V m € N. Similarly, we can show that
Lm € K, ¥ 'm €N, proving that ZC(Z¥) = 7¢(7P)). O

We have that ¢ is positive since § € Q. So, —e = fm —

. This shows that

v (al) >

Remark 5.3. In the proof above, the condition of a and B being real numbers cannot be
weakened, as shown in the following example, where T and J are projectively equivalent

filtrations with Uz = U7 but for no a or B € Q=g do we have that R[Z(®] = R[JP)]. This
follows from (5) below, since R[Z(®] = R[JB)] implies o = B by Theorems 4.5 and 3.10.

Example 5.4. We give some calculations of twists of filtrations in the power series ring
i one variable over a field.

Let R = kl[[x]], a power series ring in the variable x over a field k. For f € R, let
ordy(z))(f) = min{r | f. # 0} where f = > fp2™ with fn, € k.

m=0
Fix ¢ € Zo. Let Z = {I,,}men be given by Iy = R and let I,,, = (™€) for m € Z~g
and J = {Jm }men be given by Jy = R and J,,, = (2™) for m € Z~o. Both Z and J are
filtrations in R and Z C 7.
Let f € R with ordy ) (f) = co. For n € Zso,v7(f") = nco and vz(f") = nco — c (if
neco > ¢) and = 0 (if ney < ¢).
v (f") nco

_ . ovr(f" : c _ : :
ortf) = Jim " = i M = and () = Ji P <l

ncyg —

Thus Z and J are projectively equivalent with vz =v 7.
Observe that V o € Rsg, R[Z(®] C R[J (@] in R[t]. We will show that

(3) R[J )] is integrally closed in R[t] V a € Rsg.
(4) R[T®)] C R[Z(®)] when o € R \ Q, proving that R[Z(®)] = R[T(®)].
(5) R[Z(®)] G R[J] when « € Q.

To prove (3), it is enough to show it for homogeneous elements in R[t]. Let ft" € R[t]
be integral over R[7(®)] with ordy((f) = co, and n € N. If n = 0 or ¢g > [an], then
ft" € R[TW]. If ¢y < [an], since ft" is integral over R[J(®)], we have the following
homogeneous equation for some d € Z~y.

(F) + art™(F) 4+ at™ ()T 4 ag D) 4 agt™ =0

where q; € J@) = (m[o‘"ﬂ) V1<i<d.

ng
In particular, the coefficient of t*? = 0, that is,

flraf™+ - taif 4+ a1 f+ais=0.
Since ¢y < [an], co < an. However ordy,;(f*) = dco but

ordk[[zﬂ(aifd_i) > [ani] 4+ (d — i)cp > ani + deg — ico > deg.
10



Therefore, the above equation is not possible. Thus, if ft" is integral over R[7(®)], then
ft" € R[J¥)], proving that R[7(®)] is integrally closed.

To prove (4), consider a homogeneous element in R[7(¥)], say, ft" where ordy (2 (f)
co > [an], and n € N, which is integral over R[Z(™]. If ¢y > [an] + ¢, then ft"* € R[Z®
If co < [an] + ¢, since ¢o > [an] > an, we can let d € Zs( be such that d > ¢

)

co—an’
Then ft™ satisfies the following integral equation over R[I(“)]:

(ft™)? + agt™ =0

where ag = —f%. By our choice of d, dcg > and + ¢ which implies dcg > [and] + c. So,
ordk[[x]](fd) > [and] + ¢, which shows ag € I[ana) = 17(13).

For (5), say a = P for some p,q € Z~o. Then zPt? € R[J(®] but ¢ R[Z(@)]. TIf xPtd

q
were integral over R[Z(®)], then for some d € Z~( we would have that
(2P) + a1 (zP)T 4 4 a(@P) T+ ag1(2P) +ag =0
where ordy,(a;) > [aqi] +c = pi+c. But this is not possible since ordy (a;(xP)?=?) >
pitc+pld—i)>pdV1<i<d.
Theorem 5.5. For a filtration T = {In}men of ideals in R, define
K(I)m ={fe€R|vz(f) >m} VmeN.

Then K(I) = {K(Z)m}men is a filtration of ideals in R and T C K(I). Moreover,
vr = Uiy and K(I) is the unique, largest filtration J such that vz = V7.

Proof. Denote K(Z) by K and K(I)n, by Km ¥ m € N. If f € I, for some n € N, then
fre (1) C I; implying vz(f*) > ni V ¢ € N, which gives, 7z(f) > n. Thus, I,, C K,, V
n € N.

vz(g™)

m

For ¢ > 0, 3 mg € Z~¢ such that V m > my, vz(f™)

mo m

Note that ¥ m,k € Zsq, vz((f + ¢)™*) > min k{VI(fZgJ)}, using Remark 3.3. Since
1+j=m

>n —¢ and >n—e.

i+7=mk,mk>m {ZJ +m LJJ > mk — 2m. Using Remark 3.3 again,
m m

vi(f'g") > vi(f) + vrlg’) > vr(fmbwd) + vr(gmlind) > U@J vr(f™) + VnJ vr(g™).
For m > my, vz(figh) > L;J m(n —¢) + L‘;J m(n —e) > (mk —2m)(n —¢).
Thus, for £ >> 0,

vil(] +9)"™) _ mh(n—<) ~ 2m(n — <)

2
:n—e—E(n—E).

mk mk

Taking limits as k — oo, we get z(f + g) > n — e. Since ¢ is arbitrary, vz(f + g) > n.
This proves that f+9g€ K, V f,g € K.
For r € R and f € K,, using Remark 3.3

vr((rf)") > lim vz(r')

o F
vr(rf) = lim “ , + lim vl _ vz(r) + 7z(f) > n.
1—00 (3 1—>00 2 1—00 1
This shows that rf € K,,, thus proving that K, is an ideal in R.
11




Clearly Ko = R. If f € K, 41 for some n € N, that is, v7(f) > n+1 > n, then f € K,
proving that K11 C K, Vn €N.
Suppose f € K,,, and g € K,, for some m,n € N. Then by Remark 3.3
i i
i1 | o vrls)

vz(fg) = lim va((fo)) St

1—00 7 i—00 1 1—00 1

> lim
Thus, K, K;, € Ky4+m. This proves K is a filtration of ideals in R.‘ ‘ A
For f € R and i € N, it follows from the definition that z(f*) > vi(f*) since f* €

i
) i € 20, Thus, 72(f) > Be(f) ¥
i
f € R. Since T C K, 77 < Tk by Remark 3.7. This proves U7 = Tk.
For any filtration £ of R, let (L) = {K(L)m }men where K(L)y, ={f € R | v(f) >
m}. If J is a filtration such that 7z = U7, then J C K(J) = K(Z). This shows that
every filtration J such that 7z = 77 is contained in K(Z), and we have shown earlier that

Ux(z) = Vz, proving that K(Z) is the unique, largest filtration 7 such that vz =v57. O

K,, (iy- Using Proposition 3.11, vz(f) >

Example 5.6. In general, the integral closure ZC(Z) (so that R[ZC(Z)] = R[Z]) of a filtra-
tion T is strictly smaller than K(Z) (or equivalently R[Z] is strictly smaller than R[K(Z)]).
For adic-filtrations, however, ZC(Z) = K(Z), by Lemma 3.6, where Z = {I™},,en for an
ideal I of R.

Proof. We consider filtrations Z = {I,;, };men where Iy = R and I,,, = (2""¢) for some fixed
¢ € Zso and J = {Jm}men where Jy = R and J,,, = (2™) for m € Z~¢ in R = k[[z]], a
power series ring in the variable x over a field k. We showed in Example 5.4 that 77 =7 7.
Thus K(Z) = K(J). By a direct calculation, K£(J) = J. Thus K(Z) = J. However we

have shown in Example 5.4 that the integral closure R[Z] of the filtration Z is a proper
subset of R[J] = R[J]. O

Theorem 5.7. Suppose T and J are filtrations of a Noetherian ring R. Then T s
projectively equivalent to J with Tz = a T if and only if K(Z\®) = K(J).

Proof. 71 = avy if and only if ;) = 77 (by Theorem 3.10), which holds if and only if
K(Z\®)) = K(J) by Theorem 5.5. O

Lemma 5.8. For a filtration Z and the corresponding filtration K(Z) (as defined in The-
orem 5.5) in a Noetherian ring R, the Rees algebra R[K(ZI)] is integrally closed in R]t].

Proof. It suffices to prove the result for homogeneous elements in R[t]. Let ft" be a
homogeneous element in R[t] that is integral over R[K(Z)]. Suppose ft" satisfies the
following homogeneous equation of degree d > 0:

(P A+ art" (P14 at™ ()T agat" D () + agt™ =0
where a; € K(Z)y;, that is, z(a;) > ni V 1 <i < d. That gives
frrafT + - +afT+ a1 f +ba=0.
If 7z(f) < n, then the above equation is not possible since 7(f%) = dvz(f) but
vr(a; f4Y) > dvz(f) V 1 <i < d since
vr(a;i 478 > vz(as) + (d — i) z(f) > ni + dvz(f) — ni = dvz(f).

If 7z(f) > n, then ft" € R[K(Z)], thus, proving that R[[C(Z)] is integrally closed in
RJt]. O
12



6. DISCRETE VALUED FILTRATIONS

Let R be a Noetherian ring. Let P be a minimal prime ideal of R and let v be a
valuation of the quotient field »(P) of R/P which is nonnegative on R/P. Let

Ly ={o(f) | f € (P)*}
be the value group of v and O, be the valuation ring of v with maximal ideal m,. Note that
R/P C O,. Let m: R — R/P be the natural surjection. We define amap ¢ : R — I',U{oc0}
by
a(r) = v(m(r)) %f ré¢ P
oo ifreP.
We extend the order on 'y, to 'y, U {oo} by requiring that oo has order larger than all
elements of [, and co+ 00 =g+ o0 =00 V geT,.
The map v satisfies the following properties:
o(r-s) =o(r) + o(s), o(r + s) > min{o(r), 5(s)}, 7 Hoo) = P.

We will call ¥ a valuation on R. By abuse of notation, we will denote v by v. If v
is a discrete valuation of rank 1, we will say that v is a discrete valuation of R. We
can then naturally identify I';, with Z, by identifying the element of I', with least positive
value with 1 € Z.

We define two valuations v and w of R to be equivalent if v™!(00) = w™1(c0) and the
valuations v and w on s(P), where P = v~!(c0) = w™!(c0), are equivalent. In particular,
since we have identified the value groups with Z, if v and w are rank 1 discrete valuations,
then v and w are equivalent if and only if they are equal, that is, v = w.

Suppose that v is a discrete valuation of R. For m € N, define valuation ideals
1) ={f € R| v(f) = m} = =" (mI N R/P).

An integral discrete valued filtration of R is a filtration Z = {1, };men such that there
exist discrete valuations vq,...,vs of R and aq,...,as € Z~g such that

I, = 1(V1)ma, N NI (Vs)ma, ¥ m € N.

7T is called an R-discrete valued filtration if a{,...,as € Ryy and 7 is called a Q-
discrete valued filtration if aq,...,as € Qsq. If a; € Ry, then

I(Vi)ma, = {f € R | vi(f) = mai} = I(vi) fma,1-

We also call an R-discrete valued filtration a discrete valued filtration. If the discrete
valuations v; are divisorial valuations of »(F;), where P; are minimal primes of R, then Z
is called a divisorial filtration of R.

Definition 6.1. Let T = {I,;,}men be a discrete valued filtration, which is represented as
(6) Iy = I(V1)may N+ N I(Vs)ma, Vm €N,

If for each i € {1,...,s}, the representation (6) of L, is not valid for some m when the
term I(v;)a;m s removed from I, then the representation of (6) is said to be irredundant.

Lemma 6.2. Let 7 = {I,;,} men where I, = I(V1)ma, N+ N I(Vs)ma, be a discrete valued
filtration of a Noetherian ring R. For f € R\ {0},

yz(f):minﬂvl(f)J,.-. : V(f)J} and yz(f):min{“l(f),.-. ,”S(f)}.

al Qg aj Qg
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vi(f)

}. Let f € R\ {0}.

Since f € I,y = ﬁ I(Vi)auz(f)s vi(f) = aivz(f), which implies, vz(f) < vléf)J v
i=1 i
1 < < s. This shows that vz(f) < ¢z(f).

Foreachie {1,...,s}, pz(f) < {vl(f)J , which implies ¢7(f) <

a;

Proof. Let ¢z(f) = min H”"(f )J} and Z;(f) i= min {

1<i<s a; 1<i<s

vi(f)

a;

; that is, v;(f) >

aipz(f). Thus, f € DII (Vi) aipr(f) = Lpr(p)- This implies vz(f) > pz(f), proving vz(f) =

0z(f). Now
RTOR 8 | e SR

n—00 n n— 00 n n—00 n

vz(f) =
Since z — 1 < |z] <z for any z € R, V n € Z~( we have that

min nvi(f) 1 in nv;(f) s nv;(f)
1<i<s a; < 1<i<s a; 1<i<s a;

n n n
Taking limits as n — oo, we get, vz(f) = pz(f). O

Corollary 6.3. Let Z be a discrete valued filtration of a Noetherian ring R. Then KC(Z) =
7.

S
Proof. Represent Z = {In}men by Iy = ) 1(vi)ma;- By Lemma 6.2, for any nonzero
i=1
vi(f)

f € R, vz(f) > m if and only if ——= > m, or, v;(f) > am V 1 < i < s. This is
@
equivalent to f € I(vi)gm V 1<i< ;, or that, f € I,,. O

~/
Lemma 6.4. If v and ¥’ are discrete valuations of R and a,b € R<q are such that g_ %
a
(as functions of R), then v =" and a = b.
Proof. Since b = at’, 9 !(00) = #'~!(c0) is a common minimal prime P of R. Thus, @

and ¥ are induced by discrete valuations v and v" on »(P). Let m : R — R/P be the

natural surjection. Suppose a € s(P) is nonzero, that is, « = Wifi for some f,g € R\ P.
g
Then,

This shows bv = av’ as function of s(P)*. Since the value groups of v and v" are Z, 3
x,y € 2(P)* such that v(z) = 1 and v'(y) = 1. Since bv = av’, b = av’'(x) and bu(y) = a.
This implies a|b and b|a. Thus, a = b and hence, v = ¥'.

O

In the following theorem, we generalize to discrete valued filtrations the proof of unique-

ness of Rees valuations for ideals given in Theorem 10.1.6 [17].
14



Theorem 6.5. Let vy, ...,vs be discrete valuations of a Noetherian ring R. Letay,...,as €
R0, and define w : R\ {0} — R>q by

(7) w(f) :min{m(f),_” 7v8<f>}

al Qg
Vs
for f € R. If no — can be omitted from this expression, then the v; and a; are uniquely
a;
Vs
determined by the function w, up to reindexing of the —.

a;

vs
Proof. We will say that the set {v1,...,vs} is irredundant if no — can be removed from

Q;
(7).
If s = 1, the assertion follows from Lemma 6.4. Let s > 1. We define S C R to be

w-consistent if for any m € N and fi,...,fm € S,
Wi fm) =D w(fi).
i=1

For f € R, let Sy = {f™ | m € N}. Then S is w-consistent.
Let § be the set of all nonempty w-consistent subsets of R. Clearly § # () since it
contains the sets Sy for any f € R. Partially order § by inclusion. Let {I)},_, be a chain

of w-consistent subsets of R. Then [ = [J I is an upper bound for this chain which is
AEA
w-consistent. Since every chain in § has an upper bound in §, by Zorn’s Lemma, § has

at least one maximal element.
We provide an explicit description of all of the maximal w-consistent subsets of R. For
each 1 <17 < s, define the sets

s={ren | w-

vi(f)
a; .
Each S; is w-consistent and is nonempty since it contains 1. By the irredundancy condition

v
on the —, we have the following remark.
a;

Remark 6.5.1. Fori#j, S ¢ U S;.
J#1
Since each S; is a w-consistent subset, it is contained in some maximal w-consistent
subset of R. We show that any maximal w-consistent subset S of R is equal to one of

the S;. Then by Remark 6.5.1 it follows that {S; | 1 < ¢ < s} are the distinct maximal
w-consistent subsets of R.

Remark 6.5.2. If w(f) = oo for some f € R, then vi(f) = ooV 1<1i<s. Thus f € S;
Vi1i<i<s.

Suppose S is a maximal w-consistent subset of R, and S # S; for any 1 < i < s.
Then 3 g; € S\S V1 <i<s. Since g; ¢ S, w(gi) < oo (by Remark 6.5.2) and

w(gi) < vilgs) V1<i<s. Letg=gi...gs SinceS is w-consistent, w(g) = > w(g;), but
ai i=1
S S . . . . . .
w(gi) < v (91) = vi(9) V1<j<ssince w(g) < vk(g:) Vk#iand w(g) < vilg:)
i=1 i=1 Qj aj ak a;
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(when k£ = 7). But this implies w(g) < lr<rli£1 {vj (9) }, contradicting the definition of w.
<j<s Gy

Thus, every maximal w-consistent set S equals to one of the sets {S; | 1 <1i < s}.
In order to prove the Theorem, we must recover the valuations v; and the numbers

v
a; € Rsq from the function w. Since each — gives a distinct maximal set S; and {v; | 1 <
a

7
i < s} is irredundant, the number of v;, which is s, equals the number of distinct maximal
w-consistent subsets of R. Fix i € {1,...,s}.
Let ¢ € R be such that v;(c) < co. By Remark 6.5.1, 3 z; € §;\ | S;. By this property,
J#i
i, vilws) _ vi®i)
a; a;

. For a sufficiently large d € Z~o, and V j # i we have that

<UJ($Z) _ Uz@z)) Q> v;i(c)

a; a; a;
(d (exd (ex? (@ (et
This gives v; () > vi(ez; ), which in turn implies vilcay) < v;(77) + v (€) =Y (cz)
aj a; 473 aj aj aj
wilead)

This shows that w(cz?) =

4 . In other words, cz¢ € S;.

What we have just shown is the following remark.

Remark 6.5.3. For c € R such that vi(c) < oo and z; € §;\ U Sj, 3 d € Z~q such that
JF#i
cxd € S;. Moreover, if cxd € S;, then cx? € S; ¥V n > d.
Let S ={a € R | a ¢ any minimal prime ideal of R}. S is a multiplicatively closed set
and for a € S, vj(a) < ooV 1< j < ssince each v; is infinite only on some minimal prime
ideal of R. In particular, v;(a) < ooV a € S.

Remark 6.5.4. The construction in Remark 6.5.3 applies to every element in S.

Consider the ring K = S~'R. We define a function u; : K — Q U {oo} as follows:
Let o« = f/g € K. Since g € S, by Remark 6.5.3, 3 e € Z~¢ such that gz{ € S;. Now, if
for some d € Z~y, fafﬁl € §;, then by Remark 6.5.3, we can find a sufficiently large integer

n such that fa?, gz € S; and in that case we define w; <£) =w(fxl) —w(gzl)
Otherwise, if fa:;-i ¢ S; ¥V d € Zsg, then we define u; <f> = 00.
g

Remark 6.5.5. If f € K and fzf e S, for some d € Zxg, then u; f) =
g g

vilfz!) _ vi(f) + viaf) and w(ga?) = vi(gai) _ vilg) + vi(zy)
a; a; 9T a; a;

g€ S, vi(g) < oo, so, u; <£> = oo if and only if v;(f) = oo.

since w(fz]) =

Remark 6.5.6. If fz¢ ¢ S; V d € Z~o, then w(f) < oo = v;(f).

The remark follows because if w(f) = oo, by Remark 6.5.2, f € §; which implies
fxg € §; for every d € Z~q since S; is multiplicatively closed, but that contradicts our
assumption. Hence, w(f) < oo. If v;(f) < oo, by Remark 6.5.3, we can find d € Z~( such
that fz¢ € S;, contradicting our assumption again. Thus, v;(f) = cc.
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We need to show that u; is well-defined, that is, it does not depend on the choice of n,
zi, f, or g. It follows from Remark 6.5.5 that u; does not depend on n.

By the definition of u; and Remarks 6.5.5 and 6.5.6, u; <f> = oo if and only if v;(f) =
g

00. So u; (5) is independent of the choice of z; € S; \ U S; if vi(f) = oo.
J#i
Suppose v;(f) < co. If z; € §;\ J S, then fxf € S, for d € Z~¢ by Remark 6.5.3, and
J#i
thus wu; <f> = M, which is independent of the choice of z; € S; \ |J S;. Thus,
9 i j#i
u; is independent of the choice of x;.
To prove that u; doesn’t depend on our choice of f and g, we will first show the following:

g cg

Let ¢ € S, then, by Remark 6.5.4, 3 e € Z~ such that cx§ € S;.
If 3 d € Z-g such that facf/ € §;, then, by Remark 6.5.3 and 6.5.4, fa:g,gatf, e §; for

f> _ uil(f) —vi(g)

some d € Z~q, and thus, by Remark 6.5.5, u; ( . Since fwgl,gargl, cri €
g a;

d+e

i

S; (which is w-consistent), fzd - cx¢ = fex dte

(L) =atgent) - wigeagrey = BUIOT) _wlgeniT)_ wld) =)

cg a; a; a;

,gxg ~cx§ = gex; © € S;. Thus, we have

This proves u; (Cf> = u; (f>, by Remark 6.5.5.
cg g
If fod ¢ S; for any d € Z~o, then u; (f) = 0o. We show that fcx? ¢ S; for any
g

d € Z~g, proving that u; (Cf> = 00
cg
Since cg € S, by Remark 6.5.4, 3 d € Z~¢ such that cgl‘;-i € §;. If for some e € Z~y,

fexf € S;, then w(fexf) = vilfery) = vilf) + viler) = 00 (since v;(f) = oo, by Remark
473 Qg

6.5.6). That implies vj(fcx§) =00V 1 < j < s Since ¢ € 5, vj(c) <oo V1< j<s.

Thus, v;(fexf) = v (fxf) + vj(c) = co. This means v;(fzf) =00 V1 < j < s, or that,

w(fz§) = oo which implies fz§ € S; (by Remark 6.5.2), contradicting our assumption.

Hence, u; <f> = (Cf> Vcebs.
g , cg

Suppose f = i/ in K. Then, 3 ¢ € S such that ¢(fg' — gf’) = 0.
g g

Since ¢, g,g' € S and S is multiplicatively closed, cg,cg’ € S. Thus, we get

()= (G) () = ()
u | = | = ) =y -] =y .
g g9 cg99 g

This proves that u; is well-defined. Since the sets S; are determined only by w and
each wu; is determined by the set S; and the function w, we have that the functions u; are

determined only by w. So, we have a well-defined function u; : K = S™'R — QU {00}
17




given by

5 (f) Jw(fad) —w(gad) if fad € S; for some d € Zg
‘\g/ 00 if fad ¢ S; ¥V de Zsg

Remark 6.5.7. The functions u; and % agree on R.
i

The proof of the remark is as follows: For f € R, if fa:f € §; for some d € Z~g, then

(3 {L‘d (% :Ed (%
ui<f>:w(fx§l)—w(xd): (f 1)_ (z): (f)

1 ¢ a; (473 473

If fa¢ ¢ S; V d € Z~o, then u; <{> = oo which gives v;(f) = oo (by Remark 6.5.6) and

thus vi(f) = 00

a;
It follows from Remark 6.5.7 that wu; satisfies the following properties for every f,g € R.
ui(fg) = ui(f) +ui(g) and w;(f+g) > min{u;(f),ui(9)}
Let P; be the prime ideal {z € R | u;j(z) = oo} of R. By Remark 6.5.7, {f € R | vi(x) =
oo} = P; and w; induces a function on R/P; which is equal to % on R/P;. Thus, P; is

i
a minimal prime of R and u; induces a valuation on the quotient field of R/P; which is
equivalent to v;. By abuse of notation, we will denote this valuation by u;. By Remark

v
6.5.7, uj = —. By Lemma 6.4, v; and a; are uniquely determined by u;. Since the u; are
.

(2
uniquely determined by the function w, we have that the v; and a; are uniquely determined
by the function w. O

Corollary 6.6. Let T = {I,}men be a discrete valued filtration of a Noetherian ring R,
where Iy, = 1(v1)aym N - NI (Vs)a,m ¥V m € N is an irredundant representation. Then the
valuations v; and a; € Rsqg are uniquely determined.

Proof. Since I,, = {f € R|vi(f) > a;m for 1 <i<s} and no v; can be removed from

v
this expression, by Lemma 6.2, no — can be removed from the expression vz(f) =
a;

11313 {vi(f) } Therefore, from Theorem 6.5 we have that v; and a; € R+ are uniquely
<i<s a;

determined. O

Corollary 6.7. Let T = {I,}men and J = {Jpm}men be discrete valued filtrations of
S T

a Noetherian ring R, where I, = () I(vi)aym and Jm = () I(0))ym ¥V m € N are ir-
i=1 i=1 ’

redundant representations. If Uz = Uy, then r = s and after reindexing, a; = a, and
v; = V).

. 4
Proof. From Lemma 6.2 we have that min {Ul(f)} = 1121121 {U’(f)} vV f € R. The

1<i<s | a; !

a
Corollary now follows from Theorem 6.5. '

In Definition 3.1, we defined the filtration Z(®), the twist of an arbitrary filtration Z by
S
a € Rsg. Suppose that Z = {I, }men is a discrete valued filtration where I,, = () 1(vi)a;m
i=1

1=
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¥V m € N and o € R-g. Then we have the explicit description of Z(®) as

s

I(a) = {Iﬁ)}mEN = {I(am] }mEN where I[am‘\ = n I(Ui)(am]ai vV meN.
=1
We now define a new filtration

T = {19} en = {Tam bmen where Tom = () 1(vi)ama, ¥ m € N,
=1

Observe that Z(®) is, in general, not a discrete valued filtration, but Z1 is.
The filtration Z!* is well defined; that is, it is independent of (possibly redundant)

S
representation Ip, = () I(v;)q;m V m € N. To prove this, we first show that
=1

S
(8) Iy = [)1(0i)aym ¥ m €N
i=1
is an irredundant representation of Z if and only if
(9) 1T = (Y I(vi)aam ¥ m € N
i=1

is an irredundant representation of ZI*). This follows since (8) is irredundant if and only
if no % can be eliminated from the function
a;
w(f) = min {vl(f>, RN vs(f) }

ai as

Vi

can be eliminated from the function

v1(/f) vs(f)}

e
aaq Qag

which holds if and only if no
aa;

walf) = min {

which is equivalent to (9) being irredundant. Now by Corollary 6.7, the valuations v; and
a; € Ry giving irredundant representations of Z are uniquely determined and the valua-
tions v; and a;a € Rsq giving irredundant representations of Z!* are uniquely determined.
Thus the filtration Z[®! is independent of choice of representation of Z.

Proposition 6.8. Suppose that T is a discrete valued filtration of a Noetherian ring R
and a € Rsg. Then K(ZW) = 7l = g (zl).

Proof. Since T is a discrete valued filtration of R, by Corollary 6.3, Tl = K(zlo).
Now, K(Z) = {K(Z),,}men, where K(Z(™),, = {z € R | Ty () > m}. For z € R,
Uz () > m if and only if Tz(x) > am (by Theorem 3.10) if and only if z € i (by
Corollary 6.3). Thus, K(Z(®) = Tl O

Theorem 6.9. Let T = {[,n}men and J = {Jm}men be discrete valued filtrations of a
Noetherian ring R and o € Rsg. Then 7 = aTy if and only if J = T,

Proof. Theorem 3.10 implies that 77 = aVz). Thus 77 = a vy if and only if Uy =V 7.

This holds if and only if X(Z(®) = K(J), by Theorem 5.5. Since J is a discrete valued

filtration, by Corollary 6.3, K(J) = J and by Corollary 6.8, K(Z(®)) = 7l O
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7. THE ASYMPTOTIC SAMUEL FUNCTION AND MULTIPLICITY

Let R be a d-dimensional analytically irreducible (Noetherian) local ring with maximal
ideal mp. A filtration Z = {I,, }nen of R is said to be an mp-filtration if I,, is mpr-primary
V n € Zso. The multiplicity of an mp-primary filtration is defined, and exists as a limit
in an analytically unramified local ring, but does not exist as a limit in general if the
ring is not generically analytically unramified. This follows from Theorem 1.1 [5]. The
multiplicity of an mpg-primary filtration is

. tr(R/1)
el) = lim = o
where fr(N) is the length of an R-module N. Let K be the quotient field of R. A
valuation v of K is an mp-divisorial valuation of R if the valuation ring O, dominates
R (so that R C O, and the maximal ideal m, of O, satisfies m, N R = mpg) and O, is
essentially of finite type over R. Since O, is a Noetherian ring, a divisorial valuation is a
discrete (rank 1) valuation. More about divisorial valuations can be found in Section 9.3
[17]. For I an ideal in R, v(I) = min{v(x) | x € I}. Let T = {I,}nen be an mp-primary
filtration and let v be an mp-divisorial valuation of R. Then define
v(Z) = inf v(In) = lim V(In).

n n—oo N

The existence of this limit is shown for instance in Proposition 2.3 [8]. In [2], the saturation
7 of 7 is defined to be the mp-filtration Z = {I,, },,cn where

I, = {f € mg | v(f) > nv(T) for all mp-divisorial valuations of R}.

It is shown in [2], that in an analytically irreducible local ring (R, mpg), for any filtration
T of mp-primary ideals, Z is the unique largest filtration J containing Z such that Z
and J have the same multiplicity. Specifically, they show in Theorem 4.1 [2] that in an
analytically irreducible local ring R, mpg-filtrations Z C J satisfy e(Z) = e(J) if and only
if Z = 7. In the context of K-stability, related saturations have been found in [18] and

[3].

Theorem 7.1. Suppose that R is an analytically irreducible local ring with mazximal ideal
mp and Z and J are mp-filtrations such that vz =T 7. Then e(Z) = e(J).

Proof. We have that Z, J C K(Z) by Theorem 5.5. Thus it suffices to show that e(K(Z)) =
e(7).

Write K(Z) = {K(Z)n}nen and Z = {I, }nen. Suppose that f € K(Z); for some | € Zwg
and m,n € Z~g are such that f™® € I,,,. Let v be an mpg-divisorial valuation of R. Then
v(f™) > v(lyn) > mv(Z), so v(f") > v(f™")v(Z), since for g € R, v7(g) = sup{m | g €
I,,}. Thus v(f) > MV(I) which implies

n
v(f) zvz(fv(l) = Ww(Z).

Thus f € I;. We conclude that Z C K(Z) C Z and so e(K(Z)) = e(Z) by Theorem 4.1
[2]. O

In Theorem 7.1, we showed that if 7 is an mpg-primary filtration in an analytically
irreducible local ring R, then K(Z) C Z. The following example shows that the saturation
Z can be much larger that K(Z).

Example 7.2. An ezample showing that we can have that K(Z) is a proper subset of T.
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Proof. Let k be a field and R = kl[[x,y]], a power series ring in two variables. Let f =
y—x—x2—2% ... € R. Let I, = (2", f) for n € Z~g. Then, setting Iy = R, we have
that Z = {I,, }nen is an mp-primary filtration. We have that y™ = (f+ (z+ 2% +---))™ =
fh+ (x4 22+ ---)™ for some h € R. Thus y™ € I, if and only if m > n. We then have
that

vz(y™) =max{n|y" € I,} =m

for all m and

_ .oy
vz(y™) = nhjgo (n) =m.

Thus each K(Z),, properly contains K(Z),,+1, since y™ € K(Z)m \ K(Z)m+1-
Let v be an mpg-divisorial valuation. Then v(I,) < v(f), so ¥(Z) = 0. Thus I, = mg
for all n > 0 where Z = {I,, } nen-.
g

With the notation of the above example, we construct an example of a filtration J =
{J,,} such that the saturation J = {m%} is the mg-adic filtration, but the filtration K(7)
is much smaller than j .

Define J = {Jn}nen by J = mil, for n > 0. If v is an mp-divisorial valuation, then
v(Jn) = nv(mpg) + v(I,) so v(J) = v(mg). Since R is a regular local ring, m7, = m?, for
all n, and thus by Proposition 6.8.4 [17] and its proof, the mp-adic filtration is saturated.
In particular, J = {m%}nen is the mp-adic filtration. We calculate that 7(y") = |2 | for
n > 0. Thus y™ € mp \ K(J ), for all n.

In the special case that 7 is a discrete valued filtration, we have that Z = Z.
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