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Producing entangled photon pairs and quantum squeezed states in plasmas
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Plasma is capable of mediating the conversion of two pump photons into two different photons through a
relativistic four-wave mixing nonlinearity. Spontaneously created photon pairs are emitted at symmetric angles
with respect to the colinear pump direction, and the emission rate is largest if they have identical frequency. Thus,
two orthogonally polarized pumps can produce polarization-entangled photon pairs through a millimeter-long
homogeneous plasma. The noise from Raman scattering can be avoided if the pump detuning differs from twice
the plasma frequency. However, pump detuning exactly equal to twice the plasma frequency can significantly
enhance the interaction rate, which allows for the production of strong two-mode squeezed states. Remarkably,
the amplified noise from Raman scattering are correlated and hence can be suppressed in one of the output
quadratures, thereby maintaining the squeezing magnitude.
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I. INTRODUCTION

Quantum entangled photon pairs and quantum squeezed
states are two types of the most crucial resources for quantum
information science. Entangled photon pairs have nonlocal
correlations to enable a variety of applications like quan-
tum computing and communication. Quantum squeezed states
exhibit a lower noise level in one quadrature than the vac-
uum state, offering a significant advantage in high-precision
measurements. Notably, its application in advanced-LIGO de-
tectors [1,2] has demonstrably boosted detection rates by over
60%. However, the advantages of utilizing quantum nonclas-
sical light are constrained by low photon flux and narrow
bandwidth. This limitation results in low frame rates, typically
a fraction of a hertz, in quantum imaging [3] and quantum
spectroscopy [4] experiments, due to the restricted photon
generation rates. Similarly, the SU(1,1) interferometer [5,6]
has yet to surpass the conventional SU(2) interferometer due
to limited squeezing performance.

Production of entangled photons and squeezed light
typically uses spontaneous parametric down-conversion in
nonlinear crystals which, in a classical description [7], arises
from the anharmonic potential of the crystal electrons in
a strong driving laser field. Efforts to enhance the pho-
ton flux and bandwidth of nonclassical light generation
fall into two categories. First, the nonlinear optics commu-
nity focuses on optimizing conventional nonlinear crystals
through techniques like periodic poling [8,9]. This method
effectively increases photon emission rates by achieving
quasi-phase matching and minimizing phase drift. Sec-
ond, researchers have explored alternative systems with
higher nonlinear optical susceptibilities, including optical
fibers [10,11], silicon waveguides [12–14], superconducting
Josephson junctions [15], cold atoms [16–18], and optome-
chanical systems [19–23]. However, all these approaches
employ weak laser fields, fundamentally restricting the output
photon flux. Recent advancements in attosecond physics have
spurred investigations into high harmonic generation [24–27]
and its potential for nonclassical light production using laser

intensities of 1012−14 W cm−2 [24,27–29]. While the non-
classical nature of high harmonic photons holds promise for
testing quantum theory and studying electron interactions
with strong quantum light [30], their practical applications in
quantum optics remain unclear.

Further increasing laser intensity, however, causes ther-
mal damage to conventional nonlinear materials. Plasmas,
however, can maintain optical properties above the ionization
laser intensity. This high thermal damage threshold positions
plasma as a potential candidate for delivering the next gen-
eration of high-intensity laser sources [31–36]. Additionally,
plasmas exhibit strong nonlinearity [37] at high intensities,
allowing rapid amplification [32,34,38] and storage [39–44]
of light pulses, and merging laser energy of multiple kJ [45].
Importantly, the plasma nonlinearity scales across a broad
range of frequencies, enabling manipulation from microwaves
to x rays.

This paper investigates the use of the relativistic four-wave
mixing (FWM) nonlinearity of plasmas to produce quantum
entangled photon pairs and squeezed states. Several plasma
experiments since the 1980s have demonstrated degenerate
FWM [46–50] using relatively low laser powers. However,
these approaches employed a Brillouin grating generated
through the laser ponderomotive force, which introduces clas-
sical noise and hence is not suitable for directly producing
quantum light.

Recently, however, for the purposes of laser upconver-
sion, all-optical parametric processes have been proposed at
high power in under-dense plasma, in which the plasma is
used for coupling electromagnetic pulses without affecting
the resonance condition. In this way, the plasma can effi-
ciently mediate the conversion of near-optical laser pulses
to high-energy x rays in a cascaded manner [51–55]. In
particular, the relativistic FWM in plasma was proposed for
converting two pump photons into two output photons at
different frequencies in under-dense plasma. The relativistic
FWM process uses a χ (3) nonlinearity which couples four
electromagnetic waves through anharmonic electron motion
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caused by the relativistic effects in the strong laser field. In
fact, the similar FWM process in optical fibers [10,11] has
been established as a key technique for generating broadband
entangled photon pairs. However, in plasma, the tolerance
to extreme laser intensities enables ultrahigh FWM interac-
tion rate with a centimeter-scale growth length. Crucially,
the nonlinear plasma dispersion relation can be utilized to
create phase matched interaction through arranging the laser
wave vectors and plasma density. Entangled photon pairs can
then be produced in a submillimeter-long plasma and strong
squeezing can be obtained in a longer plasma.

The all-optical possibilities for FWM are crucial in realiz-
ing entangled photons that survive plasma noise. The faster
plasma Raman scattering process, which is a lower order
parametric process, is subject to classical noise effects. While
the thermal bath for unseeded FWM is the vacuum fluctuation,
the thermal bath for spontaneous Raman scattering (SRS) is
the random fluctuation of plasma density or thermal phonons.
In fact, the fast growth rate of SRS is a significant challenge
for many plasma photonic applications [56,57], particularly in
high-density plasmas.

This paper demonstrates two methods of suppressing the
SRS noise. The first method takes advantage of the discrete
emission spectrum of SRS, i.e., it emits to only the Stokes and
antiStokes side bands of the pump wave. The special phase
matching condition, reported in Refs. [51,52], offers a route to
tailor the FWM emission frequency by tuning the pump fre-
quencies and the plasma density. Thus, SRS can be effectively
suppressed by detuning the pumps away from the side bands
of the output modes. Because detuning from plasma resonance
reduces the FWM growth rate, this approach is particularly
effective only for generating single-photon-level output. The
second method exploits the correlation and cancellation of
the SRS noise in both output modes. Specifically, when
two pumps have equal amplitudes and their beat frequency
matches twice the plasma frequency, the FWM growth rate is
maximized, and the system functions as a two-mode squeezer
and a phase-sensitive amplifier. While plasma wave phonons
are created from scattering of the higher frequency pump,
they are simultaneously annihilated by interacting with the
lower frequency pump, thereby maintaining a fixed amplitude.
Furthermore, the amplified plasma waves couple exclusively
to one quadrature of the optical state, suppressing the SRS
noise in the squeezed quadrature.

The paper is organized as follows: In Sec. II, we analyze
two types of interactions between intense laser pulses and
plasmas. Through quantization of the plasma wave, we obtain
the interaction Hamiltonian of the laser-plasma system. In
Sec. III, we investigate the production of polarization en-
tangled photon pairs using the relativistic FWM nonlinearity
of plasmas. The condition for suppressing SRS is analyzed
and the logarithmic negativity is obtained. In Sec. IV, we
demonstrate how a quantum two-mode squeezed state can be
produced using two colinear pumps with a frequency detun-
ing equal to twice the plasma frequency. The solution to the
quantum Langevin equations yields the squeezing magnitude
and its degradation due to thermal phonons. We show that
balanced pump strength can effectively reduce the noise in
one quadrature. In Sec. V, we present our conclusions and
discussions.

II. LASER PLASMA INTERACTIONS AND HAMILTONIAN

Fully ionized plasmas, consisting of both electrons and
ions (or positrons), can mediate laser interactions through a
variety of processes. For the purpose of creating entangled
photon pairs and quantum squeezed light, we focus on para-
metric processes that have fast growth rates. For this purpose,
we analyze the motion of electrons in a laser field which
creates a polarization current J that drives the laser field E
through the wave equation

(
∂2

∂t2
− c2

∂2

∂z2

)
E = 1

ε0

∂

∂t
J, (1)

where c is the speed of light in vacuum and ε0 is the vac-
uum permittivity. In the simplest “fluid” model of plasmas,
we neglect electron kinetic effects. The acceleration of the
polarization current can then be written as

∂

∂t
J = e2ne

meγ
E, (2)

where e is the natural charge, ne is the electron number den-
sity, me is the electron rest mass, and γ is the relativistic
Lorentz factor.

The explicit inclusion of γ reveals the first laser plasma
interaction: If the laser field is sufficiently strong to drive the
electron to relativistic speeds, then the electron mass increases
by a factor γ near the laser antinodes when it reaches its
maximum kinetic energy. Assuming the electrons start from
rest, the value of γ can be obtained using the conservation
of canonical momentum, i.e.,γ (t ) ≈

√
1+ α2(t ), where we

introduced the parameter α = eA/(mec2) and its amplitude
α to denote the normalized laser amplitude.1 Here, A is the
laser vector potential. We can thus expand 1/γ ≈ 1 − α2/2
for α < 1. In a physical picture, the relativistic effect causes
an anharmonic electron oscillation to lead to scatterings at
different wavelengths.

The second type of interaction is associated with the fluctu-
ating plasma density ne. The displacement of an electron from
its stable position causes a electrostatic restoring force. If all
the plasma electrons are driven by an external field, such as
the laser ponderomotive force, then the electrostatic restoring
force is amplified to drive the electrons into a longitudi-
nal oscillation, called a plasma Langmuir wave. The plasma
could thus exhibit a spatial density modulation which itself
oscillates at the plasma frequency ωp =

√
e2ne/(meε0). The

electron density ripple, functioning as a Bragg grating, scat-
ters the incoming laser field. At the same time, the oscillation
motion Doppler shifts the laser frequency to cause a Stokes
side band and an anti-Stokes side band with a frequency
detuning equal to±ωp. The frequency-detuned scattered light
beats with the drive laser and reinforces the plasma oscillation.
The positive feedback results in an instability, called Raman
scattering. This scattering is further referred to as spontaneous
Raman scattering and stimulated Raman scattering, depend-
ing on whether a seed is used to initiate the instability. Here,
we use the the acronym SRS for both scatterings.

1It is usually denoted as a (or a0 for its peak value) in the plasma
community, but we reserve symbol a for quantum fields in this work.
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(a)

(b)

FIG. 1. (a) Wave-vector relations of FWM. Pump photons (k1
and k2) are directly converted into emitted photons (k3 and k4) if
they satisfy the Manley-Rowe relation. (b) Wave-vector relation of
SRS involving four electromagnetic waves and two plasma waves.
Pump photons are converted into emitted photons through plasma
waves (kp and kq) if ω1,2 ± ω3,4 = ωp is also satisfied.

Writing ne = n̄e(1+ δn), the wave equation (1) can be
transformed into

(
∂2

∂t2
− c2

∂2

∂z2

)
α =

(
1+ δn − α2

2

)
α. (3)

The first-order Taylor expansion of 1/γ shows a FWM cou-
pling if the Manley-Rowe relations are satisfied, i.e.,ω1 +
ω2 = ω3 + ω4 and k1 + k2 = k3 + k4. Taking into account
the plasma dispersion relation ω2 = c2k2 + ω2

p, the allowed
wave vectors trace an ellipsoid as represented in 2D in
Fig. 1(a).

The laser wave equation is accompanied by the plasma
wave equation

(
∂2

∂t2
+ ω2

p

)
δn = c2

2
∇2α2, (4)

which describes the driven motion of plasma density modu-
lation by the laser ponderomotive force. Frequency matching
condition shows that SRS takes place if two electromagnetic
modes are detuned by the plasma frequency ωp, which is the
eigenfrequency of plasma oscillations and is independent of
wave vector in a cold plasma. We illustrate the phase matching
condition in Fig. 1(b).

To quantize the electromagnetic wave and the plasma wave
(variables α and δn) and to obtain the interaction Hamilto-
nian, we expand the wave equations to the first order using
the slowly varying envelope approximation and the plasma
dispersion relation. Including the plasma waves, the modes
of interest can all be expanded as

α =
4∑

i=1

αieikir−iωit + c.c. (5)

δn = δnpeikp·r−iωpt + δnqeikq·r−iωpt + c.c. (6)

Now we consider two pump modes with frequencies ω1,2 and
two output modes with frequencies ω3,4. Their wave-vector

relations are sketched in Fig. 1. Then, we obtain the equa-
tions of motion after neglecting the fast rotating terms

(
∂

∂t
− v3 · ∇

)
α3 =

iω2
p

ω3
(α1α2α

∗
4 − α1δn∗

p − α2δnq), (7)

(
∂

∂t
− v4 · ∇

)
α4 =

iω2
p

ω4
(α1α2α

∗
3 − α1δn∗

q − α2δnp), (8)

∂

∂t
δnp =

ic2

ωp
∇2(α1α

∗
3 + α∗

2α4), (9)

∂

∂t
δnq =

ic2

ωp
∇2(α1α

∗
4 + α∗

2α3). (10)

The pump fields α1,2 have near relativistic intensities
(1016–1017 Wcm−2), so they can be treated classically. The
variables to be quantized are α3,4 and δnp,q. The field α3,4
can be quantized using the standard procedure [58] A =
∑

k,s

√
h̄

2ωk,sV ε0
âk,sσ̂k,seik·r−iωt + H.c., where âk,s is the anni-

hilation operator, V is the normalization volume, and σ̂i is
the polarization vector. The plasma wave can be treated as a
phonon which interacts with the laser by absorbing or emitting
a photon. To quantize the phonon mode of the plasma wave,
we use the fact that the interaction Hamiltonian has the form

Hint = HFWM + HSRS, (11)

HFWM = h̄)α1α2â
†
3â

†
4 + H.c., (12)

HSRS = h̄g[α∗
1 (â3 p̂+ â4q̂)+ α∗

2 (â3q̂
† + â4 p̂†)]+ H.c.,

(13)

where ) = ω2
p

2
√

ω3ω4

∑
i, j,k,l=1,2,3,4(σ̂i · σ̂ j )(σ̂k · σ̂l ). It thus leads

to the relations |δnp|2 ↔ h̄e2k2p
2V ϵ0ω3

pm2
e c2

p̂† p̂ and g= ckp
2

√
ωp

ω3
. Be-

cause kp = kq and ω3 = ω4, the normalization is the same
for mode q̂. A different normalization would change the zero
point fluctuation energy but would not alter the key result
because the plasma wave amplitude would not grow exponen-
tially as we will show.

III. PRODUCING POLARIZATION
ENTANGLED PHOTON PAIRS

The interaction Hamiltonian (11) describes two processes
of creating photon pairs, including using FWM and us-
ing phonon-mediated SRS. FWM is a parametric process
and the electrons do not change their states after absorb-
ing a pair of pump photons and emitting another pair of
output photons. Thus, the combined property of the output
photons, including their frequencies, wave vectors, polar-
ization, and emission angles, will be identical to absorbed
pump photon pair. The output states under the FWM inter-
action can be expressed as |+⟩ = exp[−( izh̄c )HFWM]|0, 0⟩ =
cosh−1 r

∑∞
n=0 e

inϕ tanhn r|n, n⟩. Here, the quantum squeezing
parameter and phase is related to the interaction time via
)α1α2z/c = reiϕ . The two output modes have an identical
photon number and are quantum correlated. For short plasma
or weak pump fields r ≪ 1, the output field becomes a sin-
gle photon pair |1, 1⟩. Variation of any parameter of one of
the output photon will be correlated with the other photon.
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This process offers a mechanism to produce entangled photon
pairs.

However, SRS is an instability which can grow from scat-
tering and amplifying a plasma wave. Because a plasma
Langmuir wave is an eigenmode of the plasma medium,
it could exist due to thermal effect and hence has a finite
phonon number at finite temperatures. SRS of the pump
wave is a fast process that creates photons that are not cor-
related other photons and reduces the quantum purity of
the output states. Considering degenerate frequency for the
entangled photon pairs ω3 = ω4, the FWM growth rate is
α1α2) = α1α23ω2

p/(2ω3), but the SRS growth rate is α1,2g ≈
α1,2ω

3/2
p /(2ω3). For plasma frequency ωp ≈ ω3/10 and mod-

erately intense laser α1,2 ≈ 0.1, the SRS growth rate is larger
than FWM by a factor of 10. Moreover, SRS of the pump
could not be suppressed using techniques for plasma Raman
amplifiers, such as a plasma density gradient, because fluc-
tuations of the plasma density could broaden the scattering
spectrum and shadow the entangled photon pairs.

Therefore, the noise from SRS needs to be reduced by
choosing the pump parameters such that the output photon
frequency is detuned sufficiently far from the Stokes or anti-
Stokes side band of each pump pulse. Such an arrangement
spectral isolates the pump scattering from FWM and from
SRS. The amount frequency detuning required depends on
the linewidth of plasma resonance. For cold plasmas with
Debye length longer than the plasma wavelength, the plasma
density fluctuation spectrum is dominated [59,60] by the
collective dynamics and has a Lorentz shape. Its linewidth
comes from Landau damping which is contributed by those
few electrons in the tail of the Maxwell distribution whose
velocity equals the phase velocity of the plasma oscillation.
For plasma temperature of 10–100eV and kp ∼ ω1/(10c), the
Landau damping is negligible and hence SRS is negligible as
long as the detuning exceeds the sum of plasma frequency and
the laser linewidth.

Although plasma waves are not resonantly excited in this
regime, they nevertheless influence the FWM growth rate by
inducing plasma oscillations (albeit not at the plasma fre-
quency). It is pointed out in Ref. [51] that the FWM growth
rate is to be changed to

)F =
ω2

p

2
√

ω3ω4
( f1,2 + f1,−3 + f1,−4), (14)

fi, j =
[

c2(ki + k j )2

(ωi + ω j )2 − ω2
p

− 1

]

(σ̂i · σ̂ j )(σ̂k · σ̂l ), (15)

where we use the notation ω−i = −ωi and k−i = −ki. As two
mode detuning ωi − ω j approaches the plasma frequency ωp,
their beat drives plasma density oscillation which affects the
FWM interaction rate.

The polarization and wave vector of the emitted photon
pairs are determined by the FWM interaction rate )F . For two
pumps with identical polarization, all three terms in Eq. (14)
contribute to )F , and both output photons have the same po-
larization. But if the two pumps have orthogonal polarization,
then only f1,−3 and f1,−4 are nonzero, and they correspond
to different quantum paths of photon generation: f1,−3 is pro-
portional to the probability that modes 1 and 3, and modes 2

FIG. 2. Two-color pump with orthogonal polarization creates po-
larization entangled photon pairs at symmetric angles. The shades
represent the most probable emission angles for given pump
polarization.

and 4, have the same polarization; f1,−4 is proportional to the
probability that modes 1 and 4, and modes 2 and 3, have the
same polarization.

A. Pumps with orthogonal polarization

We first consider using two colinear pump pulses with or-
thogonal polarization, as sketched in Fig. 2. Their interaction
in plasma produces photon pairs if their wave vectors satisfy
the Manley-Rowe relations

ω1 + ω2 = ω3 + ω4, (16)

ω3 =

√

c2
(
k1 + k2

2
+ q

)2

+ c2k2⊥ + ω2
p, (17)

ω4 =

√

c2
(
k1 + k2

2
− q

)2

+ c2k2⊥ + ω2
p, (18)

where q = (k3∥ − k4∥)/2. The possible combination of wave
vectors traces an ellipse, as plotted in Fig. 1(a). Photon pairs
of the same frequency are emitted at angle α such that k3 = k4,

cosα = c(k1 + k2)√
(ω1 + ω2)2 − 4ω2

p

. (19)

To find the probability of emission polarization, we next
evaluate the value of f1,−3 + f1,−4. Let θi be the polarization
angle of mode i with respect to the direction k̂1 × k̂3. Using
the law of cosine, we can write

σ̂1 · σ̂−3 = cos θ1 cos θ3 + sin θ1 sin θ3 cosα

=
√
cos2 θ1 + sin2 θ1 cos2 α cos(θ3 − ϕ3)

=
√
1 − sin2 θ1 sin2 α cos(θ3 − ϕ3), (20)

where tan ϕ3 = cosα tan θ1. For σ̂2 · σ̂−4, we use θ2 = θ1 −
π/2, then

σ̂2 · σ̂−4 = sin θ1 cos θ4 − cos θ1 sin θ4 cosα

=
√
sin2 θ1 + cos2 θ1 cos2 α cos(θ4 − ϕ4)

=
√
1 − cos2 θ1 sin2 α cos(θ4 − ϕ4), (21)
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FIG. 3. Values of σ̂1 · σ̂−3 and σ̂2 · σ̂−4 for cosα = 0.8, and val-
ues of (σ̂1 · σ̂−3)(σ̂2 · σ̂−4) at θ1 = π/4 for cosα = 0.8.

where tan ϕ4 = cosα tan(θ1 + π
2 ). The values of σ̂1 · σ̂−3 and

σ̂2 · σ̂−4 for different α are plotted in Fig. 3. For α ∼ 0, each
term reaches its maximum value near θ1 and θ1 − π/2, respec-
tively. The product (σ̂1 · σ̂−3)(σ̂2 · σ̂−4) reaches its maximum
when θ1 = π

4 . The same result can be obtained for f1,−4. At
this angle, the probability that mode 3 is polarized at angle θ3
and mode 4 is polarized at angle θ4 is proportional to

f1,−3 + f1,−4 =
[

c2(k1 − k3)2

(ω1 − ω3)2 − ω2
p

− 1

]

× (1+ cos2 α) cos(θ3 − ϕ30) cos(θ4 − ϕ40),
(22)

tan ϕ30 = cosα, tan
(
ϕ40 +

π

2

)
= 1

cosα
. (23)

This probability function is plotted in Fig. 3, showing that
the two modes have the maximum probability of polarizing
at different angles tan ϕ30 and tan ϕ40, respectively.

Therefore, polarization entangled photon pairs can be col-
lected at the azimuthal angle α defined in Eq. (19) and the
polar angle θ1 = π/4. Now we define the horizontal polariza-
tion at the angle θ1, then the biphoton state can be written as

|+⟩ = 1√
2
cos(ϕ30 − ϕ40)(|H,V ⟩ + |V,H⟩)

+ 1√
2
sin(ϕ30 − ϕ40)(|H,H⟩ + |V,V ⟩). (24)

The photon pairs become entangled if either of the two coeffi-
cients is significantly larger than the other. Quantitatively, the
entanglement can be measured using logarithmic negativity,

EN = log[2 cos(ϕ30 − ϕ40)]. (25)

Thus, the emitted photon pair is in an entangled state if
cos(ϕ30 − ϕ40) > 1/2, which limits the plasma frequency and
the accompanying two-pump detuning.

B. Pumps with the same polarization

We next check the possibility of producing entangled pho-
ton pairs using two colinear pump pulses with the same
polarization. They produce output fields with the same polar-
ization, which could be different from the pump polarization.
All the terms, including f1,2, f1,−3, and f1,−4, contribute to the
production of photon pairs. Assume the pumps are horizon-
tally polarized and let θi be the polarization angle of mode i
with respect to the pump fields. The term f1,2 allows creation
of both horizontally or vertically polarized photon pairs, i.e.,

f1,2 =
[

c2(k1 + k2)2

(ω1 + ω2)2 − ω2
p

− 1

]

× [cos θ3 cos θ4 + sin θ3 sin θ4 cos(2α)]. (26)

However, because ω1 + ω2 ≫ ωp, the term in the first square
bracket is strongly suppressed. The photon creation is domi-
nated by the terms f1,−3 and f1,−4, which equal to cos θ3 cos θ4
and become 0 for vertically polarized photon pairs. Therefore,
it is impractical to produce polarization entangled photon
pairs using two colinear pump pulses with the same polariza-
tion.

C. Rate of photon-pair emission

The photon emission rate is determined by the product
of the growth rate )F and the pump amplitudes α1α2. The
value of )F increases as ω1–ω3 approaches ωp. But, too near
the resonance point, strong spontaneous Raman scattering
induces unwanted noise photons. As an example, consider the
first pump with a wavelength λ1 = 1 µm, and plasma with a
density of 3.5×1015 cm−3, corresponding to ωp = 0.1ω2. The
second pump frequency is chosen well beyond the plasma res-
onance frequency, ω2 = ω1 − 4ωp. In this configuration, we
find that the output photon frequency is ω3 = ω4 = 0.8ω1, or
λ3 = λ4 = 1.25 µm, and they are separated by a 3.76◦ angle.
For pump amplitude α1α2 = 0.01, the FWM growth rate is
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)F = 0.0001ω1. Thus, a single photon pair (r ≈ 0.15) could
be produced in a 1.5mm long plasma.

Because the plasma frequency can be flexibly controlled
through its density, a wide range of frequencies of the output
entangled photon pairs are possible. If we instead consider
a soft x-ray pump with λ = 10 nm and α1α2 = 0.0001, then
an entangled photon pair can be created in the same plasma
length, if the plasma density is increased to 3.5×1019 cm−3.

D. Effects of spontaneous Raman scattering

In subpicosecond timescales, spontaneous Raman scatter-
ing is the main process that destroys the entanglement. It
converts a photon into a different frequency by either absorb-
ing or creating a plasma phonon in the form of Langmuir
wave. SRS introduces noise via two routes. First, the thermal
phonon scatters one of the entangled photon pairs into a dif-
ferent frequency and a different angle, causing direct loss of
quantum correlation. But the scattering is negligible with low
photon and phonon numbers. If we assume an equipartition
theorem for plasma waves, and consider plasma phonon en-
ergy to be h̄ωp ∼ 0.1 eV (ωp equals to 1/10 of optical laser
frequency), then a cold plasma at ∼1 eV temperature only has
an average thermal phonon number of only n̄th ≈ 10.

Second, SRS can scatter the pump photons into the out-
put modes. The created photons are not correlated with the
entangled photon pairs, reducing the quantum purity of the
output states. This process, however, could not be suppressed
using techniques for plasma Raman amplifiers, such as a
plasma density gradient, because fluctuations of the plasma
density could broaden the scattering spectrum and shadow the
entangled photon pairs. Suppression of SRS requires reducing
the thermal photon number of plasma oscillation at frequency
ω1–ω3.

IV. PRODUCING QUANTUM SQUEEZED STATES AND
SUPPRESSING STIMULATED RAMAN SCATTERING

If multiple photon pairs could be produced, then the out-
put becomes a quantum two-mode squeezed state |+⟩ =
cosh−1 r

∑∞
n=0 e

inϕ tanhn r|n, n⟩. The two output modes have
strong quantum correlation similar to the quantum entangled
photon pairs but higher brightness than a single photon pair.
What is remarkable about two-mode squeezed states is that
covariance of their quadratures has below-shot-noise-level
fluctuations. If the two output modes are linearly combined
using a beam splitter, then the output becomes a continu-
ous variable (CV) quantum entangled state. The squeezing
operation can control the quantum noise which is encoded
for quantum communication and manipulated for quantum
computation. Because the angle for squeezed quadrature can
be continuously tuned, there are unparalleled advantages com-
pared to discrete variable (DV) quantum information, which
uses entangled photon pairs.

To achieve a significant squeezing magnitude, the system
needs to have high photon emission rate and low noise input in
the squeezed quadrature. To fulfill both requirements, we next
consider pumping FWM using a bicolor pump with a detuning
ω1 − ω2 = 2ωp, which yields the maximum FWM interaction
rate. This frequency configuration is avoided for producing

entangled photon pairs, because it induces rapid scattering
from thermal phonons. However, because quantum squeezing
reduces noise only in one quadrature, the SRS noise might not
degrade the squeezing magnitude if the they are induced in a
correlated manner, i.e., the noise photon correlation could be
made use of for noise cancellation.

The enhancement of FWM growth rate ) can significantly
increase the photon emission rate. For example, if we only
change the pump wavelength to satisfy |ω1,2 − ω3,4| = ωp but
keep other parameters as given in the last section, then )
increases to a value similar to g ∼ 0.015ω1, which is more
than one order of magnitude higher than the value given in the
last section. Under this condition, a 1mm long plasma and
30 fs pump pulse could result in more than 109 photons. If the
plasma length and laser duration is doubled, then the photon
number would reach 1017, which contains energy of 0.01 J.

Wth both FWM and SRS involved, the state evolu-
tion isU = exp[− i

h̄

∫
Hint(t )dt] = D3(β3)D4(β4)S(ξ ), where

Di(βi ) = exp(βiâi − β∗
i â

†
i ) is the displacement operator,

S(ξ ) = exp(ξ â†3â
†
4 − ξ ∗â3â4) is the two-mode squeezing op-

erator, ξ = −i)Fβ1β2, β3,4 = −i(α∗
1,2gp̄− α∗

2,1gq̄), and p̄ and
q̄ are the average phonon amplitudes. The output state can
then be expressed in the form of a two-mode squeezed coher-
ent state |+out⟩ = D3(β3)D4(β4)S(ξ )|0, 0⟩. Interestingly, the
displacement operators D3 and D4 shift the states with the
same quadrature angle and amplitude if p̄ = q̄. This coher-
ent component might, therefore, be canceled mutually if the
modes are linearly combined.

The bicolor pump configuration has been studied in opti-
cal cavities involving oscillating a mechanical oscillator [20].
It shows that asymmetric pump produces strong quantum
squeezing and symmetric pump produces phase sensitive
amplification. The method of producing squeezing using
asymmetric pumps, however, cannot be directly applied to
the plasma medium, because it lacks the optical cavity for
noise filtering. What could be used here is the combination
of symmetric pumping and FWM. While a photon-phonon
pair is produced by the high-frequency pump, the phonon is
converted into another photon by the low-frequency pump.
Thus, it creates correlated photon pairs. It also ensures that
the phonon amplitude maintains a finite value, so that the me-
diating plasma wave can maintain a finite amplitude without
an exponential growth.

However, the thermal noise is driven by plasma wave
relaxation which cannot be analyzed through the Hamilto-
nian itself. Instead, the photon emission process with thermal
phonon noise taken into account is described by the quantum
Langevin equations (QLE)

∂

∂t
" = L" +

√
2κ"in, (27)

where we neglected the convection operator, " =
(â3, â

†
4, p̂

†, q̂)T , "in = (0, 0, p̂†in, q̂in )
T , and

L =

⎛

⎜⎜⎜⎝

0 iα1α2)F −iα1g −iα2g
−iα∗

1α
∗
2)F 0 iα∗

2g iα∗
1g

iα∗
1g iα2g −κ 0

−iα∗
2g −iα1g 0 −κ

⎞

⎟⎟⎟⎠
. (28)
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Here, κ is the plasma wave relaxation rate mainly due to
Landau damping at finite plasma temperature, and pin(t )
and qin(t ) are the phonon noise operator associated with the
plasma waves. We assume their correlation functions have the
similar form with those for Brownian motions

⟨p†in(t )pin(t
′)⟩ = n̄pδ(t − t ′),

⟨pin(t )p†in(t
′)⟩ = (n̄p + 1)δ(t − t ′),

⟨q†in(t )qin(t
′)⟩ = n̄qδ(t − t ′),

⟨qin(t )q†in(t
′)⟩ = (n̄q + 1)δ(t − t ′), (29)

where n̄p,q is the average thermal phonon number for mode p
and q.

The thermal phonon noise is driven by plasma wave relax-
ations, including Landau damping, collisional damping, and
other decoherence processes. These relaxation processes are
different from other systems like atoms and mechanical oscil-
lators because the plasma electrons are not directly coupled
to external reservoirs. Plasma waves decay mainly from phase
mixing due to Landau damping or collision, i.e., by coupling
to other plasmon modes. It also means that the thermal reser-
voir is completely determined by the initial condition of the
plasma system, in absence of laser interactions, which poten-
tially leads to fewer thermally excited phonons compared to,
e.g., a mechanical oscillating mirror.

To satisfy p̄ = q̄, we assume equal pump amplitude with
a real value α1 = α2 = α. Then, the QLEs have a simple
solution

â3(t ) = cosh()Fα2t )â3(0)+ i sinh()Fα2t )â†4(0)

+
∫ t

0

[
1+ i
2

(
ie−)Fα2t ′

)Fα2 − κ
− e)Fα2t ′

)Fα2 + κ

)

+ )Fα2 − iκ
()Fα2)2 − κ2

e−κt ′

]

αg
√
2κ[p†in(t

′)+ qin(t ′)]dt ′,

(30)

â4(t ) = i sinh()Fα2t )â†3(0)+ cosh()Fα2t )â4(0)

×
∫ t

0

[
1+ i
2

(
ie−)Fα2t ′

)Fα2 − κ
− e)Fα2t ′

)Fα2 + κ

)

+ )Fα2 − iκ
()Fα2)2 − κ2

e−κt ′

]

αg
√
2κ[pin(t ′)+ q†in(t

′)]dt ′.

(31)

The right-hand side of each expression has three terms. The
first two terms denote the effect of FWM on the vacuum noise.
In the square bracket of the integrand, the first term represents
the noise amplification (and deamplification) due to SRS of
the high-frequency and low-frequency pumps, and the last
term describes the noise due to thermalization.

The similar forms of a3 and a†4 suggest the possibility
of partial cancellation of the noise from phonons. Indeed,
the correlation between the two modes is revealed in the
X3 and Y4 quadratures, where Xi = (âi + â†i )/

√
2 and Yi =

(âi − â†i )/(
√
2i) for i = 3, 4. Specifically, the correlation

FIG. 4. The maximum squeezing magnitude (top) and the op-
timal plasma length L = ctcr (bottom) for different plasma wave
damping rate κ and thermal phonon number n̄. Other parameters are
given in the text.

function

V− = ⟨(X3 − Y4)2⟩ = e−2)Fα2t +
[
1 − e−2κt

2κ

+ 1 − e−2)Fα2t

2)Fα2
− 2(1 − e−()Fα2+κ )t )

)Fα2 + κ

]

× α2g24κ
(α2)F − κ )2

(2n̄p + 1) (32)

only includes terms proportional to e−2)Fα2t and e−2κt but
does not have any exponentially growing terms. The first
term, representing squeezed vacuum noise, monotonically de-
creases. The second term, representing thermal phonon noise,
saturates at 2α2g2(2n̄+ 1)/[)α2()α2 + κ )](≫ 1). However,
thermalization can be negligible in a short time κt ≪ 1
owing to the small Landau damping rate in cold plasmas.
Hence, V− ≈ 2(g/α))2(2n̄+ 1)(1 − e−2κt ) could be lower
than the vacuum level at a certain time. Exactly, the maximum
squeezing magnitude is obtained at tcr = (α2) − κ )−1 ln[1+√

α2)(α2)−κ )2
2κα2g2(2n̄+1) ]. The maximum squeezing magnitude and the

optimal plasma length are plotted in Fig. 4. It is seen that the
squeezing magnitude crucially relies on a large FWM growth
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rate α2), a small plasma decay rate κ and a small thermal
phonon number n̄.

The orthogonal correlation exhibits amplified thermal
noise due to SRS

V+ = ⟨(X3 + Y4)2⟩ = e2)Fα2t +
[
1 − e−2κt

2κ
− 1 − e2)Fα2t

2)Fα2t

− 2(1 − e()Fα2−κ )t )
)Fα2 − κ

]
α2g24κ

(α2)F + κ )2

× (2n̄p + 1). (33)

A. Single-mode squeezed state

The two-mode squeezed output can be converted into a
single-mode squeezed state using a beam splitter. The output
state ĉ can be written as ĉ = (â3 − iâ4)/

√
2, which obeys the

commutation relation [ĉ(t ), ĉ†(t ′)] = δ(t − t ′). The spectra of
its quadratures Xc = (ĉ+ ĉ†)/

√
2 and Yc = (ĉ − ĉ†)/(

√
2i)

can be found

SXc =
〈
X 2
c

〉
= 1

2
e−2)Fα2t +

[
1 − e−2κt

2κ

+ 1 − e−2)Fα2t

2)Fα2
− 2(1 − e−()Fα2+κ )t )

)Fα2 + κ

]

× α2g22κ
(α2)F − κ )2

(2n̄p + 1), (34)

SYc =
〈
Y 2
c

〉
= 1

2
e2)Fα2t

[
1 − e−2κt

2κ
− 1 − e2)Fα2t

2)Fα2t

− 2(1 − e()Fα2−κ )t )
)Fα2 − κ

]
α2g22κ

(α2)F + κ )2
(2n̄p + 1).

(35)

It is seen that the spectrum of X quadrature is squeezed for
certain time t . The spectrum of Y quadrature, however, shows
antisqueezed noise fluctuation.

Although squeezing is obtained, excessive noise degrades
the state purity Trρ2 = 1/

√
det σ . It can be obtained using

the covariance matrix σ = ( 2⟨X 2
c ⟩ ⟨XcYc + YcXc⟩

⟨XcYc + YcXc⟩ 2⟨Y 2
c ⟩ ), where

⟨XcYc⟩ = ⟨YcXc⟩ = 0 and we used ⟨Xc⟩ = ⟨Yc⟩ = 0. Thus, the
state purity is Trρ2 = 4SXcSY c, which decreases at higher
thermal phonon number n̄p and larger plasma wave relaxation
rate κ .

V. CONCLUSIONS

In conclusion, we investigated the use of ionized plasmas
and ultraintense laser pulses to generate quantum states of
light with high photon flux and broad bandwidth. Our model
demonstrates the ability of the relativistic FWM nonlinear
susceptibility to convert two pump photons into two output
photons at distinct frequencies and angles. The all-optical
parametric nature of FWM ensures that the properties of the
output photon pairs are solely determined by the pump photon

pairs, independent of plasma resonances, though plasma den-
sity influences the photon emission rate. To mitigate classical
noise from SRS, the pump frequencies are tailored to ensure
substantial detuning of the output frequencies from the Stokes
and antiStokes sidebands. Employing orthogonally polarized
dual-color pumps then enables the generation of polarization-
entangled photon pairs.

Setting the pump detuning to twice the plasma frequency
enhances both FWM and SRS interaction rates. While this
increases SRS noise in both output modes, the quantum cor-
relation of this noise allows for its suppression in one of the
quadratures. This configuration facilitates the production of
quantum two-mode squeezed states.

It should be noted that the result is obtained by assum-
ing a Brownian-noise-like correlation function [Eqs. (29)]
for the plasma thermal phonons. Plasmas follow the same
fluctuation-dissipation theorem of statistical dynamics near
equilibrium [61] that describes the emission of Brownian par-
ticles. However, note several distinctive features of plasma
fluctuations. First, while the Brownian motion of particles
is captured in the frequency spectrum of the particle energy
distributions, the fluctuation of plasma waves is dependent
on both frequency and wave vector. This leads to the second
difference between particle fluctuations and wave fluctuations
in that the plasma wave relaxation is caused by dephasing
of different wave vectors, known as Landau damping, but
Brownian motion decays mainly due to Stokes dragging.
Third, plasma couples to electromagnetic waves via its dis-
crete particle distributions, but Brownian particles radiate due
to random acceleration by thermal fluctuations. Nevertheless,
the two different models should be equivalent in the limit
that the plasma wavelength is shorter than the Debye length
and the radiating elements are purely collective plasma wave
phonons.

The calculation also neglects the large mismatch of the
group velocities between the laser pulses and the plasma
waves. A more accurate analysis needs to conduct quantum
numerical simulations of the laser-plasma interaction pro-
cesses to fully characterize the produced quantum states. The
simulations should include more modes that we have to ne-
glect in analytical calculations. The most important modes
are the series of Stokes and antiStokes sidebands of the strong
squeezed mode. As the output amplitude grows, SRS is shown
to be capable of broadening the spectrum into a frequency
comb [62] with spacing of ωp. The comb modes, which are
produced through cascaded SRS, could show unique quantum
features. These processes, as well as other plasma instabilities,
will be investigated using particle-in-cell simulations in future
works.

The advantage of utilizing plasmas lies in their capac-
ity for high photon flux and broad bandwidth generation.
Plasma excels in mediating short-wavelength light, like x rays,
compared to conventional materials. For example, consider
a soft x-ray pump with λ = 10 nm. Even if the pumps have
an amplitude of α1 ≈ α2 = 0.00001, the same output photon
numbers could be produced in the same plasma length if the
plasma density is increased to 3.5×1019 cm−3. With mildly
relativistic laser intensities, each millimeter-long plasma can
produce nine orders of magnitude growth of photon fluxes
before the pump is depleted.
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The plasma-based methods for generating ultrastrong
and broadband quantum light open new avenues for di-
verse applications in science and technology, including
enhanced x-ray imaging, quantum metrology, and x-ray
nuclear spectroscopy [63–67]. A notable example is its po-
tential application in quantum lithography [68–73], a concept
proposed to surpass the Rayleigh diffraction limit using
quantum light sources. Currently limited by the low photon
count of existing sources, the high photon flux and short

wavelengths achievable with plasma-based methods could
revolutionize high-resolution photolithography, potentially
impacting the multi-billion dollar semiconductor industry sig-
nificantly.
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