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EPSILON MULTIPLICITY AND ANALYTIC SPREAD OF
FILTRATIONS

STEVEN DALE CUTKOSKY AND PARANGAMA SARKAR

ABSTRACT. We extend the epsilon multiplicity of ideals defined by Ulrich and Validashti
to epsilon multiplicity of filtrations, and show that under mild assumptions this multi-
plicity exists as a limit. We show that in rather general rings, the epsilon multiplicity
of a QQ-divisorial filtration is positive if and only if the analytic spread of the filtration
is maximal (equal to the dimension of the ring). The condition that filtrations J C Z
have the same epsilon multiplicity is considered, and we find conditions ensuring that
the filtrations have the same integral closure.

1. INTRODUCTION

@;e epsilon multiplicity of an ideal I in a local ring R with maximal ideal mpg is defined
in [37] to be

Ar(H), (R/I™
e(I) = d!lim sup R( mRC(l / ))
n n
It is shown th fsPy comparison with the j-multiplicity, that (/) is always a real number.
It is shown in that £(I) can be an irrational number. In a local ring R, we have that

Hp (R/I)=1:m%/I.
For ideals in analytically unramified local rings, the epsilon multiplicity is a limit.

1
Theorem 1.1. (%6“, Corollary 6.3]) Suppose that I is an ideal in an analytically unramified
local ring R. Then £(I) is actually a limit,
AR(I™ - mGs /1)
y .

e(I) = d! lim

n—00 n

In this paper, we extend epsilon multiplicity to filtrations and obtain some results
generalizing theorems about epsilon multiplicities for ideals.

We extend the definition of epsilon multiplicity to filtrations by defining the epsilon
multiplicity of a filtration Z = {I,,} of ideals in R to be

(1) £(Z) = d!limsup AR(HB@ZCER/ )

Let Z = {I,,} be a filtration on a local ring R and ¢ € Z~o. We will say that Z satisfies
property A(c) if

I, :m%) Nm% = I, Nm%' for all n € N.

As a consequence of %6, Theorem 6.1], we have the following theorem.
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Theorem 1.2. Let R be an analytically unramified local ring of dimension d, and T =
{I,} be a filtration on R which satisfies the property A(c) for some ¢ € Z~o. Then

n—00 nd

is a real number. That is, the epsilon multiplicity of T exists as a limit.

'We deduce that thg epsilon multipli.city ex%sts fg{argll%gy naturally occurring filtrations.
Discrete valued filtrations are defined in Section B

Theorem 1.3. Let R be a Noetherian local domain, J a discrete valued filtration and p
any prime ideal in R. Then the filtration J, satisfies A(cp) for some ¢, € Zg.

Moreover, if R, is an analytically unramified local domain then £(J,) exists as a limit.
In particular, epsilon multiplicity exists as a limit for discrete valued filtrations of an
analytically unramified local domain.

We give examples of filtrations Z for which the epsilon multiplicity is finite, but the
epsilon multiplicity does not exist as a limit and filtrations Z for which the epsilon multi-
plicity is infinite. These filtrations necessarily do not satisfy A(c) for any c.

The following theorem about epsilon multiplicity of ideals follows from results of Ulrich
and Validashti.

Theorem 1.4. Suppose that R is a universally catenary Noetherian local ring of dimen-
sion d and I is an ideal of R. Then the analytic spread ¢(I) = d if and only if e(I) > 0.

as explalned in the inequality on the second line of page 97 of [37] and Re
This part of the proof is valid for an arbitrary local ring. By Theorem 4.4 ]
if R is an equidimensional, universally catenary Noetherian local ring and ¢(I) = d, then
E(I) > 0. . . . . TheoremI2 . L .
We obtain the following generalization of Theorem mratlons DPiyisorial filtra-
tions and the analytic spread ¢(Z) of a filtration are defined in Section Ei

f that ¢(I) < dim R implies £(I) = 0 follows from the theory j-multiplicity
4 2 in éi

Theorem 1.5. Let R be a d-dimensional excellent normal local domain of equicharacter-
istic zero, or an arbitrary excellent local domain of dimension < 3. Let T be a Q-divisorial
filtration of R. Then e(Z) > 0 if and only if the analytic spread ¢(Z) = d.

heoremI4 . Example7
Theorem .5 1s not true for general filtrations. Example 4.2 gives an example of an

R-divisorial E}lteroq:tei%I in a regular local ring such that £(Z) > 0 but ¢(Z) < dim R.

Theorem T.5 is true for any class of excellent local domains for which resolution of
singularities is true. Resolution of singularities is frue for reduced finite type schemes over
an excellent equicharacteristic zero local ring by [22] an f r reduced finite type sche
over an excellent local ring of dimension < 3 by [27] and [4] (in dimension two) and by
(in dimension 3). The implication (Z) > 0 implies ¢(Z) = d follows from the following
theorem.

Theorem 1.6. (% Theorem 1.4]) Let R be an excellent local domain of equicharacteristic
0, or of dimension < 3. Let Z = {I,,} be a Q-divisorial filtration on R. Then the following
are equivalent.
1) The analytic spread of T is £(Z) = dim R.
2) There exists ny € Z~q such that mp € Ass(R/I,) if n > nyg.
3) mp € Ass(R/I,) for some my € Zsg.
2
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We obtain the following corollary to Theorems T.5 and i.6.

Corollary 1.7. Let R be a d-dimensional excellent normal local domain of equicharacter-
istic zero, or an arbitrary excellent local domain of dimension < 3. Let T be a Q-divisorial
filtration of R. Then €(Z) > 0 if and only if for every representation of T = {I,} as a
rational divisorial filtration I, = I(V1)pay N+ NI (Vy)na, for n >0, the mazimal ideal mp
is the center m,, N R of at least one of the v;.

In the final section we consider epsilon multiplicity under integral closure of filtrations.
%;e following theorem about epsilon multiplicities of ideals is a corollary of Theorem 2.3

!

Theorem 1.8. Suppose that R is a universally catenary local rmg and J C I are ideals
in R. Then e(I,) = €(J,) for all p € Spec R if and only if J =

Example %.&l_gﬁﬁzvs that there are filtrations J C Z such that ¢(J,) = €(Z,) for all
p € Spec R but R[J] # R[Z] and Example m ghat there are filtrations J C Z such
that R[Z] = R[J] but (Z) # ¢(J). Thus Theorem I.8 and Theorem I.9 (stated below),
do not extend to arbitrary filtrations.

We show that for some naturally occurring filtrations equality of epsilon multiplicity is
equivalent to the integral closures of their Rees algeﬁgfgslggéng the same. Filtrations which

are s-divisorial or s-bounded are defined in Section

Theorem 1.9. Let (R,mpg) be an excellent local domain and Z be a filtration of ideals in
R. Then the following hold.
(1) Suppose J is an s-divisorial filtration such that J C Z. Then the following are
equivalent.

(i) e(Zy) = e(Ty) for all p € Spec R.
(ii) e(Zy) = e(Tp) for all p € Spec R such that £(J,) = dim R,,.
(iii) E(I ) =&(Jy) for all p € Spec R with dim R/p = s.
) I=d.
(v) RIZ] = BT, -
(2) Suppose J is a bounded s-filtration such that J C Z. Then R[Z] = R[J] if and
only if e(Z,) = e(Jy) for all p € Spec R with dim R/p = s.

2. NOTATION
Let (R,mpg) be a Noetherian local ring of dimension d. A descending chain
R:I()Dll Ol D

of ideals in R is called a filtration if I,,1,, C Ijn4y for all m,n € N. For a filtration Z =
{In}nen, we define the Rees algebra of 7 to be the graded R-algebra R[Z] = )" - It".
This generalizes the Rees algebra R[I] = Y ., I™t" of an ideal I in R. A filtration Z is
called a Noetherian filtration if R[Z] is a finitely-generated R-algebra. Otherwise it is called
a non-Noetherian filtration. If%%c R is an ideal, then V(I) := {p € Spec(R) | I C p}. For
a filtration Z = {1, }, we have [16, Lemma 3.1],

V(I) =V (I,) and dim R/I; = dim R/, for all n > 1.

For a filtration Z = {I,}, by Z,, we denote the filtration {I,R,} for any p € Spec R. For
any two filtrations Z = {I,}, J = {Jn}, by J C Z, we mean J,, C I, for all n > 0 and by
J =1, we mean J, = I, for all n > 0.

3
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The analyticgpread of a filtration Z of a local ring is defined to be £(Z) = dim R[Z]/mpR[Z].
It is shown in ; ; nma 3.6] that ((Z) < dim R. Even for symbolic filtrations we can
%Bth% ,lé[( Theorem 1.11]). A different definition of analytic spread is given

Now let R be a Noetherian local domain of dimension d with quotient field K. Let v
be a discrete valuation of K with valuation ring O, and maximal ideal m,. Suppose that
R C O,. Then for n € N, define valuation ideals

I(W)a = {f € R|v(f) 2 n} =m] N R.

A discrete valued filtration of R is a filtration Z = {I,} such that there exist discrete
valuations v1,...,v,. and ag,...,a, € Rsg such that for all m € N,

Iy = I(Vl)[mal] M- I(Vr)]'maﬂ

where [z] denotes the round up of a real number z. A discrete valued filtration is called
integral (rational) if a; € Zsg for all i (a; € Qs¢) for all 7.

A divisorial filtration of R is a valuation v of the quotient field K of R such that v is
positive on R and letting P = R N mpg, the transcendence degree of the residue field of
the valuation ring of v over the residue field of R/P is ht(P) — 1. If R is excellent, then
a valuation v of K is a divisorial valuation if and only if the valuation ring O, of v is
essentially of finite type over R. A divisorial valuation is a discrete valuation.

A divisorial filtration of R is a discrete valued filtration

{Im = I(Vl)fmaﬂ AN I(Vr)(maJ}

where all the discrete valuations v4, ..., v, are divisorial valuations. A divisorial filtration
is called integral (rational) if a; € Z~q for all i (a; € Q) for all i.
It is shown in [16, Lemma 3.6] that for a filtration Z = {I,,}, the integral closure of R[Z]
in R[t] is
Y
m>0
where {J,,,} is the filtration

Jn ={f € R| f" € Iy, for some r > 0}.
The following result follows using the same lines of proof of hc’l(), Lemma 5.7]
Lemma 2.1. IfT is a discrete valued filtration then R[T] = R[Z].

If I C Ris an ideal in R, we define I®* =T : m% = U, : m.

3. EPSILON MULTIPLICITY OF FILTRATIONS

The property A(c) of a filtration is defined in the intro ugmpn We obtain the following
theorem, showing that epsilon multiplicity, defined in (I), exits as a limit for discrete
valued filtrations.

Theorem 3.1. Let R be a Noetherian local domain, J a discrete valued filtration and p
any prime ideal in R. Then the filtration J, satisfies A(cp) for some ¢, € Zq.

Moreover, if R, is an analytically unramified local domain then £(J,) exists as a limit.
In particular, epsilon multiplicity exists as a limit for discrete valued filtrations of an
analytically unramified local domain.
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Proof. Let J = {Jn = I(V1)[na;) N - N 1(V4)[na,1}- Reindexing the v; as v, let p; =
m,, NRfori=1,...,land j =1,...,k; be the distinct centers of the discrete valuations
Vi,...,Vr Where k1 + -+ k; =r.

Let p € SpecR. Ifp;  pforalli =1,...,l thenp ¢ V(J1) and hence (J,R,)** = J, R,.
We take ¢, = 1 in this case.

Suppose p; C p for some i € {1,...,l}. Without loss of generality, we assume p; C p for
alll<i<tandp, plorallt+1<i<l.

Case 1: Suppose p; C p for all 1 < i <¢. Then

(Jan)Sat = m I(Vij)fnaiﬂ RP = J”RP'
muMﬂR:pi
1<i<t,1<j<k;

Thus we take ¢, = 1.

Case 2: Suppose p; = p for some ¢ € {1,...,t}. Without loss of generality, we assume
i =1. Then
(Jan)sat = ﬂ I(Vij)]'naij'\Rp'
myi]. NR=p,
2<i<t, 1<j<k;
Now p{mlﬂ C I(Vi1)[nay;) for all 1 < j < 'ky. Let ¢y = max{[a11],..., [aig, |}. Then
(JuRy)*™ (P "Ry = (N 1) [nay 1 Be NP R,
ml’ij mR:pl

2<i<t,1<j<k;

- ﬂ I(Vij) nas;1 R ﬂ ( ﬂ I(V15) fnay,1 Rp) ﬂpnc”Rp
my,  NR=p; 1<5<k
2<i<t,1<j<k;

C JuRp( 0" Ry.

ThmE1
Thus if Ry is an analytically unramified local domain then by Theorem .2, £(/J,) exists.
0

Example 3.2. Let R = k[z,9](,,) where k is a field and T = {I,, = ()1 0 (2, )21y
be a non-Noetherian discrete valued filtration in R. Note that V(I,) = {P = (z),mpr =
(z,y)}. Since T, = {I,Rp = (z)"Rp}, we have £(Zp) = 7. Now I3* = (z)"1.
Therefore

@ = 2 Jim Ap((@)" /@) 11 )2

= 2! lim ([2nm] — (nﬂ)gs;ﬂ —[nr] +1)

= %

Now we introduce a family of examples, which will illustrate the essential role of the
A(c) condition in the existence of epsilon multiplicity as a limit.

Let 7 : Z~o — Z>¢ be any function such that 7(n+1) > 7(n) for all n. We will restrict
to 7 satisfying this condition in this analysis.

Then defining I, to be the ideal I, = (22, zy”™) in the local ring R = k2, y](2.y)
over a field k, we have that Z, = {I,,} is a filtration. We have that I,, : m% = (x) and
(I, : m$) /I, = R/(z,y™™) as an R-module. Thus Ag(I, : m¥/I,) = 7(n).

5
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Note that for any 7 and f € I, for n > 1, we have f? € mpgls,. Therefore by la?;s
Lemma 3.8], /(Z;) = 0. We conclude that for all 7, the epsilon multiplicity is

7(n)

e(Z;) = 2limsup a3

while the analytic spread is

UZ;) =0.
The following examples show that we cannot expect the epsilon multiplicity of a filtration
7 to exist as a limit if the condition A(c) is not satisfied for any c.

1
Example 3.3. Let 0 : Z~g — Z=q be the function defined in (22) of Section 5 0]4%6]. We

have that o(n + 1) > o(n) for alln, 1 < o(n) < § for all n and lim, @ does not
exist, even when n is constrained to lie in any arithmetic sequence. We further have that

lim sup a(n) . Let 7(n) = no(n). Then

I, - m¥/1,
lim Ar(In ZLR/ n) = lim
n—o0 n n—oo n

a(n)

does not exist. In this example, we have that e(I;) = § < 0o, so that £(Z;) is positive but
UZ,) # dim R.

Example 3.4. Let 7(n) be any increasing function such that lim sup %
7(n) =n3). We obtain that (I,) = oo. In particular, e(Z;) is not finite.

= oo (such as

Example 3.5. Suppose that I satisfies condition A(c) for some c. Then (I, :

me = I, N mE for all n so that T(n) < cn for all n. Thus W %

for all n. Thus (Z. gnd this multiplicity exists as a limit, in agreement with the
conclusions of Theorem 2 ? We further have that £(Z;) = 0 and ¢(Z;) # dim R.

IN D v
K 3l D

4. ANALYTIC SPREAD AND EPSILON MULTIPLICITY

TheoremI4
In this section, we prove Theorem [I.5 from the introduction, which we restate here for

the convenience of the reader.

Theorem 4.1. Let R be a d-dimensional excellent normal local domain of equicharacter-
istic zero, or an arbitrary excellent local domain of dimension < 3. Let T be a Q-divisorial
filtration of R. Then €(Z) > 0 if and only if the analytic spread ¢£(Z) = d.

X TheoremI2 Theorem2
The following example shows that the conclusions of Theorem and Theorem are
false for Eratlo We make use of [7, Example 1.5] which shows that the conclusmns of

Theorem o not hold for R- d1v1sor1al filtrations.
Example 4.2. There exists an R-divisorial filtration T in R = k[z](,) such that e(Z) >0
but £(T) = 0 < 1 = dim R.

The example satisfies A(4). This is the construction of the example. Let Z = {I,,}
where I, = (z/""1) in R = k[z] (2)- Forfixed n, r[n7] > [rnm| +1 for some r € Z~o. Thus
f € I, implies f" € mpl,, and so by [17, Lemma 3.8],

U(T) = dim R[Z]/mrR[Z] = 0 < 1 = dim R.
For all n, I,, : m% = R so

e(Z) = lim M:7r>0.
n—oo n
6



Let R be a normal excellent local ring. Let Z = {I,;,} where
I, = I(V1)ma, N N I(Vs)may

for some divisorial valuations v1,...,vs of R be an R-divisorial filtration of R, with
ai,...,as € Ryg. Then there exists a projective birational morphism ¢ : X — Spec(R)

h that there exist prime divisors Fy,...,Fs on X such that V,, = Ox p, for 1 <i <s
(IT6, Remark 6.6 to Lemma 6.5]). Let D = a1 Fy + - - - + asF}, an effective R-divisor on X
(an effective R-Weil divisor). Define [D] = [a1]|F1 + - - -+ [as| Fs, an integral divisor. We
have coherent sheaves Ox(—[nD]) on X such that

(3) I'(X, Ox(=[nD])) = In

for n € N. If X is nonsingular then Ox(—[nD]) is invertible. The formula (% is indepen-
dent of choice of X. Further, even on a particular X, there are generally many different
choices of effective R-divisors G on X such that I'(X, Ox(—[nG])) = I, for all n € N.
Any choice of a divisor G on such an X for which the formula I'(X, Ox (—[nG])) = I, for
all n € N holds will be called a representation of the filtration Z.

Given an R-divisor D = a1 F; + -+ - 4+ asFs on X we have a divisorial filtration Z(D) =
{I(nD)} where

I(nD) = F(X Ox(=[nD])) = I(Vl)(naﬂ n---nN I(VS)[nas] =I(¥1)nay N+ NI (Vs)nas-

We write R[D] = R[Z(D)].

We re 1 the ~r function defined in ng Section 3]. We make use of statements and
proofs in [[7, Section 4] which are based on corresponding statements and pro%ﬁj%for the or
function on pseudo- effectwe divisors on a projective nonsingular variety in Chapter
I11, Section 1].

Let R be a normal excellent local ring and 7 : X — Spec(R) be a birational projective
morphism such that X is nonsingular. Let G = ) a;F; be an effective R-divisor, and '
be a prime divisor on X. Let

a; ifl'=FE;
ordr(G) = { 0 ifI' ¢ Supp(D).

For D an R-divisor, let
(D) = inf{ordr(G) | G > 0 and G ~ D},
and define
(D) = inf {TF(:ZD) | m e Z>O} .

Since D is linearly equivalent to an effective divisor, there can be only finitely many prime
divisors I' such that yr(D) > 0.

If R has dimension 2 and D is an integral divisor on X then (D) is a rational number,
but there exist examples where R, has dimension 3 and integral divisors D on X such that
~r(D) is an irrational number (gs—l, Theorem 4.1]).

We have that (mD)
T T{m
)= T

Thus if a € Q<¢, we have that
(4) r(aD) = ay (D).
We also have that for R divisors Dy and Ds,

(5) (D1 + D2) < Ar(D1) + yr(Da).
7
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If m € Zsop and G ~ mD is an effective R-divisor, then ordr(G) > m~yr(D).

TheoremI4 i . TheoremI4
We now prove Theorem [I.5. l]ef notat10n be as in the statement of Theorem
Suppose that £(Z) > Q. The Y o(R/I,) # 0 for some n which implies that mg €

Ass(R/I,). By Theorem = d.

We will now show that ¢ (I%%: d implies £(Z) > 0. The first part of the proof ig,gimilar to
the first part of the proof of [7, Theorem 1.4]. Let k = R/mpg. There exists by [7, Lemma
3.1], a projective birational morphism 7 : X — Spec(R) such that X is nonsingular, all

prime exceptional divisors of 7 are nonsingular and there exists an effective Q-divisor D
on X such that Z =Z(D). Let

(6) D = Ez:aiP}

with the F; dis ,}ﬂggr]glg' e divisors and a; € Q>o.
By Theorem 1.6, 1 Z]; = d implies there exists an m’ such that mg € Ass(R/I,,/). Thus

there exists an F; which contracts to mp and m’ > 0 such that if D; = Zi# a; F;, then

(7) I(m'D) # I(m'D).

Without loss of generality, we may assume that j = 1 so that F; = Fy. Set F' = Fj.
Since FF C m~!(mpg), F is a projective k-variety. We have that D < —Di=-D+arF.
Suppose that yp(—D) > 0. Then vp(—D1) = yr(—D) + a1 by [7, Lemma 4.3]. Thus

I'(X, Ox([-nD])) = I'(X, Ox(|-=nD1]))

for all n € N by h@% Lemma 4.1], which is a contradiction to (%i Thus yp(—D) = 0 and
0 <~r(—Dy) < a;.

Let K be an ideal of R such that m : X — Spec(R) is the blowup of K. Let A be the
Cartier divisor defined by KOx = Ox(A). Expand A = ) —b;F; where we increase the
set of Fj if neccessary, so that some a; and b; could be zero. A is an anti-effective integral
divisor which is ample and all irreducible components of 7~ !(mpg) are in the support of
A. After possibly replacing K with a power of K, so that A is replaced with a multiple of
A, we may assume that A — F' is also ample. We have that

We establish the following lemma. For 0 <t € Q, let D; = D — tF.

Lemma 4.3. Suppose that t < a1 — yp(—D1) is a positive rational number. Then there
exists mg > 0 and an effective integral divisor U on X which does not contain F in it’s
support such that moD; is an integral divisor and —mgDy ~ U.

Proof. Let A € Q¢ be such tA+T<ap — 'yp(—le). Then D; = Dy, + AF. Suppose
that yp(—D¢) > 0. Then by [7, Lemma 4.2] and [7, Lemma 4.3],
0=9r(=D1 —yr(=D1)F) = ~ypr(=Ds+ (a1 —vp(— Dl) - t)F)
= yp(=Dy) + (a1 —yp(=D1) —t) >
a contradiction. Thus vp(—D;) = 0.
We have that

A Ab
—Dy=—Dyiy — ANF = —-D —A —F
t A+t A+t T by + Z by

Now the lemma follows from Lemma 4.4 h%, since yp(—Dx4¢) = 0. O
8



For the rest of the proof, we fix t € Qs with ¢t < a; —yp(—D1) and allow s € Q¢ with
0 < s <t to vary. LommaGi .

We have that —Ds = —D; + (s — t)F. By Lemma &1.3, there exists mg € Z~g and an
effective integral divisor U whose support does not contain F' such that mo(—Dy) ~ U.
Thus

mo(t —

mo(— ) U+m0(s—t)F U+m0t—8 Zbl , S)A-

i>1
Since A and A — F' are ample, we have that A — AF is ample for0 <A< 1.

We now impose the further restriction on s that s < 5,71 +1 This implies that fbls <

With this restriction on s, we have that tb_—lsA — AF is ample for 0 < A < s. In fact,
bi A b1\ 1 1 201\

R4 8 —A A— Fy=-A+ —(A— F
() t—s ( t—s ) 2 +2( t—s )

which is the sum of two ample divisors since 2;’—1’\ <1. Let Hy = tb;lsA.
There exists m; € Z~¢ such that m; (t ) € Z~g, m1s € Z~g and m1D is an integral
divisor. Let ms = mom;.

There exists a section

1
3

7s € T'(X, Ox(—msDs — msHy))

t—s

such that the divisor (75) of 75 is m1U~+ms (T) (i1 biFi). Since F'is not in the support

of (1), 75 restricts to a nonzero section 75 of I'(F, Ox (—msDs—msHs)@Opm, sF), inducing
commutative diagrams with exact columns and rows for n € Zx>g

0 0
T - T

0 — Ox(nmsHg) ® Onm,sF ﬁ Ox(—nmsD + nmssF) @ Opm.sF
T T

(9) 0 — Ox(nmsHs) T—;; Ox(—nmsD + nmgsF)

0 — OX(nmSHST— nmgsF) — OX(—ILmsD)
T T
0 0

and taking cohomology, we have commutative diagrams with exact columns and rows

0 — HOYX,Ox(nmsH) @ Opm.sr) -5 HOY(X,Ox(—nmsD + nmssF) @ Opp.sr)

Br T . an T
0 — HO(X, Ox(nmgH,)) LN HO(X, OX(—nmSD + nmgsF))
/]\
0 — HYX,Ox(nmsHs; —nmgsF)) — HO(X, OX( nmsD))
T T
0 0

We have that

an(HY(X, Ox (—nmsD + nmgsF)) =2 H(X, Ox(—nmsD,)/H° (X, Ox(—nmsD)).
9



We will show that Ag(ay, (H(X,Ox(—nmsD + nmssF))) grows like n?. To do this, it
suffices to show that Ag(B,(H°(X, Ox(nmsHy))) grows like n?, since 77 is an injection
and 723, (H(X, Ox (nmsHy)) C an(HY(X,Ox(—nmsD + nmssF))).

Now f3, is surjective for large n since Hy — sF is ample, so that H' (X, Ox(nmsHs —
nmgsF)) = 0 for n > 0. Thus it suffices to show that Ag(H®(X,Ox(nmsHs)®0
grows of order n¢ for n > 0.

We have short exact sequences

wmssr))

(10) 0 = Ox(nmsHs — jF) ® O — Ox(nmsH;) ® Oj11yp — Ox(nmsHs) ® Ojp — 0

for 1 <j <mnmgs—1.
For 0 < 7 < nmygs,

200 j
(t — s) nmg

nmg(t — s) lA—l—%(A—

nmsHs; — jF = b (2

F))

is the sum of two ample divisors as shown in (%%I.EThis composition continues to hold
when restricted to F'. Thus by Fujita’s vanishing theorem (120] over all fields, also Theorem
1.4.35 page 66 %26] in characteristic zero) we have that there exists ng such that n > ng
implies that H'(F,Ox(nmsHs — jF) ® Or) =0 for i > 0 and 0 < j < nmys.

Let h'(F) = dimy H'(F,F) = Agr(H'(F,F)) and x(F) = h%(F) — h}(F) if F is a
coherent sheaf on F'. aR6

Restricting to n > ng and taking cohomology of the exact sequences (&6% we obtain
that

)\R(HO(X’ OX(nmsHs) X OnmSSF)) = Z?g(;871 hO(OX(nmsHs - ]F) & OF)
= Z?Lﬂdss_l X(Ox(nmsHs — jF) ® OF).

Now x(Ox (nmsHs—g F)@Op) is a polynomial in n and j of total degree d—1 = dim F' (the
Snapper polynomial [35], [25], [12]). The bi-homogeneous part of x(Ox (nmsH(s;—jF)@)OF)

of total degree d — 1 is ((nmsﬁif_]f)?!)dilp) (by a variation of Theorem 19.16 [12]). We can

do these calculations after making a base change by an algebraic closure of k since the
intersection theory from the Snapper polynomial is valid over an arbitrary (not necessarily
reduced) projective scheme.

Thus for large n,

AR(HO(X, OX(nmsHs) & OnmsF))

is a polynomial Ps(n) in n of degree < d, and

nmss—1 .
- SHy—jF)~ 1. F
Ps(n) = Z (o @ ‘]1)? ) + terms in n of degree < d.
J=0 ’
Define
ns—1 . —
Oun) = S (s =G E) - F)

= (d—1)!

Q@s(n) is a polynomial in n of degree < d. We have that

Ps(n) = Qs(msn) + terms of degree < d.
10



(d—1)1Qs(n) = X35 (nHy — jF)* - F)

(1) = (H)""F)+ 5 1[ Y G e e R U A

— ((nH,)4! F)—FZ [(d 1)(_1)d—k71<H§_Fd7k)nk <Z;leljd 1— k)}

By Faulhaber’s formula, Y ;_; k? is a polynomial in n with leading term :1 (c.f. ;26 )r

Thus Z?sll G-Ik g 2 polynomial in n of degree d — k, whose leading term is dd ;; d=Fk

Substituting into Iii we see that the coefficient o(s) of the term of degree d of the

polynomial Qs(n) is
d—1\ 7% [t—s\F
1yd—k=1 Ak pd—k
()i () weE

which is a polynomial in s. We have that

T

1 £\ -1
o(s) = SW <b> (Ad*1 - F') + higher degree terms in s.
D'\ By

d—1
In particular, o(s) is a nonzero polynomial, and since ﬁ (i) (A1 F) >0 (as A
is ample) if s is sufficiently small within the region 0 < s < 5~ +1’ we have that o(s) > 0.
We now fix such an s. Since Qs(n) is a polynomial in n of degree d, Ps(n) is a polynomial
in n of degree d.

We have natural inclusions
HY(X,0(—nD,))/H(X,Ox(—nD)) c H*(X,Ox(—n( Z a;F)))/H°(X,Ox(—nD)).
7T(FZ)7£mR

Since Py(n) is a polynomial in n of degree d (with positive leading coefficient), there
exists a constant ¢ > 0 such that for n > 0, we have that

Ps(n) )\R(Ho(nmsF,OX(nmsHS)®Onm5F))

0 <c S mdnd — mdnd
< Ar(@nH(X,0x (~nmsDtnmsF))
= mdnd
_  ArHYUX, Ox (=nmsD d))o/lHO(X ,Ox (=nmsD))
)\R(HO(X,OX(fnmS(ZW(F ) gy @ Fi)))/HO(X,0x (~nms D))

mdnd
Thus
ArR(I(nD):m% /I(nD))

nd
Ar((HO(X.Ox (~1(S 1 () pom @0 F3)))/ HO(X,Ox (~nD))
d

= dlim,_
— d' hmn*)oo AR((HO(X)OX(_TLmS (ZW(F 3{:;;‘}3 ag 2)))/HO(X OX(—nng))
> dle>0.

5. EPSILON MULTIPLICITY UNDER INCLUSIONS OF FILTRATIONS

In this section we consider filtrations Z, J such that J C Z and discuss the existence
of their epsilon multiplicities.
11



finite length ‘

Proposition 5.1. Let (R,mp) be a Noetherian local ring of dimension d > 0 and J =
{In}, T = {I,} be filtrations of R such that J, C I, and Ar(I,/Jn) < oo for all n > 1.
Suppose J satisfies A(c) for some ¢ € Z=0. Then the following hold.
(1) T satisfies A(c) and e(Z),e(TJ) exist as limits.
(7i) Suppose R is analytically irreducible. If R[Z] is integral over R[J] then £(Z) =
e(J).

(7i1) The converse of (ii) is not true in general.

Proof. Since Ag(I,/J,) < 0o, we have J,, C I,, C J% for all n > 1. Hence

Jo NmE™ = I Nmp™ = J3% Nmp™

for all n > 1.
(i) Let x € I3 Nmpg®™ for any n > 1. Then mglz € I, Nmg™ = J, Nmg™ C J, for
some | € Hence x € J3% Nmg™ = I, N mr. Therefore T satisfies A(c) and by

Theorem [[.2,¢(Z) and e(J) exist as limits and they are real numbers.
(i) By [6, Theroem 6.1], lim Agr(I,/J,)/n? exists. Now from the following short exact
sequence e
0—1I1,/J, — R/J, — R/I, — 0
of R-modules, we get a short exact sequence
0— HY, (In/Jn) = In/Jn — HY), (R/Jn) — H), (R/I,) — 0

of local cohomology modules. Therefore
)\R(In/ Jn)

nd

(12) e(J)=¢T)+d nhﬁmgO

S
If R[Z] is integral over R[J] then by H?KZ, Theorem 1.5], we have ILm Ag(I/Jn)/nd = 0.
E n—oo
Therefore by equatiorﬁ% )gath ol have ¢(Z) = e(J).

(7i1) See example I6.1.  In this example, the filtrations Z and J both satisfy A(2),
e(Z) = e(J) but R[Z] is not integral over R[T]. O

i e . finite length i
Using Theorem 153 and Proposition % [, we ge% the following.

Corollary 5.2. Let R be a Noetherian local domain of dimension d > 0 and J = {Jp}
be a discrete valued filtration. Suppose T = {I,} is a filtration such that J, C I, and
Ar(In/Jn) < oo for allm > 1. Then T satisfies A(c) for some ¢ € Z~o and e(I) exists as
a limit.

Remark 5.3. In Proposition %%g%place “J satisfies A(c)” by “L satisfies A(c)”
then () exists as a limit but £(J) may not exist. For example, let T = {I,, = (22, zy™)}
and J = {J, = (22,2y™")} be filtrations in k[z,y] y- Then T satisfies A(2), e(Z) = 0
and e(J) = 0.

Remark 5.4, If we drop the cond%g%qtéhizgﬂ%thsatisﬁes A(ce) for some c € =0 in Propo-
sition [5.1, then (11) of Proposition 5.1 1s not true in general (see Example [6.2).

The next example shows that the property of A(c) does not descend in integral exten-
sions of filtrations.

(z,y

Example 5.5. There exists a filtration J which satisfies A(2) with the following properties

1) Given c € Z>3, there exists a subfiltration KC of J such that R[K] = R[J] and c is

the smallest positive integer such that IC satisfies A(c).
12




closure

2 There exists a subfiltration H of J such that R[H] = R[J] but H does not satisfy
A(c) for any c € Zxyp.

We have that £(J) = e(K) = 0 but e(}) # 5. Recall that we have defined the epsilon
multiplicity of a filtration as a limsup in ( 7. We now construct the example. Let 7 = {J,,}
where J is the ideal (z%,zy") in R = k[x,y] (z,y)- Let 7 be any increasing function such
that 7( n for all n and let T = Z, = {I,,}, where I,, = (22,2zy™") as defined in
Section b_Then I, CJ. o

We will show that R[Z;] = R[J]. To establish this, we need only show that zy"t"
integral over R[I;] =) ., I,t". This follows since

(xyntn)Z — $2y2nt2n c IZnth-

Let H be the filtration of Example %%Example E%ag%ﬁl}}gmw?&that ‘H does not
satisfy A(c) for any ¢, so that the second statement of Example k‘?.t’ﬂgflﬁs.

Let a € Z~o and let K = {K,,} where K,, = (2%, zy™).

We will establish that K satisfies A(c) if and only if ¢ > a.

We have that K, : m% = (x) for all @ and n. Thus for ¢ € Z~,

(K : m%) Nme = am§G

and
cn—2,_2 cn—an—1 cn—1 :
my~wt + xy"'my = xmp ifen>an+1

K, Nm$ = .
" R Iy 22 if en < an + 1.

Thus K satisfies A(c) if and on\gxglfn ¢, 2, 0 Taking a = ¢ — 1, we obtain the conclusions of
the first statement of Example
We also have that the property of A(c) does not ascend under inclusions of filtrations.

Example 5.6. There exists an inclusion of filtrations T C J such that T satisfies A(1)
but J does not satisfy A(1).

The example is constructed as follows. Let R = k[v,y]w,). Let T = {I,} where
I,=(x 3”) and J = {J,} where J, = (z"m%'). We have that 7 satisfies A(1). For all n,
Jp :mg = (") so that (J, : m¥) Nm}p = (") and J,, N m}p = J, so J does not satisfy
A(1).

The above examples shows that it is not easy to approximate filtrations which satisfy
A(c) by filtrations which also satisfy A(c). In the case that we can, we may compute the
epsilon multiplicity of a filtration as a limit of the epsilon multiplicities of the appro I
mating filtrations. The following proposition is proven by an extension of the proof of
Theorem 6.1].

Proposition 5.7. Suppose that R is an analytically unramified local ring and T is a fil-
tration of R which satisfies A(c) for some ¢ € Z~g. Let T; = {I[i],} be subfiltrations of T
fori € Zsg such that T; C Z; if j > i, U2, =T and Z; satisfy A(c) for all i. Then

lim e(Z[7]) = ¢(2).

1— 00

6. INTEGRAL CLOSURE, MULTIPLICITY AND EPSILON MULTIPLICITY OF FILTRATIONS

In this section we study the relationship between epsilon multipliciti S oofE‘gwo filtrations
and their integral closures. The following examples show that Theorem .8 does not extend

to general filtrations.
13



Example O

Example 6.1. We have filtrations J C I in a Noetherian local ring R such that e(Z,) =

e(Jp) for all p € Spec R but R[Z] # R[T].

In the example, R = k[z,y](y ). Further, Z and J satisfy A(2).

We now construct the example. Consider the filtrations Z = {I,, = (2™)} and J =
{Jn = (2", 2"y)} in R = Clx,y] (). Then V(1) = V(J1) ={P = (2),Q = (z,y)} and
e(Zy) = e(Jy) = 0 for all p € Spec R\ V(I1). Note that I,Rp = J,Rp = (¢")Rp for all
n € N. Hence ¢(Zp) = (Jp). Since I,, does not have @) as an associated prime for all
n € N, we have ¢(Z) = 0. For all n > 1, we have

(Jn :m3E) /I = (@")/ (2", 2"y) = R/(x,y)
$0 AR((Jn : m%)/Jn) = 1. Thus e(J) = nh_>no10 2/n? = 0.

Now if R[Z] = R[J], since R C R[J| C R[J] and R[Z] is a finitely generated R-algebra,
by the Artin-Tate lemma, we have R[J] is a finitely generated R-algebra which is a
contradiction. Hence R[Z] # R[J].

Example 6.2. We have filtrations J C Z in a Noetherian local ring R such that R[Z] =
R[T] but e(Z) # &(T).

Consider the filtrations T = {I, = (22, 2y™)} and J = {J, = (2%, 2y™)} in R =
Clz,Yl(ny)- Since (xy"t™)? € Jont®™, we have R[I] = R[J]. Note that

e(Z) = ILm An/n? =0+#2= ILm 2n?/n?* = ¢(J).

Let a be an mp-primary ideal of a local ring (R, mpg) and N be a finitely generated
R-module with dim N = r. Define

H
If s > r =dim N, define (f’;?), V.2|, FX, 4.7])

| ea(N) if dimN =s
es(c“N)_{ 0 if dim N < s.

Let (R, mpg) be a local ring and Z = {I,,} be a filtration of ideals of R. In %6, Definition
3.2], we defined the dimension of the filtration Z to be s(Z) = dim R/I,, (for any n > 1).
If R is an analytically unramified local ring, N is a finitely generated R-module, a is an
mp-primary ideal and Z is a filtration on R then by [16, Proposition 4.2], for s € N with
s(Z) < s < d, we have
‘ .. es(a,N/I,,N)
es(a,Z;N) == w%gnoo = /(d — 5!

exists and

(13) es(a,Z;N) = > eg,(Zy, Np)ea(R/p)
p

where the sum is over all p € Spec R such that dim R/p = s and dim R, = d —s. We write
es(Z) = es(mp,Z; R).

emark 6.3. Note that for any filtration T in a local ring R with dim N (R) < dim R, by
, Theorem 1.1], we have €(Z,) = eg,(Z,) exists for all p € MinAss(R/I,,) andn >1 .
14
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Proposition 6.4. Let (R,mpg) be an analytically unramified local ring and Z,J be filtra-
tions in R with J CZ and dim R/J = s. Then es(Z) = es(J) if and only if £(Z,) = e(Jp)
for all p € Spec R with dim R/p = s and dim R, = dim R — s.

Proof. Let V.= {p € SpecR : dimR/p = s and dim R, = dim R — s} and for all n > 1,
V N MinAss(R/J;1) = V N MinAss(R/Jp) = {p1,....pr}.

Let p € V\{p1,...,p-}. Then J,R, = R, for alln > 1. Since dim R/Z < dim R/J = s,
we also have I, R, = Ry, for all n > 1. Hence ¢(Z,) = &(J,) = eg,(Z;) = eg,(Jp) = 0.

Let p € {p1,...,p,}. Then e(J,) = eg,(Jp). Since dim R/Z < dim R/J = s, we have
(Ly) = er,(Zp). tw

Thus by taking N = R and a = mpg in equation (ﬁi’n%, we have

es(T)=es(T) & D er,(Tp)emn(R/p) = er,(Tp)emp(R/p)

pev pev
& D len,, (F) — eny, (T)ems (B/pi) = 0
i=1
& er, (Iy,) =er, (Jp,) foralli=1,...,7
& e(Zy,) =e(Tp,) foralli =1,...,7.

O

Remark 6.5. Let (R,mpg) be a Noetherian local ring and Z,J be filtrations of R such
that J C I. Suppose R|J| = R[J] = R[Z]. ThenZ = J.

We recall a few definitions from [16].

An s-divisorial filtration is a divisorial filtration J = {Jm = I(v1) a1 - (V) fma,1
with dim R/m,, "R =s foralli=1,...,r.

A filtration J is called a bounded filtration if there exists a divisorial filtration

C= {Cm = I(Vl)[mal] M- mI(Vr)[ma,«]}

such that R[J] = RI[C].

A filtration 7 is called a bounded s-filtration if there exists an s-divisorial filtration C
such that R[J] = R[C]. ...

We now prove Theorem 139 from the introduction, which we restate here for the conve-
nience of the reader.

Theorem 6.6. Let (R,mp) be an excellent local domain and Z be a filtration of ideals in
R. Then the following hold.

(1) Suppose T is an s-divisorial filtration such that J C Z. Then the following are
equivalent.
(i) e(Zy) = e(Fp) for all p € Spec R.
(ii) e(Zy) = e(Tp) for all p € Spec R such that £(J,) = dim R,,.
(ili) e(Zp) = e(Jp) for all p € Spec R with dim R/p = s.
(iv) ZT=J.
(v) R[Z] = R[T]. L
(2) Suppose J is a bounded s-filtration such that J C Z. Then R[Z] = R[J] if and
only if e(Z,) = e(Jp) for all p € Spec R with dim R/p = s.

Proof. Note that dimR/Z < dimR/J = s. Supppse that s = 0. Then er(Z) =
e(2),er(J) = ()., Thus (1) and (2) follow from [10, Theorem 1.4] , [10, Theorem
13.1] and Remark 6.5 Therefore we assume s > 0.

15



int 1lycl d
1) It is clear that (i) = (ii), (iv) = (i) and (iv) = (v). By Lemma 2. and Hemar

, we have (v) = (iv).

Next we show that (i) implies (i7i). For any p € Spec R with dim R/p = s, we have
either p ¢ V(J1) or J, is a filtration of pRp-primary ideals. If p ¢ V(J1) then p ¢ V(I1).
Hence £(Z,) = €(Jp) = 0. If J, is a filtration of pRp-primary ideals then £(J,) = dim R,
and by hypothesis €(Z,) = (7). ove

Now we prove that (ii7) implies (iv). By Proposition %I.)Iqwe have es(Z) = es(J).
Therefore by [16, Theorem 6.7], we gety I=J.

(2) Suppose @ = R[J]. Then by %6 Theorem 5.1], we have e4(Z) = e4(J) and hence
by Proposition 6.4, we have ¢(Z,) = €(J;) for all p € Spec R with dim R/p = s.

Suppose s(Ip) =e jp ) for all.p € Spec R with dim R/p = s. Then by Proposition hf’)%lﬂ
we have e4(Z) = es(J). Using %’6 Theorem 7.4], we get the required result.

mce

g

Corollary 6.7. Let (R,mp) be an excellent local domain and T be a filtration of ideals in
R. Let J = {J"} where J is an equimultiple ideal such that J" C I, for alln > 1. Then
the following are equivalent.

(i) R[Z] = R[T].
(ii) e(Zy) = e(TJp) for all p € Spec R with dim R/p = dim R — £(J).
(ili) e(Zp) = e(Jp) for all p € Spec R such that £(J,) = dim R,,.

Proof. If height J = dim R then the result follows Qm hC‘IO, Theorem 1.2]. Suppose
height J < dim R. Since J is an equimultiple ideal, byﬁ{;fG Corollary 8.3], J is a bounded
s-filtration where s = dim R — ¢(J). Thus the equivalence of (i) and (i) follows from
Theorem [T .

Since J is an equimultiple ideal, by %Uﬂrollary 9, 9.3], all prime divisors of J" are
of height ¢(J). Therefore for all n > .1 and any p 6 Ass(R/J"™) = MinAss(R/J),
we have dimR/p = s. Now using orollary 4], ¢(J,) = dim R, if and only if
p € Ass(R/J") = MinAss(R/J) and dim R/p =s. Thus (7) implies (4i7).

Now suppose p € Spec R such that dimR/p = dim R — ¢(J) = dim R — height J. If
p ¢ V(J) then J, = Ry, = IR, and hence €(Z,) = ¢(J,) = 0. Suppose p € V(J). Then
p =€ Ass(R/J") = MinAss(R/J) and hence ¢(7,) = dim R,. Thus (i) implies (i3). O

equalit

Example 6.8. Theorem b%g_a’o_e% not extend to be true for general divisorial filtrations.
Let J = {p"} and T = {p™} where p is a height 2 prime ideal in a regular local ring R
of dimension 3 such that T is not finitely generated R-algebra. Hence m % w We

have dim R/J = 1. Note that %},) =e1(Z) =e(J) =e(Fp) and 0 = ¢(Z) # 8(‘7TTh:eoremIQ

e(p) > 0 by Proposition 2.1 (b) [24] , which shows that e(I) = e({I"}) and Theorem
as {(p) = dim R. Statement (iii) of Theorem 1.9 is true but statements (i), (ii) (iv) and
(v) are not.

equalit
Example 6.9. Theorem b’c.]'g_clo_e% not extend for bounded filtrations. Let J = {p"} and
Z=Ap ”)} where p is a height 2 prime ideal in a regular local ring R of dimension 3 such
that T is not finitely generated R-algebra. Hence R[T] # R[J]. We have dimR/J = 1.
Note that (Zp) = e1(Z) = el(J) = e(Jp) and 0 = (L) # e(T) = €(p) > 0 as {(T) =
dim R.
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