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Abstract. We extend the asymptotic Samuel function of an ideal to a filtration and
show that many of the good properties of this function for an ideal are true for filtrations.
There are, however, interesting di↵erences, which we explore. We study the notion of
projective equivalence of filtrations and the relation between the asymptotic Samuel
function and the multiplicity of a filtration. We further consider the case of discrete
valued filtrations and show that they have particularly nice properties.

1. Introduction

In this paper, we extend the asymptotic Samuel function of an ideal to any arbitrary
filtration of a Noetherian ring R. The asymptotic Samuel function of an ideal was first
defined by Samuel in [16]. Its basic properties and some beautiful theorems about it are
proven in the articles [16], [12], [14], [15], [9], [10] and [11] and are surveyed in the book
[17]. A recent paper studying the asymptotic Samuel function in the context of resolution
of singularities is [1].

Let R be a Noetherian ring. For a filtration I = {Im}m2N of ideals in R, define the
order of I by ⌫I(f) := sup{m | f 2 Im}. We define the asymptotic Samuel function of I
as the function ⌫I : R ! R�0 [ {1} given by

⌫I(x) = lim
n!1

⌫I(xn)

n

for x 2 R. The existence of this limit is shown in Theorem 3.4. If I = {Im}m2N is
the adic-filtration of powers of an ideal I then the asymptotic Samuel function ⌫I of the
filtration I is equal to the classical asymptotic Samuel function ⌫I of the ideal I.

The Rees algebra of a filtration I = {Im}m2N is the graded R-algebra

R[I] =
X

m2N
Imtm ✓ R[t],

where R[t] is the polynomial ring in the variable t over R, which is viewed as a graded
R-algebra where t has degree 1. Let R[I] =

P
m2N

Imtm be the integral closure of R[I] in

R[t].
If I = {Im}m2N is the adic-filtration of powers of an ideal I, then R[I] =

L
m2N

Imtm is

the usual Rees algebra of I, and R[I] =
L
m2N

Imtm = R[I], where Im is the integral closure

of the ideal Im.
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For a general filtration I = {Im}m2N of a Noetherian ring R, the integral closure of
the Rees algebra R[I] is larger than the ring

L
m2N

Imtm. In fact (Lemma 4.3), the integral

closure of R[I] is

R[I] =
X

m2N
Jmtm

where Jm = {f 2 R | f r
2 Irm for some r > 0} and IC(I) := {Jm}m2N is a filtration of

R.
Given a filtration I = {Im}m2N of R and ↵ 2 R>0, define the twist of I by ↵ to be the

filtration

I
(↵) = {I(↵)m }m2N = {Id↵me}m2N.

In Theorem 3.10 it is shown that if I is a filtration and ↵ 2 R>0, then,

⌫I = ↵⌫I(↵) .

This is in contrast to the case of an ideal I in R, where the set T of positive numbers ↵
for which there exists an ideal J of R such that ⌫I = ↵⌫J is a discrete subset of R ([11],
Exercise 10.27 [17]).

Ideals I and J of a Noetherian ring R are said to be projectively equivalent if there
exists ↵ 2 R>0 such that ⌫I = ↵ ⌫J . Corollary 11.9 (ii) [10] or Exercise 10.26 of [17]
provides a characterization of projectively equivalent ideals in terms of integral closures,
which we state in Proposition 1.1 below.

Proposition 1.1. Let I and J be ideals in a Noetherian ring R and ↵ 2 R>0. Then the

following are equivalent

1) I and J are projectively equivalent with ⌫I = ↵⌫J .
2) There exists m,n 2 Z>0 such that ↵ = m

n and Im = Jn.

3) There exists m,n 2 Z>0 such that ↵ = m
n and we have equality of integral closures

of Rees algebras

R[Im] = R[Jn].

It follows that if I and J are projectively equivalent with ⌫I = ↵⌫J , then ↵ 2 Q.
The definition of projective equivalence for ideals extends naturally to filtrations. Fil-

trations I and J in a Noetherian ring R are said to be projectively equivalent if there
exists ↵ 2 R>0 such that ⌫I = ↵⌫J .

Suppose that I and J are ideals in a Noetherian ring R and I = {In}n2N, J = {Jn
}n2N

are their associated adic-filtrations. We have that ⌫I = ⌫I and ⌫J = ⌫J , so the ideals I
and J are projectively equivalent if and only if the associated adic-filtrations I and J are
projectively equivalent.

Theorem 3.10 shows that given any ↵ 2 R>0, and a filtration I = {Im}m2N of R, the
twist of I by ↵ is projectively equivalent to I since ⌫I = ↵⌫I(↵) . Thus, the conclusion of
the rationality of ↵, as shown in Proposition 1.1 for projective equivalence of ideals, does
not extend to filtrations.

We provide the following necessary and su�cient condition for projective equivalence
of filtrations.

Theorem 1.2. (Theorem 5.2) Let I = {Im}m2N and J = {Jm}m2N be filtrations in a

Noetherian ring R. Then I and J are projectively equivalent if and only if 9 ↵, � 2 R>0

such that IC(I(↵)) = IC(J (�)), or equivalently, R[I(↵)] = R[J (�)].
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We give an example in Example 5.4 of filtrations I and J which are projectively equiv-
alent with ⌫I = ⌫J but for no ↵ or � 2 Q do we have that R[I(↵)] = R[J (�)].

In the case that I and J are adic-filtrations of powers of ideals, we have by Proposition
1.1 that I and J are projectively equivalent if and only if R[I(m)] = R[J (n)] form,n 2 Z>0

with ⌫I = m
n ⌫J . In this case, R[I(m)] = R[Im] and R[J (n)] = R[Jn].

If I and J are ideals such that ⌫I = ⌫J , then R[I] = R[J ] by Corollary 6.9.1 [17] (Stated
in Lemma 3.6 of this paper). Thus Proj(R[I]) ⇠= Proj(R[J ]) as R-schemes. However, this
property fails for general filtrations as we now show.

Let k be a field and R = k[[x]], with maximal ideal mR = (x). Let I = {Im}m2N and
J = {Jm}m2N where Im = (xm+1) and Jm = (xm) 8 m > 0 and I0 = J0 = R. In Example
5.4, it is shown that ⌫I = ⌫J . We have that both R[I] and R[J ] are integrally closed.
However, Proj(R[I]) is not isomorphic to Proj(R[J ]). To show this we use the theory of
analytic spread of filtrations [7]. The analytic spread of a filtration F = {Fm}m2N of a
Noetherian local ring R is defined (in equation (6) of [7]) to be

`(R) = dimR[F ]/mRR[F ].

The analytic spread has the geometric interpretation that `(F) = dim⇡�1
F (mR)+ 1 where

⇡F : Proj(R[F ]) ! Spec(R) is the natural projection.
By Lemma 3.8 [7], we have that `(F) = 0 if and only if for all n > 0 and f 2 Fn there

exists m > 0 such that fm
2 mRFmn. We verify that this condition holds for I. Suppose

that f 2 In. Then ord(f) � n+ 1. For m � 2, ord(fm) � nm+m � (nm+ 1) + 1 and so
fm

2 mRInm. Thus `(I) = 0 and so ⇡�1
I (mR) = ;. Since I is a filtration of mR-primary

ideals, we then have that Proj(R[I]) ⇠= Spec(R) \ {mR}. In contrast, R[J ] is the Rees
algebra of a principal ideal in a domain, so Proj(R[J ]) ⇠= Spec(R).

From Proposition 1.1 we obtain the geometric interpretation of the condition that ideals
I and J are projectively equivalent; we have that Proj(R[Im]) = Proj(R[Jn]) for some
positive integers m and n. The algebras R[Im] and R[Jn] are suitable Veronese algebras
of R[I] and R[J ], which are the Rees algebras of twists of the corresponding adic-filtrations
by the integers m and n. From Theorem 1.2, we obtain the statement that if I and J

are filtrations which are projectively equivalent, then by taking suitable twists by real
numbers ↵ and �, we have that Proj(R[I(↵)]) = Proj(R[J (�)]).

We prove the following theorem, which shows that given a filtration I, there is a unique
largest filtration K(I) such that I and K(I) have the same asymptotic Samuel function.

Theorem 1.3. (Theorem 5.5) For a filtration I = {Im}m2N of ideals in R, define

K(I)m := {f 2 R | ⌫I(f) � m} 8 m 2 N.

Then K(I) := {K(I)m}m2N is a filtration of ideals in R and I ✓ K(I). Moreover,

⌫I = ⌫K(I) and K(I) is the unique, largest filtration J such that ⌫I = ⌫J .

If I = {Im}m2N is the adic-filtration of powers of an ideal, then K(I) = {Im}m2N, the
filtration of integral closures of powers of I (by Lemma 3.6).

In contrast, for a general filtration, it is possible for K(I) to be larger than the filtration
IC(I), the integral closure of I. Such an example is given in Example 5.6. By Lemma 5.8,
the Rees algebra R[K(I)] is integrally closed. Thus for a filtration I, we have inclusions
of Rees algebras

(1) R[I] ✓ R[IC(I)] = R[I] ✓ R[K(I)] = R[K(I)]
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where the two inclusions can be proper. In Theorem 5.7 we give another characterization
of projective equivalence.

Theorem 1.4. (Theorem 5.7) Suppose I and J are filtrations of a Noetherian ring R.

Then I is projectively equivalent to J with ⌫I = ↵⌫J if and only if K(I(↵)) = K(J ).

In Section 6, we consider discrete valued filtrations (defined at the beginning of Section
6). We generalize some of the theory of Rees valuations of ideals ([14], [15], Section 10
[17]) to these filtrations.

If I = {Im}m2N is the adic-filtration of powers of an ideal I, and v1, . . . , vs are the Rees
valuations of I, then for f 2 R,

(2) ⌫I(f) = min

⇢
v1(f)

v1(I)
, . . . ,

vs(f)

vs(I)

�
.

This result is proven in [14] and after Lemma 10.1.5 in [17].
We prove the following Lemma, which generalizes this result to discrete valued fil-

trations. The Rees algebras of discrete valued filtrations are generally non Noetherian
R-algebras. Formula (2) generalizes to these filtrations.

Lemma 1.5. (Lemma 6.2) Let I = {Im} where Im = I(v1)ma1 \ · · · \ I(vs)mas be a

discrete valued filtration of a Noetherian ring R. For f 2 R \ {0},

⌫I(f) = min

⇢�
v1(f)

a1

⌫
, · · · ,

�
vs(f)

as

⌫�
and ⌫I(f) = min

⇢
v1(f)

a1
, · · · ,

vs(f)

as

�
.

In Theorem 6.5, we generalize to discrete valued filtrations the proof of uniqueness of
Rees valuations for ideals given in Theorem 10.1.6 [17]. We obtain the following Corollary.

Corollary 1.6. (Corollary 6.7) Let I = {Im}m2N and J = {Jm}m2N be discrete valued

filtrations of a Noetherian ring R, where Im =
sT

i=1
I(vi)aim and Jm =

rT
i=1

I(v0i)a0im 8 m 2 N

are irredundant representations. If ⌫I = ⌫J , then r = s and after reindexing, ai = a0i and
vi = v0i.

If I = {Im}m2N where Im =
sT

i=1
I(vi)aim, then I

[↵] is the filtration I [↵]m =
sT

i=1
I(vi)↵mai .

This filtration is well defined (independent of representation of I as a discrete valued
filtration).

Proposition 1.7. (Proposition 6.8) Suppose that I is a discrete valued filtration of a

Noetherian ring R and ↵ 2 R>0. Then K(I(↵)) = I
[↵] = K(I [↵]).

In particular, the chain of inclusions of (1) are all equalities for discrete valued filtrations.

Theorem 1.8. (Theorem 6.9) Let I = {Im}m2N and J = {Jm}m2N be discrete valued

filtrations of a Noetherian ring R and ↵ 2 R>0. Then ⌫I = ↵ ⌫J if and only if J = I
[↵]
.

In the final section, we compare the asymptotic Samuel function of a filtration with its
multiplicity. The multiplicity of an mR-primary filtration is defined, and exists as a limit
in an analytically unramified (Noetherian) local ring, but does not exist in general if the
ring is not generically analytically unramified. This follows from Theorem 1.1 [5].

In an analytically irreducible local ring (R,mR), for any filtration I of mR-primary
ideals, there is a unique largest filtration Ĩ containing I such that I and Ĩ have the same
multiplicity. This is shown in Theorem 1.4 [2].
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For an ideal I, we have that the integral closure I is the largest ideal which has the same
asymptotic Samuel function as I (Lemma 3.6) and this is the largest ideal containing I
which has the same multiplicity as I by a theorem of Rees ([13] and Theorem 11.3.1 [17]).

For general mR-filtrations I, we have that I and K(I) have the same multiplicity
(Theorem 7.1) but we give an example in Example 7.2 showing that Ĩ can be much larger
than K(I). In the case that I is a discrete valued filtrations we have that I = K(I) = Ĩ.

2. Notation

We will denote the nonnegative integers by N and the positive integers by Z>0, the set
of rational numbers by Q, the set of nonnegative rational numbers by Q�0 and the positive
rational numbers by Q>0. We will denote the set of nonnegative real numbers by R�0 and
the positive real numbers by R>0.

The round down bxc of a real number x is the largest integer which is less that or equal
to x. The round up dxe of a real number x is the smallest integer which is greater than
or equal to x.

The maximal ideal of a local ring R will be denoted by mR. The integral closure of an
ideal I in a Noetherian ring R will be denoted by I. The multiplicative group of units in
a ring R will be denoted by R⇥.

3. The asymptotic Samuel function of a Filtration

Let R be a Noetherian ring. We extend the asymptotic Samuel function of an ideal
to an arbitrary filtration of R. Let I = {Im}m2N be a filtration of ideals in R, that is,
I0 = R, In is an ideal in R, In ◆ In+1 and In · Im ✓ In+m, 8 m,n 2 N.

We say that a filtration I = {Im}m2N is a subset of a filtration J = {Jm}m2N and write
I ✓ J if Im ✓ Jm 8 m 2 N.

The following filtration will be important in this paper.

Definition 3.1. Given a filtration I = {Im}m2N of R and ↵ 2 R>0, define a filtration

I
(↵) = {I(↵)m }m2N by I(↵)m = Id↵me. We will call I

(↵) the twist of I by ↵.

Definition 3.2. For a filtration I = {Im}m2N of R, define a function ⌫I : R ! N [ {1}

by ⌫I(f) := sup {m | f 2 Im}. We call this the order of I.

Remark 3.3. For x, y 2 R, ⌫I(xy) � ⌫I(x) + ⌫I(y) and ⌫I(x + y) � min{⌫I(x), ⌫I(y)}.
Observe that ⌫I(f) = 1 if and only if f 2

T
m2N

Im.

Theorem 3.4. Let I = {Im}m2N be a filtration of ideals in a Noetherian ring R. For any

x 2 R, the limit lim
n!1

⌫I(xn)

n
exists as an element of R�0 [ {1}.

Proof. Let x 2 R and u := lim sup
n!1

⌫I(xn)

n
(which could possibly be 1).

If u = 0, then the limit exists since 0  lim inf
n!1

⌫I(xn)

n
 lim sup

n!1

⌫I(xn)

n
= 0.

Assume u > 0. Let N 2 R>0 be such that N < u. We can choose n0 2 Z>0 such that
⌫I(xn0)

n0
> N . Let n be any arbitrary positive integer. We have n = qn0 + r for some

q, r 2 N such that 0  r < n0.
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Using Remark 3.3 it follows that

⌫I(xn)

n
=

⌫I(xqn0+r)

qn0 + r
�

⌫I(xqn0)

qn0 + r
+

⌫I(xr)

qn0 + r
� q

⌫I(xn0)

qn0 + r
+

⌫I(xr)

qn0 + r
� q

⌫I(xn0)

qn0 + r
.

This implies
⌫I(xn)

n
�

qn0

qn0 + r

⌫I(xn0)

n0
�

qn0

qn0 + r
N �

qn0

qn0 + n0
N =

q

q + 1
N.

Taking lim inf on both sides, we get lim inf
n!1

⌫I(xn)

n
� lim inf

n!1

q

q + 1
N .

Clearly, lim inf
n!1

q

q + 1
 1. Since r < n0,

q

q + 1
=

n� r

n+ n0 � r
�

n� n0

n
imply-

ing lim inf
n!1

q

q + 1
� 1. Thus lim inf

n!1

q

q + 1
= 1. This shows that lim inf

n!1

⌫I(xn)

n
� N

for any positive real number strictly smaller than u. Since N was arbitrarily chosen,

lim inf
n!1

⌫I(xn)

n
� lim sup

n!1

⌫I(xn)

n
, proving that the limit exists. ⇤

Definition 3.5. For a filtration I = {Im}m2N of ideals in R, we define the function

⌫I : R ! R�0 [ {1} by ⌫I(x) := lim
n!1

⌫I(xn)

n
for x 2 R.

The asymptotic Samuel function of an ideal I in a Noetherian ring R is defined to be

⌫I(x) = lim
n!1

ordI(xn)

n
where ordI(x) = sup{m | x 2 Im} for x 2 R. Then for any

x 2 R, ⌫I(x) = ⌫I(x), where I is the adic-filtration I = {Im}m2N. This follows since
ordI(x) = ⌫I(x) for any x 2 R.

Thus, ⌫I extends the concept of the asymptotic Samuel function of an ideal to an
arbitrary filtration of a Noetherian ring. We call ⌫I the asymptotic Samuel function
of the filtration I.

An important property of the asymptotic Samuel function of an ideal is the following
Lemma, which is proven in Corollary 6.9.1 [17].

Lemma 3.6. Let R be a Noetherian ring, I an ideal in R and c 2 N. Then

{x 2 R | ⌫I(x) � c} = Ic.

Remark 3.7. Let I ✓ J be filtrations. Then ⌫I  ⌫J .

Proof. For x 2 R, we have that ⌫I(xi)  ⌫J (xi) 8 i 2 N so that ⌫I(x)  ⌫J (x). ⇤

Example 3.8. In a Noetherian local ring (R,mR), consider the filtration I = {Im}m2N
given by I0 = R and Im = mR 8 m > 0. In this case, ⌫I(a) = 1 if a 2 mR and ⌫I(a) = 0
if a /2 mR.

Remark 3.9. The range of ⌫I may not be contained in Q�0 [ {1}. This follows from

Theorem 3.10 below. Observe that this is di↵erent from the case when I = {Im}m2N for

an ideal I of R, in which case we do have ⌫I = ⌫I and then the range of ⌫I is contained

in Q�0 [ {1} (as shown after Lemma 10.1.5 [17]).

Theorem 3.10. Let I = {Im}m2N be a filtration in R and ↵ 2 R>0. Then, ⌫I = ↵⌫I(↵),

where I
(↵) = {I(↵)m }m2N = {Id↵me}m2N.
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Proof. For x 2 R and i 2 N, xi 2 Id↵⌫I(↵) (xi)e, so, ⌫I(xi) � d↵⌫I(↵)(xi)e which gives

⌫I(x) = lim
i!1

⌫I(xi)

i
� lim

i!1

d↵⌫I(↵)(xi)e

i
. Since ↵⌫I(↵)(xi)  d↵⌫I(↵)(xi)e  ↵⌫I(↵)(xi)+1,

lim
i!1

↵⌫I(↵)(xi)

i
 lim

i!1

d↵⌫I(↵)(xi)e

i
 lim

i!1

↵⌫I(↵)(xi) + 1

i

This implies lim
i!1

d↵⌫I(↵)(xi)e

i
= ↵⌫I(↵)(x). Thus, ⌫I(x) � ↵⌫I(↵)(x).

Note that if x 2 Ik for some k 2 N, then x 2 I⌃⌅ k
↵

⇧
↵
⌥. It follows that ⌫I(↵)(x) �

j⌫I(x)
↵

k
. Thus, 8 i 2 Z>0,

⌫I(↵)(xi)

i
�

j⌫I(xi)
↵

k

i
which implies lim

i!1

⌫I(↵)(xi)

i
� lim

i!1

j⌫I(xi)
↵

k

i
.

Since
j⌫I(xi)

↵

k
>

⌫I(xi)

↵
� 1, lim

i!1

j⌫I(xi)
↵

k

i
� lim

i!1

⌫I(xi)

↵
� 1

i
=

⌫I(x)

↵
.

This shows ⌫I(↵)(x) �
⌫I(x)

↵
, thus proving the result. ⇤

Proposition 3.11. Let I be a filtration of R. For f, g 2 R,

(1) ⌫I(fn) = n ⌫I(f) 8 n 2 Z>0.

(2) ⌫I(f + g) � min{⌫I(f), ⌫I(g)}.

Proof. Since the limit defining ⌫I exists, any subsequence also converges to the same limit.
Thus,

⌫I(f) = lim
m!1

⌫I(fm)

m
= lim

m!1

⌫I(fnm)

nm
=

1

n
lim

m!1

⌫I((fn)m)

m
=

1

n
⌫I(f

n), 8 n 2 Z>0.

This proves (1).
To prove (2), let f, g 2 R be such that ⌫I(f) � ⌫I(g).

For " > 0, 9 m0 2 Z>0 such that 8 m � m0,
⌫I(fm)

m
� ⌫I(g) � " and

⌫I(gm)

m
�

⌫I(g)�". For all m, k 2 Z>0, ⌫I((f +g)mk) � min
i+j=mk

{⌫I(f igj)}, using Remark 3.3. Since

i+ j = mk,mk � m

�
i

m

⌫
+m

�
j

m

⌫
� mk � 2m. Thus by Remark 3.3,

⌫I(f
igj) � ⌫I(f

i) + ⌫I(g
j) � ⌫I(f

mb i
m c) + ⌫I(g

mb j
m c) �

�
i

m

⌫
⌫I(f

m) +

�
j

m

⌫
⌫I(g

m).

For m � m0, ⌫I(f
igj) �

�
i

m

⌫
m(⌫I(g)� ") +

�
j

m

⌫
m(⌫I(g)� ") � (mk � 2m)(⌫I(g)� ").

Thus, for k >> 0,

⌫I((f + g)mk)

mk
�

mk(⌫I(g)� ")� 2m(⌫I(g)� ")

mk
= ⌫I(g)� "�

2

k
(⌫I(g)� ").

Taking limits as k ! 1, we get ⌫I(f + g) � ⌫I(g)� ". Since " is arbitrary, ⌫I(f + g) �
⌫I(g) = min{⌫I(f), ⌫I(g)}. This completes the proof. ⇤
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4. Integral closure

Lemma 4.1. For an ideal I in a Noetherian ring R, ⌫I = ⌫I where I = {Im}m2N and

I = {Im}m2N.

Proof. For x 2 R and i 2 N, xi 2 I⌫I(x
i) which gives ⌫I(xi) � ⌫I(x

i), by Lemma 3.6. By

Proposition 3.11(a), ⌫I(x) �
⌫I(x

i)

i
8 i 2 Z>0. This implies ⌫I(x) � lim

i!1

⌫I(x
i)

i
= ⌫I(x).

Since I ✓ I, by Remark 3.7, ⌫I = ⌫I . ⇤
The integral closure of the Rees ring R[I] of an ideal I is R[I] =

P
n2N

Intn (Proposition

5.2.1 [17]). We can extend this concept of integral closure to arbitrary filtrations of a
Noetherian ring.

Definition 4.2. The Rees algebra of a filtration I = {Im}m2N is the graded R-algebra

R[I] =
P
m2N

Imtm ✓ R[t], where R[t] is the polynomial ring in the variable t over R, which

is viewed as a graded R-algebra where t has degree 1. Let R[I] =
P
m2N

Imtm be the integral

closure of R[I] in R[t].

In [6] Lemma 5.6, there is a characterization of R[I] when (R,mR) is a (Noetherian)
local ring and I is an mR-filtration (Im is an mR-primary ideal for m > 0). The proof
extends to the case where I is an arbitrary filtration of a Noetherian ring R.

Lemma 4.3. Let I = {Im}m2N be a filtration in R. Then R[I] =
P
m2N

Jmtm where

Jm = {f 2 R | f r
2 Irm for some r > 0} and IC(I) := {Jm}m2N is a filtration in R.

Definition 4.4. We call the filtration IC(I) defined in Lemma 4.3 the integral closure
of the filtration I.

If I = {Im}m2N is the adic-filtration of an ideal I of R, then IC(I) = {Im}m2N. In
this particular case, we have already shown in Lemma 4.1 that ⌫I = ⌫IC(I). In fact, this
is true for any arbitrary filtration as well.

Theorem 4.5. Let I = {Im}m2N be a filtration of R. Then ⌫I = ⌫IC(I).

Proof. Let IC(I) = {Jm}m2N (as in Lemma 4.3). Since I ✓ IC(I), ⌫I  ⌫IC(I), by
Remark 3.7.

Suppose x 2 Jm for some m 2 N, that is, xr 2 Irm for some r > 0. The ideal Irm is
a reduction of Irm by Corollary 1.2.5 [17]. By Remark 1.2.3 [17], 9 n 2 Z>0 such that 8
k � n, xrk 2 (Irm)k ⇢ Ik�n+1

✓ Irm(k�n+1). This shows that ⌫I(xrk) � rm(k � n + 1),

which implies lim
k!1

⌫I(xrk)

rk
� lim

k!1

rm(k � n+ 1)

rk
= m. Thus, if x 2 Jm, ⌫I(x) � m.

For i 2 N, since xi 2 J⌫IC(I)(xi), ⌫I(x
i) � ⌫IC(I)(x

i). By Proposition 3.11, ⌫I(x) �

⌫IC(I)(x
i)

i
8 i 2 Z>0. Thus, ⌫I(x) � lim

i!1

⌫IC(I)(x
i)

i
= ⌫IC(I)(x). This proves ⌫I(x) =

⌫IC(I)(x) 8 x 2 R. ⇤
Corollary 4.6. Let I = {Im}m2N be a filtration in R and I = {Im}m2N. Then ⌫I = ⌫I .

Proof. This follows from Theorem 4.5 and Remark 3.7 since Im ✓ Im ✓ Jm 8 m 2 N,
where IC(I) = {Jm}m2N is the integral closure of the filtration I. ⇤
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5. Projective Equivalence

Definition 5.1. We define filtrations I and J in a Noetherian ring R to be projectively
equivalent if there exists ↵ 2 R>0 such that ⌫I = ↵⌫J .

This generalizes the classical definition of projective equivalence of ideals. Ideals I and
J are projectively equivalent if there exists ↵ 2 R>0 such that ⌫I = ↵⌫J . Proposition
1.1 in the introduction gives the beautiful classical theorem characterizing projectively
equivalent ideals. Proposition 1.1 is generalized to filtrations in Theorem 5.2.

Suppose that I and J are ideals in a Noetherian ring R and I = {Im}m2N and J =
{Jm

}m2N are their associated adic-filtrations. We have that ⌫I = ⌫I and ⌫J = ⌫J , so the
ideals I and J are projectively equivalent if and only if the associated adic-filtrations I

and J are projectively equivalent.
Theorem 3.10 shows that given any ↵ 2 R>0, there are projectively equivalent filtra-

tions I and J in a ring with ⌫I = ↵⌫J . Thus, the conclusion of the rationality of ↵
(for projectively equivalent ideals commented after Proposition 1.1) does not extend to
filtrations.

We provide the following necessary and su�cient condition for projective equivalence
of filtrations.

Theorem 5.2. Let I = {Im}m2N and J = {Jm}m2N be filtrations in a Noetherian ring

R. Then I and J are projectively equivalent if and only if 9 ↵, � 2 R>0 such that

IC(I(↵)) = IC(J (�)), or equivalently, R[I(↵)] = R[J (�)].

Proof. Suppose 9 ↵,� 2 R>0 such that IC(I(↵)) = IC(J (�)). By Theorems 3.10 and 4.5,

⌫I = ↵⌫I(↵) = ↵⌫IC(I(↵)) = ↵⌫IC(J (�)) = ↵⌫J (�) = ↵
⌫J
�

. This shows that I and J are

projectively equivalent.
Assume I and J are projectively equivalent, that is, 9 � 2 R>0 such that ⌫I = � ⌫J .

Choose ↵, � 2 R>0 \Q such that
↵

�
= �, or, ↵ = ��. We show that IC(I(��)) = IC(J (�)).

Using Lemma 4.3, IC(I(��)) = {Km}m2N where

Km = {f 2 R | f r
2 I(��)rm = Id��rme for some r > 0}

and IC(J (�)) = {Lm}m2N where

Lm = {f 2 R | f t
2 J (�)

tm = Jd�tme for some t > 0}.

Recall the filtrations I = {Im}m2N and J = {Jm}m2N defined in Corollary 4.6.
Let x 2 Km, that is, xr 2 Id��rme for some r > 0. Then 8 i 2 N, xri 2 (Id��rme)

i
✓

Id��rmei, which implies ⌫I(x
ri) � d��rmei. This gives lim

i!1

⌫I(x
ri)

ri
� lim

i!1

d��rmei

ri
,

that is, ⌫I(x) �
d��rme

r
. By the assumption, ⌫J (x) �

d��rme

r�
, that is, lim

i!1

⌫J (x
i)

i
�

d��rme

r�
.

Suppose lim
i!1

⌫J (x
i)

i
=

d��rme

r�
. Then, given " > 0, 9 n0 = n0(") 2 Z>0 such that

�" <
⌫J (x

i)

i
�

d��rme

r�
< " 8 i � n0. For " =

d��rme

r�
� �m > 0, let i0 = n0(").

9



We have that " is positive since � 62 Q. So, �" = �m �
d��rme

r�
<

⌫J (x
i0)

i0
�

d��rme

r�
implying ⌫J (x

i0) > �mi0, or that, ⌫J (x
i0) � d�i0me. This shows that xi0 2 Jd�i0me, that

is, x 2 Lm.

If lim
i!1

⌫J (x
i)

i
>

d��rme

r�
, 9 j0 2 Z>0 such that

⌫J (x
j0)

j0
>

d��rme

r�
. This shows that

⌫J (x
j0) >

j0d��rme

r�
�

j0��rm

r�
implying that ⌫J (x

j0) � dj0�me, so, xj0 2 Jdj0�me, or

that, x 2 Lm. Thus, we have shown that Km ✓ Lm 8 m 2 N. Similarly, we can show that
Lm ✓ Km 8 m 2 N, proving that IC(I(��)) = IC(J (�)). ⇤
Remark 5.3. In the proof above, the condition of ↵ and � being real numbers cannot be

weakened, as shown in the following example, where I and J are projectively equivalent

filtrations with ⌫I = ⌫J but for no ↵ or � 2 Q>0 do we have that R[I(↵)] = R[J (�)]. This

follows from (5) below, since R[I(↵)] = R[J (�)] implies ↵ = � by Theorems 4.5 and 3.10.

Example 5.4. We give some calculations of twists of filtrations in the power series ring

in one variable over a field.

Let R = k[[x]], a power series ring in the variable x over a field k. For f 2 R, let

ordk[[x]](f) = min{r | fr 6= 0} where f =
1P

m=0
fmxm with fm 2 k.

Fix c 2 Z>0. Let I = {Im}m2N be given by I0 = R and let Im = (xm+c) for m 2 Z>0

and J = {Jm}m2N be given by J0 = R and Jm = (xm) for m 2 Z>0. Both I and J are
filtrations in R and I ✓ J .

Let f 2 R with ordk[[x]](f) = c0. For n 2 Z>0, ⌫J (fn) = nc0 and ⌫I(fn) = nc0 � c (if
nc0 > c) and = 0 (if nc0  c).

⌫I(f) = lim
n!1

⌫I(fn)

n
= lim

n!1

nc0 � c

n
= c0 and ⌫J (f) = lim

n!1

⌫J (fn)

n
= lim

n!1

nc0
n

= c0

Thus I and J are projectively equivalent with ⌫I = ⌫J .

Observe that 8 ↵ 2 R>0, R[I(↵)] ✓ R[J (↵)] in R[t]. We will show that

(3) R[J (↵)] is integrally closed in R[t] 8 ↵ 2 R>0.

(4) R[J (↵)] ✓ R[I(↵)] when ↵ 2 R>0 \Q, proving that R[I(↵)] = R[J (↵)].

(5) R[I(↵)] $ R[J (↵)] when ↵ 2 Q.

To prove (3), it is enough to show it for homogeneous elements in R[t]. Let ftn 2 R[t]
be integral over R[J (↵)] with ordk[[x]](f) = c0, and n 2 N. If n = 0 or c0 � d↵ne, then

ftn 2 R[J (↵)]. If c0 < d↵ne, since ftn is integral over R[J (↵)], we have the following
homogeneous equation for some d 2 Z>0.

(ftn)d + a1t
n(ftn)d�1 + · · ·+ ait

ni(ftn)d�i + · · ·+ ad�1t
n(d�1)(ftn) + adt

nd = 0

where ai 2 J (↵)
ni = (xd↵nie) 8 1  i  d.

In particular, the coe�cient of tnd = 0, that is,

fd + a1f
d�1 + · · ·+ aif

d�i + · · ·+ ad�1f + ad = 0.

Since c0 < d↵ne, c0 < ↵n. However ordk[[x]](f
d) = dc0 but

ordk[[x]](aif
d�i) � d↵nie+ (d� i)c0 � ↵ni+ dc0 � ic0 > dc0.
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Therefore, the above equation is not possible. Thus, if ftn is integral over R[J (↵)], then
ftn 2 R[J (↵)], proving that R[J (↵)] is integrally closed.

To prove (4), consider a homogeneous element in R[J (↵)], say, ftn where ordk[[x]](f) =

c0 � d↵ne, and n 2 N, which is integral over R[I(↵)]. If c0 � d↵ne+ c, then ftn 2 R[I(↵)].

If c0 < d↵ne + c, since c0 � d↵ne > ↵n, we can let d 2 Z>0 be such that d �
c

c0 � ↵n
.

Then ftn satisfies the following integral equation over R[I(↵)]:

(ftn)d + adt
nd = 0

where ad = �fd. By our choice of d, dc0 � ↵nd + c which implies dc0 � d↵nde + c. So,

ordk[[x]](f
d) � d↵nde+ c, which shows ad 2 Id↵nde = I(↵)nd .

For (5), say ↵ =
p

q
for some p, q 2 Z>0. Then xptq 2 R[J (↵)] but /2 R[I(↵)]. If xptq

were integral over R[I(↵)], then for some d 2 Z>0 we would have that

(xp)d + a1(x
p)d�1 + . . .+ ai(x

p)d�i + . . .+ ad�1(x
p) + ad = 0

where ordk[[x]](ai) � d↵qie+ c = pi+ c. But this is not possible since ordk[[x]](ai(x
p)d�i) �

pi+ c+ p(d� i) > pd 8 1  i  d.

Theorem 5.5. For a filtration I = {Im}m2N of ideals in R, define

K(I)m := {f 2 R | ⌫I(f) � m} 8 m 2 N.
Then K(I) := {K(I)m}m2N is a filtration of ideals in R and I ✓ K(I). Moreover,

⌫I = ⌫K(I) and K(I) is the unique, largest filtration J such that ⌫I = ⌫J .

Proof. Denote K(I) by K and K(I)m by Km 8 m 2 N. If f 2 In for some n 2 N, then
f i

2 (In)i ✓ Ini implying ⌫I(f i) � ni 8 i 2 N, which gives, ⌫I(f) � n. Thus, In ✓ Kn 8

n 2 N.
Suppose f, g 2 Kn for some n 2 N, that is, ⌫I(f) � n and ⌫I(g) � n.

For " > 0, 9 m0 2 Z>0 such that 8 m � m0,
⌫I(fm)

m
� n � " and

⌫I(gm)

m
� n � ".

Note that 8 m, k 2 Z>0, ⌫I((f + g)mk) � min
i+j=mk

{⌫I(f igj)}, using Remark 3.3. Since

i+ j = mk,mk � m

�
i

m

⌫
+m

�
j

m

⌫
� mk � 2m. Using Remark 3.3 again,

⌫I(f
igj) � ⌫I(f

i) + ⌫I(g
j) � ⌫I(f

mb i
m c) + ⌫I(g

mb j
m c) �

�
i

m

⌫
⌫I(f

m) +

�
j

m

⌫
⌫I(g

m).

For m � m0, ⌫I(f igj) �

�
i

m

⌫
m(n� ") +

�
j

m

⌫
m(n� ") � (mk � 2m)(n� ").

Thus, for k >> 0,

⌫I((f + g)mk)

mk
�

mk(n� ")� 2m(n� ")

mk
= n� "�

2

k
(n� ").

Taking limits as k ! 1, we get ⌫I(f + g) � n � ". Since " is arbitrary, ⌫I(f + g) � n.
This proves that f + g 2 Kn 8 f, g 2 Kn.

For r 2 R and f 2 Kn, using Remark 3.3

⌫I(rf) = lim
i!1

⌫I((rf)i)

i
� lim

i!1

⌫I(ri)

i
+ lim

i!1

⌫I(f i)

i
= ⌫I(r) + ⌫I(f) � n.

This shows that rf 2 Kn, thus proving that Kn is an ideal in R.
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Clearly K0 = R. If f 2 Kn+1 for some n 2 N, that is, ⌫I(f) � n+ 1 > n, then f 2 Kn

proving that Kn+1 ✓ Kn 8 n 2 N.
Suppose f 2 Km and g 2 Kn for some m,n 2 N. Then by Remark 3.3

⌫I(fg) = lim
i!1

⌫I((fg)i)

i
� lim

i!1

⌫I(f i)

i
+ lim

i!1

⌫I(gi)

i
� n+m.

Thus, KnKm ✓ Kn+m. This proves K is a filtration of ideals in R.
For f 2 R and i 2 N, it follows from the definition that ⌫I(f i) � ⌫K(f i) since f i

2

K⌫K(f i). Using Proposition 3.11, ⌫I(f) �
⌫K(f i)

i
8 i 2 Z>0. Thus, ⌫I(f) � ⌫K(f) 8

f 2 R. Since I ✓ K, ⌫I  ⌫K by Remark 3.7. This proves ⌫I = ⌫K.
For any filtration L of R, let K(L) = {K(L)m}m2N where K(L)m = {f 2 R | ⌫L(f) �

m}. If J is a filtration such that ⌫I = ⌫J , then J ✓ K(J ) = K(I). This shows that
every filtration J such that ⌫I = ⌫J is contained in K(I), and we have shown earlier that
⌫K(I) = ⌫I , proving that K(I) is the unique, largest filtration J such that ⌫I = ⌫J . ⇤

Example 5.6. In general, the integral closure IC(I) (so that R[IC(I)] = R[I]) of a filtra-

tion I is strictly smaller than K(I) (or equivalently R[I] is strictly smaller than R[K(I)]).
For adic-filtrations, however, IC(I) = K(I), by Lemma 3.6, where I = {Im}m2N for an

ideal I of R.

Proof. We consider filtrations I = {Im}m2N where I0 = R and Im = (xm+c) for some fixed
c 2 Z>0 and J = {Jm}m2N where J0 = R and Jm = (xm) for m 2 Z>0 in R = k[[x]], a
power series ring in the variable x over a field k. We showed in Example 5.4 that ⌫I = ⌫J .
Thus K(I) = K(J ). By a direct calculation, K(J ) = J . Thus K(I) = J . However we
have shown in Example 5.4 that the integral closure R[I] of the filtration I is a proper
subset of R[J ] = R[J ]. ⇤
Theorem 5.7. Suppose I and J are filtrations of a Noetherian ring R. Then I is

projectively equivalent to J with ⌫I = ↵⌫J if and only if K(I(↵)) = K(J ).

Proof. ⌫I = ↵⌫J if and only if ⌫I(↵) = ⌫J (by Theorem 3.10), which holds if and only if
K(I(↵)) = K(J ) by Theorem 5.5. ⇤
Lemma 5.8. For a filtration I and the corresponding filtration K(I) (as defined in The-

orem 5.5) in a Noetherian ring R, the Rees algebra R[K(I)] is integrally closed in R[t].

Proof. It su�ces to prove the result for homogeneous elements in R[t]. Let ftn be a
homogeneous element in R[t] that is integral over R[K(I)]. Suppose ftn satisfies the
following homogeneous equation of degree d > 0:

(ftn)d + a1t
n(ftn)d�1 + · · ·+ ait

ni(ftn)d�i + · · ·+ ad�1t
n(d�1)(ftn) + adt

nd = 0

where ai 2 K(I)ni, that is, ⌫I(ai) � ni 8 1  i  d. That gives

fd + a1f
d�1 + · · ·+ aif

d�i + · · ·+ ad�1f + bd = 0.

If ⌫I(f) < n, then the above equation is not possible since ⌫I(fd) = d ⌫I(f) but
⌫I(aifd�i) > d⌫I(f) 8 1  i  d since

⌫I(aif
d�i) � ⌫I(ai) + (d� i) ⌫I(f) > ni+ d⌫I(f)� ni = d⌫I(f).

If ⌫I(f) � n, then ftn 2 R[K(I)], thus, proving that R[K(I)] is integrally closed in
R[t]. ⇤
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6. Discrete valued filtrations

Let R be a Noetherian ring. Let P be a minimal prime ideal of R and let v be a
valuation of the quotient field {(P ) of R/P which is nonnegative on R/P . Let

�v = {v(f) | f 2 {(P )⇥}

be the value group of v and Ov be the valuation ring of v with maximal idealmv. Note that
R/P ✓ Ov. Let ⇡ : R ! R/P be the natural surjection. We define a map ṽ : R ! �v[{1}

by

ṽ(r) =

(
v(⇡(r)) if r /2 P

1 if r 2 P.

We extend the order on �v to �v [ {1} by requiring that 1 has order larger than all
elements of �v and 1+1 = g +1 = 1 8 g 2 �v.

The map ṽ satisfies the following properties:

ṽ(r · s) = ṽ(r) + ṽ(s), ṽ(r + s) � min{ṽ(r), ṽ(s)}, ṽ�1(1) = P.

We will call ṽ a valuation on R. By abuse of notation, we will denote ṽ by v. If v
is a discrete valuation of rank 1, we will say that v is a discrete valuation of R. We
can then naturally identify �v with Z, by identifying the element of �v with least positive
value with 1 2 Z.

We define two valuations v and ! of R to be equivalent if v�1(1) = !�1(1) and the
valuations v and ! on {(P ), where P = v�1(1) = !�1(1), are equivalent. In particular,
since we have identified the value groups with Z, if v and ! are rank 1 discrete valuations,
then v and ! are equivalent if and only if they are equal, that is, v = !.

Suppose that v is a discrete valuation of R. For m 2 N, define valuation ideals

I(v)m = {f 2 R | v(f) � m} = ⇡�1 (mm
v \R/P ) .

An integral discrete valued filtration of R is a filtration I = {Im}m2N such that there
exist discrete valuations v1, . . . , vs of R and a1, . . . , as 2 Z>0 such that

Im = I(v1)ma1 \ · · · \ I(vs)mas 8 m 2 N.
I is called an R-discrete valued filtration if a1, . . . , as 2 R>0 and I is called a Q-
discrete valued filtration if a1, . . . , as 2 Q>0. If ai 2 R>0, then

I(vi)mai = {f 2 R | vi(f) � mai} = I(vi)dmaie.

We also call an R-discrete valued filtration a discrete valued filtration. If the discrete
valuations vi are divisorial valuations of {(Pi), where Pi are minimal primes of R, then I

is called a divisorial filtration of R.

Definition 6.1. Let I = {Im}m2N be a discrete valued filtration, which is represented as

(6) Im = I(v1)ma1 \ · · · \ I(vs)mas 8 m 2 N.
If for each i 2 {1, . . . , s}, the representation (6) of Im is not valid for some m when the

term I(⌫i)aim is removed from Im then the representation of (6) is said to be irredundant.

Lemma 6.2. Let I = {Im}m2N where Im = I(v1)ma1 \ · · ·\ I(vs)mas be a discrete valued

filtration of a Noetherian ring R. For f 2 R \ {0},

⌫I(f) = min

⇢�
v1(f)

a1

⌫
, · · · ,

�
vs(f)

as

⌫�
and ⌫I(f) = min

⇢
v1(f)

a1
, · · · ,

vs(f)

as

�
.
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Proof. Let 'I(f) := min
1is

⇢�
vi(f)

ai

⌫�
and 'I(f) := min

1is

⇢
vi(f)

ai

�
. Let f 2 R \ {0}.

Since f 2 I⌫I(f) =
sT

i=1
I(vi)ai⌫I(f), vi(f) � ai⌫I(f), which implies, ⌫I(f) 

�
vi(f)

ai

⌫
8

1  i  s. This shows that ⌫I(f)  'I(f).

For each i 2 {1, . . . , s}, 'I(f) 

�
vi(f)

ai

⌫
, which implies 'I(f) 

vi(f)

ai
, that is, vi(f) �

ai'I(f). Thus, f 2

sT
i=1

I(vi)ai'I(f) = I'I(f). This implies ⌫I(f) � 'I(f), proving ⌫I(f) =

'I(f). Now

⌫I(f) = lim
n!1

⌫I(fn)

n
= lim

n!1

min
1is

⇢�
vi(fn)

ai

⌫�

n
= lim

n!1

min
1is

⇢�
nvi(f)

ai

⌫�

n

Since x� 1 < bxc  x for any x 2 R, 8 n 2 Z>0 we have that

min
1is

⇢
nvi(f)

ai
� 1

�

n


min
1is

⇢�
nvi(f)

ai

⌫�

n


min
1is

⇢
nvi(f)

ai

�

n
Taking limits as n ! 1, we get, ⌫I(f) = 'I(f). ⇤

Corollary 6.3. Let I be a discrete valued filtration of a Noetherian ring R. Then K(I) =
I.

Proof. Represent I = {Im}m2N by Im =
sT

i=1
I(vi)mai . By Lemma 6.2, for any nonzero

f 2 R, ⌫I(f) � m if and only if
vi(f)

ai
� m, or, vi(f) � aim 8 1  i  s. This is

equivalent to f 2 I(vi)aim 8 1  i  s, or that, f 2 Im. ⇤

Lemma 6.4. If ṽ and ṽ0 are discrete valuations of R and a, b 2 R>0 are such that
ṽ

a
=

ṽ0

b
(as functions of R), then ṽ = ṽ0 and a = b.

Proof. Since bṽ = aṽ0, ṽ�1(1) = ṽ0�1(1) is a common minimal prime P of R. Thus, ṽ
and ṽ0 are induced by discrete valuations v and v0 on {(P ). Let ⇡ : R ! R/P be the

natural surjection. Suppose ↵ 2 {(P ) is nonzero, that is, ↵ =
⇡(f)

⇡(g)
for some f, g 2 R \P .

Then,

v(↵) = v(⇡(f))� v(⇡(g)) = ṽ(f)� ṽ(g) =
a

b
(ṽ0(f)� ṽ0(g))

=
a

b
(v0(⇡(f))� v0(⇡(g))) =

a

b
v0(↵)

This shows bv = av0 as function of {(P )⇥. Since the value groups of v and v0 are Z, 9
x, y 2 {(P )⇥ such that v(x) = 1 and v0(y) = 1. Since bv = av0, b = av0(x) and bv(y) = a.
This implies a|b and b|a. Thus, a = b and hence, ṽ = ṽ0.

⇤

In the following theorem, we generalize to discrete valued filtrations the proof of unique-
ness of Rees valuations for ideals given in Theorem 10.1.6 [17].
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Theorem 6.5. Let v1, . . . , vs be discrete valuations of a Noetherian ring R. Let a1, . . . , as 2
R>0, and define ! : R \ {0} ! R�0 by

(7) !(f) = min

⇢
v1(f)

a1
, · · · ,

vs(f)

as

�

for f 2 R. If no
vi
ai

can be omitted from this expression, then the vi and ai are uniquely

determined by the function !, up to reindexing of the
vi
ai
.

Proof. We will say that the set {v1, . . . , vs} is irredundant if no
vi
ai

can be removed from

(7).
If s = 1, the assertion follows from Lemma 6.4. Let s > 1. We define S ✓ R to be

!-consistent if for any m 2 N and f1, . . . , fm 2 S,

!(f1 · · · fm) =
mX

i=1

!(fi).

For f 2 R, let Sf = {fm
| m 2 N}. Then Sf is !-consistent.

Let F be the set of all nonempty !-consistent subsets of R. Clearly F 6= ; since it
contains the sets Sf for any f 2 R. Partially order F by inclusion. Let {I�}�2⇤ be a chain
of !-consistent subsets of R. Then I =

S
�2⇤

I� is an upper bound for this chain which is

!-consistent. Since every chain in F has an upper bound in F, by Zorn’s Lemma, F has
at least one maximal element.

We provide an explicit description of all of the maximal !-consistent subsets of R. For
each 1  i  s, define the sets

Si :=

⇢
f 2 R

�� !(f) =
vi(f)

ai

�
.

Each Si is !-consistent and is nonempty since it contains 1. By the irredundancy condition

on the
vi
ai
, we have the following remark.

Remark 6.5.1. For i 6= j, Si *
S
j 6=i

Sj.

Since each Si is a !-consistent subset, it is contained in some maximal !-consistent
subset of R. We show that any maximal !-consistent subset S of R is equal to one of
the Si. Then by Remark 6.5.1 it follows that {Si | 1  i  s} are the distinct maximal
!-consistent subsets of R.

Remark 6.5.2. If !(f) = 1 for some f 2 R, then vi(f) = 1 8 1  i  s. Thus f 2 Si

8 1  i  s.

Suppose S is a maximal !-consistent subset of R, and S 6= Si for any 1  i  s.
Then 9 gi 2 S \ Si 8 1  i  s. Since gi /2 Si, !(gi) < 1 (by Remark 6.5.2) and

!(gi) <
vi(gi)

ai
8 1  i  s. Let g = g1 . . . gs. Since S is !-consistent, !(g) =

sP
i=1

!(gi), but

sP
i=1

!(gi) <
sP

i=1

vj(gi)

aj
=

vj(g)

aj
8 1  j  s since !(gi) 

vk(gi)

ak
8 k 6= i and !(gi) <

vi(gi)

ai
15



(when k = i). But this implies !(g) < min
1js

⇢
vj(g)

aj

�
, contradicting the definition of !.

Thus, every maximal !-consistent set S equals to one of the sets {Si | 1  i  s}.

In order to prove the Theorem, we must recover the valuations vi and the numbers

ai 2 R>0 from the function !. Since each
vi
ai

gives a distinct maximal set Si and {vi | 1 

i  s} is irredundant, the number of vi, which is s, equals the number of distinct maximal
!-consistent subsets of R. Fix i 2 {1, . . . , s}.

Let c 2 R be such that vi(c) < 1. By Remark 6.5.1, 9 xi 2 Si\
S
j 6=i

Sj . By this property,

8 j 6= i,
vj(xi)

aj
>

vi(xi)

ai
. For a su�ciently large d 2 Z>0, and 8 j 6= i we have that

✓
vj(xi)

aj
�

vi(xi)

ai

◆
d >

vi(c)

ai

This gives
vj(xdi )

aj
>

vi(cxdi )

ai
, which in turn implies

vi(cxdi )

ai
<

vj(xdi )

aj
+

vj(c)

aj
=

vj(cxdi )

aj
.

This shows that !(cxdi ) =
vi(cxdi )

ai
. In other words, cxdi 2 Si.

What we have just shown is the following remark.

Remark 6.5.3. For c 2 R such that vi(c) < 1 and xi 2 Si \
S
j 6=i

Sj, 9 d 2 Z>0 such that

cxdi 2 Si. Moreover, if cxdi 2 Si, then cxni 2 Si 8 n � d.

Let S = {a 2 R | a /2 any minimal prime ideal of R}. S is a multiplicatively closed set
and for a 2 S, vj(a) < 1 8 1  j  s since each vj is infinite only on some minimal prime
ideal of R. In particular, vi(a) < 1 8 a 2 S.

Remark 6.5.4. The construction in Remark 6.5.3 applies to every element in S.

Consider the ring K = S�1R. We define a function ui : K ! Q [ {1} as follows:
Let ↵ = f/g 2 K. Since g 2 S, by Remark 6.5.3, 9 e 2 Z>0 such that gxei 2 Si. Now, if

for some d 2 Z>0, fxdi 2 Si, then by Remark 6.5.3, we can find a su�ciently large integer

n such that fxni , gx
n
i 2 Si and in that case we define ui

✓
f

g

◆
:= !(fxni )� !(gxni )

Otherwise, if fxdi /2 Si 8 d 2 Z>0, then we define ui

✓
f

g

◆
:= 1.

Remark 6.5.5. If
f

g
2 K and fxdi 2 Si for some d 2 Z>0, then ui

✓
f

g

◆
=

vi(f)� vi(g)

ai

since !(fxni ) =
vi(fxni )

ai
=

vi(f) + vi(xni )

ai
and !(gxni ) =

vi(gxni )

ai
=

vi(g) + vi(xni )

ai
. Since

g 2 S, vi(g) < 1, so, ui

✓
f

g

◆
= 1 if and only if vi(f) = 1.

Remark 6.5.6. If fxdi /2 Si 8 d 2 Z>0, then !(f) < 1 = vi(f).

The remark follows because if !(f) = 1, by Remark 6.5.2, f 2 Si which implies
fxdi 2 Si for every d 2 Z>0 since Si is multiplicatively closed, but that contradicts our
assumption. Hence, !(f) < 1. If vi(f) < 1, by Remark 6.5.3, we can find d 2 Z>0 such
that fxdi 2 Si, contradicting our assumption again. Thus, vi(f) = 1.

16



We need to show that ui is well-defined, that is, it does not depend on the choice of n,
xi, f , or g. It follows from Remark 6.5.5 that ui does not depend on n.

By the definition of ui and Remarks 6.5.5 and 6.5.6, ui

✓
f

g

◆
= 1 if and only if vi(f) =

1. So ui

✓
f

g

◆
is independent of the choice of xi 2 Si \

S
j 6=i

Sj if vi(f) = 1.

Suppose vi(f) < 1. If xi 2 Si \
S
j 6=i

Sj , then fxdi 2 Si for d 2 Z>0 by Remark 6.5.3, and

thus ui

✓
f

g

◆
=

vi(f)� vi(g)

ai
, which is independent of the choice of xi 2 Si \

S
j 6=i

Sj . Thus,

ui is independent of the choice of xi.
To prove that ui doesn’t depend on our choice of f and g, we will first show the following:

ui

✓
f

g

◆
= ui

✓
cf

cg

◆
8 c 2 S.

Let c 2 S, then, by Remark 6.5.4, 9 e 2 Z>0 such that cxei 2 Si.
If 9 d0 2 Z>0 such that fxd

0
i 2 Si, then, by Remark 6.5.3 and 6.5.4, fxdi , gx

d
i ,2 Si for

some d 2 Z>0, and thus, by Remark 6.5.5, ui

✓
f

g

◆
=

vi(f)� vi(g)

ai
. Since fxdi , gx

d
i , cx

e
i 2

Si (which is !-consistent), fxdi · cx
e
i = fcxd+e

i , gxdi · cx
e
i = gcxd+e

i 2 Si. Thus, we have

ui

✓
cf

cg

◆
= !(fcxd+e

i )� !(gcxd+e
i ) =

vi(fcx
d+e
i )

ai
�

vi(gcx
d+e
i )

ai
=

vi(f)� vi(g)

ai

This proves ui

✓
cf

cg

◆
= ui

✓
f

g

◆
, by Remark 6.5.5.

If fxdi /2 Si for any d 2 Z>0, then ui

✓
f

g

◆
= 1. We show that fcxdi /2 Si for any

d 2 Z>0, proving that ui

✓
cf

cg

◆
= 1.

Since cg 2 S, by Remark 6.5.4, 9 d 2 Z>0 such that cgxdi 2 Si. If for some e 2 Z>0,

fcxei 2 Si, then !(fcxei ) =
vi(fcxei )

ai
=

vi(f) + vi(cxei )

ai
= 1 (since vi(f) = 1, by Remark

6.5.6). That implies vj(fcxei ) = 1 8 1  j  s. Since c 2 S, vj(c) < 1 8 1  j  s.
Thus, vj(fcxei ) = vj(fxei ) + vj(c) = 1. This means vj(fxei ) = 1 8 1  j  s, or that,
!(fxei ) = 1 which implies fxei 2 Si (by Remark 6.5.2), contradicting our assumption.

Hence, ui

✓
f

g

◆
= ui

✓
cf

cg

◆
8 c 2 S.

Suppose
f

g
=

f 0

g0
in K. Then, 9 c 2 S such that c(fg0 � gf 0) = 0.

Since c, g, g0 2 S and S is multiplicatively closed, cg, cg0 2 S. Thus, we get

ui

✓
f 0

g0

◆
= ui

✓
cgf 0

cgg0

◆
= ui

✓
cfg0

cgg0

◆
= ui

✓
f

g

◆
.

This proves that ui is well-defined. Since the sets Si are determined only by ! and
each ui is determined by the set Si and the function !, we have that the functions ui are
determined only by !. So, we have a well-defined function ui : K = S�1R ! Q [ {1}
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given by

ui

✓
f

g

◆
=

(
!(fxdi )� !(gxdi ) if fxdi 2 Si for some d 2 Z>0

1 if fxdi /2 Si 8 d 2 Z>0

Remark 6.5.7. The functions ui and
vi
ai

agree on R.

The proof of the remark is as follows: For f 2 R, if fxdi 2 Si for some d 2 Z>0, then

ui

✓
f

1

◆
= !(fxdi )� !(xdi ) =

vi(fxdi )

ai
�

vi(xdi )

ai
=

vi(f)

ai
.

If fxdi /2 Si 8 d 2 Z>0, then ui

✓
f

1

◆
= 1 which gives vi(f) = 1 (by Remark 6.5.6) and

thus
vi(f)

ai
= 1.

It follows from Remark 6.5.7 that ui satisfies the following properties for every f, g 2 R.

ui(fg) = ui(f) + ui(g) and ui(f + g) � min{ui(f), ui(g)}

Let Pi be the prime ideal {x 2 R | ui(x) = 1} of R. By Remark 6.5.7, {f 2 R | vi(x) =

1} = Pi and ui induces a function on R/Pi which is equal to
vi
ai

on R/Pi. Thus, Pi is

a minimal prime of R and ui induces a valuation on the quotient field of R/Pi which is
equivalent to vi. By abuse of notation, we will denote this valuation by ui. By Remark

6.5.7, ui =
vi
ai
. By Lemma 6.4, vi and ai are uniquely determined by ui. Since the ui are

uniquely determined by the function !, we have that the vi and ai are uniquely determined
by the function !. ⇤
Corollary 6.6. Let I = {Im}m2N be a discrete valued filtration of a Noetherian ring R,

where Im = I(v1)a1m \ · · ·\ I(vs)asm 8 m 2 N is an irredundant representation. Then the

valuations vi and ai 2 R>0 are uniquely determined.

Proof. Since Im = {f 2 R | vi(f) � aim for 1  i  s} and no vi can be removed from

this expression, by Lemma 6.2, no
vi
ai

can be removed from the expression ⌫I(f) =

min
1is

⇢
vi(f)

ai

�
. Therefore, from Theorem 6.5 we have that vi and ai 2 R>0 are uniquely

determined. ⇤
Corollary 6.7. Let I = {Im}m2N and J = {Jm}m2N be discrete valued filtrations of

a Noetherian ring R, where Im =
sT

i=1
I(vi)aim and Jm =

rT
i=1

I(v0i)a0im 8 m 2 N are ir-

redundant representations. If ⌫I = ⌫J , then r = s and after reindexing, ai = a0i and

vi = v0i.

Proof. From Lemma 6.2 we have that min
1is

⇢
vi(f)

ai

�
= min

1ir

⇢
v0i(f)

a0i

�
8 f 2 R. The

Corollary now follows from Theorem 6.5. ⇤
In Definition 3.1, we defined the filtration I

(↵), the twist of an arbitrary filtration I by

↵ 2 R>0. Suppose that I = {Im}m2N is a discrete valued filtration where Im =
sT

i=1
I(vi)aim

18



8 m 2 N and ↵ 2 R>0. Then we have the explicit description of I(↵) as

I
(↵) = {I(↵)m }m2N = {Id↵me}m2N where Id↵me =

s\

i=1

I(vi)d↵meai 8 m 2 N.

We now define a new filtration

I
[↵] = {I [↵]m }m2N = {I↵m}m2N where I↵m =

s\

i=1

I(vi)↵mai 8 m 2 N.

Observe that I(↵) is, in general, not a discrete valued filtration, but I [↵] is.
The filtration I

[↵] is well defined; that is, it is independent of (possibly redundant)

representation Im =
sT

i=1
I(vi)aim 8 m 2 N. To prove this, we first show that

(8) Im =
s\

i=1

I(vi)aim 8 m 2 N

is an irredundant representation of I if and only if

(9) I [↵]m =
s\

i=1

I(vi)↵aim 8 m 2 N

is an irredundant representation of I [↵]. This follows since (8) is irredundant if and only

if no
vi
ai

can be eliminated from the function

!(f) = min

⇢
v1(f)

a1
, . . . ,

vs(f)

as

�

which holds if and only if no
⌫i
↵ai

can be eliminated from the function

!↵(f) = min

⇢
v1(f)

↵a1
, . . . ,

vs(f)

↵as

�

which is equivalent to (9) being irredundant. Now by Corollary 6.7, the valuations ⌫i and
ai 2 R>0 giving irredundant representations of I are uniquely determined and the valua-
tions ⌫i and ai↵ 2 R>0 giving irredundant representations of I [↵] are uniquely determined.
Thus the filtration I

[↵] is independent of choice of representation of I.

Proposition 6.8. Suppose that I is a discrete valued filtration of a Noetherian ring R
and ↵ 2 R>0. Then K(I(↵)) = I

[↵] = K(I [↵]).

Proof. Since I
[↵] is a discrete valued filtration of R, by Corollary 6.3, I

[↵] = K(I [↵]).
Now, K(I(↵)) = {K(I(↵))m}m2N, where K(I(↵))m = {x 2 R | ⌫I(↵)(x) � m}. For x 2 R,

⌫I(↵)(x) � m if and only if ⌫I(x) � ↵m (by Theorem 3.10) if and only if x 2 I [↵]m (by
Corollary 6.3). Thus, K(I(↵)) = I

[↵]. ⇤
Theorem 6.9. Let I = {Im}m2N and J = {Jm}m2N be discrete valued filtrations of a

Noetherian ring R and ↵ 2 R>0. Then ⌫I = ↵⌫J if and only if J = I
[↵]
.

Proof. Theorem 3.10 implies that ⌫I = ↵ ⌫I(↵) . Thus ⌫I = ↵ ⌫J if and only if ⌫I(↵) = ⌫J .
This holds if and only if K(I(↵)) = K(J ), by Theorem 5.5. Since J is a discrete valued
filtration, by Corollary 6.3, K(J ) = J and by Corollary 6.8, K(I(↵)) = I

[↵]. ⇤
19



7. The asymptotic Samuel function and multiplicity

Let R be a d-dimensional analytically irreducible (Noetherian) local ring with maximal
ideal mR. A filtration I = {In}n2N of R is said to be an mR-filtration if In is mR-primary
8 n 2 Z>0. The multiplicity of an mR-primary filtration is defined, and exists as a limit
in an analytically unramified local ring, but does not exist as a limit in general if the
ring is not generically analytically unramified. This follows from Theorem 1.1 [5]. The
multiplicity of an mR-primary filtration is

e(I) = lim
n!1

`R(R/In)

nd/d!

where `R(N) is the length of an R-module N . Let K be the quotient field of R. A
valuation ⌫ of K is an mR-divisorial valuation of R if the valuation ring O⌫ dominates
R (so that R ⇢ O⌫ and the maximal ideal m⌫ of O⌫ satisfies m⌫ \ R = mR) and O⌫ is
essentially of finite type over R. Since O⌫ is a Noetherian ring, a divisorial valuation is a
discrete (rank 1) valuation. More about divisorial valuations can be found in Section 9.3
[17]. For I an ideal in R, ⌫(I) = min{⌫(x) | x 2 I}. Let I = {In}n2N be an mR-primary
filtration and let ⌫ be an mR-divisorial valuation of R. Then define

⌫(I) = inf
⌫(In)

n
= lim

n!1

⌫(In)

n
.

The existence of this limit is shown for instance in Proposition 2.3 [8]. In [2], the saturation
Ĩ of I is defined to be the mR-filtration Ĩ = {Ĩn}n2N where

Ĩn = {f 2 mR | ⌫(f) � n⌫(I) for all mR-divisorial valuations of R}.

It is shown in [2], that in an analytically irreducible local ring (R,mR), for any filtration
I of mR-primary ideals, Ĩ is the unique largest filtration J containing I such that I

and J have the same multiplicity. Specifically, they show in Theorem 4.1 [2] that in an
analytically irreducible local ring R, mR-filtrations I ✓ J satisfy e(I) = e(J ) if and only
if Ĩ = J̃ . In the context of K-stability, related saturations have been found in [18] and
[3].

Theorem 7.1. Suppose that R is an analytically irreducible local ring with maximal ideal

mR and I and J are mR-filtrations such that ⌫I = ⌫J . Then e(I) = e(J ).

Proof. We have that I,J ✓ K(I) by Theorem 5.5. Thus it su�ces to show that e(K(I)) =
e(I).

Write K(I) = {K(I)n}n2N and Ĩ = {Ĩn}n2N. Suppose that f 2 K(I)l for some l 2 Z>0

and m,n 2 Z>0 are such that fn
2 Im. Let ⌫ be an mR-divisorial valuation of R. Then

⌫(fn) � ⌫(Im) � m⌫(I), so ⌫(fn) � ⌫I(fn)⌫(I), since for g 2 R, ⌫I(g) = sup{m | g 2

Im}. Thus ⌫(f) �
⌫I(fn)

n
⌫(I) which implies

⌫(f) � ⌫I(f)⌫(I) � l⌫(I).

Thus f 2 Ĩl. We conclude that I ✓ K(I) ✓ Ĩ and so e(K(I)) = e(Ĩ) by Theorem 4.1
[2]. ⇤

In Theorem 7.1, we showed that if I is an mR-primary filtration in an analytically
irreducible local ring R, then K(I) ✓ Ĩ. The following example shows that the saturation
Ĩ can be much larger that K(I).

Example 7.2. An example showing that we can have that K(I) is a proper subset of Ĩ.
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Proof. Let k be a field and R = k[[x, y]], a power series ring in two variables. Let f =
y � x � x2 � x3 � · · · 2 R. Let In = (xn, f) for n 2 Z>0. Then, setting I0 = R, we have
that I = {In}n2N is an mR-primary filtration. We have that ym = (f +(x+x2+ · · · ))m =
fh+ (x+ x2 + · · · )m for some h 2 R. Thus ym 2 In if and only if m � n. We then have
that

⌫I(y
m) = max{n | ym 2 In} = m

for all m and

⌫I(y
m) = lim

n!1

⌫I(ynm)

n
= m.

Thus each K(I)m properly contains K(I)m+1, since ym 2 K(I)m \ K(I)m+1.
Let ⌫ be an mR-divisorial valuation. Then ⌫(In)  ⌫(f), so ⌫(I) = 0. Thus Ĩn = mR

for all n > 0 where Ĩ = {Ĩn}n2N.
⇤

With the notation of the above example, we construct an example of a filtration J =
{Jn} such that the saturation J̃ = {mn

R} is the mR-adic filtration, but the filtration K(J )
is much smaller than J̃ .

Define J = {Jn}n2N by Jn = mn
RIn for n � 0. If ⌫ is an mR-divisorial valuation, then

⌫(Jn) = n⌫(mR) + ⌫(In) so ⌫(J ) = ⌫(mR). Since R is a regular local ring, mn
R = mn

R for
all n, and thus by Proposition 6.8.4 [17] and its proof, the mR-adic filtration is saturated.
In particular, J̃ = {mn

R}n2N is the mR-adic filtration. We calculate that ⌫(yn) = b
m
2 c for

n > 0. Thus yn 2 mn
R \ K(J )n for all n.

In the special case that I is a discrete valued filtration, we have that Ĩ = I.
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Teissier, Centre de Mathematiques École Polytechnique, 1974.
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